
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 271–281
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

271

Similarity dependent Chinese Restaurant Process for Cognate
Identification in Multilingual Wordlists

Taraka Rama
Department of Informatics
University of Oslo, Norway
tarakark@ifi.uio.no

Abstract

We present and evaluate two similarity depen-
dent Chinese Restaurant Process (sd-CRP) al-
gorithms at the task of automated cognate de-
tection. The sd-CRP clustering algorithms do
not require any predefined threshold for de-
tecting cognate sets in a multilingual word list.
We evaluate the performance of the algorithms
on six language families (more than 750 lan-
guages) and find that both the sd-CRP variants
performs as well as InfoMap and better than
UPGMA at the task of inferring cognate clus-
ters. The algorithms presented in this paper
are family agnostic and can be applied to any
linguistically under-studied language family.

1 Introduction

Cognates are related words across languages that
have descended from a common ancestral lan-
guage. Identification of cognates is an important
step in historical linguistics while establishing ge-
netic relations between languages that are hypoth-
esized to have descended from a single language
that existed in the past. For instance, English
hound and German Hund “dog” are cognates that
go back to the Proto-Germanic stage. Cognate
identification requires great amount of scholarly
effort and is available for some language families
such as Indo-European, Dravidian, Austronesian,
and Uralic which have a long tradition of compara-
tive linguistic research that involves decades (Dra-
vidian family) to centuries (Indo-European fam-
ily) of scholarly effort. Automatic detection of
cognates with high accuracy is very much desired
for reducing the effort required in analyzing under-
studied language families of the world.

Typically, expert annotated cognate sets are em-
ployed to infer phylogenetic trees showing lan-
guage relationships that can be used to test hy-
potheses about temporal and spatial evolution of
language families (Bouckaert et al., 2012; Chang

et al., 2015), linguistic reconstruction of ancestral
states on a tree (Jäger and List, 2017), or lexical re-
construction (Bouchard-Côté et al., 2013). Rama
et al. (2018) showed that cognates inferred from
automated methods of cognate detection can be
used to infer high quality phylogenetic trees. The
authors noted that there is a need for more research
towards developing highly accurate cognate iden-
tification methods that can be applied to the data of
not so well-studied language families which will
be of assistance to historical linguists to automate
parts if not the whole of the comparative method.

The last decades have seen a large amount
of computational effort towards automatizing the
process of cognate identification since the work
of Covington (1996) and Kondrak (2002). The
computational effort involved devising new se-
quence alignment algorithms (Kondrak, 2005,
2009), novel sound transition matrices which
are linguistically guided (Kondrak, 2001; List,
2012b) or data-driven (Jäger, 2013; Rama et al.,
2013, 2017; List, 2012a), and machine learning
approaches (Hauer and Kondrak, 2011; Rama,
2015, 2016; Jäger et al., 2017) to identify cog-
nates within multilingual word lists (see table 1;
Swadesh, 1952) belonging to different language
families and dictionaries (St Arnaud et al., 2017).

Most of the above cognate identification meth-
ods involve a workflow consisting of computation
of distances between all the word pairs that have
the same meaning using a machine learning al-
gorithm or a sequence alignment algorithm; and,
then clustering the pairwise distance matrix using
a clustering algorithm such as InfoMap (Rosvall
and Bergstrom, 2008) or UPGMA (Unweighted
Pair Group Method with Arithmetic Mean; Sokal
and Michener, 1958).

Both InfoMap and UPGMA require a pre-
defined threshold that is either set heuristically or
through tuned to obtain to obtain optimal perfor-
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Language ALL AND . . .

English ol1 End1 . . .
German al31 unt1 . . .
French tu2 e2 . . .
Spanish to8o2 i2 . . .
Swedish ala1 ok3 . . .

Table 1: Excerpt of the Indo-European word list
(from our dataset) in ASJP code for five languages
belonging to Germanic (English, German, and
Swedish) and Romance (Spanish and French) sub-
families. Cognates are indicated with the same su-
perscript.

mance at identifying cognate clusters on a held-
out expert annotated cognate dataset(s). The clus-
tering threshold is a single number that is tuned
for all the meanings and not separately for each of
the meanings. A single global threshold can lead
to poor performance since the number of cognate
sets vary a lot across meanings for different lan-
guage families. For instance, the Indo-European
dataset has cognate cluster sizes ranging from 37
for meaning because to 1 for meaning name.

On the other hand, a non-parametric clustering
method such as Chinese Restaurant Process (CRP;
Gershman and Blei 2012) can form clusters di-
rectly from the data without the need for tuning
the threshold. CRP has found application in dif-
ferent NLP tasks such as morphological segmen-
tation (Goldwater et al., 2006), language model-
ing (Goldwater et al., 2011), machine translation
(Ravi and Knight, 2011), part-of-speech induction
(Blunsom and Cohn, 2011; Sirts et al., 2014), and
language decipherment (Snyder et al., 2010).

In this paper, we present two clustering algo-
rithms inspired from similarity dependent Chinese
Restaurant Process for the purpose of inferring
cognate clusters. Our CRP based clustering algo-
rithms take a word pair similarity matrix as input
and infer cognate clusters automatically without
needing any threshold. The sd-CRP algorithms
have a hyperparameter α that allows us to form
new clusters. We compare the performance of the
CRP algorithms on six different language families
and find that the CRP algorithms better than UP-
GMA and yields better or competing performance
against InfoMap. We sample α so that the algo-
rithms are robust to the initial value of α.

The paper is organized as follows. We describe

related work in section 2. In section 3, we de-
scribe the word similarity features used to train the
SVM model. We describe sd-CRP, UPGMA, and
InfoMap algorithms in section 4. We describe the
evaluation metrics and datasets in section 5. We
present the results of our experiments in section
6. We discuss the results by analyzing the effect
of features on SVM model, initial α values, and
missing data on the performance of clustering in
section 7. Finally, we conclude and present direc-
tions for future work in section 8.

2 Related work

Most of the automated cognate identification work
mentioned in the previous section employed ei-
ther UPGMA or InfoMap algorithms. Hauer and
Kondrak (2011) were the first to apply UPGMA
clustering algorithm to infer cognate sets from
Swadesh lists. The authors trained a SVM classi-
fier based on string similarity features to calculate
word distances between all word pairs for a mean-
ing. The pair-wise distance matrix is supplied to
UPGMA with a predefined threshold for inferring
word clusters. The UPGMA algorithm is simple
and yields reasonable results across various lan-
guage families (List, 2012a). However, UPGMA
clustering algorithm is dependent on the threshold
that needs to be tuned to obtain optimal perfor-
mance (List et al., 2017b).

The cognate identification work of Hall and
Klein (2011) and Bouchard-Côté et al. (2013) re-
quires the phylogenetic tree of the language fam-
ily to be known beforehand which is an unrealistic
assumption for large number of world’s language
families. In another work, List et al. (2016) em-
ploy a weighted variant of Levenshtein distance
known as SCA (see section 3) for calculating simi-
larity between two words. Then, they apply a com-
munity detection algorithm known as InfoMap for
the purpose of discovering partial cognate sets in
multiple groups of Sino-Tibetan language family.
The authors find that the InfoMap algorithm works
better than UPGMA when tuned for threshold. In
this paper, we compare the CRP clustering algo-
rithms against InfoMap and the similarity variant
of UPGMA algorithm described in section 4.3.

3 Word similarity model

In this section, we present the word similarity fea-
tures used to train our SVM model at the binary
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task of classifying if a word pair is cognate or non-
cognate.

String similarity features We use length nor-
malized edit distance, number of common bi-
grams, common prefix length, individual word
lengths, and absolute difference between the word
lengths as features for training a SVM classifier
(Hauer and Kondrak, 2011). We refer to this fea-
ture set as HK.

Point-wise Mutual Information (PMI) We in-
clude PMI weighted Needleman-Wunsch (Needle-
man and Wunsch, 1970) word similarity score
(Jäger, 2013) as an additional feature for train-
ing the SVM classifier. The (unweighted or
vanilla) Needleman-Wunsch algorithm is the sim-
ilarity counterpart of the Levenshtein distance.
The vanilla Needleman-Wunsch algorithm assigns
equal negative weight to a common sound corre-
spondence such as /s/ ∼ /h/ and a highly improb-
able sound correspondence such as /p/ ∼ /r/. The
PMI weighted sound pair matrix inferred in Jäger
(2013) assigns a positive weight to common sound
correspondences and a negative weight to the lat-
ter ones. The PMI weight for two sounds i and j is
defined as log p(i,j)

q(i)·q(j) where, p(i, j) is the relative
frequency of i, j occurring at the same position in
the aligned word pairs and q(.) is the relative fre-
quency of a sound in the whole word list. The
similarity score for a word pair is computed using
PMI-weighted Needleman-Wunsch algorithm. We
transform the word similarity score using sigmoid
function to yield a score between 0 and 1.0.

SCA We experimented with SCA (Sound Class
Based Phonetic Alignment) word distance score
(List et al., 2016) as an additional feature in our
SVM model and found that inclusion of this fea-
ture improves the performance of cognate cluster-
ing systems. The SCA distance score is computed
using the LingPy library (List et al., 2017a).

All the above features are widely used in cog-
nate identification papers cited in sections 1 and
2. All the string similarity features are computed
on words represented in ASJP code consisting of
symbols on standard QWERTY keyboard. The
ASJP code consists of 41 symbols that is used
to represent common sounds of the world’s lan-
guages. As such it collapses some distinctions be-
tween similar sounds such as using a single ‘r’
symbol for all the rhotic sounds. In this paper,
we used LingPy library to convert IPA symbols

to ASJP symbols. Our SVM model is imple-
mented using scikit-learn (Buitinck et al., 2013).
The trained SVM model is then used to predict the
confidence scores for all the word pairs having the
same meaning.

4 Clustering algorithms

In this section, we motivate and describe the two
sd-CRP algorithms followed by InfoMap and UP-
GMA clustering algorithms.

4.1 Motivation for CRP
In the traditional CRP, the probability that a new
customer i sits at a table already filled with cus-
tomers is proportional to the number of customers
sitting at the table. The probability that the new
customer sits at a new table is proportional to
α. Blei and Frazier (2011) extended the tradi-
tional CRP model to a distance-dependent CRP
model (dd-CRP) where customer i sits with a dif-
ferent customer j with a probability proportional
to f(dij) where f is a decay function and dij is the
distance between customers i and j. The new cus-
tomer can sit by itself with a probability propor-
tional to α. The dd-CRP formulation forms clus-
ters through connections between the customers.
This property to form clusters depending on the
data is directly relevant for inferring cognate clus-
ters from a word pair distance matrix.

In a later paper, Socher et al. (2011) introduced
a similarity dependent CRP (sd-CRP) algorithm
that can handle arbitrary similarities between two
customers. Socher et al. (2011) showed that their
sd-CRP variant performs better than dd-CRP when
clustering MNIST digits dataset and Newsgroup
articles. A customer is a word in the context of
cognate identification. We describe the two vari-
ants of sd-CRP – ns-CRP and sb-CRP – that work
directly with a similarity matrix S in the next sec-
tion.

4.2 sd-CRP algorithms
Given a word similarity matrix S ∈ RN×N and
α, the CRP algorithm clusters N elements into K
clusters where 1 <= K <= N .

4.2.1 ns-CRP
The algorithm starts by placing each word into
its own cluster. At each step, the algorithm as-
sign a word wi to the cluster C that has the high-
est net similarity with wi which gives the name
to the algorithm. We define net similarity as
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Algorithm 1 ns-CRP

Input: S, α
Ouput: Cluster assignments

1. Initialize each word into its own cluster and set α to
0.1.

2. Repeat until convergence:
• For each word wi

– Remove wi from its cluster.
– Compute the net similarity sik between
wi to all words in a cluster k.

– If argmax
k

sik < αS(wi, wi) assign wi

to a new cluster.
– Else, assignwi to the cluster k where k =

argmax
k

sik.

• Sample α using a Metropolis-Hastings step

∑|C|
j=1 S(wi, wj). We call the algorithm ns-CRP

after the net similarity criterion used to perform
cluster assignments. wi is assigned to a new clus-
ter if αS(wi, wi) is greater than any of the similar-
ities with the existing clusters. Any empty clusters
remaining at the end of an iteration are removed.
The cluster inference procedure is summarized in
Algorithm 1.

Algorithm 2 sb-CRP

Input: S, α
Ouput: Cluster assignments

1. Initialize each word to its own cluster and set α to
0.1.

2. Repeat until convergence:
• For each word wi

– Remove the outgoing link from wi.
– Compute the net similarity sik between
wi and the words in the set returned by
SitBehind(wk).

– If argmax
k

sik < αS(wi, wi) assign wi

to a new cluster.
– Else, link wi to a word wk where k =

argmax
k

sik.

• Sample α using a Metropolis-Hastings step

4.2.2 sb-CRP
The sd-CRP variant of Socher et al. (2011) forms
a directed link from word wi to a different word
w−i based on the SITBEHIND function. We call
this variant of sd-CRP algorithm as sb-CRP after
SitBehind function. The function SitBehind(wi)
is recursive in nature and returns the set of words
from which there is a path to wi including itself.
A directed link between wi to itself indicates that
there is no path from wi to any other word and
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Figure 1: sb-CRP clustering for meaning fish. Ver-
tices (words) with the same color are cognates.

that wi is in its own cluster. The probability of
forming a directed link from wi and wj is propor-
tional to the sum of the similarity between wi and
all the words in the set returned by SitBehind(wj).
The weight for linking wi to itself is computed as
αS(wi, wi). The sb-CRP is summarized in Algo-
rithm 2.

We present the result of application of sb-CRP
algorithm to meaning fish in figure 1. The algo-
rithm places the words correctly in their own clus-
ters. The algorithm forms singleton clusters by
forming self-loops. For instance, the algorithm
links Ancient Greek ikhthis to itself thus, plac-
ing the word in its own cluster. When two words
belonging to Bihari and Oriya are highly similar
maTh∼ maTho then, the algorithm links both the
words to each other forming a cycle.

4.2.3 Underlying objective
Given K clusters out of which n are non-
singleton, algorithm 1 maximizes the following
objective where k is the cluster index.

n∑
k=1

∑
(i,j)∈k

S(wi, wj)−
K∑

k=n+1,i∈k
αS(wi, wi) (1)

In the initial step, the objective in equation 1 is
−α

∑
i S(wi, wi) which increases until there is no

change in the cluster reassignments. The objec-
tive for algorithm 2 is similar to equation 1 and
only differs in the positive part due to SitBehind
function. We use the above objective to sample
α which is explained below. We observe that the
objective function given in equation 1 is similar to
the CRP extension to K-Means (DP-Means) pro-
posed by Kulis and Jordan (2011) who show that
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the DP-means algorithm converges to a local opti-
mum.

4.2.4 Sampling α

We sample α using a Metropolis-Hastings step.
We will assume an exponential prior for α with
rate parameter 10. We assume an exponential prior
since α should be greater than zero and the sup-
port for the exponential distribution is R+. α is
sampled through a Metropolis-Hastings step at the
end of each iteration. We use an asymmetric mul-
tiplier proposal q(α∗|α) = α · eε(u−0.5) where
u(∈ [0, 1]) is a uniform random number to pro-
pose a new α∗. The Hastings ratio for a multiplier
proposal is ε(u− 0.5) where ε (= 1) is the tuning
parameter that controls the range of proposed α∗

(Lakner et al., 2008). Since we sample α on fixed
cluster assignments, the likelihood ratio is equal to
α∗

α . The prior ratio is equal to exp(α∗)
exp(α) .

In this paper, we run both the sd-CRP algo-
rithms by setting the initial value of α to 0.1 and
running the algorithms for 100 iterations. We
found that the algorithm converges within the first
ten iterations (see section 7.4). The algorithms
take less than three hours to run for the Austrone-
sian language family. We report the final itera-
tion’s B-cubed F-scores and ARI scores (see sec-
tion 5.2) for each dataset.

4.3 Other Clustering algorithms

UPGMA The variant of St Arnaud et al. (2017)
applied a ReLU transformation (max(0, s)) to the
pairwise similarity matrix S such that the matrix
consists only of positive similarity scores. In the
initial step, each word is placed in its own cluster.
The mutual score between two clusters is com-
puted as the average of the similarity scores be-
tween all the word pairs. In each step, the algo-
rithm merges two clusters with the highest pair-
wise score. The merging process is only stopped
when no two clusters have positive average simi-
larity score.

InfoMap is an information-theoretic based clus-
tering algorithm that uses random walks to de-
tect clusters in a network (Rosvall and Bergstrom,
2008). We transform the similarity matrix into a
distance matrix by applying a sigmoid transforma-
tion then subtracting the matrix values from 1.0.
Then, we apply a pre-defined threshold to form a
disconnected graph. Finally, we supply the dis-
connected graph as input to the InfoMap algorithm

to infer clusters. We also experimented with the
threshold during cross-validation experiments on
the training dataset and found that a threshold of
0.57 yielded slightly higher performance than a
threshold of 0.5.

5 Materials and Evaluation

In this section, we describe the datasets and cluster
evaluation metrics.

5.1 Datasets
Training dataset Wichmann and Holman
(2013) and List (2014) compiled cognacy an-
notated multilingual word lists for subsets of
families from various scholarly sources such as
comparative handbooks and historical linguistics’
articles. The detailed references to all the datasets
are given in Jäger et al. (2017). Below, we provide
the number of languages/number of meanings in
each language group in parantheses.
• Afrasian (21/40), Kadai (12/40), Kamasau

(8/36), Lolo-Burmese (15/40), Mayan
(30/100), Miao-Yao (6/36), Mixe-Zoque
(10/100), Mon-Khmer (16/100), Bai dialects
(9/110), Chinese dialects (18/180), Japanese
(10/200), ObUgrian (21/110; Hungarian
excluded from Ugric sub-family).

We extracted a total of 48,389 cognate pairs
(positive) and 51,452 non-cognate pairs (negative)
for training our SVM model.

Test datasets We test our clustering algorithms
on word lists belonging to four language families
given in table 2.

Dataset Meanings Languages Source

Austronesian 210 395 Gray et al. (2009)
Austro-Asiatic 200 122 Sidwell (2015)
Indo-European 208 52 Bouckaert et al. (2012)
Central Asian dialects 183 88 Mennecier et al. (2016)

Table 2: The second, third, and fourth columns show the
number of number of meanings, languages, and the source of
each dataset respectively.

5.2 Evaluation
We use B-cubed F-score (Amigó et al., 2009) and
Adjusted Rand Index (Hubert and Arabie, 1985)
to evaluate the quality of the inferred clusters.

B-cubed F-scores are defined for each individ-
ual item (word) as follows. The precision for an
item is defined as the ratio between the number of
cognates in its cluster to the total number of items
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Figure 2: The B-cubed F-scores are shown in the top row. The bottom row shows the ARI scores for each
of the datasets. The horizontal bar shows the median score and the mean of the scores is shown by .

in its cluster. The recall for an item is defined as
the ratio between the number of cognates in its
cluster to the total number of expert labeled cog-
nates. Finally, the B-cubed F-score for a meaning
is computed as the harmonic mean of the items’
average precision and recall. The B-cubed F-score
for the whole dataset is computed as the average
of the B-cubed F-scores across all the meanings.

Adjusted Rand Index (ARI) is a chance cor-
rected version of rand index (Hubert and Arabie,
1985). The ARI scores are in the range of −1
to +1. A score of 0 indicates that the obtained
clusters are randomly labelled whereas a score +1
indicates perfect match between the two clusters.
The ARI score is zero whenever the gold standard
groups all the words belonging to the same mean-
ing slot (e.g. words for meaning name are cognate
across the daughter Indo-European languages) as
one cluster, whereas the B-cubed F-score is not
zero in such a case.

6 Results

6.1 F-scores and ARI
We visualize the B-cubed F-scores and ARI scores
in figure 2. The spread of the F-scores and ARI
scores suggest that InfoMap and sd-CRP variants
are better than UPGMA in the case of all the
datasets except for the Central Asian dataset. The
box plots for InfoMap are similar to the box plots
of sd-CRP variants across all the language fami-

lies. InfoMap and sd-CRP variants have shorter
width boxes than those of UPGMA across all the
families. All the algorithms show the lowest per-
formance in terms of both F-scores and ARI scores
on the Austro-Asiatic dataset. Based on mean F-
scores and ARI scores across all the four language
families, we determine the ns-CRP algorithm to be
the winner.

6.2 Size of inferred clusters

Method Austro-Asiatic Austronesian Central Asian Indo-European

UPGMA 0.194 0.186 0.722 0.659
InfoMap 0.438 0.617 0.8 0.753
ns-CRP 0.609 0.77 0.833 0.816
sb-CRP 0.564 0.716 0.833 0.817

Table 3: Pearson’s R between number of predicted
clusters and number of clusters in the gold stan-
dard data. The best correlation for each language
family is shaded in light gray.

Apart from evaluating the cluster quality using
B-cubed F-scores and ARI scores, we compare
the number of inferred clusters by each algorithm
against the number of clusters given in the gold
standard data using Pearson’s R. We present the
results of Pearson’s correlation in table 3. The
Pearson’s correlation between the number of pre-
dicted clusters and the number of gold clusters
shows that the sd-CRP variants are successful at
retrieving the right number of clusters when com-
pared to UPGMA. InfoMap comes close to both
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sd-CRP variants’ performance only in the case of
the Central Asian languages dataset. The ns-CRP
algorithm is the winner at being the best predictor
of cluster sizes since it predicts clusters of sizes
close to those given in the gold standard in the case
of Austro-Asiatic and Austronesian datasets and
shows same performance as sb-CRP in the case of
the Central Asian dialects dataset.

7 Discussion

In this section, we discuss the effect of feature se-
lection and initial value of α on the performance
of sd-CRP algorithms. We verify the effect of
missing data on all the clustering algorithms and
present the results. Finally, we analyze the work-
ing of sd-CRP algorithms.

7.1 Feature ablation

To ascertain which word similarity features con-
tribute the most to the performance of the ns-CRP
algorithm, we trained three simpler SVM models
and evaluated the quality of the inferred clusters
using these models. The first model HK uses only
orthographic features. The second model uses the
PMI word similarity as an additional feature to the
HK model. The third model uses SCA word sim-
ilarity as an additional feature to the HK model.
The results presented in previous section showed
that ns-CRP performs the worst on Austronesian
and Austro-Asiatic datasets.

Therefore, we present the cluster evaluation re-
sults only for these two datasets in table 4. The HK
model yields high F-scores for both the datasets.
Addition of PMI or SCA as an additional feature
always improves both F-scores and ARI scores.
In fact, including both PMI and SCA as features
yields the best results even if the improvement is
marginal in the case of the Austro-Asiatic dataset.
We note that we observe similar trends for the rest
of the datasets. We do not present the results for
other datasets due to space constraints. Finally, the
ablation experiments suggest that including both
data-driven PMI and linguistically guided SCA as
features gives the best results at cognate cluster-
ing.

7.2 Effect of lexical coverage

In this subsection, we investigate the effect of
missing data on the clustering algorithms. In the
case of the Austronesian dataset, less than 50% of
the languages have word forms attested in 70% of

System
F-score ARI

Austronesian

HK 0.675 ± 0.111 0.416 ± 0.189
HK+PMI 0.706 ± 0.126 0.489 ± 0.20
HK+SCA 0.683 ± 0.111 0.443 ± 0.193
HK+PMI+SCA 0.715 ± 0.111 0.509 ± 0.193

Austro-Asiatic

HK 0.638 ± 0.117 0.389 ± 0.185
HK+PMI 0.651 ± 0.139 0.435 ± 0.219
HK+SCA 0.666 ± 0.117 0.441 ± 0.197
HK+PMI+SCA 0.672 ± 0.127 0.467 ± 0.213

Table 4: Results of feature ablation experiments on
Austronesian and Austro-Asiatic datasets.

the meanings. The situation is slightly better in the
case of Austro-Asiatic with more than 80% of the
languages having meanings attested in 70% of the
meanings.

In a separate paper, Rama et al. (2018) pre-
sented pruned datasets for five different language
families – Pama-Nyungan and Sino-Tibetan in ad-
dition to Austronesian, Austro-Asiatic, and Indo-
European – consisting of only those languages that
show the highest mutual lexical coverage. For
each dataset, the authors pruned any language
which has less than 75% mutual attestations with
the rest of the languages. We attempted to prune
the Central Asian dataset but found that we could
only exclude a single dialect which has less than
50% attestation. Therefore, we did not include
the Central Asian dataset in our experiments. The
statistics of the pruned datasets is given in table 5.

Family Meanings Languages

Austronesian 210 45
Austro-Asiatic 200 58
Indo-European 208 42
Pama-Nyungan 183 67
Sino-Tibetan 110 64

Table 5: The dataset shows the number of mean-
ings and languages in the pruned datasets.

The results of this experiment are visualized in
figure 3. The sd-CRP algorithms perform better
than UPGMA and InfoMap in the case of Pama-
Nyungan and Austro-Asiatic datasets. There
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Figure 3: The top row shows the B-cubed F-scores and the bottom row shows the ARI scores for pruned
datasets of five language families.

seems to be no difference in the performance of
all the algorithms in the case of the Sino-Tibetan
dataset. There is no difference between sd-CRP
and InfoMap algorithms in the case of the Aus-
tronesian dataset. Although the mean B-cubed F-
scores indicate that there is no difference between
the algorithms in the case of the Indo-European
dataset, the spread of the box plots suggests that
non-UPGMA algorithms perform better than UP-
GMA. The B-cubed F-scores are not decisive in
the case of the Indo-European dataset, whereas the
ARI score clearly shows that non-UPGMA per-
form better than UPGMA. In conclusion, both the
sd-CRP algorithms perform at least as good or bet-
ter than InfoMap algorithm in the case of pruned
datasets.

7.3 Effect of initial alpha

Family F-score ARI

Austro-Asiatic 0.735 ± 0.119 0.524 ± 0.217
Austronesian 0.805 ± 0.109 0.609 ± 0.242
Indo-European 0.8 ± 0.135 0.62 ± 0.278
Pama-Nyungan 0.655 ± 0.141 0.354 ± 0.174
Sino-Tibetan 0.569 ± 0.114 0.276 ± 0.17

Table 6: The mean and standard deviation of the F-scores
and ARI scores for α = 0.001 on pruned datasets.

In this experiment, we test the sensitivity of ns-
CRP algorithm to the initial α by initializing α
to 0.001, 0.01, and 1.0. We hypothesize that our
sampling step makes the algorithm robust to the
initial value of α. We run the ns-CRP clustering
algorithm for 100 iterations for different starting

values of α on each of the pruned datasets. The
results of the experiment are given in table 6 for
α = 0.001. The B-cubed F-scores and ARI scores
are quite similar for other initial values of α, and
therefore we do not present those results to avoid
repetition. These results suggest that the ns-CRP
algorithm is not sensitive to the value of initial α.

7.4 Convergence of ns-CRP

0 20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

Figure 4: Plot showing the convergence of the sd-
CRP algorithm for 30 meanings from the Indo-
European dataset.

Here, we investigate the stability of the ns-CRP
algorithm by plotting the B-cubed F-scores against
the number of iterations for 30 random mean-
ings from the Indo-European dataset in figure 4.
The plot shows that the ns-CRP algorithm quickly
moves from an initial configuration with low F-
score to a configuration that has high F-scores
within the first 20 iterations. We observe similar
behaviour of ns-CRP in the case of other language
families. In conclusion, the plot shows that the
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quality of the clusters inferred by the ns-CRP algo-
rithm achieves a high F-score. Moreover, the clus-
ter quality does not change drastically after reach-
ing a local optimum.

7.5 Analysis of sd-CRP algorithms

In this subsection, we analyze the difference in the
behaviours of sd-CRP algorithms. If wi and wj
are cognate andwj andwk are cognate, then all the
three words are cognate with each other which fol-
lows from the definition of cognacy. The sb-CRP
algorithm captures this cognacy relation through
the SitBehind function. During cluster formation,
wi only has to connect to a word that might have
no other words other than itself sitting behind it.
We hypothesize that the sb-CRP algorithm would
be more efficient at identifying partial cognates
where only part of the lexical material is cognate
with another word. An example of a partial cog-
nate is the meaning of meat in sweetmeat which
is cognate with Swedish mat ‘food’ (Campbell,
2004). In contrast, the ns-CRP algorithm is stricter
than sb-CRP algorithm in that a word is assigned
to the cluster with which it has the highest net sim-
ilarity. If a word has net similarity of zero with all
the existing clusters, then, the word would form its
own cluster since αS(wi, wi) is always positive.

8 Conclusion

We presented and compared the performance of
two similarity dependent Chinese Restaurant pro-
cess algorithms at the task of automated cognate
detection for six different language families. The
sensitivity experiments suggested that the sd-CRP
algorithms is not sensitive to initial α and miss-
ing data. The feature ablation experiments sug-
gest that the inclusion of PMI and SCA features
improve the performance of the sd-CRP algo-
rithms. We conclude that the sd-CRP algorithms
perform better than the existing clustering algo-
rithms across multiple settings.

As future work, we plan to include language re-
latedness as features into SVM training and also
train the SVM classifier in an unsupervised fash-
ion using the sd-CRP algorithms.
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Alexandre Bouchard-Côté, David Hall, Thomas L.
Griffiths, and Dan Klein. 2013. Automated recon-
struction of ancient languages using probabilistic
models of sound change. Proceedings of the Na-
tional Academy of Sciences, 110(11):4224–4229.

Remco Bouckaert, Philippe Lemey, Michael Dunn,
Simon J. Greenhill, Alexander V. Alekseyenko,
Alexei J. Drummond, Russell D. Gray, Marc A.
Suchard, and Quentin D. Atkinson. 2012. Mapping
the origins and expansion of the Indo-European lan-
guage family. Science, 337(6097):957–960.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013.
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Gerhard Jäger. 2013. Phylogenetic inference from
word lists using weighted alignment with empiri-
cally determined weights. Language Dynamics and
Change, 3(2):245–291.
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A Supplemental Material

The code and data used in this paper are up-
loaded as a zip file along with this paper.
In addition, they are available for download
at: https://github.com/PhyloStar/
sd-CRP-cognates

https://github.com/PhyloStar/sd-CRP-cognates
https://github.com/PhyloStar/sd-CRP-cognates

