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Abstract

Locations of social media users are impor-
tant to many applications such as rapid disas-
ter response, targeted advertisement, and news
recommendation. However, many users do
not share their exact geographical coordinates
due to reasons such as privacy concerns. The
lack of explicit location information has mo-
tivated a growing body of research in recent
years looking at different automatic ways of
determining the user’s primary location. In
this paper, we propose a unified user geoloca-
tion method which relies on a fusion of neural
networks. Our joint model incorporates dif-
ferent types of available information includ-
ing tweet text, user network, and metadata to
predict users’ locations. Moreover, we uti-
lize a bidirectional LSTM network augmented
with an attention mechanism to identify the
most location indicative words in textual con-
tent of tweets. The experiments demonstrate
that our approach achieves state-of-the-art per-
formance over two Twitter benchmark geolo-
cation datasets. We also conduct an abla-
tion study to evaluate the contribution of each
type of information in user geolocation perfor-
mance.

1 Introduction

Knowing physical locations involved in social me-
dia data helps us to understand what is happening
in real life, to bridge the online and offline worlds,
and to develop applications for supporting real-life
demands. For example, we can monitor public
health of residents (Cheng et al., 2010), recom-
mend local events (Yuan et al., 2013) or attractive
places (Noulas et al., 2012) to tourists, identify
locations of emergency (Ao et al., 2014) or even
disasters (Lingad et al., 2013), and summarize re-
gional topics (Rakesh et al., 2013). Even though
platforms such as Twitter allow users to geolocate
their posts to reveal their locations either manually

or with the help of GPS, it is reported that less than
1% of Twitter data has geo-coordinates provided
(Jurgens, 2013). Moreover, location information
on Twitter is far from being complete and accu-
rate. For instance, self-declared home information
in many user profiles is inaccurate or even invalid
(Hecht et al., 2011). The lack of explicit location
information in the majority of tweets has moti-
vated a growing body of research in recent years
looking at different automatic ways of determining
the user’s primary location (i.e.,user geolocation)
and/or - as a proxy for the former - the location
from which tweets have been posted (Ajao et al.,
2015).

Geolocation methods usually train a model on
a small set of users whose locations are known
(e.g., through GPS-based geotagging), and pre-
dict locations of other users using the resulting
model. These models broadly fall into three cat-
egories: text-based (Eisenstein et al., 2010; Wing
and Baldridge, 2011; Roller et al., 2012), network-
based (Jurgens, 2013; Compton et al., 2014; Jur-
gens et al., 2015), and hybrid methods that com-
bine text, user network, and metadata information
(Rahimi et al., 2015b,a; Jayasinghe et al., 2016;
Miura et al., 2016) with the aim of achieving state-
of-the-art performance.

In this paper, we present a neural network-based
system that we developed for user geolocation in
Twitter. Our model combines different sources
of information including tweet text, metadata, and
user network. We employ a neural network model
to generate a dense vector representation for each
field and then use the concatenation of these rep-
resentations as the feature for classification. Our
main contributions can be summarized as follows:

1. We propose a unified user geolocation
method that relies on a fusion of neural net-
works, incorporating different types of avail-
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able information: tweet message, users’ so-
cial relationships, and metadata fields embed-
ded in tweets and profiles.

2. For modeling the tweet text (and textual
metadata fields), we use bidirectional Long
Short-Term Memory (LSTM) networks aug-
mented with a context-aware attention mech-
anism (Yang et al., 2016), which helps to
identify the most location indicative words.

3. Through the empirical studies on two stan-
dard Twitter datasets, we demonstrate that the
proposed method outperforms other state-of-
the-art approaches in addressing the problem
of user geolocation.

4. We train an individual model for each infor-
mation field, and analyze the contribution of
each component in the geolocation process.

The rest of the paper is organized as follows.
We review the related work in Section 2. Utilized
data is described in Section 3. Section 4 explains
the proposed approach. The experimental results
are given in Section 5, and finally, we conclude
the paper and outline possible future work in Sec-
tion 6.

2 Related Work

2.1 Text-based Methods

Text-based methods utilize the geographical bias
of language use in social media for geolocation.
These methods have widely used probability dis-
tributions of words over locations. Maximum
likelihood estimation approaches (Cheng et al.,
2010, 2013) and language modeling approaches
minimizing KL-divergence (Roller et al., 2012)
have succeeded in predicting user locations using
word distributions. Topic modeling approaches
to extract latent topics with geographical regions
(Eisenstein et al., 2010; Hong et al., 2012; Ahmed
et al., 2013; Yuan et al., 2013) have also been ex-
plored considering word distributions.

Supervised learning methods with word fea-
tures are also popular in text-based geoinfer-
ence. Multinomial Naı̈ve Bayes (Han et al.,
2012, 2014; Wing and Baldridge, 2011), logis-
tic regression (Wing and Baldridge, 2014; Han
et al., 2014), hierarchical logistic regression (Wing
and Baldridge, 2014), and multi-layer neural net-
work with stacked denoising autoencoder (Liu and
Inkpen, 2015) have realized geolocation predic-

tion from text. A semi-supervised learning ap-
proach has been proposed by Cha et al. (2015)
using a sparse-coding and dictionary learning.
Hulden et al. (2015) have used a kernel-based
method to smooth linguistic features over very
small grid sizes and consequently alleviate data
sparseness. Chi et al. (2016) have employed
Multinomial Naı̈ve Bayes and focused on the use
of textual features (i.e., location indicative words,
GeoNames gazetteers, user mentions, and hash-
tags) for geolocation inference. More recently,
Rahimi et al. (2017b) have proposed a neural
network-based geolocation approach. They used
the parameters of the hidden layer of the neural
network as word and phrase embeddings, and per-
formed a nearest neighbor search on a sample of
city names and dialect terms.

While having good results, text-based ap-
proaches are often limited to those users who gen-
erate text that contains geographic references (Ju-
rgens, 2013).

2.2 Network-based Methods
Network-based methods rely on the geospatial ho-
mophily of interactions (of several kinds) between
users. An early work by Davis Jr et al. (2011)
proposed an approach in which the location of a
given user is inferred by simply taking the most-
frequently seen location among its social network.
Jurgens (2013) have extended the idea of loca-
tion inference as label propagation over some form
of friendship graph by interpreting location labels
spatially. Locations are then inferred using an iter-
ative, multi-pass procedure. This method has been
further extended by Compton et al. (2014) to take
into account edge weights in the social network,
and to limit the propagation of noisy locations.
They weigh locations as a function of how many
times users interacted there, hence favoring loca-
tions of friends with evidence of a close relation-
ship. Jurgens et al. (2015) have released a frame-
work for nine network-based geolocation methods
targeting Twitter.

The main limitation of network-based models
is that they completely fail to geolocate users who
are not connected to geolocated components of the
graph (i.e., isolated users).

2.3 Hybrid Methods
Several attempts have been made to combine dif-
ferent sources of information for geolocating so-
cial media users. Li et al. (2012) have proposed a
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geolocation method by integrating both friendship
and content information in a probabilistic model.

Rahimi et al. (2015b) showed that geolocation
predictions from text can effectively be used as
a back-off for disconnected users in a network-
based approach. In another work by Rahimi et al.
(2015a), a hybrid approach has been proposed by
propagating information on a graph built from user
mentions in Twitter messages, together with don-
gle nodes corresponding to the results of a text-
based geolocation method. Ebrahimi et al. (2017,
2018b) have presented a hybrid approach by in-
corporating both text and network information,
and shown that the filtering of highly mentioned
users in the social graph can improve the geolo-
cation performance. Rahimi et al. (2017b) have
proposed a text geoloation method based on neu-
ral network and incorporated it into their network-
based approach (Rahimi et al., 2015a). Wang et al.
(2017) have introduced a collective geographical
embedding algorithm to embed multiple informa-
tion sources into a low dimensional space, such
that the distance in the embedding space reflects
the physical distance in the real world.

Metadata such as location fields have also been
used as effective clues to predict the user’s location
(Hecht et al., 2011). Different geoinference ap-
proaches have been proposed to consider text and
metadata information simultaneously, such as dy-
namically weighted ensemble method (Mahmud
et al., 2012), and stacking approach (Han et al.,
2014). Jayasinghe et al. (2016) have proposed
a cascade ensemble approach by combining text-
based, metadata-based, and network-based ge-
olocation methods. Additionally, their approach
makes use of several dedicated services, such
as GeoNames gazetteers, time zone to GeoName
mappings, IP country resolver and customized
scrapers for social media websites.

Miura et al. (2016) have trained a neural net-
work utilizing the fastText n-gram model (Joulin
et al., 2016) on tweet text, user location, user de-
scription, and user timezone. They have utilized
several mapping services using external resources,
such as GeoNames and time zone boundaries for
feature preprocessing. This model has been fur-
ther extended by Miura et al. (2017) to also con-
sider user network information for geolocation.

Thomas and Hennig (2017) have proposed a ge-
olocation method that relies on the combination
of individual neural networks trained on text and

metadata fields. Ebrahimi et al. (2018a) have pro-
posed a word embedding-based approach to pre-
dict the geographic proximity of connected users
in the social graph based on their linguistic simi-
larities. The calculated similarity scores have been
used for weighting edges between users in the
graph. Tweet content and metadata is also com-
bined with an ensemble learning method to geolo-
cate isolated users in the graph.

3 Data

We have used two benchmark Twitter geolocation
datasets in our experiments:

• TWITTERUS is a dataset compiled by
(Roller et al., 2012), which contains 38M
tweets from 450K users in the United States.
Out of 450K users, 10K are reserved for the
development set and another 10K for the test
set. The ground truth location of each user is
set to its first geotag in the dataset. To make
city prediction possible in this dataset, we
additionally assigned city centers to ground
truth geotags using the city category of Han
et al. (2012).

• WNUT is a user-level dataset from the ge-
olocation prediction shared task of WNUT
2016 (Han et al., 2016). The dataset covers
13M tweets from 3362 cities worldwide, and
consists of 1M training users, 10K develop-
ment users, and 10K test users. The ground
truth location of a user is decided by majority
voting of the closest city center.

Note that the metadata of a tweet includes not
only the tweet message (text) but also a variety
of information such as tweet publication time, and
user account data such as location and timezone.
The organizers have provided full metadata for the
test sets but only the tweet IDs for training and
development sets. We collect metadata for train-
ing/development tweets using the Twitter API1.

4 The Proposed Approach

Figure 1 illustrates an overview of the proposed
model for user geolocation. We make use of
the following sources of information to train our
model: 1) Tweet text; 2) User network; and 3)

1We were able to obtain approximately 71-75% of the
full datasets. The remaining tweets are no longer available,
mainly because users deleted these messages and/or accessi-
bility changes in Twitter.
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Metadata including user-declared location, user
description, user name, timezone, user language,
tweet creation time, user UTC offset, links (URL
domains), and application source.

Each field is processed by a separate sub-
network to generate a feature vector representation
Rj . These feature vectors are then concatenated
to build a final user representation R̂ which is fed
into a linear classification layer:

R̂ = R1 ‖ ... ‖ RN (1)

r = softmax(WrR̂+ br) (2)

where N is the number of features (11 in total),
r ∈ RR is the hidden representation at the penul-
timate layer. Wr is a weight matrix and br is a
bias vector. r is fully connected to the output layer
and activated by softmax to generate a probabil-
ity distribution over the classes. We employ the
cross-entropy loss as the objective function. Let
M be the number of examples (i.e., users) and c
be the number of classes (i.e., regions), then the
cross-entropy loss is defined by:

L = −
M∑
i=1

c∑
j=1

yi
j log(ỹji ) (3)

where yi, i = 1, ...,M is the ground-truth vec-
tor, ỹi is the predicted probability vector, and ỹji is
the probability that user i resides in region j. We
minimize the objective function through Stochas-
tic Gradient Descent (SGD) over shuffled mini-
batches with Adam (Kingma and Ba, 2014).

We design several sub-networks to provide vec-
torized representation for each raw field. For
processing the tweet text, we utilize word em-
beddings (Mikolov et al., 2013) and bidirectional
Long Short-Term Memory (LSTM) unit (Hochre-
iter and Schmidhuber, 1997) augmented with a
context-aware attention mechanism (Yang et al.,
2016) (Section 4.1). We construct a @-mention
graph as a representation of users’ interactions,
and utilize this graph to extract the user network.
We then use an embedding layer with attention
mechanism to create the final user network rep-
resentation (Section 4.2).

We divide metadata fields into two classes: tex-
tual, and categorical. For representing textual
metadata fields (i.e., location, description, user
name, and timezone), we use word embeddings
and bidirectional LSTM networks with attention

mechanism. We treat other metadata fields (lan-
guage, tweet time, UTC offset, links, and source)
as categorical features, and convert them to one-
hot encodings which are then fed forward to a
dense layer (Section 4.3). In the following sub-
sections, we describe details of each component.

4.1 Text Component
Figure 2(a) demonstrates the architecture of text
sub-network. It takes the sequence of words in
the tweet T = {w1, w2, ..., wn} as input. An
embedding layer is used to project the words to
a low-dimensional vector space RE , where E is
the size of the embedding layer. We initialize
the weights of the embedding layer using our pre-
trained word embeddings (Section 5.1). The em-
beddings of tweet words are then forwarded to
an LSTM layer. An LSTM takes as input the
words of a tweet and produces the word annota-
tions H = (h1, h2, ..., hn), where hi is the hidden
state of the LSTM at time-step i, summarizing all
the information of the sentence up to wi. We use
bidirectional LSTM (BiLSTM) in order to get an-
notations for each word that summarize the infor-
mation from both directions of the message. A
bidirectional LSTM consists of a forward LSTM,−→
f , that reads the sentence from w1 to wT , and a
backward LSTM,

←−
f , that reads the sentence from

wT to w1. We obtain the final annotation for each
word wi, by concatenating the annotations from
both directions:

hi =
−→
hi ‖

←−
hi , hi ∈ R2L (4)

where ‖ denotes the concatenation operation and
L the size of each LSTM. In order to amplify
the contribution of important words in the final
representation, we use a context-aware attention
mechanism (Yang et al., 2016), that aggregates all
the intermediate hidden states using their relative
importance. An attention mechanism assigns a
weight ai to each word annotation, which reflects
its importance. We compute the representation of
the tweet text, Rtext, as the weighted sum of all the
word annotations using the attention weights. This
attention mechanism introduces a context vector
uh that helps to identify the informative words and
it is randomly initialized and jointly learned with
the rest of the attention layer weights. Formally,
Rtext is defined as:

Rtext =

|T |∑
i=1

aihi, Rtext ∈ R2L (5)
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Figure 1: Overview of the proposed approach

ai =
exp(ei

>uh)∑|T |
t=1 exp(et

>uh)
,

|T |∑
i=1

ai = 1 (6)

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (7)

where Wh, bh and uh are the layer’s weights.
We use batch normalization (Ioffe and Szegedy,

2015) for normalizing inputs in order to reduce
internal covariate shift. The risk of overfitting
by co-adapting units is reduced by implementing
dropout (Srivastava et al., 2014) between individ-
ual neural network layers.

4.2 User Network Component

As a representation of users’ social relationships,
we construct an undirected graph from interac-
tions among Twitter users based on @-mentions in
their tweets (Rahimi et al., 2015b). In this graph,
nodes are all users in the dataset (train and test),
as well as other external users mentioned in their
tweets, and undirected edges are created between
two users if either user mentioned the other. This
unidirectional setting results in large numbers of
edges. To make the process more tractable, we
remove all nodes corresponding to external users
with degree less than 3 (i.e., external users who
have been mentioned by less than 3 different users
in a training set).

Figure 2(b) illustrates an overview of the user
network component. After filtering the graph, we
consider the adjacent nodes (i.e., immediate linked
users) of each training user as its network. The
user network N = {u1, u2, ..., un} is given as in-
put to an embedding layer. Embedding of user
network EN = (e1, e2, ..., en) is then fed to an
attention layer to compute the final representation
of user network, Rnetwork:

Rnetwork =

T∑
i=1

aiei, Rnetwork ∈ R2L (8)

where ai is the weight assigned to embedding ei
by the attention mechanism (Equation 6).

4.3 Metadata Component
According to (Guo and Berkhahn, 2016), the em-
beddings of categorical variables can reduce the
network size while capturing the intrinsic proper-
ties of the categorical variables. Hence, we con-
vert metadata fields with a finite set of elements
(UTC offset, links, user language, tweet publi-
cation time, and application source) to one-hot
encodings, which are then forwarded to a dense
layer with Rectified Linear Units (ReLU) activa-
tion function.

The user UTC offset is an integer in seconds
representation (e.g.,−18000), and the tweet publi-
cation time is given in UTC time , e.g., Fri Mar 02
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Figure 2: Architectures of the proposed sub-networks for (a) Tweet text, and (b) User network . ⊕ shows
element-wise addition.

12:19:40 +0000 2012. We convert user UTC offset
into hours representation (e.g., −18000/3600 =
−5). For tweet publication time, we use only time
of the day information (e.g., 12:19) and split it into
multiple bins. Specifically, we interpret every 10
minutes as a bin (144 bins in total). The intuition
is that tweets originated from a particular location
(e.g., Germany) favor certain bins, and this prefer-
ence of bins should be different to tweets from a
distant location (e.g., Japan) (Lau et al., 2017).

For metadata fields containing texts (i.e., user
description, user location, user name, and time-
zone), we use an embedding layer and conse-
quently forward the results to an LSTM layer. The
attention mechanism is also employed to provide
the final representation of textual metadata fields.
Again batch normalization and dropout is applied
between individual layers to avoid overfitting.

5 Experimental Results

5.1 Experiment Settings
In the text sub-network, words are input to the
model as n-dimensional word embeddings. We
pre-trained word embeddings using word2vec
(Mikolov et al., 2013) over tweet text of the full
training data. The model was trained using the
Skip-gram architecture and negative sampling (k
= 5) for five iterations, with a context window

of 5 and subsampling factor of 0.001. It is note-
worthy that to be part of the vocabulary, words
should occur at least five times in the corpus. We
chose word embeddings of size 200/300 for TWIT-
TERUS/WNUT datasets because smaller embed-
dings experimentally showed to capture not as
much detail and resulted in a lower accuracy.
Larger word embeddings, on the other hand, made
the model too complex to train. In the preprocess-
ing step, we used replacement tokens for URLs,
mentions and numbers. However, we did not re-
place hashtags as doing so experimentally demon-
strated to decrease the accuracy.

The layers and the embeddings in our sub-
networks have parameters like embedding dimen-
sion, LSTM unit size, and attention context vector
size. We chose optimal values for these parame-
ters in terms of accuracy with a grid search using
the development sets of TwitterUS and WNUT.
The selected parameters values are reported in Ta-
ble 1. It should be noted that the main reason
for selecting smaller values for the TWITTERUS
dataset is its larger size (in terms of tweet num-
ber) comparing to the WNUT dataset. We set the
hyper-parameters of our final model as follows:
batch size = 256, learning rate = 0.001, epochs =
5. The dropout rate between layers is set to 0.2.
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Model Embedding size LSTM unit size Attention vector size

TwitterUS WNUT TwitterUS WNUT TwitterUS WNUT

Tweet text 200 300 100 200 200 400

User network 200 400 100 200 200 400

Location 100 200 100 200 200 400

Description 100 200 100 200 200 400

User name 100 200 100 200 200 400

Timezone 100 200 100 200 200 400

Table 1: Parameter settings of the proposed models.

5.2 Evaluation Metrics
We evaluate our approach in the following three
commonly used metrics for user geolocation:

• Acc@161: The percentage of predicted loca-
tions which are within a 161km (100 mile)
radius of the actual location (Cheng et al.,
2010). This metric is a proxy for accuracy
within a metro area.

• Mean error: The mean value of error
distances in predicted locations (Eisenstein
et al., 2010).

• Median error: The median value of error dis-
tances in predictions (Eisenstein et al., 2010).

Note that higher numbers are better for Acc@161
but lower numbers are better for mean and median
errors.

5.3 Results
Table 2 presents the performance of user geolo-
cation methods over TWITTERUS and WNUT2

datasets.
The results show that our proposed method

achieves the best performance in terms of all eval-
uation metrics. The main reason is the effective
representation of text, metadata, and network in-
formation, and unifying them through a fusion of
neural networks.

5.4 Ablation Study
To evaluate the contribution of each component in
indicating the user’s location, we train an individ-
ual neural network model for each field. To this
end, we feed the final representation of each sub-
network to a fully-connected dense layer, activated

2For WNUT, we have reported the results of participating
teams in user-level location prediction task.

by softmax function. We use stochastic gradi-
ent descent over shuffled mini-batches with Adam
(Kingma and Ba, 2014) and cross-entropy loss as
objective function for classification. The parame-
ters of all models are set as follows: batch size =
256, epochs = 5, dropout=0.2, and learning rate =
0.001. Table 3 shows the performance breakdown
for each model over the WNUT dataset.

The results conclude that user-declared loca-
tion in tweet metadata is the most informative
field for geolocating users, and model trained on
this source achieves the best single source perfor-
mance. This model can correctly geolocate 44.9%
of users with a median error of 41.0km.

Using only tweet text, our model can predict
the correct location for 34.9% of all users with a
median error of 169.3km. It is noteworthy that
this model outperforms the text-based approach
IBM.1 (Chi et al., 2016) in terms of all metrics
by a large margin.

User network model can correctly geolocate
only 18.4% of users. However, our experiments
show that excluding user network information de-
clines the performance of the final model in terms
of accuracy by 5.1%. Models using other meta-
data fields provide an accuracy between 2.7% to
10.6%, with description field being the most in-
formative one. Tweet publication time, on the
other hand, has the minimum accuracy in predict-
ing user’s location. However, mining the tempo-
ral patterns of users’ posting habits can potentially
provide useful information for geolocation infer-
ence.

We have also reported the results of our model
when it takes only the metadata fields as inputs.
The metadata-based model can correctly geolocate
46.1% of the users with a mean error of 1318.3km,
and a median error of 37.9km. It shows the ef-
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TWITTERUS WNUT

Category Acc@161 Mean Median Accuracy Acc@161 Mean Median

WB-UNIFORM (Wing and Baldridge, 2014) TB 49 703 170 - - - -

WB-KDTREE (Wing and Baldridge, 2014) TB 48 686 191 - - - -

MDN-SHARED (Rahimi et al., 2017a) TB 42 655 216 - - - -

MLP+KDTREE (Rahimi et al., 2017b) TB 54 562 121 - - - -

MLP+K-MEAN (Rahimi et al., 2017b) TB 55 581 91 - - - -

LP-RAHIMI (Rahimi et al., 2015b) NB 37 747 431 - - - -

LP-NA (Rahimi et al., 2016) NB 50 610 144 - - -

MADCELB (Rahimi et al., 2015a) NB 54 709 117 - - - -

MADCELW (Rahimi et al., 2015a) NB 54 705 116 - - - -

LP-LR (Rahimi et al., 2015b) Hyb 50 620 157 - - - -

MADCELW-LR (Rahimi et al., 2015a) Hyb 60 529 78 - - - -

MADCELW-MLP (Rahimi et al., 2017b) Hyb 61 515 77 - - - -

GEOCEL-BK (Ebrahimi et al., 2017) Hyb 66 438 56 - - - -

DREXEL.2 ? - - - 7.9 - 6161.4 4000.2

DREXEL.1 ? - - - 8.0 - 6053.3 5714.9

AIST ? - - - 9.8 - 4002.4 1711.1

IBM.1 (Chi et al., 2016) TB - - - 22.5 - 2860.2 630.2

DREXEL.3 ? - - - 35.2 - 3124.4 262.7

FUJIXEROX.3 (Miura et al., 2016) Hyb - - - 45.1 - 1084.3 28.2

FUJIXEROX.1 (Miura et al., 2016) Hyb - - - 46.4 - 963.8 21.0

FUJIXEROX.2 (Miura et al., 2016) Hyb - - - 47.6 - 1122 16.1

CSIRO.3 (Jayasinghe et al., 2016) Hyb - - - 50.1 - 2242.4 30.6

CSIRO.2 (Jayasinghe et al., 2016) Hyb - - - 52.0 - 2071.5 23.1

CSIRO.1 (Jayasinghe et al., 2016) Hyb - - - 52.6 - 1929 21.7

THOMAS (Thomas and Hennig, 2017) Hyb - - - 53.0 - 839 14.9

PROPOSED APPROACH Hyb 70.8 313.2 40.1 56.7 72.3 731.5 0

Table 2: Performance of Text-based (TB), Network-based (NB), and Hybrid (Hyb) geolocation methods
over TWITTERUS and WNUT datasets (”-” signifies that no results were published for the given dataset,
and ”?” signifies that the participant team has not provided descriptions of the proposed system). We have
also reported the Accuracy of our proposed approach on WNUT dataset to make our results comparable
with the existing methods.

fectiveness of utilized metadata fields for user ge-
olocation. Meanwhile, a deeper analysis of meta-
data fields can further improve the performance
of user location prediction. As an example, cus-
tomized scrapers for social media websites like
FourSquare, Swarm, Path, Facebook, and Insta-
gram can be employed as described by (Jayas-
inghe et al., 2016) to increase the geolocation ac-
curacy.

5.5 Error Analysis

As reported in Table 2, our proposed approach
achieves quite low median errors over the TWIT-
TERUS and WNUT datasets (i.e., 40.1km and

0km, respectively). However, there are some cases
with large error distances, which make the mean
errors much larger than median errors. Our analy-
sis shows that some notable error distances are re-
lated to the following cases: (1) Users from remote
areas for which less supervisions are available;
(2) Users from small cities/states are misclassi-
fied to be in the neighboring larger cities/states; (3)
Users from some neighboring cities/states are also
misclassified between the two cities/states, which
might be the result of business and entertainment
connections between them.

Our ablation study demonstrates that the loca-
tion field highly contributes to the geolocation per-
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Model Accuracy Mean Median

Tweet text 34.9 1674.1 169.3

User network 18.4 2551.7 789.8

Metadata fields 46.1 1318.3 37.9

- Location 44.9 3515.0 41.0

- Description 10.6 5540.7 3005.4

- Timezone 6.4 5203.6 5181.0

- User name 6.1 5836.1 3966.7

- UTC offset 5.3 6305.9 3727.8

- User language 4.6 9077.1 8585.4

- Links 4.5 6543.2 6691.6

- Source application 4.4 6950.3 6937.7

- Tweet time 2.7 11138.3 10165.5

Table 3: Performance breakdown for each compo-
nent over WNUT dataset

formance. However, some prediction errors arise
when location fields are incorrect. We found two
main cases that result in incorrect location fields:
(1) Users who move to a new place (i.e., house) but
do not update their locations; (2) Users who visit a
new place (e.g., as tourists) and temporarily update
their locations. Our proposed model cannot handle
these types of errors, since it only supports single
location field. A future direction is to extend the
current architecture to track location changes and
deal with temporal states such as traveling.

Previous network-based methods (Jurgens,
2013; Compton et al., 2014) have demonstrated
the effectiveness of users’ social relationships for
geolocation inference. However, our ablation
study shows relatively low accuracy for the user
network component. One main reason is that our
model is less sophisticated (but more scalable)
comparing to the mentioned network-based meth-
ods, since it only considers the immediate con-
nected nodes as the network for each user. As
a future work of this study, node/graph embed-
dings such as DeepWalk (Perozzi et al., 2014) can
be employed to provide better representation of
users’ social relationships, and consequently im-
prove the accuracy of network component.

6 Conclusion and Future Work

In this paper, we have proposed a unified user ge-
olocation method which relies on a fusion of neu-
ral networks. Our joint model effectively utilizes
different sources of information including tweet

message, users’ social relationships, and metadata
fields embedded in tweets and profiles. In par-
ticular, we employed a neural network model to
generate a dense vector representation for each in-
formation field and then used the concatenation
of these representations as the feature for classi-
fication. For modeling tweet message and textual
metadata fields, we utilized a bidirectional LSTM
network augmented with an attention mechanism
to identify the most location indicative words.

We have conducted comprehensive experiments
on two standard Twitter geolocation datasets, and
demonstrated that our method achieves the best
performance in terms of all three evaluation met-
rics. In an ablation study, we have also trained
individual models to investigate the usefulness of
each information field in predicting the locations
of Twitter users.

As a future work, it would be intriguing to uti-
lize customized scrapers for social media websites
(Jayasinghe et al., 2016) to further improve the
performance of our geolocation model. It is note-
worthy that the proposed model could be modified
to infer other user demographic attributes such as
gender and age.

Tweet publication time include both date and
time, however, only time information is exploited
in this work to infer users’ geolocations. A fu-
ture direction is to leverage tweeting behavior
over dates for user geolocation. The intuition is
that local residents would occasionally post tweets
about their home city in a long-term manner, while
tourists tend to tweet a lot while visiting the city.
Hence, their different tweeting patterns can be
easily revealed using date information from their
tweet timestamps.
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