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Abstract

Generative Adversarial Network (GAN) has
been proposed to tackle the exposure bias
problem of Neural Machine Translation
(NMT). However, the discriminator typically
results in the instability of the GAN train-
ing due to the inadequate training problem:
the search space is so huge that sampled
translations are not sufficient for discrimina-
tor training. To address this issue and stabi-
lize the GAN training, in this paper, we pro-
pose a novel Bidirectional Generative Adver-
sarial Network for Neural Machine Transla-
tion (BGAN-NMT), which aims to introduce
a generator model to act as the discriminator,
whereby the discriminator naturally considers
the entire translation space so that the inade-
quate training problem can be alleviated. To
satisfy this property, generator and discrimina-
tor are both designed to model the joint prob-
ability of sentence pairs, with the difference
that, the generator decomposes the joint prob-
ability with a source language model and a
source-to-target translation model, while the
discriminator is formulated as a target lan-
guage model and a target-to-source transla-
tion model. To further leverage the symme-
try of them, an auxiliary GAN is introduced
and adopts generator and discriminator mod-
els of original one as its own discriminator and
generator respectively. Two GANs are alter-
nately trained to update the parameters. Exper-
iment results on German-English and Chinese-
English translation tasks demonstrate that our
method not only stabilizes GAN training but
also achieves significant improvements over
baseline systems.

1 Introduction

The past several years have witnessed the rapid de-
velopment of Neural Machine Translation (NMT)

∗This work was done when the first author was the intern
at Microsoft Research Asia.

(Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2014), from catching up with Statistical Ma-
chine Translation (SMT) (Koehn et al., 2003; Chi-
ang, 2007) to outperforming it by significant mar-
gins on many languages (Sennrich et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017; Has-
san et al., 2018). The most common approach
to training NMT is to maximize the conditional
log-probability of the correct translation given the
source sentence. However, as argued in Bengio
et al. (2015), the Maximum Likelihood Estimation
(MLE) principle suffers from so-called exposure
bias in the inference stage: the model predicts next
token conditional on its previously predicted ones
that may be never observed in the training data. To
address this problem, much recent work attempts
to reduce the inconsistency between training and
inference, such as adopting sequence-level objec-
tives and directly maximizing BLEU scores (Ben-
gio et al., 2015; Ranzato et al., 2015; Shen et al.,
2016; Wiseman and Rush, 2016).

Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) is another promising frame-
work for alleviating exposure bias problem and re-
cently shows remarkable promise in NMT (Yang
et al., 2017; Wu et al., 2017). Formally, GAN
consists of two ”adversarial” models: a generator
and a discriminator. In machine translation, NMT
model is used as the generator that produces trans-
lation candidates given a source sentence, and an-
other neural network is introduced to serve as the
discriminator, which takes sentence pairs as input
and distinguishes whether a given sentence pair is
real or generated. Adversarial training between
the two models involves optimizing a min-max ob-
jective, in which, the discriminator learns to dis-
tinguish whether a given data instance is real or
fake, and the generator learns to confuse the dis-
criminator by generating high-quality translation
candidates. Since the generated data is based on
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discrete symbols (words), we usually adopt policy
gradient method (Yu et al., 2017) to update model
parameters of the generator. Specifically, given a
bunch of translation candidates sampled from the
generator, confidence scores calculated by the dis-
criminator are employed as rewards to update the
generator.

However, in this training process, the discrim-
inator typically suffers from inadequate training
problem, leading to the instability of GAN train-
ing. In practice, sampling large translation candi-
dates is time-consuming for NMT system, so we
only use a few samples to train the discriminator.
For a given source sentence, there is usually only
one positive example (real target sentence). If the
sampled negative examples are also few, the dis-
criminator will easily overfit to the data. This is
the inadequate training problem for the discrimi-
nator. In such a case, rewards calculated by the
discriminator could be biased, especially for unob-
served samples. These biased rewards will provide
a wrong signal to the generator and make it up-
date incorrectly, resulting in performance degra-
dation of the generator. Since such issue can oc-
cur repeatedly throughout the entire training pro-
cess, GAN training becomes unstable and the per-
formance of generator will drop drastically.

On the other hand, the generator has well-
designed properties that benefit the discriminator,
since it models the probability distribution over
the entire translation space so that the genera-
tor does not overfit to observed samples, while
prior knowledge for unobserved samples is natu-
rally considered. At the same time, the generator
also exhibits a certain ability to identify whether
a given data instance is good enough. For ex-
ample, target-to-source translation model serves
as the discriminator to improve source-to-target
translation model (He et al., 2016; Tu et al., 2017).
Inspired by this, we propose a novel Bidirectional
Generative Adversarial Network for Neural Ma-
chine Translation (aka BGAN-NMT), which em-
ploys a generator model to perform the role of
the discriminator so as to handle inadequate train-
ing problem and stabilize GAN training. To sat-
isfy this property, both generator and discriminator
of original GAN are designed to model the joint
probability of sentence pairs, with the difference
that, the generator model A is decomposed into
a source language model and a source-to-target
translation model, while the discriminator model

B is formulated as a target language model and a
target-to-source translation model. Intuitively, we
can also leverage A to act as the discriminator to
improve B, and then improved B reversely serves
as a better discriminator to guide the training ofA.
To make use of this symmetry, we bring in an aux-
iliary GAN that adopts generator and discrimina-
tor models of original one as its own discriminator
and generator respectively. Then we design a joint
training algorithm to alternately utilize these two
GANs to update the source-to-target and target-to-
source translation models.

Our experiments are conducted on German-
English and Chinese-English translation data sets.
Experimental results demonstrate that our BGAN-
NMT not only achieves the stability of GAN train-
ing but also significantly improves translation per-
formance over baseline systems.

2 Background

2.1 Neural Machine Translation

Attention-based NMT model (Bahdanau et al.,
2014) is adopted as the source-to-target and target-
to-source translation models used in our BGAN-
NMT. The attention-based NMT system is im-
plemented as an encoder-decoder framework with
recurrent neural networks (RNN), which can be
Gated Recurrent Unit (GRU) (Cho et al., 2014)
or Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) networks in practice.

2.1.1 Encoder-Decoder Framework
The encoder reads the source sentence x =
(x1, x2, ... , xT ) and transforms it into a sequence
of hidden states h = (h1, h2, ... , hT ) using a bi-
directional RNN. The decoder uses another RNN
to generate the translation y = (y1, y2, ... , yT ′)
based on the hidden states h. At each time stamp
i, the conditional probability of each word yi from
a target vocabulary Vy is computed with

p(yi|y<i, h) = g(yi−1, zi, ci), (1)

where zi is the ith hidden state of the decoder,
which is calculated conditioned on the previous
hidden state zi−1, previous word yi−1 and the
source context vector ci:

zi = RNN(zi−1, yi−1, ci), (2)

The source context vector ci is a weighted sum of
the hidden states (h1, h2, ... , hT ) with the coeffi-
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cients α1, α2, ... , αT calculated with

αt =
exp (a(ht, zi−1))∑
k exp (a(hk, zi−1))

(3)

where a is a feed-forward neural network with a
single hidden layer.

2.1.2 MLE Training
NMT systems are usually trained to maximize the
conditional log-probability of the correct transla-
tion given a source sentence with respect to the
parameters θ of the model:

θ∗ = argmax
θ

N∑
n=1

|yn|∑
i=1

log p(yni |yn<i, xn) (4)

where N is size of the training corpus, and |yn|
is the length of the target sentence yn. However,
MLE training suffers from exposure bias prob-
lem: in training stage, the history of any target
word is correct and has been observed in the train-
ing data, while during testing, the model predicts
next token conditioned on its previously predicted
ones that may be never observed in the training
data. To solve this problem, reinforcement learn-
ing methods are used to sample translation candi-
dates, based on which, rewards are calculated and
utilized to update the parameters. GAN follows
the same way to solve exposure bias problem and
rewards are computed by the discriminator.

2.2 Generative Adversarial Network

As a new paradigm of training generative models,
GAN (Goodfellow et al., 2014) has been success-
fully applied in computer vision tasks (Radford
et al., 2015; Arjovsky et al., 2017). Conceptu-
ally, GAN consists of two “adversarial” models:
a generator G that captures the data distribution,
and a discriminator D that estimates the probabil-
ity that a sample is sampled from the training data
rather than from G. When GAN is used for NMT,
NMT model is employed as G, and CNN-based
or RNN-based neural networks serve as D (Yang
et al., 2017; Wu et al., 2017). During adversarial
training,G andD play a two-player minmax game
with the following value function V (D,G):

min
G

max
D

V (D,G) = E(x,y)∼Pd(x,y) [logD(x, y)]

+ E(x,y′)∼PG(x,y)

[
log(1−D(x, y′))

]
(5)

where (x, y) is a sentence pair, Pd represents the
data distribution and PG denotes the generator dis-
tribution. With this objective function, the dis-
criminator learns to distinguish whether sentence
pair is real (sampled from bilingual corpus) or fake
(generated by G), and the generator tries to con-
fuse the discriminator by generating high-quality
translation samples.

In practice, policy gradient method (Yu et al.,
2017) is usually used to calculate gradients for the
generator due to discrete symbols (words). To up-
date the generator model, translation candidates
are firstly sampled, for which rewards are cal-
culated using the discriminator. With these re-
wards, we can compute gradients and run back-
propagation to update the generator. In such a
training process, real target sentence and sampled
translation candidates are used as positive and neg-
ative examples of discriminator training respec-
tively. Due to the computation cost, we cannot
generate many negative examples, so that the dis-
criminator is easy to overfit. The overfitted dis-
criminator will give biased signals to the generator
and make it update incorrectly, leading to the in-
stability of the generator training. Wu et al. (2017)
found that combining adversarial training objec-
tive with MLE can significantly improve the sta-
bility of generator training, which is also reported
in language model and neural dialogue generation
(Lamb et al., 2016; Li et al., 2017). Actually, al-
though this method leverages real translation sig-
nal to guide the generator and alleviate the effect
of overfitted discriminator, it cannot deal with the
inadequate training problem of the discriminator,
which essentially plays a more important role in
GAN training.

3 Bidirectional Generative Adversarial
Network

In GAN for NMT, the generator does not suffer
from the inadequate training problem, because the
generator is proposed to model probability distri-
bution over the entire translation space (maximiz-
ing probability of one translation candidate means
minimizing probabilities of the others). At the
same time, the generator exhibits a certain ability
to discriminate good sentence pairs, for example,
target-to-source translation model is used to score
samples generated from source-to-target transla-
tion model. Thus, introducing a generator model
to perform the role of the discriminator is expected
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Figure 1: The architecture of BGAN-NMT consisting of two GANs. The dotted line represents that
GAN2 adopts both generator and discriminator models of GAN1 but interchanges their roles.

to address the inadequate training problem and sta-
bilize GAN training. Based on these observations,
we design a Bidirectional Generative Adversarial
Network for Neural Machine Translation, named
as BGAN-NMT.

As illustrated in Figure 1, the overall archi-
tecture of BGAN-NMT consists of an original
GAN (GAN1) and an auxiliary GAN (GAN2).
Both generator and discriminator of original GAN
are defined to model the joint probability of sen-
tence pairs P (x, y). Formally, P (x, y) can be
decomposed in two equivalent ways: P (x, y) =
P (x)P (y|x) and P (x, y) = P (y)P (x|y), and
they are used as generator G and discriminator
D for GAN1 respectively. Further, the generator
model can be decomposed into a source language
model and a source-to-target translation model,
while the discriminator can be formulated as a tar-
get language model and a target-to-source trans-
lation model. Auxiliary GAN (GAN2) employs
G and D of GAN1 as its own discriminator D′

and generator G′ to better exploit the symmetry
between G and D. The following of this section
details the objective function and joint training al-
gorithm for BGAN-NMT.

3.1 Training Objective

As G and D are defined as P (x)P (y|x) and
P (y)P (x|y) respectively, the adversarial training
objective V (D,G) ofGAN1 in Equation 5 can be

rewritten as

min
G

max
D

V (D,G) = E(x,y)∼Pd(x,y) [logP (x|y)P (y)]

+ Ex∼Pd(x),y
′∼P (y|x)

[
log(1− P (x|y′)P (y′))

]
(6)

which means, given a source sentence x, source-
to-target translation model P (y|x) tries to gener-
ate high quality translation y′ to fool the discrimi-
nator P (x|y)P (y), while target-to-source transla-
tion model P (x|y) and language model P (y) learn
to distinguish translation candidates from real sen-
tence pairs. In our implementations, two language
models P (x) and P (y) are fixed to reduce training
complexity.

For discriminator D, D is trained with the
ground-truth sentence pair (x, y) and the gener-
ated sample (x, y′) from G, respectively as posi-
tive and negative examples. Formally, the objec-
tive function of D is to maximize V (D,G):

LD = E(x,y)∼Pd(x,y) [logP (x|y)P (y)]

+ Ex∼Pd(x),y
′∼P (y|x)

[
log

(
1− P (x|y′)P (y′)

)] (7)

Since P (y) is fixed, the gradient of parameter θD
for the target-to-source translation model P (x|y)
is calculated as:

∂LD

∂θD
= E(x,y)∼Pd(x,y)

[
∂ logP (x|y)

∂θD

]
+ Ex∼Pd(x),y

′∼P (y|x)[(
1− 1

1− P (x|y′)P (y′)

)
∂ logP (x|y′)

∂θD

]
(8)
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in which ∂ logP (x|y)
∂θD

is the gradient specified with
standard sequence-to-sequence NMT network.

For generator G, following Goodfellow (2016),
the objective of training G is to maximize the ex-
pected rewards (probability of D) instead of di-
rectly minimizing V (D,G):

LG = Ex∼Pd(x),y
′∼P (y|x)

[
P (x|y′)P (y′)

]
(9)

Since the output of the generator G is a sequence
of discrete symbols (words), policy gradient is
used to update the parameters, and then the gra-
dient of parameter θG for source-to-target transla-
tion model P (y|x) can be calculated as:

∂LG

∂θG
= Ex∼Pd(x),y

′∼P (y|x)

[
P (x|y′)P (y′)

∂ logP (y′|x)
∂θG

]
(10)

By exchanging generator and discriminator
models of GAN1, we introduce GAN2, in which
the original G is used as the discriminator D′

and original D serves as the generator G′. Sim-
ilarly, the adversarial training objective V (D′, G′)
of GAN2 is defined as:

min
G′

max
D′

V (D′, G′) = E(x,y)∼Pd(x,y) [logP (y|x)P (x)]

+ Ey∼Pd(y),x
′∼P (x|y)

[
log(1− P (y|x′)P (x′))

]
(11)

According to this adversarial training objective,
the objective functions of D′ and G′ are defined
as following:

LD′ = E(x,y)∼Pd(x,y) [logP (y|x)P (x)]

+ Ey∼Pd(y),x
′∼P (x|y)

[
log(1− P (y|x′)P (x′))

]
(12)

LG′ = Ey∼Pd(y),x
′∼P (x|y)

[
P (y|x′)P (x′)

]
(13)

where the gradients of parameters θD′ = θG for
P (y|x) and θG′ = θD for P (x|y) can be respec-
tively calculated as:

∂LD′

∂θG
= E(x,y)∼Pd(x,y)

[
∂ logP (y|x)

∂θG

]
+ Ey∼Pd(y),x

′∼P (x|y)

[(1− 1

1− P (y|x′)P (x′)
)
∂ logP (y|x′)

∂θG
]

(14)

∂LG′

∂θD
= Ey∼Pd(y),x

′∼P (x|y)[P (y|x′)P (x′)
∂ logP (x′|y)

∂θD
]

(15)

3.2 Joint Training Algorithm
In our approach, G and D actually act as discrim-
inator systems for each other in a joint training
process: the generator G can be improved with
the discriminator D in GAN1, and then the en-
hanced G serves as a better discriminator to guide

Algorithm 1: Joint Training Algorithm for
BGAN-NMT

Input : Bilingual corpus T = {(x, y)}Nn=1;
Pre-trained source-side language model P (x);
Pre-trained target-side language model P (y);

Output: Well-trained models P (y|x) and P (x|y)
1 Pre-train P (y|x) and P (x|y) on T with MLE principle ;
2 for number of training iterations do
3 for k steps do
4 Get m samples {(x, y)}mi=1 from T ;
5 Generate m samples {(x, y′)}mi=1 using

P (y|x) given source sentences of
{(x, y)}mi=1;

6 Update the parameter θD with Equation 8 ;
7 Generate m samples {(x′, y)}mi=1 using

P (x|y) given target sentences of
{(x, y)}mi=1;

8 Update the parameter θG with Equation 14 ;
9 end

10 Get m samples {(x, y)}mi=1 from T ;
11 Generate m samples {(x, y′)}mi=1 using P (y|x)

given source sentences of {(x, y)}mi=1;
12 Update the parameter θG with Equation 10 ;
13 Generate m samples {(x′, y)}mi=1 using P (x|y)

given target sentences of {(x, y)}mi=1;
14 Update the parameter θD with Equation 15 ;
15 end

the training of D in GAN2. This training pro-
cess can be iteratively carried out to obtain further
improvements because after each iteration both G
and D are expected to be improved with adver-
sarial training. To simultaneously optimize these
two models, we design a joint training algorithm
to learn the parameters (θG and θD) shared in two
GANs of BGAN-NMT (GAN1 and GAN2).

As shown in Algorithm 1, the whole algorithm
is mainly divided into two steps. Firstly, given
parallel corpora T = {(x, y)}Nn=1, we pre-train
P (y|x) and P (x|y) with MLE principle, while
source and target language models P (x) and P (y)
are pre-trained with corresponding sentences of
bilingual data. Next, based on these pre-trained
models, we implement the two player minmax
game using an iterative approach, in which, we
alternate between k (equals to 5 in our experi-
ments) steps of optimizing all discriminators (D
and D′) and one step of optimizing all generators
(G and G′). The iterative training continues until
the performance of a development data set is not
increased.

4 Experiments

4.1 Setup
To examine the effectiveness of our proposed ap-
proach, we conduct experiments on translation
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tasks with two language pairs: German-English
(De-En for in short) and Chinese-English (Zh-En
for in short). In all experiments, BLEU (Papineni
et al., 2002) is adopted as the automatic metric for
translation quality evaluation and computed using
Moses multi-bleu.perl script.

4.1.1 Dataset
For German-English translation task, following
previous work (Ranzato et al., 2015; Bahdanau
et al., 2016), we select data from German-English
machine translation track of IWSLT2014 evalua-
tion tasks, which consists of sentence-aligned sub-
titles of TED and TEDx talks. We closely follow
the pre-processing as described in Ranzato et al.
(2015). The training corpus contains 153k sen-
tence pairs with 2.83M English words and 2.68M
German words. The validation set comprises of
6,969 sentence pairs taken from the training data,
and the test set is a combination of dev2010,
dev2012, tst2010, tst2011 and tst2012 with total
number of 6,750 sentence pairs.

For Chinese-English translation task, training
data consists of a set of LDC datasets1, which has
around 2.6M sentence pairs with 65.1M Chinese
words and 67.1M English words respectively. Any
sentence longer than 80 words is removed from
training data. NIST OpenMT 2006 evaluation set
is used as the validation set, and NIST 2005, 2008,
2012 datasets as test sets. We limit the vocabu-
lary to contain up to 50K most frequent words on
both source and target sides, and convert remain-
ing words into the <unk> token.

4.1.2 Model Architecture
RNNSearch model proposed by Bahdanau et al.
(2014) is leveraged to be the translation model,
but it should be noted that our BGAN-NMT is
independent of the NMT network structure. We
use a single layer GRU for encoder and decoder.
For Zh-En, the size of word embedding (for both
source and target words) is 256 and the size of hid-
den layer is set to 1024. For De-En, in order to
compare with previous work (Ranzato et al., 2015;
Bahdanau et al., 2016), the size of word embed-
ding and GRU hidden state are both set to 256. In
addition, P (x) and P (y) are designed as a single-
layer GRU language model, which is pre-trained

1 LDC2002E17, LDC2002E18, LDC2003E07,
LDC2003E14, LDC2005E83, LDC2005T06, LDC2005T10,
LDC2006E17, LDC2006E26, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2006T06, LDC2004T08, LDC2005T10

Methods Baseline Model
MIXER (Ranzato et al., 2015) 20.10 21.81
MRT (Shen et al., 2016) - 25.84
BSO (Wiseman and Rush, 2016) 24.03 26.36
Adversarial-NMT (Wu et al., 2017) - 27.94
A-C (Bahdanau et al., 2016) 27.56 28.53
Softmax-Q (Ma et al., 2017) 27.66 28.77
Adversarial-NMT* 27.63 28.03
BGAN-NMT 27.63 29.17

Table 1: Comparison with previous work on
IWSLT2014 German-English translation task.
The “Baseline” means the performance of pre-
trained model used to warmly start training.

to compute the marginal probability of a sentence,
and the size of word embedding and GRU hidden
state are the same as RNNSearch model.

4.1.3 Training Details
For the training of BGAN-NMT, parameters are
firstly initialized using a normal distribution with
a mean of 0 and a variance of

√
6/(drow + dcol),

where drow and dcol are the number of rows
and columns in the structure (Glorot and Ben-
gio, 2010). Then we pre-train NMT and lan-
guage models with MLE principle to convergence,
and select the best model according to the per-
formances on the validation set, where BLEU
scores and the perplexity are adopted as evaluation
metrics for NMT and language models respec-
tively. Both generator and discriminator models in
BGAN-NMT are warmly started with those pre-
trained models, and optimized using the vanilla
SGD algorithm with mini-batch 32 for De-En and
128 for Zh-En. We re-normalize gradients if their
norm exceeds 2.0. The initial learning rate is set
as 0.2 for De-En and 0.02 for Zh-En, and it is
halved when BLEU scores on the validation set do
not increase for 20,000 batches. To generate the
synthetic bilingual data, beam search strategy with
beam size 4 is adopted for both De-En and Zh-En.
At test time, beam search is employed to find the
best translation with beam size 8 and translation
probabilities normalized by the length of the can-
didate translations. Follow Luong et al. (2015),
<unk> is replaced with the corresponding target
word in a post processing step.

4.2 Results on German-English Translation

For German-English translation task, in addition
to the baseline system which is used to warmly
start our BGAN-NMT training, we also include
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System NIST2006 NIST2005 NIST2008 NIST2012 Average
HPSMT 32.46 32.42 25.23 26.20 29.08

RNNSearch 38.61 38.31 30.04 28.48 33.86
Adversarial-NMT* 39.79 38.81 31.86 30.19 35.16

BGAN-NMT 40.74 39.20 33.55 31.30 36.19

Table 2: Case-insensitive BLEU scores (%) on Chinese-English translation. The “Average” denotes the
average results of all datasets.
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Figure 2: The BLEU score changes on IWSLT2014
German-English validation set for RNNSearch,
Adversarial-NMT* and BGAN-NMT as training
progresses.

results of other existing NMT systems, includ-
ing MIXER (Ranzato et al., 2015), MRT (Shen
et al., 2016)2, BSO (Wiseman and Rush, 2016),
Adversarial-NMT (Wu et al., 2017), A-C (Bah-
danau et al., 2016) and Softmax-Q (Ma et al.,
2017). Besides, following Wu et al. (2017),
we also implement Adversarial-NMT* system
which combines adversarial training objective
with MLE. All the results are reported based on
case-sensitive BLEU.

From Table 1, we can see that our BGAN-
NMT achieves significant improvements over the
baseline RNNSearch system. It demonstrates that
GAN framework can alleviate exposure bias prob-
lem and improve the robustness of NMT sys-
tems. Our BGAN-NMT also obtains satisfac-
tory translation quality against other existing NMT
systems. In particular, our BGAN-NMT outper-
forms Adversarial-NMT* by 1.14 BLEU points.
Adversarial-NMT* adopts MLE to stabilize the
training of generator but gains limited improve-
ment due to the inadequate training problem of the
discriminator, while our BGAN-NMT can effec-
tively handle this issue and obtain significant im-
provement.

2The result of MRT method is taken from Wu et al. (2017)

To better analyze training process of the differ-
ent methods, we compare the BLEU score changes
on IWSLT2014 German-English validation set
for RNNSearch, Adversarial-NMT* and BGAN-
NMT during the entire training. As illustrated
in Figure 2, initialized with the best RNNSearch
model, Adversarial-NMT* and BGAN-NMT can
continually improve the translation performance.
In addition, our BGAN-NMT steadily performs
much better than Adversarial-NMT* in the whole
training process. It confirms that our proposed ap-
proach not only stabilizes GAN training but also
achieves better results.

4.3 Results on Chinese-English Translation

We also conduct experiments on Chinese-English
translation task with strong SMT and NMT base-
lines: HPSMT, RNNSearch and Adversarial-
NMT*. HPSMT is an in-house implementation of
the hierarchical phrase-based MT system (Chiang,
2007), where a 4-gram language model is trained
using the modified Kneser-Ney smoothing algo-
rithm over the target data from bilingual data.

Table 2 shows the evaluation results of differ-
ent models on NIST datasets. All the results
are reported based on case-insensitive BLEU. We
can observe that RNNSearch significantly outper-
forms HPSMT by 4.78 BLEU points on average,
and BGAN-NMT can further improve the perfor-
mances, with 2.33 BLEU points on average. Ad-
ditionally, our BGAN-NMT gains better perfor-
mances than Adversarial-NMT* with 1.03 BLEU
points on average. These experimental results con-
firm the effectiveness of our proposed approach,
similar as shown in the German-English transla-
tion task.

4.4 Effect on Long Sentences

Longer source sentence implies longer translation
that more easily suffers from exposure bias prob-
lem. In this subsection, we group source sen-
tence of similar length together and calculate the
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Figure 3: Performance of the generated translations with respect to the length of source sentences on
different datasets. For Chinese-English, we merge all NIST datasets in this experiment. For German-
English, we only use test datasets.

BLEU score for each group. As shown in Fig-
ure 3, we can view that our approach outperforms
RNNSearch and Adversarial-NMT* in all length
segments, especially achieving notable improve-
ments on long sentences. These results further
demonstrate that our approach can better handle
this problem and yield higher quality translations.

4.5 Effect of Discriminative Loss
We also perform an ablation experiment in order
to quantify the effect of the discriminative loss on
our models. As shown in Table 3, the discrimi-
native loss can bring 0.58 and 0.73 BLEU score
improvements on English-German and Chinese-
English dataset respectively. This result proves
that the discriminative loss can improve the dis-
criminative ability of bidirectional NMT models,
which can give more accurate rewards for the gen-
erator training in GAN framework.

5 Related Work

As a new paradigm of machine translation, NMT
typically suffers from the exposure bias problem
due to MLE training. To handle this issue, many
methods have been proposed, including designing
new training objectives (Shen et al., 2016; Wise-
man and Rush, 2016) and adopting reinforcement
learning approaches (Ranzato et al., 2015; Bah-
danau et al., 2016). Shen et al. (2016) proposed
to directly minimize expected loss (maximize the
expected BLEU) with Minimum Risk Training
(MRT). Wiseman and Rush (2016) adopted a
beam-search optimization algorithm to reduce in-
consistency between training and inference. Be-
sides, Ranzato et al. (2015) proposed a mixture
training method to perform a gradual transition

Model DE-EN ZH-EN
BGAN-NMT 29.17 36.19
-Discriminative Loss 28.59 35.46

Table 3: Translation performance of BGAN-NMT
without discriminative loss on German-English
(DE-EN) and Chinese-English (ZH-EN) transla-
tions. The BLEU score for Chinese-English trans-
lation is the average results of all datasets we used
in the experiment.

from maximum likelihood learning into optimiz-
ing BLEU scores using reinforcement algorithm.
Bahdanau et al. (2016) designed an actor-critic
algorithm for sequence prediction, in which the
NMT system is the actor, and a critic network is
proposed to predict the value of output tokens. Re-
cently, Yang et al. (2017) and Wu et al. (2017)
proposed to leverage GAN framework to deal with
the exposure bias problem, in which NMT model
is employed as the generator, and CNN-based or
RNN-based model is used as the discriminator.
Different from their work, both generator and dis-
criminator in our approach are designed to model
the joint probability of sentence pairs and then we
design an auxiliary GAN to take advantage of the
symmetry of them.

Another similar research in NMT is to leverage
bidirectional dependency to improve translation
quality. Tu et al. (2017) designed a re-constructor
module for NMT in order to make the target repre-
sentation contain the complete source information
which can reconstruct back to the source sentence.
Cheng et al. (2016) and He et al. (2016) proposed
to reconstruct monolingual data by auto-encoder,
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in which bidirectional translation models form a
closed loop and are jointly updated. Recently, this
similar idea is used in unsupervised machine trans-
lation tasks(Artetxe et al., 2017; Lample et al.,
2018).

6 Conclusion

In this paper, we have presented a Bidirectional
Generative Adversarial Network for Neural Ma-
chine Translation, consisting of an original GAN
and an auxiliary GAN. Both generator and dis-
criminator in original GAN are designed to model
the joint probability of sentence pairs. Auxiliary
GAN adopts generator and discriminator models
of original one but exchanges their roles to full uti-
lize the symmetry of them. Then these two GANs
are alternately updated using joint training algo-
rithm. Experimental results on German-English
and Chinese-English translation tasks demonstrate
that our proposed approach not only stabilizes
GAN training but also leads to significant im-
provements. In the future, we plan to extend this
method to other sequence-to-sequence NLP tasks.
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