
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 141–150
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

141

Commonsense Knowledge Base Completion and Generation

Itsumi Saito Kyosuke Nishida Hisako Asano Junji Tomita
NTT Media Intelligence Laboratories

{saito.itsumi, nishida.kyosuke}@lab.ntt.co.jp,
{asano.hisako, tomita.junji}@lab.ntt.co.jp

Abstract

This study focuses on acquisition of common-
sense knowledge. A previous study proposed
a commonsense knowledge base completion
(CKB completion) method that predicts a con-
fidence score of triplet-style knowledge for
improving the coverage of CKBs. To im-
prove the accuracy of CKB completion and ex-
pand the size of CKBs, we formulate a new
commonsense knowledge base generation task
(CKB generation) and propose a joint learning
method that incorporates both CKB comple-
tion and CKB generation. Experimental re-
sults show that the joint learning method im-
proved completion accuracy and the genera-
tion model created reasonable knowledge. Our
generation model could also be used to aug-
ment data and improve the accuracy of com-
pletion.

1 Introduction

Knowledge bases (KBs) are a kind of information
network, and they have been applied to many nat-
ural language processing tasks such as question
answering (Yang and Mitchell, 2017; Long et al.,
2017) and dialog tasks (Young et al., 2018). In
this paper, we focus on commonsense knowledge
bases (CKBs). Commonsense knowledge is also
referred to as background knowledge and is used
in natural language application tasks that require
reasoning based on implicit knowledge. For exam-
ple, machine comprehension tasks that need com-
monsense reasoning have been proposed very re-
cently (Lin et al., 2017; Ostermann et al., 2018). In
particular, Wang et al. (2018) used commonsense
knowledge provided by ConceptNet (Speer et al.,
2017) to efficiently resolve ambiguities and infer
implicit information.

Information in CKB is represented in RDF-
style triples ⟨t1, r, t2⟩, where t1 and t2 are ar-
bitrary words or phrases, and r ∈ R is

a relation between t1 and t2. For example,
⟨go to restaurant, subevent, order food⟩ means
“order food” happens as a subevent of “go to
restaurant”. Although researchers have devel-
oped techniques for acquiring CKB from raw text
with patterns (Angeli and Manning, 2013), it has
been pointed out that some sorts of knowledge
are rarely expressed explicitly in textual corpora
(Gordon and Van Durme, 2013). Therefore, re-
searchers have developed curated CKB resources
by manual annotation (Speer et al., 2017). While
manually created knowledge has high precision,
these resources suffer from lack of coverage.

Knowledge base completion methods are used
to improve the coverage of existing general-
purpose KBs, such as Freebase (Bollacker et al.,
2008; Bordes et al., 2013; Lin et al., 2015). For
example, given a node pair ⟨Athens,Greece⟩,
a completion method predicts the missing rela-
tion “IsLocatedIn”. Such KBs consist of well-
connected entities; thus, the completion meth-
ods are mainly used to find missing links of the
existing nodes. On the other hand, CKBs are
very sparse because their nodes contain arbitrary
phrases and it is difficult to define all phrases in ad-
vance. Therefore, it is important to consider CKB
completion that can robustly take arbitrary phrases
as input queries, even if they are not contained in
the CKBs, to improve the coverage.

Li et al. (2016b) proposed an on-the-fly CKB
completion model to improve the coverage of
CKBs. They defined the CKB completion task as
a binary classification distinguishing true knowl-
edge from false knowledge for arbitrary triples.
They proposed a simple neural network model
that can embed arbitrary phrases on-the-fly and
achieved reasonable accuracy for ConceptNet.
Here, in order to acquire new knowledge by us-
ing a CKB completion model, we have to pre-
pare triplet candidates as input for the completion
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model, because the model can only verify whether
the triple is true or not. Li et al. (2016b) ex-
tracted such triplet candidates from the raw text
of Wikipedia and also randomly selected from the
phrase and relation set of ConceptNet. Extracts
from raw text likely contain unseen phrases, i.e.,
ones which do not exist in the CKB, and these
phrases are useful for expanding the node size of
the CKB; however, they reported that the qual-
ity of triples acquired from Wikipedia were sig-
nificantly lower than that of combination triples
from ConceptNet, because patterns extracted from
Wikipedia by using linguistic patterns are noisier
than those from ConceptNet. For acquiring new
knowledge with high quality, there are still prob-
lems with expanding new nodes and with the ac-
curacy of CKB completion.

In this study, we focus on problems of increas-
ing the node size of CKBs and increasing the con-
nectivity of CKBs. We introduce a new common-
sense knowledge base generation (CKB genera-
tion) task for generating new nodes. We also de-
vise a model that jointly learns the completion and
generation tasks. The generation task can generate
an arbitrary phrase t2 from an input query and rela-
tion pair ⟨t1, r⟩. The joint learning of the two tasks
improves the completion task and triples generated
by the generation model can be used as additional
training data for the completion model.

Our contributions are summarized as follows:

• We define a new task, called commonsense
knowledge base generation, and propose a
method for joint learning of knowledge base
completion and knowledge base generation.

• Experimental results demonstrate that our
method achieved state-of-the-art CKB com-
pletion results on both ConceptNet and
Japanese commonsense knowledge datasets.

• Experimental results show that our CKB gen-
eration can generate reasonable knowledge
and augmented data generated by the model
can improve CKB completion.

2 Task Definition

Our study focuses on two tasks, CKB completion
and CKB generation. We describe the settings of
these tasks below.

Problem 1 (CKB completion). Given a triple
⟨t1, r, t2⟩, CKB completion provides a confidence

score that distinguishes true triples from false
ones. t1 and t2 are arbitrary phrases. r is a re-
lation in a set R.

Problem 2 (CKB generation). Given a pair of
t1(t2) and r ∈ R, CKB generation generates
t2(t1), which has a relationship r with t1(t2). t1
and t2 are arbitrary phrases.

3 Proposed Method

The proposed method is illustrated in Figure 1.
Our method consists of two models. It performs
both the CKB completion task and CKB gener-
ation task. Two models share the parameters of
a phrase encoder, word embeddings, and relation
embeddings. We describe these models in detail in
Sections 3.1 and 3.2.

3.1 CKB Completion Model

The basic structure of our CKB completion model
is similar to that of Li et al. (2016b). The main dif-
ference between ours and theirs is that our method
learns the CKB completion and generation tasks
jointly. The completion model only considers the
binary classification task, and therefore, it can be
easily overfitted when there are not enough train-
ing data. By incorporating the generation model,
the shared layers are trained for both binary clas-
sification and phrase generation. This is expected
to be a good constraint to prevent overfitting.

Previous model Li et al. (2016b) defined a
CKB completion model that estimates a confi-
dence score of an arbitrary triple ⟨t1, r, t2⟩. They
used a simple neural network model to formulate
score(t1, r, t2) ∈ R.

score(t1, r, t2) = W2g(W1vin + b1) + b2 (1)

where vin = concat(v12, vr) ∈ Rdv+dr . v12 ∈
Rdv is a phrase representation of concatenating t1
and t2. vr ∈ Rdr is a relation embedding for r.
g is a nonlinear activation function. Note that we
use ReLU for g.

Our model Our CKB completion model is
based on Li et al.’s (2016b). However, the shared
structure and the formulation of the phrase repre-
sentations v12 are different. Li et al. (2016b) used
the average of the word embeddings (called DNN
AVG) and max pooling of LSTM (called DNN
LSTM) for calculating v12. On the other hand, we
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Figure 1: Architecture of proposed method. The CKB completion model estimates the score of ⟨t1 =
“play game”, r = “HasPrerequisite (HP)”, t2 = “know rule”⟩, and the CKB generation model generates t2
from ⟨t1, r⟩ and t1 from ⟨t2, r′⟩. r′:HP denotes the reverse direction of “HasPrerequisite”.

formulate the phrase embedding by using attention
pooling of LSTM and a bilinear function.

hi
j = BiLSTM(xi

j ,h
i
j−1)(i = 1, 2) (2)

vi =

J∑
j=1

exp(ej)∑J
k=1 exp(ek)

hi
j (3)

ek = u⊤tanh(Whi
k) (4)

v12 = Bilinear(v1, v2) (5)
vin = concat(v12, vr) (6)

where J is the word length of phrase ti, u is a
linear transformation vector for calculating the at-
tention vector, xij and hi

j are the j th word em-
bedding and hidden state of the LSTM for phrase
ti, and vr is the relation embedding. Note that we
calculated v12 for DNN AVG and DNN LSTM by
concatenating v1 and v2. We used batch normal-
ization (Ioffe and Szegedy, 2015) for vin before
passing through the next layer.

3.2 CKB Generation Model

We use an attentional encoder-decoder model to
generate phrase knowledge. Here, we expected
that the quality of the phrase representation would
be increased by sharing the BiLSTM and embed-
dings between the CKB completion and CKB gen-
eration models.

For constructing the encoder-decoder model,
we use relation information in addition to word
sequences. Let X = (x1, x2, ..., xJ) be the in-
put word sequences and Y = (y1, y2, ..., yT ) be
the output word sequences. The conditional gen-

eration probability of Y is as follows:

p(Y |X, θ) =

T∏
t=1

p(yt|y<t, ct, r) (7)

p(yt|y<t, ct, r) = g(yt−1, st, ct, r) (8)
st = LSTM(concat(vyt−1

, vr), st−1) (9)

where θ is a set of model parameters, st is a hidden
state of the decoder, and ct is a context vector of
input sequences that is weighted by the attention
probability and calculated as

hj = BiLSTM(xj ,hj−1) (10)

ct =

J∑
j=1

exp(et)∑J
k=1 exp(ek)

hj (11)

ek = v⊤tanh(Wast +Wehk) (12)

Here, the BiLSTM, which is the encoder of the
CKB generation model, is shared with that of the
CKB completion model described in equation (2).
As shown in equation (9), we use relation embed-
ding vr as additional input information. There
are several related studies on incorporating addi-
tional label information in a decoder (Li et al.,
2016a). Although the previous work used addi-
tional labels mainly for representing individuality
or style information, we use this idea to represent
relation information. We also use the technique
of tying word vectors and word classifiers (Inan
et al., 2016). The encoder BiLSTM is a single-
layer bidirectional LSTM, and the decoder LSTM
is a single-layer LSTM.

We use a triple ⟨t1, r, t2⟩ for training the
encoder-decoder model. We train our models to
be dual directional. In the forward direction, the
model predicts t2 with the input ⟨t1, r⟩, and in the
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backward direction, it predicts t1 with the input
⟨t2, r⟩. Here, since the relation r has a direction,
we introduce a new relation r′ for each r to train
dual-directional CKB generation in one model. In
the reverse direction, we replace the relation label
r with r′; namely, the output is t1, and the input is
⟨t2, r′⟩. Therefore, in our CKB generation model,
the vocabulary size of the relation is twice that of
the original relation set.

4 Training

Loss Function We use the following loss func-
tion for training: L(θ) = Lc + λLg, where θ is
the set of model parameters, Lc is the loss func-
tion of our CKB completion model, and Lg is the
loss function of our CKB generation model. We
use binary cross entropy for Lc.

Lc(τ, l) = − 1

N

N∑
n=1

{llogσ(score(τ)) (13)

+ (1− l)log(1− σ(score(τ)))},

where τ indicates the triple ⟨t1, r, t2⟩, l is a binary
variable that is 1 if the triple is a positive example
(true triple) and 0 if the triple is a negative exam-
ple (false triple), which we will explain in the next
subsection. σ is a sigmoid function. We formulate
the loss function for the encoder-decoder (CKB
generation) model by using the cross entropy:

Lg = − 1

N

N∑
n=1

T (n)∑
t=1

logp(y
(n)
t |y(n)<t , c

(n)
t , r(n)), (14)

where N is the sample size, T (n) is the number of
words in the output phrase, ct is the context vector
of the input sequence, and r is the relation label.

Negative sampling We generate negative exam-
ples automatically for training the CKB comple-
tion model by using random sampling. Specifi-
cally, we create three negative examples τneg1 =
⟨tneg1 , r, t2⟩, τneg2 = ⟨t1, rneg, t2⟩, and τneg3 =
⟨t1, r, tneg2 ⟩ for the positive triple τ by replacing
each component. Here, tneg1 and tneg2 are sampled
in mini-batches, while rneg is sampled in all rela-
tion sets.

Generating augmentation data using CKB gen-
eration model For training the CKB completion
and generation model, we need a large amount
of data that covers a wide range of commonsense
knowledge. Since our CKB generation model can

ConceptNet Ja-KB
train 100,000 192,714
validation1 1,200 13,778
validation2 1,200 -
test 2,400 13,778
size of relation 34 7
size of vocabulary 21,471 18,119
average word length 2.02 3.96

Table 1: Summary of data

make new triples, we use it to make the augmenta-
tion data. We use the original training data as seed
data and generate new triples on the basis of it.
More specifically, given a training triple ⟨t1, r, t2⟩,
we generate a new tgen2 with the input ⟨t1, r⟩ and
new tgen1 with the input ⟨t2, r′⟩. This idea is in-
spired by a technique for improving NMT mod-
els (Sennrich et al., 2016). To filter out unreliable
candidates, we use the CKB completion score as a
threshold. We refer to the generated augmentation
data as “auggen” in the experiment section.

5 Experimental Setup

5.1 Data

For the experiments with English, we used
the ConceptNet 100K data released by Li et
al. (2016b)1. The original ConceptNet is a large-
scale and multi-lingual CKB. However, the evalu-
ation set, which was created from a subset of the
whole ConceptNet, consists of data only in En-
glish and contains many short phrases including
single words. In order to evaluate the robustness of
CKB completion models in terms of the language
and long phrases, we created a new open-domain
Japanese commonsense knowledge dataset, Ja-
KB. The statistics of these data are listed in Ta-
ble 1. There are more relation labels in Concept-
Net than in Ja-KB, because we limited the rela-
tion types, which often contain nouns and verbs,
when creating the Ja-KB data. The relation set of
Ja-KB is Causes, MotivatedBy, Subevent, HasPre-
requisite, ObstructedBy, Antonym, and Synonym.
The average length of phrases in Ja-KB is longer
than in ConceptNet because of the data creation
process. The details of our dataset are described
below:

To create the Ja-KB data, we used crowdsourc-
ing like in Open Mind Common Sense (OMCS)
(Singh et al., 2002). Since data annotated by

1http://ttic.uchicago.edu/ kgimpel/commonsense.html
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crowd workers is usually noisy, we performed a
two-step data collection process to eliminate noisy
data. In the data creating step, a crowd worker cre-
ated triples ⟨t1, r, t2⟩ from the provided keywords.
The keywords consisted of combinations of nouns
and verbs that frequently appeared in Web texts.

Each crowd worker created an arbitrary phrase
t1 (or t2) by using the provided keywords and then
selected a relation r ∈ R and created a corre-
sponding phrase t2 (or t1). In the evaluation step,
three workers chose a suitable r ∈ R when they
were given ⟨t1, t2⟩, which were created by another
worker. Since a worker does not know which rela-
tion r the creator selected in the creation step, we
can measure the reliability of the created knowl-
edge from the overlap of the selected relations. We
used triples for which three or more workers se-
lected the same relation label r. In our preliminary
study, we found that the accuracy of CKB comple-
tion is lower when using low-reliability data.

We randomly selected the test and validation
data among the data for which all workers chose
the same label. The remaining data were used as
training data. For the training data, we added the
same number of triples as the evaluator selected
same label for considering data reliability. For ex-
ample, if three evaluators selected the same label
for a triple, we added the three triples. For the test
and validation data, we randomly sampled nega-
tive examples, as described in Section 4, whose
size was the same as the number of positive exam-
ples according to (Li et al., 2016b). The details are
described in the Supplementary Material.

5.2 Model Configurations

We set the dimensions of the hidden layer of the
shared BiLSTM to 200, the word and relation em-
beddings to 200, and the intermediate hidden layer
of the completion model to 1000. We set the batch
size to 100, dropout rate to 0.2, and weight de-
cay to 0.00001. For optimization, we used SGD
and set the initial learning rate to 1.0. We set
the reduction of the learning rate to 0.5 and ad-
justed the learning rate. We set λ of the loss func-
tion to 1.0. fastText (Bojanowski et al., 2016) and
Wikipedia text were used to train the initial word
embeddings. When generating the augmentation
data, we set the threshold score of CKB comple-
tion to 0.95 for the ConceptNet data and 0.8 for
the Ja-KB data. The additional data amounted to
about 200,000 triples.

5.3 Baseline Method

CKB completion As baselines, we used the
DNN AVG and DNN LSTM models (Li et al.,
2016b) that were described in Section 3.1. To as-
sess the effectiveness of joint learning, we com-
pared our CKB completion model only (proposed
w/o CKB generation) and the joint model (pro-
posed w/ CKB generation). Moreover, we eval-
uated the effectiveness of simply adding augmen-
tation data, as described in Section 4 to the train-
ing data (+auggen). We used the accuracy of bi-
nary classification as the evaluation measure. The
threshold was determined by using the validation1
data to maximize the accuracy of binary classifi-
cation for each method, as in (Li et al., 2016b).

CKB generation We used a simple attentional
encoder-decoder model that does not use relation
information as a baseline (base). We compared
the proposed model with and without joint learn-
ing (proposed and proposed w/o CKBC). We also
evaluated the effectiveness of simply adding aug-
mentation data as described in Section 4 to the
training data (+auggen).

6 Results

6.1 CKB completion

Does joint learning method improve the accu-
racy of CKB completion? Table 2 shows the
accuracy of the CKB completion model. The bot-
tom two lines show the best performances reported
in (Li et al., 2016b). The results indicate that our
method improved the accuracy of CKB comple-
tion compared with the previous method. Our
method achieved 0.945 accuracy on the valida-
tion2 data. This result is close to human accu-
racy (about 0.95). By comparing the results of
the single model (proposed w/o CKB generation)
and joint model (proposed w/ CKB generation),
we can see that the joint model improved the ac-
curacy for both ConceptNet and Ja-KB. This in-
dicates that the loss function of CKB generation
works as a good constraint for the CKB comple-
tion model.

Does data augmentation from CKB genera-
tion improve the accuracy of CKB completion?
Table 2 shows that augmentation data slightly im-
proved the accuracy of both the ConceptNet test
data and Ja-KB test data.
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ConceptNet Ja-KB
method valid2 test test
base (DNN AVG) 0.923 0.929 0.904
base (DNN LSTM) 0.927 0.936 0.901
proposed w/o CKBG 0.927 0.932 0.907
proposed w/ CKBG 0.945 0.947 0.910
proposed w/ CKBG (+auggen) 0.944 0.954 0.912
Li et al (Li et al., 2016b) 0.913 0.920 -
human (Li et al., 2016b) 0.950 - -

Table 2: Results of CKB completion. CKBG denotes
CKB generation.

ConceptNet Ja-KB
base(DNN AVG) 0.66 0.58
proposed 0.74 0.62
proposed (+auggen) 0.72 0.61

Table 3: Accuracy of binary classification for manually
annotated triples

Human evaluation for assessing the quality of
CKB completion Since negative examples were
randomly selected from the whole test set in the
experiments described above (Table 2), it was easy
to distinguish some of them as positive and neg-
ative examples. To evaluate the ability of CKB
completion in a more difficult setting, we elimi-
nated obviously-false triples and performed man-
ual annotation with the remaining triples. Then we
conducted a binary classification experiment with
these annotated triples. The details are described
below:

First, we prepared triple candidates by using the
ConceptNet and Ja-KB datasets. We replaced one
of the phrases of the existing triple with a simi-
lar phrase, where the similarity was calculated by
using the average of the word embeddings. We
made 100 replacement triples per triple. Next, we
scored the prepared triples by using our CKB com-
pletion model and randomly sampled 500 triples
whose CKB completion scores were larger than
a threshold. Then, ten annotators gave subjective
evaluation scores to all 500 triples. In this evalua-
tion, the annotators rated the degree of agreement
with each statement (triple) on 0-4 rating scale (0
= strongly disagree, 4 = strongly agree), where
the annotator interpreted each triple as a statement
by using the relation explanation. For example,
⟨dog,HasA, tail⟩ means “a dog has a tail”. Fi-
nally, we sampled the top 100 triples which had
small variance from the 500 annotated data and la-
beled those having average scores of 3 or over with
1 (positive examples; 57% and 55% of the top 100

triples of CN and Ja-KB, respectively) and those
having average scores lower than 3 with 0 (nega-
tive examples; 43% and 45%).

Table 3 indicates the binary classification accu-
racy for the 100 sampled triples. While the pro-
posed method improved accuracy, the accuracy of
+auggen was slightly lower than it. This indicates
that we have to select the augmentation data and
the thresholds more carefully to improve the accu-
racy of difficult examples. Moreover, the overall
score is lower than the result of Table 2. This in-
dicates there is room for improving the CKB com-
pletion accuracy for difficult examples. To distin-
guish more difficult examples and improve the ac-
curacy of knowledge acquisition, we have to de-
velop a better negative sampling strategy for train-
ing.

6.2 CKB generation

It is difficult to evaluate the quality of the CKB
generation model directly, since there are many
correct phrase candidates in addition to phrases
that appear in the test data. For that reason, we
evaluated our CKB generation model from differ-
ent viewpoints.

Can our CKB generation model generate rea-
sonable phrases? To see whether the top-n
phrases generated from each query in the test set
included the reference phrase that corresponds to
the query, we calculated the recall of the reference
phrases as follows:

recall = Nmatch/Nreference, (15)

where Nmatch is the number of generated phrases
that exactly match the reference phrases. Figure 2
shows the recall of the reference phrases for each
CKB generation model. The results shown in the
figure are averages over the test queries. Com-
pared with the baseline system, our CKB gener-
ation model achieved higher recalls on both Con-
ceptNet and Ja-KB. This indicates that considering
relation information worked well.

The effectiveness of using augmentation data is
also illustrated in Figure 2. For the Ja-KB data,
recall improved as a result of adding augmenta-
tion data. Since the phrase length of the node in
ConceptNet is shorter than in Ja-KB, it is easier to
cover reference phrases for ConceptNet.

Can our CKB generation model generate new
phrases? To evaluate the effectiveness of our
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Figure 2: Recall of reference phrase (left: ConceptNet,
right: Ja-KB)
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Figure 3: Average number of new phrases generated by
CKBG (blue lines) and average score of CKBC of each
triple (orange dashed lines). Left: ConceptNet, Right:
Ja-KB.

generation model at increasing the node size of
a CKB, we determined whether our model could
generate new phrases that are not included in the
existing CKB. Figure 3 shows that the average
number of such new phrases in the n-best outputs
of our model that were generated from a query
pair of a phrase and a relation in the test set of
ConceptNet and Ja-KB. We can see from the fig-
ure that our model could make triples that contain
new phrases by generating multiple phrases from a
query pair. The figure also plots the average CKB
completion score of each generated triple that con-
tains new phrases; the results confirm that the gen-
erated triples had a high CKB completion score.

Generated examples Table 4 lists examples of
phrases created by the generation model; score-g
indicates the logarithmic probability of the gen-
eration model, and score-c indicates the score of
the completion model. The upper row lists the
top-five results with the input ⟨t1, r⟩=(play game,
HasPrerequisite). The lower row lists the top-five
results with the input ⟨t1, r⟩=(play game, Used-
For). These results indicate that our CKB genera-
tion model can generate reasonable candidates in-
cluding new triples that reflected relation informa-
tion. More examples are shown in the Supplemen-
tary Material.

How high is the quality of knowledge acquired
with our CKB generation? We performed sub-

generated triple ⟨t1, r, t2⟩ score-g score-c
input ⟨t1, r⟩, output t2
play game , HP , learn rule * -3.57 0.985
play game , HP , have game ** -3.87 0.955
play game , HP , find someone to play ** -4.20 0.984
play game , HP , find friend * -4.23 0.978
play game , HP , skill -4.24 0.988
play game , UsedFor , entertainment -2.21 0.950
play game , UsedFor , fun -2.29 0.934
play game , UsedFor , have fun * -2.64 0.920
play game , UsedFor , enjoyment -3.13 0.976
play game , UsedFor , recreation * -3.38 0.971

Table 4: Examples of phrases created using CKB gen-
eration model. The relation label “HP” represents
HasPrerequisite. t2 is the generated phrase, and the in-
put is ⟨t1, r⟩. * represents that the generated triple is
new, and ** represents that the generated t2 is new.

jective evaluations of the quality of the triples
generated with our model. First, we generated
two types of query pairs: ones generated from
ConceptNet (CN gen) and ones generated from
Wikipedia (Wiki gen). In CN gen, we used all
phrase and relation pairs ⟨t, r⟩ appearing in the test
data. In Wiki gen, we used triples extracted by
using the POS tag sequence pattern for each rela-
tion according to Li et al. (2016b) and scored each
triple with CKB completion scores. Then, we used
⟨t, r⟩ pairs of 10000 triples that had higher scores
than a threshold as the input query pairs.

Next, we generated a phrase tgen from ⟨t, r⟩ and
made new triples ⟨t, r, tgen⟩ with our CKB gener-
ation model. We sorted the generated triples ac-
cording to the CKB completion score and selected
the top-100 new triples for CN gen and Wiki gen.
The annotators assigned a (semantic) quality score
and grammatical score to each triple. We used
a 0-4 degree agreement score (described in 6.1)
for evaluating triple quality and a 0-2 score (0.
Doesn’t make sense. 1. There are some grammat-
ical errors. 2. There are no grammatical errors.)
for the evaluation of grammatical quality. We re-
cruited ten annotators who were native speakers of
each language.

We show the results in Table 5. The quality
score of each triple of CN gen was quite high. The
quality score of Wiki gen was lower than that of
CN gen. Since Wikipedia has lots of specific in-
formation, it is difficult to extract an input query
that is useful for making commonsense knowl-
edge. This tendency is similar to the results re-
ported in Li et al. (Li et al., 2016b). The grammat-
ical score was high for both CN gen and Wiki gen.
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ConceptNet Ja-KB
method semantic grammar semantic grammar
CN gen 3.452 1.651 3.466 1.996
Wiki gen 2.685 1.749 2.415 1.849

Table 5: Subjective evaluation of CKB generation
model

This indicates that our CKB generation model can
generate phrases that have almost no grammatical
errors for high confidence triples for top ranked
triples.

7 Related Work

Knowledge base completion for entity-relation
triples There are many studies that embed graph
structures such as TransE, TransR, HolE, and
STransE (Bordes et al., 2013; Lin et al., 2015;
Nickel et al., 2016; Nguyen et al., 2016). Their
methods aim to learn low-dimensional representa-
tions for entities and relationships by using topo-
logical features. Although these methods are
widely used, they rely on the connectivity of the
existing KB and are only suitable for predicting
relationships between existing, well-connected en-
tities (Shi and Weninger, 2018). Therefore, it is
difficult to get good representations for new nodes
that have no connections with existing nodes.

Several studies have added text information to
the graph embeddings (Zhong et al., 2015; Wang
and Li, 2016; Xiao et al., 2017). These stud-
ies aim to incorporate richer information in the
graph embedding. They combine a graph em-
bedding model and a text embedding model into
one. The text information they use is the descrip-
tion or definition statement of each node. For
example, they would use the description “Barack
Obama is the 44th and current President of United
States” for the node “Barack Obama” and make
better quality embeddings. Although these meth-
ods effectively incorporate text information, they
assume that the descriptions of entities can be eas-
ily acquired. For example, they use the origi-
nally aligned descriptions (e.g., DBpedia, Free-
base) or descriptions acquired by using a simple
entity linking method. Moreover, the methods use
topological information, and they are not designed
for on-the-fly knowledge base completion.

Knowledge base completion for commonsense
triples In commonsense knowledge base com-
pletion, the nodes of the KB consist of arbitrary

phrases (word sequences), and there are a huge
number of unique nodes. In such case, the KB
graph becomes very sparse, and consequently,
there is almost no merit to considering the topo-
logical features of the KBs. Moreover, on-the-fly
KBC is needed because we have to handle new
nodes as input. It is thus more important to for-
mulate phrase and relation embeddings that can
robustly represent arbitrary phrases. There are a
few studies on CKB completion models. In par-
ticular, Li et al. (2016b) and Socher et al. (2013)
proposed a simple KBC model for CKB. The for-
mulations of CKB completion in the two studies
are the same, and we evaluated Li et al. (2016b)’s
method as a baseline.

Open Information Extraction Open Informa-
tion Extraction (OpenIE) aims to extract triple
knowledge from raw text. It finds triples that have
specific predefined relations by using lexical and
syntactic patterns (Mintz et al., 2009; Fader et al.,
2011). Several neural-network-based relation ex-
traction methods have been proposed (Lin et al.,
2016; Zhang et al., 2017). These models construct
classifiers to estimate the relation between two ar-
bitrary entities. OpenIE models are trained with
sentence-level annotation data or distant supervi-
sion, while our model is trained with triples in a
knowledge base. Since openIE can extract new
triples from raw text, it can be used to make aug-
mentation data for the CKB completion model.

Knowledge generation There are several stud-
ies on the knowledge generation task that use
neural network models. For example, Hu et
al. (2017) proposed an event prediction model that
uses a sequence-to-sequence model. Prakash et
al. (2016) and Li et al. (2017) proposed a para-
phrase generation model. These studies targeted
only specific relationships and did not explicitly
incorporate relations into the generation model.
Our CKB generation model explicitly incorpo-
rates relation information into the decoder and can
model multiple relationships in one model.

8 Conclusion

We proposed a new CKB generation task and joint
learning method of CKB completion and gener-
ation. Experimental results with two common-
sense datasets demonstrated that our model has
two strengths: it improves the coverage of the
knowledge bases. While conventional completion
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tasks are limited to verifying given triples, our
generative model can create new knowledge in-
cluding new phrases that are not in the knowledge
bases. Second, our completion model can improve
the verification accuracy. Two characteristics of
our completion model contribute to this improve-
ment: (i) the model shares the hidden layers, word
embedding, and relation embedding with the gen-
eration model to acquire good phrase and rela-
tion representations, and (ii) it can be trained with
the augmentation data created by the generation
model.

In this study, we did not utilize raw text infor-
mation such as from Wikipedia during training ex-
cept for pre-trained word embeddings. We would
like to extend our method so that it can incorpo-
rate raw text information. Moreover, we would
like to develop a method that effectively utilizes
this commonsense knowledge for other NLP tasks
that need commonsense reasoning.
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