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Abstract

Phonetic similarity algorithms identify words
and phrases with similar pronunciation which
are used in many natural language process-
ing tasks. However, existing approaches are
designed mainly for Indo-European languages
and fail to capture the unique properties of
Chinese pronunciation. In this paper, we pro-
pose a high dimensional encoded phonetic
similarity algorithm for Chinese, DIMSIM.
The encodings are learned from annotated data
to separately map initial and final phonemes
into n-dimensional coordinates. Pinyin pho-
netic similarities are then calculated by aggre-
gating the similarities of initial, final and tone.
DIMSIM demonstrates a 7.5X improvement
on mean reciprocal rank over the state-of-the-
art phonetic similarity approaches.

1 Introduction

Performing the mental gymnastics of transform-
ing ‘I’m hear’ to ‘I’m here,’ or, ‘I can’t so but-
tons’ to ‘I can’t sew buttons,’ is familiar to anyone
who has encountered autocorrected text messages,
punny social media posts, or just friends with bad
grammar. Although at first glance it may seem
that phonetic similarity can only be quantified for
audible words, this problem is often present in
purely textual spaces, such as social media posts
or text messages. Incorrect homophones and syn-
ophones, whether used in error or in jest, pose
challenges for a wide range of NLP tasks, such
as named entity identification, text normalization
and spelling correction (Chung et al., 2011; Xia
et al., 2006; Toutanova and Moore, 2002; Twiefel
et al., 2014; Lee et al., 2013; Kessler, 2005). These
tasks must therefore successfully transform incor-
rect words or phrases (‘hear’,’so’) to their phonet-
ically similar correct counterparts (’here’,’sew’),
which in turn requires a robust representation of
phonetic similarity between word pairs. A reli-

Pinyin initial final tone
xi1 x i 1
fan4 f an 4

Table 1: Example Pinyins.

偶(ou2,我wo2)稀饭(xi1fan4,喜欢xi2huan1)你。
I like you.
杯具(bei1ju4,悲剧bei1ju4)啊，为一个女孩纸
(zhi2,子zi5)这么香菇(xiang1gu1,想哭 xiang2ku1)。
Sadly, I am heart broken for a girl.

Table 2: Microblogs using phonetic transcription.

able approach for generating phonetically simi-
lar words is equally crucial for Chinese text (Xia
et al., 2006).

Unfortunately, most existing phonetic similar-
ity algorithms such as Soundex (Archives and
Administration, 2007) and Double Metaphone
(DM) Philips (2000) are motivated by English and
designed for Indo-European languages. Words are
encoded to approximate phonetic presentations by
ignoring vowels (except foremost ones), which is
appropriate where phonetic transcription consists
of a sequence of phonemes, such as for English.
In contrast, the speech sound of a Chinese char-
acter is represented by a single syllable in Pinyin
consisting of two or three parts: an initial (op-
tional), a final or compound finals, and tone 1 (Ta-
ble 1). As a result, phonetic similarity approaches
designed for Indo-European languages often fall
short when applied to Chinese text. Note that we
use Pinyin as the phonetic representation because
it is a widely accepted Romanization system (San,
2007; ISO, 2015) of Chinese syllables, used to
teach pronunciation of standard Chinese. Table 2
shows two sentences from Chinese microblogs,
containing informal words derived from phonetic
transcription. The DM and Soundex encodings for

1Chinese has five tones, represented on a 1-5 scale.
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Words DM Soundex
稀xi1饭fan4 S:S,FN:FN X000,F500
喜xi2欢huan1 S:S,HN:HN X000,H500
泄xie4愤fen4 S:S,FN:FN X000,F500

Table 3: DM and Soundex of Chinese words.

zh ch sh

z c s

Figure 1: Grouping initials by phonetic similarity.

near-homonyms of 喜欢 from Table 2 are shown
in Table 3. Since both DM and Soundex ignore
vowels and tones, words with dissimilar pronun-
ciations are incorrectly assigned to the same en-
coding (e.g. 稀饭 and 泄愤), while true near-
homonyms are encoded much further apart (e.g.
稀饭 and 喜欢). On the other hand, additional
candidates with similar phonetic distances such as
心xin1烦fan2，西xi1方fang1 for稀饭 should be
generated, for consumption by downstream appli-
cations such as text normalization.

The example highlights the importance of con-
sidering all Pinyin components and their charac-
teristics when calculating Chinese phonetic simi-
larity (Xia et al., 2006). One recent work (Yao,
2015) manually assigns a single numerical num-
ber to encode and derive phonetic similarity. How-
ever, this single-encoding approach is inaccurate
since the phonetic distances between Pinyins are
not captured well in a one dimensional space. Fig-
ure 1 illustrates the similarities between a sub-
set of initials. Initial groups “z, c”, “zh, ch”,
“z, zh” and “zh, ch” are all similar, which can-
not be captured using a one dimensional represen-
tation (e.g., an encoding of “zh=0,z=1,c=2,ch=3”
fails to identify the “zh, ch” pair as similar.)
ALINE (Kondrak, 2003) is another illustration
of the challenge of manually assigning numer-
ical values in order to accurately represent the
complex relative phonetic similarity relationships
across various languages. Therefore, given the
perceptual nature of the problem of phonetic simi-
larity, it is critical to learn the distances based on as
much empirical data as possible (Kessler, 2005),
rather than using a manually encoded metric.

This paper presents DIMSIM, a learned n-
dimensional phonetic encoding for Chinese along
with a phonetic similarity algorithm, which uses
the encoding to generate and rank phonetically

similar words. To address the complexity of rel-
ative phonetic similarities in Pinyin components,
we propose a supervised learning approach to
learn n dimensional encodings for finals and ini-
tials where n can be easily extended from one to
two or higher dimensions. The learning model
derives accurate encodings by jointly considering
Pinyin linguistic characteristics, such as place of
articulation and pronunciation methods, as well as
high quality annotated training data sets. We com-
pare DIMSIM to Double Metaphone(DM), Mini-
mum edit distance(MED) and ALINE demonstrat-
ing that DIMSIM outperforms these algorithms by
7.5X on mean reciprocal rank, 1.4X on precision
and 1.5X on recall on a real-world dataset. Our
contributions are:

1. An encoding for Chinese Pinyin leveraging
Chinese pronunciation characteristics.

2. A simple and effective phonetic similarity
algorithm to generate and rank phonetically
similar Chinese words.

3. An implementation and a comprehensive
evaluation showing the effectiveness of DIM-
SIM over the state-of-the-art algorithms.

4. A package release of the implemented algo-
rithm and a constructed dataset of Chinese
words with phonetic corrections.2

2 Generating Phonetic Candidates

DIMSIM generates ranked candidate words with
similar pronunciation to a seed word. Similarity is
measured by a phonetic distance metric based on
n-dimensional encodings, as introduced below.

2.1 Phonetic Comparison for Pinyin

An important characteristic of Pinyin is that the
three components, initial, final and tone, can be in-
dependently phonetically compared. For example,
the phonetic similarity of the finals “ie” and “ue”
is identical in the Pinyin pairs {“xie2”,“xue2”}
and {“lie2”,“lue2”}, in spite of the varying ini-
tials. English, by contrast, does not have this char-
acteristic. Consider as an example, the letter group
“ough,” which is pronounced quite differently in
“rough,” “through” and “though.”

Note that depending on the initials, a final of
same written form can represent different finals.
For instance, ü is written as u after j, q and x; uo is
written as o after b, p,m, f or w. There are a total

2https://github.com/System-T/DimSim.
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of six rewritten rules in Pinyin (ISO, 2015). Since
these rules are fixed, we preprocess the Pinyins ac-
cording to these rules, transforming them into the
original form for our internal representation (e.g.,
we represent ju as jü and bo as buo.)

2.2 Measuring Phonetic Similarity
DIMSIM represents a given word w as a list of
characters {ci|1 ≤ i ≤ K} where K is the num-
ber of characters and pci denotes the Pinyin of ith
character. The initial, final, and tone components
of pci are denoted as pIci , p

F
ci , and pTci , respectively.

Formally, the phonetic similarity S between the
pronunciation of ci and c′i is computed using Man-
hattan distance as the sum of the distances be-
tween the three pairs of components, as follows:

∑
1≤i≤K

S(ci, c
′
i) =

∑
1≤i≤K

{Sp(pIci , pIc′i)+

Sp(p
F
ci , p

F
c′i
) + ST (p

T
ci , p

T
c′i
)}

(1)

Manhattan distance is an appropriate metric since
the three components are independent. Any sin-
gle change does not affect more than one com-
ponent, and any change affecting several compo-
nents is the result of multiple independent and
additive changes. It follows that the similarity
between two words is computed as the sum of
the phonetic distances of characters. For exam-
ple, the Pinyins of “童鞋” and “同学” are
“tong2xie2” and “tong2xue2”. The distance be-
tween “童(tong2)” and “同(tong2)” is zero; the
distance between “鞋(xie2)” and “学(xue2)”
is calculated as S( “鞋” , “学” ) = Sp(x, x) +
Sp(ie, ue) + ST (2, 2). Although the characters
“鞋(xie2)” and “学(xue2)” are completely dif-
ferent, their Pinyins only differ in their finals.

2.3 Learning Pinyin Encodings
The next task is to compute encodings for initials,
finals, and tones. While tonal similarity is easily
handled (see Section 2.4), pairwise similarity for
initials and finals is more complex. We adopt a
supervised learning approach to obtain these en-
codings, using linguistic characteristics combined
with a labeled dataset. The latter consists of word
pairs, with specific pairs of initials or finals man-
ually annotated for phonetic similarity. The set of
annotated pairs between initials and finals are then
used to learn the n-dimensional encodings of ini-
tials and finals, which will in turn be used for gen-
erating phonetically similar candidates.
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For instance, ü is written as u after j, q, x. uo
is written as o after b, p, m, f or w. There are a
total of six rewritten rules in Pinyin (ISO, 2015).
Since these rules are fixed, it is straightforward to
preprocess the Pinyins according to these rules to
turn them into the original form of Pinyins as a
internal representation before conducting phonetic
comparison. For example, we represent ju as jü,
bo as buo. After the preprocessing step, we inde-
pendently compare components.

2.2 Measuring Phonetic Similarity

DIMSIM represents a given Chinese word w as a
list of Chinese characters {ci|1  i  K} where
K is the number of characters in w and pci denotes
the Pinyin of ith character. The initial, final, and
tone components of the Pinyin pci are denoted as
pI

ci
, pF

ci
, and pT

ci
, respectively.

Formally, the phonetic similarity S between the
pronunciation of two characters, ci and c0i is com-
puted using Manhattan distance as the sum of the
distances between the three pairs of components,
as follows:

X

1iK

S(ci, c
0
i) =

X

1iK

{Sp(pI
ci

, pI
c0i

)+

Sp(pF
ci

, pF
c0i

) + ST (pT
ci

, pT
c0i

)}
(1)

Manhattan distance is an appropriate metric since
the three components are independent. A single
change in a Pinyin is therefore a change to the ini-
tial, the final, or the tone, but not to more than
one of the components simultaneously. A change
that affects more than one component is the re-
sult of multiple independent and therefore additive
changes.

Following the same logic, the phonetic sim-
ilarity between two words w and w0 is com-
puted as the sum of the distances between the
Pinyins. For example, the Pinyins of “Âã”
and “�f” are “tong2xie2” and “tong2xue2”
respectively. The distance between “Â(tong2)”
and “�(tong2)” is zero; the distance between
“ã(xie2)” and “f(xue2)” is calculated as
S(ie, ue) = Sp(x, x)+Sp(ie, ue)+ST (2, 2). We
see that although the characters are completely dif-
ferent, “ã(xie2)” and “f(xue2)” only differ
in their finals, but not their initials and tones.

2.3 Learning Pinyin Encodings

Therefore, the next task is to generate an accurate
representation of phonetic similarity for every pair
of initials, finals, and tones. As there are only 5

Labial Alveolar Retroflex Alveolo- Velar
palatal

Plosive (u) b d g
Plosive (a) p t k
Nasal m n
Affricate (u) z zh j
Affricate (a) c ch q
Fricative f s sh x h
Liquid l r
Semivowel y and w
(u) = unaspirated, (a) = aspirated

Table 4: Table of Pinyin initials (colors denote clusters).

tones in Chinese, pairwise tonal similarity is eas-
ily handled (see section 2.4). However, pairwise
similarity for initials and finals is more complex
and must be learned. We use a supervised machine
learning approach that uses Pinyin linguistic char-
acteristics combined with manually labeled data
sets of phonetic similarity. The training data sets
consist of word pairs that highlight a pair of ini-
tials (or finals), and are used as the context for an
annotator-provided phonetic similarity score. The
manually labeled scores are transformed into sim-
ilarity scores. The set of initials (or finals) is then
mapped to the n-dimensional encodings by mini-
mizing the difference between the resulting pair-
wise distances, and the distances obtained from
the training data sets.

2.3.1 Generating Similar Word Pairs
Phonetically similar word pairs are used to create
annotations representing the phonetic similarity of
a pair of initials, or finals. Chinese has 253 pairs
of initials and 666 pairs of finals. Manually an-
notating each pair similarity requires a very large
number of examples: assuming ten or twenty word
pairs are provided as context for each pair, the task
quickly blows up to nine or eighteen thousand an-
notations. We observe that the phonetic similar-
ity of Chinese Pinyin is greatly impacted by the
pronunciation methods and the place of articula-
tion. Leveraging known Pinyin linguistic charac-
teristics can improve the accuracy of our model
and reduce the size of the annotation task. Specif-
ically, this is done by grouping the Pinyin compo-
nents into initial clusters according to the Pinyin
pronunciation tables (ISO, 2015) and only anno-
tating the pairs within each cluster along with a
single pairwise distance between clusters.

Table 4 shows the the clustering of initials ac-
cording to the Pinyin linguistic characteristics.
We partition initials into 12 clusters, consisting

Figure 2: Table of Pinyin Initials.

2.3.1 Generating Similar Word Pairs
Phonetically similar word pairs are used to create
annotations representing the phonetic similarity of
initials, or finals. Chinese has 253 pairs of initials
and 666 pairs of finals. Annotating examples of
all these pairs is labor intensive and error-prone.
Assuming twenty word pairs are provided as con-
text per pair, the task quickly blows up to eigh-
teen thousand annotations. However, we observe
that the phonetic similarity of Pinyin is greatly im-
pacted by the pronunciation methods and the place
of articulation - this allows us to improve the accu-
racy and simplify the annotation task. Specifically,
this is done by grouping Pinyin components into
initial clusters and only annotating pairs within
each cluster, and representative cluster pairs.

Figure 2 partitions initials into 12 clusters, con-
sisting of “bp”,“dt”,“gk”,“hf”,“nl”,“r”, “jqx”,
“zcs”, “zhchsh”, “m” ,“y” and “w”, based on the
pronunciation method and the place of articula-
tion. “f” and “h” are grouped together as they are
both fricative and sound very similar, especially
for people from the southeast of China (Zhishihao,
2017). We then eliminate the comparison of pairs
that are highly similar or highly dissimilar. For ex-
ample, as the semivowel initials “y” and “w” are
dissimilar to all other initials, we label every ini-
tial pair containing one of them with the lowest
possible score. To compare between clusters, we
randomly choose one initial from each cluster and
generate just those comparison pairs. The number
of pairs of initials decreases from 253 to 59.

We use a similar method for finals, partition-
ing them into six groups by the six basic vow-
els (“a,o,e,i,u,ü”) (e.g., “i,in,ing” are clustered to-
gether.) We then use edit distance and common
sequence length constraints to guide the pair gen-
eration; specifically, we compare a pair of finals
if the edit distance between them is 1 or 2. Since
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the length of finals on average is two, an edit dis-
tance of three means a complete change to the fi-
nal, resulting in pairs with the lowest similarity.
To compare finals across clusters, since the edit
distance between any such pair is at least two, we
compare pairs only when the length of the com-
mon sequence is at least two (for example, “ian”
and “uan”), and otherwise assign the lowest possi-
ble similarity to the pairs. This drops the number
of comparison pairs of finals down to 113.

After generating the comparison pairs, we cre-
ate word pairs whose Pinyins only differ in the
these pairs. We identify and account for several
confounding factors that may affect annotation: 1)
the position of the character containing the initial
or final being compared; 2) the word length; and 3)
the combination of initials and finals. Since most
Chinese words are of length two, we only gener-
ate word pairs of length two for this task. Provid-
ing word pairs of length greater than two would
not make much difference to learned encodings as
long as word pairs are representative.

For a given initial (or final) pair (p1, p2), such
as (b, p), we first generate the all possible Pinyins
with a component of p1 such as bao and bing.
For each Pinyin py, we retrieve all the words
with length two in the dictionary which also have
first or second character with the same py. Ex-
ample words for py=“bao′′ include包bao1袱fu2.
For each created word w, we change the initial
(or final) from p1 to p2, retrieve the correspond-
ing words from the dictionary and generate the
word pairs to compare. One such example is
(包bao1袱fu2, 泡pao4芙fu2). Finally, from the
full list we randomly select five word pairs that
vary the first character, and five word pairs that
vary the second character.

We invite three native Chinese speakers to per-
form the annotations. For each word pair, the an-
notators give a label on a 7 point scale represent-
ing their agreement, where the labels range from
’Completely Disagree’ (1) to ’Completely Agree’
(7). We calculate Krippendorff’s α (Hayes and
Krippendorff, 2007) for the initials and finals an-
notations to be 0.69 and 0.54, representing the
inter-annotator agreement. For each word pair, we
use Equation 2 to calculate the distance θ with the
average value φ of labels across the annotators.
Equation 2 inverts the labels so that the output can
be used as a distance metric (phonetically similar
initials or finals are closer together), and scales the

b p

m

f dt

nl

g k
h

j q x

zh

chsh

r z

cs
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Figure 3: Learned initial encodings, n=1.
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Figure 4: Learned initial encodings, n=2.

result to more accurately measure phonetic simi-
larities. The parameters a and b are set 4 and 104

by default, but we also show that the performance
of our method is not sensitive to the parameter set-
tings (see Section 3.2).

θ(φ) = 1/aφ ∗ b (2)

2.3.2 Learning Model
Once the average distances between pairs are com-
puted from the annotated data sets, we define a
constrained optimization to compute encodings of
the initials and finals. The final goal is to map each
initial (or final) to an n-dimensional point.

The distance Sp of a pair p of points
(x1, x2, ..., xn), (y1, y2, ..., yn) is calculated using
Euclidean distance as shown in equation 3.

Sp =

√ ∑
1≤i≤n

(xi − yi)2 (3)

The model aims to minimize the sum of the ab-
solute differences between the Euclidean distances
of component pairs and the average distances ob-
tained from the annotated training data across all
pairs for initials (or finals) C. We also incorporate
a penalty function, τp, for pairs deviating from the
manually annotated distance θ so that more pho-
netically similar pairs are penalized more highly
(we discuss τ further in Section 3.2). Equation 4
represents the cost function:

min
∑
p∈C
|S2
p − θ2p| ∗ τp (4)
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One main advantage of our learning model is
that it is generic and can easily extend to any n-
dimensional space. Based on the structured of
Table 2, we intuit that extending beyond one di-
mension will yield more accurate encodings. Fig-
ures 3 and 4 visualize the computed encodings
of initials when setting n=1 and n=2 We see that
when n = 2, the locations of initial coordinates
align well with Table 2,. In particular, the twelve
groups are clustered in a pattern that is defined in
Section 2.3.1. For example, “bp,gk,jqx” are sep-
arated into different clusters. However, while Ta-
ble 2 indicated the basic clusters for the initials,
our learned model goes further than Table 2 by ac-
tually quantifying the inter- and intra-cluster sim-
ilarities. Specifically, clusters “c, ch, j, q, x” are
tighter than clusters “c, c, h” and “d, t”, whereas
the clusters “m” and “n, r, l” are well separated
from other clusters. Interestingly, the learning al-
gorithms organically discovers new clusters that
are not reflected in Table 2; namely that “r,n” and
“r,l” are pairs of phonetically similar initials.

When n = 1, the learned model collapses the
coordinates into one dimension (Figure 3). We
observe that the predefined clusters are not well
aligned, and many clusters are mixed together
(e.g., “bp,gk,nl,dt”), preventing DIMSIM from
considering variations within a cluster to be more
similar than variations between clusters. Visually
comparing Figures 3 and 4 gives the intuition for
why DIMSIM with n = 2 performs better than
DIMSIM with n = 1, which is in turn reflected in
our evaluation results. Section 3 presents the ef-
fects that varying the number of dimensions has
on evaluation results.

2.4 Phonetic Tone Similarity

There are five tones in Chinese, represented by a
tone number scale ranging from 1 to 5. It is sim-
ple to use tone numbers for tone encodings and the
difference between the tones of two Pinyins as the
raw measure of distance, ranging in value from 1
to 5 (e.g., ST (xue2, xue4) = 4− 2 = 2). One ex-
ception is that we encode tone 3 as the numerical
value of 2.5 since tone 3 is more similar to tone 2
compared to tone 4 according to the relative pitch
changes of the four tones (ISO, 2015). However,
this measure must first be scaled to be compara-
ble to the pairwise phonetic distances of initials
and finals. There is an additional constraint: any
pairwise difference in initials or finals must have

Input : Word w, Threshold th,Dict dict;
Output: Words outws;
begin

pys = getPinyins(w,dict);
headPys =
getSimPinyins(pys(0), th);
headWords =
getWordswithHeadPy(headPys, dict);
for cw ∈ headWords do

if cw.size 6= w.size then
continue;

end
sim = getSimilarity(cw,w);
if sim ≤ th then

outws.add(cw);
end

end
sortByAscSim(outws);
return outws;

end
Algorithm 1: Generating phonetic candidates.

a greater negative effect on the phonetic similarity
between characters than any difference in tones.
For example, S(xue1,lue1)<S(xue1,xue5) even
though xue1 and xue5 are at opposite ends of
the tone scale. We therefore scale ST such that
Max(ST ) <Min(Sp).

2.5 Candidate Generation and Ranking

Having determined the phonetic encodings and the
mechanism to compute the phonetic similarity us-
ing learned phonetic encodings, we now describe
how to generate and rank similar candidates in Al-
gorithm 1. Given a word w, a similarity threshold
th, and a Chinese Pinyin dictionary dict, we re-
trieve the Pinyin py of w from dict. We derive
a list of Pinyins Pys whose similarity to py falls
within the threshold th. These are used to gener-
ate a list of words with the same Pinyin in Pys
and the same number of characters as w. We cal-
culate the similarity of each candidate word with
w using Equation 1 and filter out candidates that
fall outside the similarity threshold th. Thus, th
is a parameter that affects the precision and recall
of the generated candidates. A larger th generates
more candidates, increasing recall while decreas-
ing precision.3 Finally, we output the candidates
ranked in ascending order by similarity distance.

3We study the impact of varying th in Section 3.
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3 Evaluation

We collect 350 words from social media (Wu,
2016), and annotate each with 1-3 phoneti-
cally similar words. We use a community-
maintained free dictionary to map characters to
Pinyins (CEDict, 2016). We compare DIMSIM

with Double Metaphone (DM) (Philips, 2000),
ALINE (Kondrak, 2003) and Minimum edit dis-
tance (MED) (Navarro, 2001) in terms of preci-
sion (P), recall (R), and average Mean Reciprocal
Rank (MRR) (Voorhees and et al., 1999). We cal-
culate recall automatically using the the full test
set of word pairs (Wu, 2016). Since downstream
applications will only consider a limited number
of candidates in practice, we evaluate precision via
a manual annotation task on the top-ranked candi-
dates generated by each approach. DM consid-
ers word spelling, pronunciation and other mis-
cellaneous characteristics to encode the word into
a primary and a secondary code. DM as one of
the baselines is known to perform poorly at rank-
ing the candidates (Carstensen, 2005) since only
two codes are used. We therefore use our method
(Equation 1) to rank the DM-generated candi-
dates, to create a second baseline, DM-rank.4 The
third baseline, ALINE, measures phonetic similar-
ity based on manually coded multi-valued articu-
latory features weighted by their relative impor-
tance with respect to feature salience (again, man-
ually determined). MED, the last baseline, com-
putes similarity as the minimum-weight series of
edit operations that transforms one sound compo-
nent into another.

3.1 The Effectiveness of DIMSIM

Recall and MRR: We compare DIMSIM to DM,
DM-rank, ALINE and MED. DIMSIM1 and DIM-
SIM2 denotes DIMSIM encoding dimension n = 1
and n = 2, respectively. As shown in Figure 5,
DIMSIM2 improves recall by factors of 1.5, 1.5,
1.3 and 1.2, and improves MRR by factors of 7.5,
1.4, 1.03 and 1.2 over DM, DM-Rank, ALINE
and MED, respectively. DM performs relatively
poorly, as it is designed for English, and does not
accurately reflect Chinese pronunciation. Rank-
ing DM candidates using the DIMSIM phonetic
distance defined in Equation 1 improves its av-
erage MRR by a factor of 5.5. However, even
DM-Rank is outperformed by the simple MED

4We do not compare with Soundex as DM is accepted to
be an improved phonetic similarity algorithm over Soundex.
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Figure 5: Recall and MRR.
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Figure 6: Precision and MRR.

baseline, demonstrating the inherent problem with
DM’s coarse encodings. While ALINE has a
similar recall to DIMSIM, it performs worse on
MRR than DIMSIM2 because it does not have
a direct representation of compound vowels for
Pinyin. It measures distance between compound
vowels using phonetic features of basic vowels
which leads to inaccuracy. In turn, MED strug-
gles with representing accurate phonetic distances
between initials, since most initials are of length 1,
and the edit distance between any two characters
of length 1 is identical. In contrast, DIMSIM en-
codes initials and finals separately, and thus even a
1-dimensional encoding (DIMSIM1) outperforms
the other baselines. Finally, the intuition of Fig-
ures 3 and 4 is reflected in the data, as DIMSIM2
outperforms DIMSIM1 by 14% (MRR).

Precision and MRR: Here we evaluate the
quality of the candidate ranking since in practice,
downstream applications consider only a small
number of possible candidates for every word. We
ask two native Chinese speakers to annotate the
quality of the generated candidates. Choosing 100
words randomly from the test set, we use DM-
rank, MED, ALINE and DIMSIM2 to generate
top-K candidates for each seed word (K = 5).5

The annotators mark each candidate as phoneti-
cally similar to the seed word (1) or not (0), also
marking the one candidate they believe to be the
most similar-sounding (2), which may be any of

5We do not evaluate DM and DIMSIM1 as they perform
worse than DM-Rank and DIMSIM2, respectively.
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the top-K candidates. We then compute precision
and average MRR using the obtained annotations.
We achieve inter-level agreement(ILA) of 0.75 for
P and ILA of 0.84 for average MRR. DIMSIM

once again outperforms MED and DM-Rank by up
to 1.4X for precision and 1.24X for MRR. Since
the only criteria for picking the best top-K candi-
date is phonetic similarity, this demonstrates that
DIMSIM ranks the most phonetically similar can-
didates higher than the other baselines.

τ(φ)
θ(φ) 1/2φ 1/4φ 1/φ2 1/φ4

∗102 ∗104 ∗102 ∗103

None F10 F20 F30 F40
2φ F11 F21 - -
4φ F12 F22 - -
φ2 - - F33 F34
φ4 - - F43 F44

Table 4: Variations of θ,τ .
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3.2 Impact of Scoring and Penalty Functions

We study the sensitivity of DIMSIM to varying the
scoring and penalty functions, using recall and av-
erage MRR for evaluation. Table 4 shows four dif-
ferent scoring functions θ and penalty functions
τ (including the variation of not using a penalty

function) to convert the annotator scores φ to pair-
wise distances S, following Equation 4.

Figure 7 depicts the values of the four scoring
functions θ as a function of the annotator scores
on a log 10 scale, to demonstrate the effect of
varying a and b, as well as using φ as the base
or exponent. Figure 8 demonstrates how sensitive
our model is to the different combinations of scor-
ing and penalty functions. We see that although
Recall is entirely insensitive to the variations, the
performance of MRR is impacted. There is a
clear preference for the variations on the “diago-
nal” of Table 4: F11, F22, F33, F44, but the near-
identical performance of these variations demon-
strates DIMSIM’s robustness to the particular scor-
ing and penalty functions used. Note that not using
a penalty function impacts MRR significantly.
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Figure 9: Impact of varying n.

3.3 Impact of the Encoding Dimensions

As demonstrated above, encoding initials and fi-
nals into a two-dimensional space is more ef-
fective than a one-dimensional space. Figure 9
presents the results of continuing to increase the
number of dimensions, n = [1, 4]. We observe
that recall is barely affected, with all variations
able to successfully identify the targeted words
98% to 99% of the time. We also see that moving
from n=1 to n=2 increases the average MRR by
1.14X . However, further increasing the number
of dimensions to n>2 no longer improves average
MRR, indicating that learning a two-dimensional
encoding is enough to capture the phonetic rela-
tionships between Pinyin components.

3.4 Impact of the Distance Threshold

We examine how the similarity distance thresh-
old (th) impacts DIMSIM by varying th from 2 to
4096 (Figure 10) (using the scoring function F22).
As th increases, recall increases from 0.75 to 0.99,
converging when th reaches 2048. By increasing
th DIMSIM matches more characters that are simi-
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Figure 10: Impact of varying th.

lar to the first character of the given word, which in
turn increases the number of candidates within the
distance. Thus, the probability of including the la-
beled gold standard words in the results increases.
MMR is less sensitive to th, converging when th
reaches 128. However, the generated set of can-
didate words is reduced too much for th < 128,
hurting the performance of MMR. To ensure both
high recall and MRR we set th = 2500.
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Figure 11: Varying candidate nc.

3.5 Impact of Number of Candidates

While generating more candidates improves the
recall, presenting too many candidates to a down-
stream application is not desirable. To find a bal-
ance, we study the impact of varying the upper
limit of the number of generated candidates nc
from 2 to 2048 (Figure 11). We find that MRR
converges at 64 candidates, while recall takes
longer; however, setting the upper limit at 64 can-
didates already achieves almost 98% recall, sug-
gesting it as a reasonable cutoff in practice. Unless
otherwise mentioned, we set nc = 1, 000 for ex-
periments, to isolate the impact of this parameter.

3.6 Error Analysis

We analyze and summarize three types of errors
made by DIMSIM. The first occurs when targeted
words are out of vocabulary(OOV). For instance,
for the original word “药丸” , the targed word is

“要完” which is OOV. As is commonly the case in
text normalization applications which convert in-
formal language to well-formed terms, our method
works as long as the targeted words are in the dic-
tionary. This shortcoming is generally alleviated
by adding new terms to the dictionary. Second,
DIMSIM cannot derive phonetic candidates from
dialects that are not encoded in our mapping ta-
ble. For example, for “冻(dong4)蒜(suan4)” , the
targeted word “当(dang1)选(xuan2)” is obtained
using the pronunciation of southern Fujian dialect.
However, our approach can easily be extended to
incorporate and capture such variants by learning
mapping tables for each dialect and using them
to generate corresponding candidates. Finally, we
constrain DIMSIM to not identify candidates that
differ in length from the seed word, as we observe
that most transcriptions have the same word length
- though some corner cases do occur.

4 Related Work

There is a plethora of work focusing on
the phonetic similarities between words and
characters (Archives and Administration, 2007;
Mokotoff, 1997; Taft, 1970; Philips, 1990, 2000;
Elsner et al., 2013). These algorithms encode
words with similar pronunciation into the same
code. For example, Soundex (Archives and
Administration, 2007) converts words into fixed
length code through a mapping table of initial
groups to ordinal numbers. These algorithms fail
to capture Chinese phonetic similarity since the
conversion rules do not consider pronunciation
properties of Pinyin. Linguists in the phonetic and
phonology community have also proposed several
phonetic comparison algorithms (Kessler, 2005;
Mak and Barnard, 1996; Nerbonne and Heeringa,
1997; Ladefoged, 1969; Kondrak, 2003) for de-
termining the similarity between speech forms.
However, as features of articulatory phonetics
are manually assigned, these algorithms fall short
in capturing the perceptual essence of phonetic
similarity through empirical data (Kessler, 2005).
In contrast, DIMSIM achieves high accuracy by
learning the encodings both from high quality
training data sets and linguistic Pinyin features.

Several works in Named Entity translation (Lin
and Chen, 2002; Lam et al., 2004; Kuo et al., 2007;
Chung et al., 2011) focus on learning the phonetic
similarity between English and Chinese automati-
cally. These approaches first represent English and
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Chinese words in basic phoneme units and apply
edit distance algorithms to compute the similar-
ity. Training frameworks are then used to learn
the similarity. However, the phonetic similarity
used in these systems cannot be applied to Chi-
nese words since Pinyin has its own specific char-
acteristics, which do not easily map to English, for
determining phonetic similarity. Another main ap-
plication of phonetic similarity algorithms is text
normalization (Xia et al., 2006; Li et al., 2003;
Han et al., 2012; Sonmez and Ozgur, 2014; Qian
et al., 2015), where phonetic similarity is mea-
sured by a combination of initial and final simi-
larities. However, the encodings used in these ap-
proaches are too coarse-grained, yielding low F1
measures. DIMSIM learns separate high dimen-
sional encodings for initials and finals, and uses
them to calculate and rank the distances between
Pinyin representations of Chinese word pairs. Karl
Stratos (Stratos, 2017) proposes a sub-character
architecture to deal with the data sparsity problem
in Korean language processing by breaking down
each Korean character into a small set of primitive
phonetic units. However, this work does not ad-
dress the problem of the phonetic similarity and is
thus orthogonal to DIMSIM.

5 Conclusion

Motivated by phonetic transcription as a widely
observed phenomenon in Chinese social media
and informal language, we have designed an accu-
rate phonetic similarity algorithm. DIMSIM gen-
erates phonetically similar candidate words based
on learned encodings that capture the pronunci-
ation characteristics of Pinyin initial, final, and
tone components. Using a real world dataset,
we demonstrate that DIMSIM effectively improves
MRR by 7.5X , recall by 1.5X and precision by
1.4X over existing approaches.

The original motivation for this work was to im-
prove the quality of downstream NLP tasks, such
as named entity identification, text normalization
and spelling correction. These tasks all share a de-
pendency on reliable phonetic similarity as an in-
termediate step, especially for languages such as
Chinese where incorrect homophones and syno-
phones abound. We therefore plan to extend this
line of work by applying DIMSIM to downstream
applications, such as text normalization.
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