
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 241–250
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

241

Chinese Poetry Generation with a Salient-Clue Mechanism
Xiaoyuan Yi1,2,3, Ruoyu Li5, Maosong Sun1,2,4∗

1Department of Computer Science and Technology, Tsinghua University
2Institute for Artificial Intelligence, Tsinghua University

3State Key Lab on Intelligent Technology and Systems, Tsinghua University
4Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University

56ESTATES PTE LTD, Singapore
yi-xy16@mails.tsinghua.edu.cn, liruoyu@6estates.com,

sms@mail.tsinghua.edu.cn

Abstract

As a precious part of the human cultural her-
itage, Chinese poetry has influenced people for
generations. Automatic poetry composition is
a challenge for AI. In recent years, significant
progress has been made in this area benefit-
ing from the development of neural networks.
However, the coherence in meaning, theme or
even artistic conception for a generated poem
as a whole still remains a big problem. In this
paper, we propose a novel Salient-Clue mech-
anism for Chinese poetry generation. Differ-
ent from previous work which tried to exploit
all the context information, our model selects
the most salient characters automatically from
each so-far generated line to gradually form a
salient clue, which is utilized to guide succes-
sive poem generation process so as to elimi-
nate interruptions and improve coherence. Be-
sides, our model can be flexibly extended to
control the generated poem in different as-
pects, for example, poetry style, which further
enhances the coherence. Experimental results
show that our model is very effective, outper-
forming three strong baselines.

1 Introduction

As a fascinating literary form starting from the
Pre-Qin Period, Chinese poetry has influenced
people for generations and thus influenced Chi-
nese culture and history in thousands of years. Po-
ets often write poems to record interesting events
and express their feelings. In fact, the ability to
create high-quality poetry has become an indicator
of knowledge, wisdom and elegance of a person in
China.

Generally, a Chinese poem should meet two
kinds of requirements. One is from the perspec-
tive of form: it must obey some structural and
phonological rules strictly. For example (as shown
in Figure 1), quatrain (Jueju in Chinese), one of
the most popular types of Chinese poetry, contains

∗Corresponding author: sms@mail.tsinghua.edu.cn.

Figure 1: A Wujue generated by our model. The tone
of each character is given in parentheses, where P and
Z represent Ping (level tone) and Ze (oblique tone) re-
spectively. Rhyming characters are underlined. The
left part is an artistic illustration of the salient clue.

four lines with each consisting of five or seven
characters (called Wujue and Qijue respectively);
characters with particular tone must be in partic-
ular positions to make the poem cadenced and
full of rhythmic beauty; and, the last character of
the first (optional), second and fourth lines must
rhyme. The other one is from the perspective of
content, concerning: (1) if each line of the poem
is adequate syntactically and semantically; (2) if
the association between two adjacent lines is rea-
sonable; and (3) if the poem as a whole is coherent
in meaning, theme or even in artistic conception.
Obviously, the second requirement is much more
complicated and difficult than the first one.

In this paper, we investigate on automatic Chi-
nese poetry generation, with emphasis on qua-
trains. We believe the form requirement is com-
paratively easy for a computer to deal with by
some constraint checking. For the content re-
quirement, point (1) and (2) can be also handled
well owing to the use of powerful sequence-to-
sequence neural networks (Sutskever et al., 2014),
which are capable of producing well-formed tar-

242

get sentence given a source sentence. A chal-
lenging problem which remains unresolved for re-
searchers is the point (3), where inter-lines associ-
ations are ‘global’ throughout a poem, rather than
‘local’ in point (2). The relevant experience tells
us this is a major reason for the distinct gap be-
tween computer-generated poems and those writ-
ten by poets. In fact, most previous models don’t
tackle this problem well and will produce incoher-
ences and inconsistencies in generated poems.

Inter-lines coherence is the main concern of this
paper. Intuitively, there should be a clear clue to
keep the theme of a poem consistent. However,
setting a fixed pattern of the clue in advance, e.g,
pre-determining keywords for each line, may lose
the flexibility and imagination, which are essen-
tial for poetry. When writing a poem, human po-
ets will focus on some salient parts of the context
to ignore distractions and create relevant content.
During this process, poets gradually build a salient
clue (or framework) of the poem (Zhang, 2015),
allowing not only coherence but also some flexi-
bility.

Inspired by this, we propose a novel Salient-
Clue Mechanism for poetry generation. Different
from previous models which tried to exploit all the
context, our model chooses a few salient charac-
ters out of each previously generated line, form-
ing a vital clue for generating succeeding lines, so
as to maintain the coherence of the whole poem
to the maximum extent. In addition, owing to the
flexible structure of our model, extra useful infor-
mation (e.g., the user intent and poetry style) can
be incorporated with the salient clue to control the
generation process, further enhancing coherence.

Contributions of this work are as follows:

• To the best of our knowledge, we first pro-
pose to utilize the salient partial context to
guide the poetry generation process.

• We extend our model to combine user in-
tent and control the style of generated poems,
which further enhance coherence.

• Experimental results show that our model
outperforms three strong baselines.

2 Related Work

The research on automatic poetry generation has
lasted for decades. The early approaches are based
on rules and templates, such as the ASPERA sys-
tem (Gervás, 2001) and Haiku system (Wu et al.,

2009). Genetic algorithms are exploited to im-
prove the quality of generated poems (Manurung,
2003; Levy, 2001). Other approaches are also
tried, for instance, Yan et al. (2013) adopt the
automatic summarization method. Following the
work that successfully applies the Statistical Ma-
chine Translation approach (SMT) to the task of
Chinese classical couplets generation (Jiang and
Zhou, 2008), He et al. (2012) further extend SMT
to Chinese classical poetry generation.

In recent years, a big change in research
paradigm occurred in this field, that is, the adop-
tion of neural network-based approaches, which
have shown great advantages in both English po-
etry (Hopkins and Kiela, 2017; Ghazvininejad
et al., 2017) and Chinese poetry generation, as
well as other generation tasks. Context coher-
ence is essential for text generation. In some re-
lated tasks, researchers have taken a step towards
this goal, for example, the discourse Neural Ma-
chine Translation (NMT) (Tiedemann and Scher-
rer, 2017; Maruf and Haffari, 2017; Jean et al.,
2017). For poetry generation, some neural mod-
els have also recognized the importance of poem
coherence. The fundamental issue here is how to
define and use the context of a poem properly.

Zhang and Lapata (2014) first propose to gener-
ate Chinese poems incrementally with Recurrent
Neural Network (RNN), which packs the full con-
text into a single vector by a Convolutional Sen-
tence Model. To enhance coherence, their model
needs to be interpolated with two SMT features,
as the authors state. Yan (2016) generates Chi-
nese quatrains using two RNNs with an iterative
polishing schema, which tries to refine the poem
generated in one pass for several times. Yi et al.
(2017) utilize neural Encoder-Decoder with atten-
tion mechanism (Bahdanau et al., 2015) and trains
different models to generate lines in different posi-
tions of a poem. Wang et al. (2016) propose a two-
stage Chinese classical poetry generation method
which at first plans the sub-keywords of the poem,
then generates each line sequentially with the allo-
cated sub-keyword. However, the beforehand ex-
tracted planning patterns bring some explicit con-
straints, which may take a risk of losing some de-
gree of flexibility as discussed in Section 1.

These neural network-based approaches are
very promising, but there is still large room for ex-
ploration. For instance, whether packing the full
context into a single vector really represents the

243

‘full’ context as well as expected? Can we do bet-
ter to represent the inter-lines context more prop-
erly in pursuing better coherence of the entire gen-
erated poem? Our work tries to respond to these
questions.

3 Model Design

We begin by formalizing our problem. Suppose
a poem P consists of n lines, P = L1L2 . . . Ln.
Given previous i-1 lines L1:i−1, we need to gen-
erate the i-th line which is coherent with the con-
text in theme and meaning. Since our model and
most baselines are based on a powerful framework
first proposed in NMT, that is, the Bidirectional
LSTM (Schuster and Paliwal, 1997; Hochreiter
and Schmidhuber, 1997) Encoder-Decoder with
attention mechanism (Bahdanau et al., 2015),
we first denote X a line in Encoder, X =
(x1x2 . . . xT), and Y a generated line in Decoder,
Y = (y1y2 . . . yT). T is the length of a line. ht
and ht

′
represent the Encoder and Decoder hidden

states respectively. emb(yt−1) is the word embed-
ding of yt−1. The probability distribution of each
character to be generated in the i-th line is calcu-
lated by:1

h
′
t = LSTM(h

′
t−1, emb(yt−1), ct), (1)

p(yt|y1:t−1, L1:i−1) = g(h
′
t, emb(yt−1), ct, v),

(2)

where g is a normalization function, softmax
with a maxout layer (Goodfellow et al., 2013) in
this paper. y1:t−1 means y1, . . . , yt−1 (similar to
L1:i−1). ct is the local context vector in atten-
tion mechanism. v is a global context vector. To
avoid confusion, in the remainder of this paper
when it comes to the word ‘context’, we all mean
the global context, that is, so-far generated lines
L1:i−1.

Now the key point lies in how to represent and
utilize the context for the sake of better coherence.
Before presenting the proposed method, we first
introduce two basic formalisms of utilizing full
context.

3.1 Basic Models
nLto1L
We call the first formalism nLto1L, where poetry
generation is regarded as a process similar to ma-
chine translation. The difference is that the pair in

1For brevity, we omit biases and use ht to represent the
combined state of bidirectional LSTM Encoder.

Figure 2: A graphical illustration of the proposed
Salient-Clue mechanism. vi is the salient-clue vector
and e is the extension vector. We design two strate-
gies for updating the salient clue. SDU: vi is kept at
the same size; SSI: the size of vi increases during the
generation process.

the parallel corpus for NMT models, is changed to
the pair of <preceding lines in a poem, a line in a
poem> here, which is semantically related rather
than semantically equivalent.

The ‘n’ in nLto1L means at most n preceding
lines are concatenated as a long sequence and used
simultaneously in Encoder, corresponding to the
preceding-lines-in-poem part in the pair, to gener-
ate a line in Decoder. In this case, the context is
captured by ct without extra v. (Wang et al., 2016)
and (Yi et al., 2017) both belong to this formalism.

The nLto1L formalism is effective, but it has
two drawbacks. For one thing, as ‘n’ increases
in nLto1L, more global context can be exploited
explicitly by attention, but the number of train-
ing pairs decreases, which hurts the generaliza-
tion performance. For instance, from each qua-
train, only one 3Lto1L pair (but two 2Lto1L pairs)
can be extracted. For another, when the input se-
quence is too long, the performance of NMT mod-
els will still degrade, even with an attention mech-
anism (Shen et al., 2016). We find this problem
more prominent in poetry generation, since atten-
tion may fail to capture all important parts of the
context. Our preliminary experiment shows that,
regarding generating the fourth line, both for Yi’s
model and Wang’s model, more than 70% of the
top three attention values fall into just the third line
area and thus neglect other lines, which validates
our assumption.

244

Figure 3: An example of calculating the saliency score
of each character (in the x-axis) from the attention ma-
trix (0:black, 1:white), in the naive Salient-Clue. The
scores are normalized to interval [0,1] here.

Packing Full Context
Another formalism is to pack the full context into a
single vector v, which is used to generate succes-
sive lines (Zhang and Lapata, 2014; Yan, 2016).
Usually, v is updated by the vector of each gener-
ated line in a poem. This formalism is not as pow-
erful as we expected. There is still much room
for improvement. A single vector doesn’t have
enough capacity to store all context. Moreover,
meaningful words and noises (e.g., stop words) are
mixed in one vector, which results in the implicit
and indiscriminate utilization of the context.

3.2 The Proposed Salient-Clue Mechanism

As discussed, using the full context directly can-
not necessarily lead to the best performance. It
becomes clear that we still need to develop a new
mechanism to exploit the context in a proper way.
Our design philosophy is ignoring the uninforma-
tive parts (e.g., stop words) and using some salient
characters in context to represent the full context
and form a salient clue, which is used to guide the
generation process. Following this idea, we pro-
pose our Salient-Clue Model.

Naive Salient-Clue
As illustrated in Figure 2, to generate Li, our
model uses standard attention mechanism to ex-
ploit Li−1 so as to capture short-distance rele-
vance. And it utilizes a salient-clue vector, vi, to
exploit long-distance context. After generating Li,
our model selects up to K (K is 2 for Wujue and

Algorithm 1 Saliency Selection Algorithm
Inputs: The saliency scores of characters in the

preceding line, r1:T ; K;
Outputs: The number of finally selected salient

characters, N ; The indices of selected charac-
ters in the preceding line, m1:N ;

1: Calculate the mean value of r1:T , avg;
2: Calculate the standard deviation of r1:T , std;
3: Get sorted indices i1:T in descending order of

r1:T ;
4: k = 1; val = avg + 0.5 ∗ std;
5: while (rik ≥ val) and (k ≤ K) do
6: mk = ik; val = val ∗ 0.618 (the golden

ratio); k = k + 1;
7: end while
8: N = k − 1;
9: return N , m1:N ;

3 for Qijue in this work) most salient characters
from Li−1 according to the attention values, and
uses their corresponding Encoder hidden states to
update the salient clue vector vi. Thanks to the
bidirectional LSTM, even if we only focus on part
of the context characters, the information of those
unselected won’t be lost completely.

Concretely, let A denote the attention align-
ment matrix in the attention mechanism (Bah-
danau et al., 2015) between the preceding line
Li−1 and the current generated line Li. We cal-
culate the saliency score of j-th character in Li,
rj , by:

rj =

∑T
i=1Aij∑T

j′=1

∑T
i=1Aij

′
, (3)

where Aij is the element in i-th row and j-th
column of A. Figure 3 depicts an example. The
most salient character is “ping” (nuphar, a kind of
plant, a symbol of loneliness) and the second one
is “qi” (seven), according to their saliency scores
r(ping) = 0.53 and r(qi) = 0.17.

The character “ping” is very informative for
the generated poem but “qi” isn’t, as signaled by
the sharp distinction between their saliency scores.
So we design the Saliency Selection Algorithm
1 to further filter out characters with quite low
saliency scores, like “qi” here. We define this al-
gorithm as a function SSal(r1:T ,K), which takes
the saliency scores and the maximum number of
selected characters as inputs and outputs the num-
ber of finally selected characters and their indices.

245

Figure 4: The comparison of saliency scores obtained
by the naive model and the tf-idf weighting improved
model: an example.

Then we update the salient-clue vector vi as fol-
lows:

N,m1:N = SSal(r1:T ,K), (4)

s =

∑N
k=1 rmk

∗ hmk∑N
k′ rmk

′

, (5)

vi = σ(vi−1, s), v0 = 0⃗, (6)

where σ is a non-linear layer. vi−1 is used to
predict next character to be generated by formula
(2). Please note that in formula (4), N may be
smaller than K since we want to further ignore rel-
atively less salient characters even though they are
already in the list of the K most salient ones.

By the generation process presented above,
each generated line is guided by the salient clue
and therefore is coherent with it. Meanwhile, in-
formative parts of each generated line are selected
and maintained in the salient clue. As a result, the
salient clue vector always keeps a coherent infor-
mation flow, playing a role of a dynamically and
incrementally built framework (skeleton) for the
generated poem.

TF-IDF Weighted Attention
Observe an example in Figure 4. The scores r1:T
given by the Naive Salient-Clue are very close
to each other, not distinguishable in saliency. To
cope with this, we further take into account the im-
portance of characters both in the preceding line

and the current generated line, by the traditional
tf-idf scheme in Information Retrieval:

rj = [(wout ∗A)⊙win]j , (7)

where ⊙ is element-wise multiplication and [·]j
is the j-th element in a vector. win ∈ R1∗T is the
tf-idf vector of preceding (input) line and the i-th
element of it is the tf-idf value of i-th character.
Similarly, wout is the tf-idf vector of the current
generated (output) line. Elements in win and wout

are normalized to [0,1].
As shown in Figure 4, by tf-idf weighting, two

informative characters “hong yan” (wild goose, a
symbol of autumn) are selected correctly, which
leads to the generation of word “qiu xing” (sad-
ness in autumn) in the fourth line in Figure 1.

Two Strategies for Salient-Clue
As shown in Figure 2, we use two strategies to
form and utilize the salient-clue vector vi. The
first is called Saliency Dynamic Update (SDU)
by formula (5) and (6), which means that hidden
states of selected salient characters are packed into
vi. Thus vi is kept at the same size and is updated
dynamically after each line is generated.

The second one is the concatenation of these
hidden states:

vi = [vi−1;hm1 ; ...;hmN], (8)

where [;] means vector concatenation. The size
of vi will increase in the generation process. We
call this Saliency Sensitive Identity (SSI), be-
cause the identity of each hidden state is kept in-
dependent, without being merged as one.

3.3 Extensions of Salient-Clue
Above we design different methods to select the
salient partial context. Since the proposed model
is quite flexible, aside from the selected characters,
other information can be also utilized to form the
salient clue, so as to further improve coherence. In
this paper, we tried and evaluated two extensions:
user intent and poetry style. This extra informa-
tion is vectorized as an extension vector e and then
concatenated to the salient clue vector:

p(yt|y1:t−1, L1:i−1) =

g(h
′
t, emb(yt−1), ct, [vi−1; e]).

(9)

Intent Salient-Clue. The poem is generated
with a user intent keyword. Taking user intent into

246

Models Wujue Qijue

Different Planning 0.460 0.554
iPoet 0.502 0.591

Models seq2seqPG 0.466 0.620
SC 0.532 0.669

Different naive-TopK-SDU 0.442 0.608
naive-SSal-SDU 0.471 0.610

Strategies tfidf-SSal-SDU 0.533 0.648

of SC tfidf-SSal-SSI 0.530 0.667
tfidf-SSal-SSI-intent 0.532 0.669

Table 1: BLEU evaluation results. The scores are cal-
culated by the multi-bleu.perl script.

account can prevent later generated lines diverging
from earlier generated ones in a poem. In detail,
we feed the keyword into Encoder, then vector e
is calculated by a non-linear transformation of the
average of their hidden states.

Style Salient-Clue. The style of generated po-
ems can also benefit coherence. Here we simply
use a style embedding as the vector e, which pro-
vides a high-level indicator of style and is learned
during the training process. It is noteworthy that
Zhang et al. (2017) achieve style transfer with
the help of an external memory, which stores hun-
dreds of poems (thus thousands of hidden states).
By contrast, our Style extension is simpler but still
achieves comparable performance.

4 Experiments and Evaluations

4.1 Data and Setups

Our corpus contains 165,800 poems (half Wujue
and half Qijue). We use 4,000 of them for valida-
tion, 4,000 for testing and other ones for training.
From each poem, a keyword is extracted by tf-idf.

The sizes of word embedding, hidden state,
saline-clue vector, intent vector and style embed-
ding are set to 256, 512, 512, 128 and 64 respec-
tively. For SSI, to reduce the model size, we map
each hidden state to a 100-d vector by a non-linear
transformation. Encoder and Decoder share the
same word embedding. All different strategies of
Salient-Clue are used both in training and genera-
tion. The optimization objective is standard cross
entropy errors of the predicted character distribu-
tion and the actual one. Adam (Kingma and Ba,
2015) with shuffled mini-batches (batch size 64)
is used. Then we use beam search (beam size 20)
to generate each poem, with a keyword as input.
For fairness, all baselines use the same configura-
tion.

For Style Salient-Clue model, we first use LDA

(Blei et al., 2003) to train the whole corpus (with
15 topics). We select three main styles in Chi-
nese poetry: Pastoral, Battlefield and Romantic
and find the corresponding topics manually. Then
all poems are labeled by LDA inference. We select
5,000 poems for each style, together with other
5,000 non-style poems (20,000 in total), to fine-
tune a pre-trained normal Salient-Clue model.

4.2 Models for Comparisons
We compare: iPoet (Yan, 2016), seq2seqPG (Yi
et al., 2017), Planning (Wang et al., 2016), SC
(our model, tfidf-SSal-SSI-intent, which is the best
configure under BLEU evaluation), Style-SC (the
style extension of our model) and Human (poems
created by human poets). We choose these three
previous models as our baselines, because they all
achieve satisfactory performance and the authors
have done thorough comparisons with other mod-
els, such as RNNPG (Zhang and Lapata, 2014)
and SMT (He et al., 2012), and prove that their
models outperform baselines. Besides, the three
models can be classified into the two formalisms
in Section 3.1.

4.3 Evaluation Design
To demonstrate the effectiveness of our model, we
conduct four evaluations:

BLEU Evaluation. Following (He et al., 2012;
Zhang and Lapata, 2014; Yan, 2016), we use
BLEU (Papineni et al., 2002) to evaluate our
model. BLEU isn’t a perfect metric for generated
poems, but in the scenario of pursuing better co-
herence, it still makes sense to some extent. Be-
cause higher BLEU scores indicate that the model
can generate more n-grams of ground-truth, which
certainly have better coherence.

Human Evaluation. Following (Manurung,
2003; Zhang and Lapata, 2014), we design five
criteria: Fluency (are the lines fluent and well-
formed?), Coherence (is the theme of the whole
quatrain consistent?), Meaningfulness (does the
poem convey some certain messages?), Poetic-
ness (does the poem have some poetic features?),
Entirety (the reader’s general impression on the
poem). Each criterion needs to be scored in a 5-
point scale ranging from 1 to 5.

We select 20 typical keywords and generate two
quatrains (one Wujue and one Qijue) for each key-
word using these models. For Human, we select
quatrains containing the given keywords. There-
fore, we obtain 240 quatrains (20*6*2) in total.

247

Models Fluency Coherence Meaningfulness Poeticness Entirety
Wujue Qijue Wujue Qijue Wujue Qijue Wujue Qijue Wujue Qijue

Planning 2.56 2.84 2.50 2.64 2.49 2.64 2.59 2.88 2.39 2.66
iPoet 3.13 3.45 2.89 2.91 2.60 2.80 2.79 3.05 2.54 2.85
seq2seqPG 3.54 3.65 3.31 3.16 3.15 3.01 3.26 3.29 3.06 3.08
SC 4.01∗∗ 4.04∗∗ 3.85∗∗ 3.86∗∗ 3.55∗∗ 3.63∗∗ 3.74∗∗ 3.69∗ 3.63∗∗ 3.70∗∗

Style-SC 4.03∗∗ 4.16∗∗ 3.90∗∗ 4.01∗∗ 3.68∗∗ 3.75∗∗ 3.61∗ 3.68∗ 3.65∗∗ 3.70∗∗

Human 4.09 4.43 3.90 4.33+ 3.94 4.35++ 3.83 4.24++ 3.81 4.24++

Table 2: Human evaluation results. Diacritics * (p < 0.05) and ** (p < 0.01) indicates SC models significantly
outperform the three baselines; + (p < 0.05) and ++ (p < 0.01) indicates Human is significantly better than all
the five models. The Intraclass Correlation Coefficient of the four groups of scores is 0.596, which indicates an
acceptable inter-annotator agreement.

We invite 12 experts on Chinese poetry to evalu-
ate these quatrains, who are Chinese literature stu-
dents or members of a poetry association. Experts
are divided into four groups and required to fo-
cus on the quality as objectively as possible, even
if they recognize the human-authored ones. Each
group completes the evaluation of all poems and
we use the average scores.

Style-SC is not suitable for BLEU, because we
can’t expect LDA to predict a correct style label
by a short keyword. Thus Style-SC is only tested
under Human Evaluation. We label each keyword
with an appropriate style manually, which is used
to guide the generation.

Style Control Evaluation. Poetry style is usu-
ally coupled with content. Not all keywords are
compatible with every style. Therefore we select
ten normal keywords without obvious style (e.g.,
moon and wind). We use SC to generate one poem
and use Style-SC to generate three poems with the
three specified styles. The experts are asked to
identify the style of each poem from four options
(Unknown, Battlefield, Romantic and Pastoral).

Saliency Selection Evaluation. The main idea
of our method is to select the salient partial con-
text to guide successive generation. To evaluate
the reasonableness of selected characters, we ran-
domly select 20 Wujues and 20 Qijues from the
test set. Then three experts are asked to select up
to K salient characters from each line. When ex-
perts have different opinions, they stop and discuss
until reaching an agreement. Jaccard similarity
is used to measure the overlap of human-selected
characters and the model-selected ones.

4.4 Evaluation Results and Discussion
As shown in Table 1, our SC outperforms other
models under BLEU evaluation. We also compare
different strategies of SC. As we expected, tfidf-
SC models outperform the naive ones, because

tf-idf values lower the weights of uninformative
characters. We also compare our SSal 1 with TopK
(just select top K salient characters) and SSal gets
better results. Please note that, from naive-TopK-
SDU to tfidf-SSal-SDU, BLEU scores are getting
higher without any increase of model size (Table
4). SSI is better on Qijue, but performs slightly
worse than SDU on Wujue. We use SSI for Hu-
man evaluation here, but SDU is more suitable for
longer poetry, e.g., Chinese Song Iambics. Be-
sides, the intent extension makes a little bit of im-
provement, not as prominent as we expected. We
think the reason may lie in that the keyword se-
lected by tf-idf can’t accurately represent the user
intent. Generally, the results show both for pack-
ing and concatenation formalisms, the proper uti-
lization of partial salient context (SDU and SSI)
can be better than the improper utilization of full
context (Packing Full Context and nLto1L).

Table 2 gives human evaluation results. SC and
Style-SC achieve better results than other mod-
els and get close to Human, though there is still
a gap. Especially on Coherence, our Style-SC
gets the same score as Human for Wujue. More-
over, Style-SC makes a considerable improvement
on Coherence compared to SC (+0.05 for Wu-
jue and +0.15 for Qijue), which demonstrates that
consistent style can actually enhance the coher-
ence, though it’s not easy to predict an appropriate
style automatically. Interestingly, Style-SC out-
performs SC on most criteria, except for Poetic-
ness. We believe this is mainly because that style
control forces the model to always generate some
style-related words, which limits the imagination
and thus hurts the Poeticness.

Besides, as we can see, seq2seqPG outper-
forms other two baselines, but at the expense
that it is three times the model size of iPoet (Ta-
ble 4). Surprisingly, Planning gets the worst re-

248

Figure 5: Style control evaluation results. The values
are ratios that generated poems are identified as differ-
ent styles by human experts.

Models Wujue Qijue
Random 0.271 0.247
tf-idf 0.417 0.378
naive-TopK SC 0.347 0.415
naive-SSal SC 0.431 0.441
tfidf-SSal SC 0.525 0.461

Table 3: Saliency selection results. Random: randomly
select K characters for three times and use the average
Jaccard values. tf-idf: directly select K characters in
terms of tf-idf, without SC.

sults. This is because that Planning uses a neu-
ral language model to generate the planned sub-
keywords, which performs poorly on our corpus
and thus hurts fluency and coherence.

Figure 5 gives style control evaluation results.
Incorporating one style vector with the salient-
clue, our Style-SC achieves comparable perfor-
mance with (Zhang et al., 2017). The good results
partially lie in that we only use those non-style
keywords, such as moon, wind, water and so on,
for this experiment. Empirically, transferring from
a keyword with obvious style to arbitrary style is
intractable, e.g., from the word ‘army’ to Pastoral
style, which may need more complicated model
design. Even so, our results still show that rough
style control is not as difficult as we thought.

Table 3 shows the effectiveness of our salient
character selection methods. tfidf-SSal achieves
about 50% overlap of human-selected salient char-
acters, which is notably higher than Random and
tf-idf. With only attention values, naive-TopK per-
forms worse than tf-idf on Wujue. Combining tf-
idf and SSal makes notable improvement.

Models Innovation Param Speed
Planning 0.039 15.1 2.49
iPoet 0.044 11.0 1.76
seq2seqPG 0.047 37.1 1.85
SC Model 0.041 13.6 1.57
naive-TopK-SDU 0.058 13.7 1.49
naive-SSal-SDU 0.056 13.7 1.51
tfidf-SSal-SDU 0.042 13.7 1.52
tfidf-SSal-SSI 0.043 13.1 1.48
tfidf-SSal-SSI-intent 0.041 13.6 1.57

Table 4: Extra comparisons of different models. In-
novation, Param (million parameters) and Speed (sec-
onds per poem) are compared. The generation speed is
tested on an Intel CORE i5 4-core CPU.

4.5 Extra Comparisons and Case Study

Besides the metrics above, we also compare inno-
vation, model size and generation speed of differ-
ent models. The innovation is measured by Jac-
card similarity of generated poems (3,000 for each
model). Intuitively, the basic requirement for in-
novation is that poems generated with different
keywords should be different with each other.

As shown in Table 4, SC makes a good bal-
ance on quality, innovation, generation speed and
model size. The iPoet has the smallest size, but the
generation is slow, since it may polish the poem
for several times, costing more time than other
one-pass-generation models. For SC, the use of
tf-idf significantly improves innovation. Due to
planned sub-keywords, Planning achieves the best
innovation but the worst quality, which shows pur-
suing innovation takes the risk of abruptness and
incoherence.

Figure 6 shows two Wujues generated by
seq2seqPG and SC respectively, with the same in-
put “Yangzhou City”. A word “moon” is gener-
ated by seq2seqPG in the first line, which deter-
mines the time (at night) of the whole poem. How-
ever, in the fourth line, seq2seqPG still generates
an inconsistent word “sunset”. For the poem gen-
erated by SC, the word “autumn” in the second
line is selected for successive generation. As a
result, a word “fallen leaves” is generated in the
fourth line. Furthermore, in the second line, ex-
cept for “autumn”, other four uninformative char-
acters, which have quite low saliency scores, are
filtered out by SSal 1 as shown at the bottom of
Figure 6.

5 Conclusion and Future Work

In this paper, we address the problem of the con-
text coherence in poetry generation. How to prop-

249

Figure 6: Two Wujues generated with the same input.
Green boxes and arrows show consistencies, and the
red ones show inconsistencies. Automatically selected
charcters by SC are underlined.

erly treat the global context is a key factor to con-
sider. We propose a Salient-Clue mechanism2.
Our model selects highly salient characters in pre-
ceding generated lines to form a representation of
the so-far context, which can be considered as a
dynamically and incrementally built framework,
then uses it to guide the successive generation.
Both automatic and human evaluations demon-
strate that our model can effectively improve the
global coherence of meaning, theme and artistic
conception of generated poems. This implies the
proper treatment of a partial context could be bet-
ter than the improper treatment of the full context.

Furthermore, our model can be flexibly com-
bined with different auxiliary information and we
show the utilization of style and user intent can
further enhance coherence.

There still exists a gap between our model and
human poets, which indicates that there are lots
to do in the future. Though we experimented on
Chinese corpus, the proposed model is genre-free.
We also plan to extend our model to generate other
types of poetry, such as Chinese Regulated Verse
and English sonnet. Besides, we also want to de-
sign some explicit supervisory signals or utilize
external knowledge to improve the saliency selec-
tion algorithm.

Acknowledgments

We would like to thank Cheng Yang, Jiannan
Liang, Zhipeng Guo, Huimin Chen, Wenhao Li

2Based on this work, we build an online poetry generation
system, Jiuge: https://jiuge.thunlp.cn.

and anonymous reviewers for their insightful com-
ments. This research is funded by Major Project of
the National Social Science Foundation of China
(No. 13&ZD190). It is also partially supported by
the NExT++ project, the National Research Foun-
dation, Prime Ministers Office, Singapore under
its IRC@Singapore Funding Initiative.

References
Dzmitry Bahdanau, KyungHyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
2015 International Conference on Learning Repre-
sentations, San Diego, CA.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation. machine Learning re-
search, (3):993–1022.

Pablo Gervás. 2001. An Expert System for the Compo-
sition of Formal Spanish Poetry. Springer London.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48. Association
for Computational Linguistics.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages
1319–1327, Atlanta, USA.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing chinese classical poems with statistical machine
translation models. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pages 1650–
1656, Toronto, Canada.

Sepp Hochreiter and Juärgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 168–178. Association for Com-
putational Linguistics.

Sebastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017. Does neural machine trans-
lation benefit from larger context? arXiv preprint
arXiv:1704.05135.

Long Jiang and Ming Zhou. 2008. Generating chinese
couplets using a statistical mt approach. In Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics, pages 377–384, Manchester,
UK.

https://jiuge.thunlp.cn

250

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization.

Robert P. Levy. 2001. A computational model of poetic
creativity with neural network as measure of adap-
tive fitness. In Proceedings of the ICCBR-01 Work-
shop on Creative Systems.

Hisar Maruli Manurung. 2003. An evolutionary algo-
rithm approach to poetry generation. Ph.D. thesis,
University of Edinburgh.

Sameen Maruf and Gholamreza Haffari. 2017. Docu-
ment context neural machine translation with mem-
ory networks. arXiv preprint arXiv:1711.03688.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683–1692. Association for Compu-
tational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In In Advances in Neural Information Pro-
cessing Systems 2014, Montreal, Canada.

Jörg Tiedemann and Yves Scherrer. 2017. Neural ma-
chine translation with extended context. In Proceed-
ings of the Third Workshop on Discourse in Machine
Translation, pages 82–92, Copenhagen, Denmark.

Zhe Wang, Wei He, Hua Wu nad Haiyang Wu, Wei
Li, Haifeng Wang, and Enhong Chen. 2016. Chi-
nese poetry generation with planning based neu-
ral network. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics:Technical Papers, pages 1051–1060, Os-
aka, Japan.

Xiaofeng Wu, Naoko Tosa, and Ryohei Nakatsu. 2009.
New hitch haiku: An interactive renku poem com-
position supporting tool applied for sightseeing nav-
igation system. In Proceedings of the 8th Inter-
national Conference on Entertainment Computing,
pages 191–196, Paris, France.

Rui Yan. 2016. i,poet:automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence, pages 2238–2244, New York, USA.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De
Lin, Xueqiang Lv, and Xiaoming Li. 2013. I,
poet:automatic chinese poetry composition through
a generative summarization framework under con-
strained optimization. In Proceedings of the 23rd
International Joint Conference on Artificial Intelli-
gence, pages 2197–2203, Beijing, China.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2017. Gen-
erating chinese plassical poems with rnn encoder-
decoder. In Proceedings of the Sixteenth Chinese
Computational Linguistics, pages 211–223, Nan-
jing, China.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang.
2017. Flexible and creative chinese poetry gener-
ation using neural memory. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1364–1373. Association for Computational Linguis-
tics.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages
670–680, Doha, Qatar.

Yingzhong Zhang. 2015. How to Create Chinese Clas-
sical Poetry. The Commercial Press.

