
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 253–264,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Universal Joint Morph-Syntactic Processing:
The Open University of Israel’s Submission to

The CoNLL 2017 Shared Task

Amir More
Open University of Israel
habeanf@gmail.com

Reut Tsarfaty
Open University of Israel
reutts@openu.ac.il

Abstract

We present the Open University’s submis-
sion (ID OpenU-NLP-Lab) to the CoNLL
2017 UD Shared Task on multilingual
parsing from raw text to Universal De-
pendencies. The core of our system is
a joint morphological disambiguator and
syntactic parser which accepts morpho-
logically analyzed surface tokens as in-
put and returns morphologically disam-
biguated dependency trees as output. Our
parser requires a lattice as input, so we
generate morphological analyses of sur-
face tokens using a data-driven morpho-
logical analyzer that derives its lexicon
from the UD training corpora, and we
rely on UDPipe for sentence segmenta-
tion and surface-level tokenization. We
report our official macro-average LAS is
56.56. Although our model is not as per-
formant as many others, it does not make
use of neural networks, therefore we do
not rely on word embeddings or any other
data source other than the corpora them-
selves. In addition, we show the utility of
a lexicon-backed morphological analyzer
for the MRL Modern Hebrew. We use our
results on Modern Hebrew to argue that
the UD community should define a UD-
compatible standard for access to lexical
resources, which we argue is crucial for
MRLs and low resource languages in par-
ticular.

1 Introduction

The Universal Dependencies (UD) project (Nivre
et al., 2016) sets itself apart from previ-
ous multilingual parsing initiatives such as the
CoNLL (Buchholz and Marsi, 2006; Nivre et al.,

2007) and SPMRL (Seddah et al., 2013, 2014)
shared tasks with two key principles: (i) the POS
tags, morphological properties, and dependency
labels are unified, with enforceable annotation
guidelines and (ii) corpora text is provided via a
two-level representation of the input stream. With
the latter two-level principle in place, corpora can
be provided with raw text, syntactic words as the
nodes of syntactic trees, and the relationship be-
tween them, in a harmonized scheme. This repre-
sentation is crucial to the participation of Morpho-
logically Rich Languages (MRLs) in end-to-end
parsing tasks.

The availability of a wide range of language cor-
pora in this manner provides a unique opportunity
for the advancement of (universal) joint morpho-
syntactic processing, introduced by Tsarfaty and
Goldberg (2008) in a generative setting and ad-
vocated for in a variety of settings (Bohnet and
Nivre, 2012; Andor et al., 2016; Bohnet et al.,
2013; Li et al., 2011; Bohnet and Nivre, 2012;
Li et al., 2014; Zhang et al., 2014). To this
end, our submission is a joint morpho-syntactic
processor in a transition-based framework. We
present our submission (OpenU-NLP-Lab), with
models trained only on the train sets (Nivre
et al., 2017b), parsing all 81 test treebanks of UD
v2 corpora (Nivre et al., 2017a) participating in
the CoNLL 2017 UD Shared Task (Zeman et al.,
2017).

We use the results of our processor on an MRL
to argue that one last piece of the puzzle is miss-
ing: a universal scheme for access to lexical re-
sources. We discuss our results for a lexicon-
backed approach, compared to a data-driven one.
The goal of our submission is to compel the UD
community to recognize the need for lexical re-
sources in the context of joint morpho-syntactic
processing, and push forward the discussion on
a UD annotation-compliant standard for access to

253

lexical resources that could benefit MRLs and low
resource languages.

In section 2 we describe our framework and for-
mal settings (2.1), first instantiated individually as
a morphological disambiguator (2.2) and depen-
dency parser (2.2), followed by how we unify the
two into a joint processor (2.4).

Since the input stream of the processor is a
morphological analysis of the tokenized raw text,
we describe a universal, data-driven morphologi-
cal analyzer, and a lexicon-based MA for the MRL
Modern Hebrew (2.5).

In section 3, we detail the implementation of our
parser (3.1) and specific technical issues we en-
countered with the official run for the shared task
(3.2). We then present our results on all languages
in section 4, and present a comparison to process-
ing Modern Hebrew with a lexicon-based morpho-
logical analyzer. We discuss directions for future
work in section 5, conclude with a summary of our
submission in section 6, and urge the UD commu-
nity to put forth a standard for lexical resource ac-
cess.

2 Our Framework

We use the transition-based framework of Zhang
and Clark (2011), originally designed for syntactic
processing using the generalized perceptron and
beam search, which we briefly cover in subsec-
tion 2.1.

We first describe the standalone transition sys-
tem and model for morphological disambigua-
tion of (More and Tsarfaty, 2016) (2.2), and Arc
Standard transition system together with a rich-
linguistic feature model (2.3). We then present
our approach to joint morpho-syntactic processing
which unifies both transition systems (2.4).

We present our baseline approach to data-driven
morphological analysis, followed by our Modern
Hebrew lexical resource (2.5).

2.1 Formal Settings

Formally, a transition system is a quadruple
(C, T, cs, Ct) where C is a set of configurations,
T a set of transitions between the elements of C,
cs an initialization function, and Ct ⊂ C a set
of terminal configurations. A transition sequence
y = tn(tn−1(...t1(cs(x)))) for an input x starts
with the configuration cs(x). After n transitions
of corresponding configurations (ti, ci) ∈ T × C,
the result is a terminal configuration cn ∈ Ct.

In order to determine which transition t ∈ T
to apply given a configuration c ∈ C, we need to
define a model that learns to predict the transition
that would be chosen by an oracle function O :
C → T , which has access to the correct (gold)
output.

To define a model, we employ an objective
function F : X → R, which ranks outputs
via a scoring of the possible transition sequences
(GEN(x)) from which outputs are derived, such
that the most plausible sequence of transitions is
the one that most closely resembles one generated
by an oracle:

F (x) = argmaxy∈GEN(x)Score(y)

How we define Score is therefore crucial to the
performance of the model, since it must capture
the relation of a generated sequence (and its de-
rived output) to that of an oracle’s output. To com-
pute Score(y), y is mapped to a global feature
vector Φ(y) = {φi(y)} where each feature is a
count of occurrences defined by feature functions.
Given this vector, Score(y) is calculated as the dot
product of Φ(y) and a weights vector ~ω:

Score(y) = Φ(y) · ~ω =
∑
cj∈y

∑
i

ωiφi(cj)

Following Zhang and Clark (2011), we learn the
weights vector ~ω via the generalized perceptron,
using the early-update averaged variant of Collins
and Roark (2004).

For decoding, the framework uses the beam
search algorithm, which helps mitigate otherwise
irrecoverable errors in the transition sequence.

2.2 Morphological Disambiguation
The morphological disambiguator (MD) compo-
nent of our parser is based on More and Tsarfaty
(2016), modified only to accommodate UD POS
tags and morphological features. We provide a
brief exposition of the transition system, and re-
fer the reader to the original paper for an in-depth
explanation (More and Tsarfaty, 2016).

The input to the transition-based MD is a lat-
tice L of an input stream of k surface tokens
x = x1, ..., xk, such that Li = MA(xi), is gener-
ated by a morphological analysis component that
analyzes each token separately and returns a lat-
tice for the whole input sentence x. We rely on the
UDPipe baseline models (Straka et al., 2016) for
sentence segmentation and tokenization.

254

Each lattice-arc in L corresponds to a potential
node in the intended dependency tree. A lattice-
arc has a morpho-syntactic representation (MSR)
defined as m = (b, e, f, t, g), with b and e mark-
ing the start and end nodes of m in L, f a form,
t a universal part-of-speech tag, and g a set of at-
tribute=value universal features.

A configuration CMD = (L, n, i,M) consists
of a lattice L, an index n representing a node in L,
an index i s.t. 0 ≤ i < k representing a specific
token’s lattice, and a set of disambiguated mor-
phemes M .

The initial configuration function cs(x) =
(L, bottom(L), 0, ∅), where L = MA(x1) ◦ ... ◦
MA(xk), and n = bottom(L), the bottom of the
lattice. A configuration is terminal when n =
top(L) and i = k.

To traverse the lattice and disambiguate the in-
put, we define an open set of transitions using the
MDs transition template:

MDs : (L, p, i,M)→ (L, q, i,M ∪ {m})

Where p = b, q = e, and s relates the transition to
the disambiguated morpheme m using a parame-
terized delexicalization s = DLEXoc(m):

DLEXOC(m) =

{
(, , , t, g) if t ∈ OC
(, , f, t, g) otherwise

In words, DLEX projects a morpheme either
with or without its form depending on whether or
not the POS tag is an open-class with respect to
the form. For UD, we redefine:

OC = {ADJ,AUX,ADV,PUNCT,NUM,
INTJ,NOUN,PROPN,V ERB }

We use the parametric model of More and Tsar-
faty (2016) to score the transitions at each step.

Since lattices may have paths of different length
and we use beam search for decoding, the prob-
lem of variable-length transition sequences arises.
We follow More and Tsarfaty (2016), using the
ENDTOKEN transition to mitigate the biases
induced by variable-length sequences.

2.3 Syntactic Disambiguation

For dependency parsing, we use the Arc Standard
configuration, transition system, and oracle func-
tion defined in Kübler et al. (2009). A configu-
ration is a triple CDEP = (σ, β,A) where σ is a
stack, β is a buffer, and A a set of labeled arcs.

We present the specific variant of Arc Standard
that we use in Figure 2.3. Note that in this vari-
ant, arc operations are performed between the top
of the stack σ and the head of the buffer β. Addi-
tionally, in order to guarantee a single root, for the
purposes of the shared task we apply a post pro-
cessing step in which the first root node encoun-
tered (in left-to-right order) is designated as the
only root node, and all other root nodes are set as
its modifier with the “punct” dependency label.

Of course, this means that our transition sys-
tem only applies to projective trees — the oracle
will indeed fail given a non-projective tree, and
our transition system cannot output one. In ad-
dition, since we are using the Arc Standard transi-
tion system, which has been shown to not be arc-
decomposable, we cannot employ a dynamic ora-
cle during training (Goldberg and Nivre, 2012).

The rich-linguistic feature model for our depen-
dency parser, inspired by Zhang and Nivre (2011),
applies the rich non-local features to arc standard
(where this is possible), such as to accommodate
the free word order of MRLs. We provide an ap-
pendix with a detailed comparison of the two fea-
ture models.

2.4 Joint Morpho-Syntactic Processing

Given standalone morphological and syntactic dis-
ambiguation systems in the same framework, we
integrate them into a joint morpho-syntactic pro-
cessor. Our integration is a literal embedding of
the two systems, with a deterministic “router” that
decides which of the two transition systems should
apply a transition to a given configuration — we
call this router a strategy.

We first must alter the morphological disam-
biguation transition such that a disambiguated
morpheme is enqueued onto β:

MDs : ((L, n, i,M), (σ, β,A))→
((L, q, j,M ∪ {m}), (σ, [β|m], A))

We call the set of joint strategies used for the
shared task ArcGreedyk, because it will perform
a syntactic operation if possible, otherwise it will
disambiguate a morpheme. k determines the min-
imal number of morphemes in the buffer β of the
Arc Standard configuration in order to perform a
syntactic transition:

ArcGreedyk(cmd, (σ, β,A)) =
Tm if |β| ≤ k
Td otherwise

255

Initial cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal Ct = {c ∈ C|c = ([0], [], A)}
Transitions (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ (σ, [j|β], A ∪ {(j, l, i)}) if i 6= 0 (ArcLeftl)
([σ|i], [j|β], A)→ (σ, [i|β], A ∪ {(i, l, j)}) (ArcRightl)

Figure 1: The Arc Standard transition system

We set k = 3 based on the features we use to
predict the syntactic transition.

The ArcGreedy approach provides joint pro-
cessing through the interaction of the two systems
through the global score. Together with beam
search, this allows a syntactic transition to reverse
the ranking of an otherwise higher-scored disam-
biguation candidate, and vice-versa, although this
interaction occurs with a small delay due to the
difference between a morphological disambigua-
tion transition and a syntactic transition for the
same morpheme.

2.5 Morphological Analysis

The joint parser requires a morphologically ana-
lyzed input, in the form of a lattice. However,
universal lexical resources are not available for all
languages participating in the shared task. There-
fore, we use the data-driven morphological ana-
lyzer from More and Tsarfaty (2016), which de-
rives its lexicon from the training set of a given UD
corpora, modified to read/write UDv2-compatible
file formats.

As part of our submission, we provide these de-
rived lexica to the community.

In addition, we use the HEBLEX morpholog-
ical analyzer from More and Tsarfaty (2016),
adapted to output lattices conforming to UD anno-
tation standards for universal POS tags and mor-
phological features.

3 Implementation

In this section we describe technical details of
implementation 3.1, bugs encountered during the
shared task 3.2, and our approach to surprise lan-
guages 3.3.

3.1 Technical Details

For sentence segmentation and tokenization, we
rely on the UDPipe (Straka et al., 2016) predicted
data files. The morphological analysis compo-
nent and joint morpho-syntactic parser are all im-

plemented in yap1 (yet another parser), an open-
source natural language processor written in Go2.
Once compiled, the processor is a self-contained
binary, without any dependencies on external li-
braries.

For the shared task the processor was compiled
with Go version 1.8.1, and a git tag created for
the commit used at the time of the task. During
the test phase we wrapped the processor with a
python script that invokes two instances concur-
rently in order to complete processing before the
official (final) deadline.

Additionally, in order to train on all treebanks
we limited the size of all training sets to the first
50,000 sentences for the parser.

Finally, our training algorithm iterates until con-
vergence, where performance is measured by F1

for full morphological disambiguation when eval-
uated on languages’ respective development sets.
We define convergence as two consecutive itera-
tions resulting in a monotonic decrease in F1 for
full MD, and used the best performing model up to
that point. For some languages we observed the F1

never monotonically decreased twice, so after 20
iterations we manually stopped training and used
the best performing model.3

3.2 Shared Task Bugs

We encountered two serious bugs during training
for the shared task, which prevented us from run-
ning our joint processor on all treebanks.

First, for some treebanks (cs cac, cs cltt,
cs pud, cs, en, fr sequoia, ru syntagrus) the seri-
alization code, which relies on Go’s built-in en-
coder package, failed to serialize the in-memory
model because it is larger than 230 bytes. Much
too our surprise, this is apparently an issue related
to the decoder, one the Go maintainers are aware
of but have decided not to address.4 Changing our

1https://github.com/CoNLL-UD-2017/
OpenU-NLP-Lab

2https://golang.org
3For PUD, we use models of “main” treebanks (no tcode)
4https://git.io/nogo

256

model serialization code was too large a task at the
time we found it, so for the aforementioned prob-
lematic treebanks we had no choice but to train
only the dependency parser, and rely on UDPipe
for morphological disambiguation.

Second, close to the time of submitting this pa-
per, we discovered a bug in the morphological dis-
ambiguator. The original MD model from More
and Tsarfaty (2016) assumed the Hebrew tree-
bank SPMRL annotation (SPMRL citation), in
which some clitics are identified by morpholog-
ical “suffix” features, as opposed to the UD ap-
proach which breaks them down as separate syn-
tactic words. As a result, the MD transition sys-
tem sometimes fails to distinguish between lattice-
arcs.

As a temporary remedy, we modified the parser
such that syntactic words with clitic suffixes have
an additional indication as such, to set them apart
from syntactic words without clitic suffixes. How-
ever, we did not have time to re-run our data-
driven morphologically analyzed parses with this
fix.

3.3 Surprise Languages
Our strategy for parsing surprise languages was
to train a delexicalized (no word-form features)
dependency-only parsing model on one treebank
per surprise language, which we manually deemed
as “close” as follows:

• bxr: ru syntagrus

• kmr:fa

• sme: fi

• hsb: cs

We relied on the UDPipe predicted data up to
and including full morphological disambiguation
for all surprise languages.

4 Results and Discussion

In Tables 1 and 2 we present our official results
for all languages. For the MRL Modern Hebrew,
we train and test parsed using the lexicon-backed
morphological analyzer (HEBLEX). When using
HEBLEX, we obtained word-segmentation accu-
racy F1 score of 87.48, compared to 81.26 in the
data-driven MA of the official results, a 33% re-
duction in error rate.

Although the data-driven results suffer from
the aforementioned bug, we do not expect them

to change considerably, as we have seen such
large differences with similar comparisons for the
SPMRL Hebrew treebank. We hope the results
from our unofficial run will be more convinc-
ing. It is important to note that the best word-
segmentation result for Modern Hebrew in the
shared task is 91.37.

We argue that although our lexicon-assisted
model did not outperform the best model in the
shared task, this does not invalidate our position
on universal lexical resources. A 91.37 F1 word-
segmentation accuracy on Modern Hebrew is quite
low, and in our opinion, still too low for inclusion
in practical, real-world applications. We believe
it is likely that together with access to lexical re-
sources, more performant models would be able to
bridge the gap and reduce this large error rate to a
more acceptable level for down-stream tasks.

5 Future Work

In the future, we would like to replace our more
traditional linear model with a modern, non-linear
neural network-based approach. However, to date
there is no solution for joint morph-syntactic pro-
cessing of MRLs, a problem we aim to tackle. In
the context of a neural-based solution, we believe
that the availability of lexical resources will be
crucial for MRLs and low resource languages in
particular.

6 Conclusion

We present our submission to the CoNLL 2017 UD
Shared Task, to the best of our knowledge the first
universal, joint morpho-syntactic processor. We
report our official result of 56.56. We contrast our
results on the MRL Modern Hebrew, as a show-
case of the utility of access to a lexicon-backed
morphological analyzer.

Our goal is to instigate a discussion in the UD
community on the need for a universal scheme for
lexical resource access.

Acknowledgements

We would like to thank the CoNLL Shared Task
Organizing Committee (COSTOCOM) for their
hard word on the task and their timely support.
We would also like to thank the TIRA platform
team (Potthast et al., 2014) for providing a sys-
tem that facilitates competition and reproducible
research.

257

UDPipe yap
Treebank Sentences Tokens Words UPOS Feats UAS LAS
ar 84.57 99.98 92.48 82.73 21.13 53.41 45.01
ar pud 100 80.89 89.68 65.49 33.49 41.54 31.84
bg 92.83 99.91 99.91 94.47 35.96 80.09 74.23
bxr 91.81 99.35 99.35 84.12 81.65 41.15 26.44
ca 98.95 99.97 99.78 93.55 19.48 80.09 74.53
cs* 92.03 99.9 99.9 98.13 91.01 81.45 76.44
cs cac* 100 100 99.99 98.27 89.05 84.73 79.43
cs cltt* 95.06 99.35 99.35 95.41 85.38 76.4 71.68
cs pud* 96.43 99.29 99.29 96.55 87.34 81.33 75.75
cu 36.05 99.96 99.96 88.52 26.22 65.73 56.19
da 79.36 99.69 99.69 90.02 31.01 70.24 65.28
de 79.11 99.64 99.65 84.32 47.29 55.21 48.05
de pud 86.49 97.97 97.7 77.61 30.13 52.98 44.05
el 90.79 99.88 99.88 92.29 29.89 77.8 73.41
en* 73.22 98.67 98.67 93.11 93.97 78.09 75.12
en lines 85.84 99.94 99.94 91.78 99.94 73.5 68.09
en partut 97.51 99.51 99.48 90.58 37.16 73.47 68.17
en pud 97.13 99.66 99.66 89.6 32.92 78.27 73.47
es 94.15 99.87 99.42 91.14 42.85 73.51 67.89
es ancora 97.05 99.97 99.72 93.73 16.99 76.74 71.34
es pud 93.42 99.52 99.25 84.74 34.59 74.66 67.15
et 85.2 99.77 99.77 78.8 34.19 58.15 45.01
eu 99.58 99.96 99.96 87.06 37.02 66.24 56.37
fa 98 100 99.46 91.5 33.38 69.04 62.89
fi 84.56 99.63 99.63 84.99 29.62 57.65 45.99
fi ftb 83.83 99.9 99.88 82.41 28.83 63.91 52.73
fi pud 93.67 99.61 99.61 82.99 28.18 56.51 45.17
fr 93.59 99.75 99.49 92.54 42.33 77.28 71.96
fr partut 98 99.83 99.44 93.61 34.13 78.84 73.1
fr pud 92.32 99.1 98.79 84.73 36.8 73.68 67.67
fr sequoia* 83.75 99.77 99.06 95.4 94.03 81.74 78.92
ga 95.81 99.29 99.29 83.69 28.66 67.69 54.53
gl 96.15 99.92 99.92 95.18 99.69 78.59 74.81
gl treegal 81.63 99.59 98.02 86.8 22.08 66.68 59.77
got 27.85 100 100 89.19 27.67 59.25 50.06
grc 98.43 99.95 99.95 72.66 35.15 42.39 32.53
grc proiel 43.11 100 100 89.8 25.26 59.13 51.05
he 99.39 99.94 81.26 73.55 31.71 46.67 41.49
hi 99.2 100 100 92.44 14.94 77.74 69.36
hi pud 90.83 97.81 97.81 79.93 31.96 55.53 43.06
hr 96.92 99.93 99.93 89.45 19.84 68.49 59.94
hsb 90.69 99.84 99.84 90.3 74.02 64.5 57.14
hu 93.85 99.82 99.82 77.31 26.73 54.56 40.28
id 91.15 99.99 99.99 88.98 96.15 76.13 68.49
it 97.1 99.81 99.5 94.52 38.85 81.98 77.96
it pud 96.58 99.59 99 88.37 33.98 80.02 75.11
ja 94.92 89.68 89.68 85.2 88.01 70.79 68.68
ja pud 94.89 91.06 91.06 85.75 54.8 73.09 71.45

Table 1: Official results for the UD Shared Task. We include UDPipe predicted measures for complete-
ness. Our system does not predict lemmas and XPOS, so we do not show them. Treebanks with * were
processed by only our dependency parser, relying on UDPipe for morphological disambiguation, due to
a technical issue.

258

UDPipe yap
Treebank Sentences Tokens Words UPOS Feats UAS LAS
kk 81.38 95.2 94.9 43.87 33.45 36.12 10.49
kmr 97.02 99.01 98.85 90.04 80.72 51.24 38.61
ko 93.05 99.73 99.73 81.9 98.99 60.75 52.37
la 98.09 99.99 99.99 68.32 36.76 37.04 24.3
la ittb 93.24 99.99 99.99 93.65 31.57 57.99 50.65
la proiel 25.8 100 100 87.32 26.48 46.46 37.12
lv 98.59 98.91 98.91 80.81 39.93 58.13 47.71
nl 77.14 99.88 99.88 80.07 7.56 50.27 41.9
nl lassysmall 78.62 99.93 99.93 95.09 47.01 73.8 69.78
no bokmaal 95.76 99.75 99.75 93.4 40.05 80.68 76.69
no nynorsk 91.23 99.85 99.85 92.69 40.01 76.51 71.89
pl 98.91 99.99 98.97 86.81 26.09 71.07 63.03
pt 89.79 99.64 99.27 88.48 35.63 59.62 53.67
pt br 96.84 99.94 99.84 94.44 90.12 83.9 80.65
pt pud 95.65 99.29 99.2 82.17 37.21 60.51 53.87
ro 93.42 99.64 99.64 93.86 16.29 79.55 72.14
ru 96.42 99.91 99.91 84.32 37.04 64.02 57.09
ru pud 98.95 97.18 97.18 75.21 35.31 61.06 52.14
ru syntagrus* 97.81 99.57 99.57 97.99 93.47 84.2 80.1
sk 83.53 100 100 77.99 19.11 57.95 50.25
sl 99.24 99.96 99.96 89.19 23.64 70.95 65.27
sl sst 16.72 99.82 99.82 83.24 29.7 45.76 37.11
sme 98.79 99.88 99.88 86.81 81.25 45.03 32.57
sv 96.37 99.84 99.84 92.23 34.17 75.96 70.38
sv lines 86.44 99.98 99.98 91.39 99.98 75.1 69.21
sv pud 90.2 98.26 98.26 82.66 32.27 68.35 61.42
tr 96.63 99.85 97.17 83.15 35.75 52.72 39.82
tr pud 93.91 98.86 95.7 61.52 23.36 44.73 23.95
ug 63.55 98.52 98.52 66.15 98.52 20.7 7.35
uk 92.59 99.81 99.81 76.27 30.24 53.24 42.29
ur 98.32 100 100 88.58 14.53 77.95 69.89
vi 92.59 82.47 82.47 71.84 78.23 41.25 36.51
zh 98.19 88.91 88.91 80.08 78.27 58.03 52.93

Table 2: Official results for the UD Shared Task. We include UDPipe predicted measures for complete-
ness. Our system does not predict lemmas and XPOS, so we do not show them. Treebanks with * were
processed by only our dependency parser, relying on UDPipe for morphological disambiguation, due to
a technical issue.

259

Appendix
Dependency Features

We use the feature description scheme of Zhang and Nivre (2011) for easy comparison.
Let c = (S,N,A) be a configuration where S is the stack, N is the buffer.
We define an address as the location of a node in the partial dependencies trees in S and N of con-

figuration c. An address has a structure name S or N , a subscript integer to access a k-deep node, and
characters to access the heads or dependents of the node found at Sk or Nk. For example, the address
S0h refers to the head (if such exists) of the partial tree found at the top of the stack. The address N1

refers to the node that is second in the buffer.

Rich Linguistic Feature Types

In addition to features described in Zhang and Nivre (2011), we define the following attributes:

• fp - the multi-set of parts of speech of the dependents of a node

• sf - the multi-set of labels of all dependents of a node

• vf - the valency (= number) of all dependents of a node

Also, we define Ci as an address generator - it generate a feature for each dependent of the addressed
node.

Morphological Augmentation
To allow the inclusion of morphology we add the ability of specifying morphological properties to be
added to all features of a feature group. Augmentation of a feature group does not cause a replacement
of the defined features, it only creates a copy with the addition of morphological properties.

To augment a feature group, all the features to the groups are required to have the same number of
addresses. An augmentation specifies a character, either h or x, to specify the host or suffix morphologi-
cal properties as attributes, respectively. If the group has more than one address, the augmentation must
specify an address (a 1-indexed integer offset). Multiple augmentations may be used together.

For example, given the feature group Pairs in table 3, the first few features are SwtN0wt, S0wtN0w,
SwN0wt, etc. All features in the Pairs group have two addresses. An example of a morphological aug-
mentation of the Pairs group is h1h2, resulting in the new features S0wtmhN0wtmh, S0wtmhN0wmh,
SwmhN0wtmh, etc. where mh is the set of key-value pairs of properties of the respective morphemes at
the top of the stack (S0) and buffer (N0).

Features
The set of rich non-local features of (Zhang and Nivre, 2011) and the new rich linguistic features defined
in this work are shown in table 3. The features are shown side by side to ease the comparison of the two
feature sets, along with a column indicating the changes made.

The feature groups are augmented with morphological properties as defined in table 6.

260

N-L Group N-L Feature Ling. Feature Ling. Group Change
Single S0w S0w Single
Single S0t S0t Single
Single S0wt S0wt Single
Single N0w N0w Single
Single N0t N0t Single
Single N0wt N0wt Single
Single N1w N1w Single
Single N1t N1t Single
Single N1wt N1wt Single
Single N2w N2w Single
Single N2t N2t Single
Single N2wt N2wt Single
Pairs S0wtN0wt S0wtN0wt Pairs
Pairs S0wtN0w S0wtN0w Pairs
Pairs S0wN0wt S0wN0wt Pairs
Pairs S0wtN0t S0wtN0t Pairs
Pairs S0tN0wt S0tN0wt Pairs
Pairs S0wN0w S0wN0w Pairs
Pairs S0tN0t S0tN0t Pairs
Pairs N0tN1t N0tN1t Pairs
Three Words N0tN1tN2t N0tN1tN2t Three Words (A)
Three Words S0tN0tN1t S0tN0tN1t Three Words (A)
Three Words S0htS0tN0t S0htS0tN0t Three Words (A)
Three Words S0tN0tN0ldt S0tN0tfp Three Words (B) N0ldt→ N0fp

Three Words S0tS0ldtN0t S0tfpN0t
Three Words (B)

ld/rd→ fpThree Words S0tS0rdtN0t Three Words (B)
Distance S0wd S0wd Distance
Distance S0td S0td Distance
Distance N0wd N0wd Distance
Distance N0td N0td Distance
Distance S0wN0wd S0wN0wd Distance
Distance S0tN0td S0tN0td Distance
Valency S0wvr S0wvf

Valency frames

vr/vl → vf

Valency S0wvl Valency frames
Valency S0tvr S0tvf

Valency frames
Valency S0tvl Valency frames
Valency N0wvl N0wvf Valency frames
Valency N0tvl N0tvf Valency frames
Unigrams S0hw S0hw Unigrams (A)
Unigrams S0ht S0ht Unigrams (A)
Unigrams S0l S0l Unigrams (A)
Unigrams S0ldw S0wS0Ciw Unigrams (B)

Switch to non-
directional bi-
lexical dependen-
cies, Ci = for each
dependent

Unigrams S0ldt S0wS0Cit Unigrams (B)
Unigrams S0ldl S0wS0Cil Unigrams (B)
Unigrams S0rdw S0tS0Ciw Unigrams (B)
Unigrams S0rdt S0tS0Cit Unigrams (B)
Unigrams S0rdl S0tS0Cil Unigrams (B)
Unigrams N0ldw N0wN0Ciw Unigrams (B)
Unigrams N0ldt N0wN0Cit Unigrams (B)
Unigrams N0ldl N0wN0Cil Unigrams (B)
Unigrams N0tN0Ciw Unigrams

NewUnigrams N0tN0Cit Unigrams
Unigrams N0tN0Cil Unigrams
Third Order S0l2dw Third Order

Removed

Third Order S0l2dt Third Order
Third Order S0l2dl Third Order
Third Order S0r2dw Third Order
Third Order S0r2dt Third Order
Third Order S0r2dl Third Order
Third Order N0l2dw Third Order
Third Order N0l2dt Third Order
Third Order N0l2dl Third Order
Third Order N0tN0ldtN0l2dt N0tfp Third Order N0l2dt→ N0fp

Third Order S0h2w S0h2w Third Order (A)
Third Order S0h2t S0h2t Third Order (A)
Third Order S0hl S0hl Third Order (A)
Third Order S0tS0ldtS0l2dt S0tfp

Third Order (B)
ld/rd/l2d/r2d→ fpThird Order S0tS0rdtS0r2dt Third Order (B)

Third Order S0h2tS0htS0t S0h2tS0htS0t Third Order (C)
LabelSet S0wlp S0wsf

Subcat. frames

lp/rp → sf

LabelSet S0wrp Subcat. frames
LabelSet S0trp S0wsf

Subcat. frames
LabelSet S0tlp Subcat. frames
LabelSet N0wlp N0wsf Subcat. frames
LabelSet N0tlp N0tsf Subcat. frames

S0wS0o Edge Potential
New
o = |σh| = edge po-
tential

S0tS0o Edge Potential
N0tS0o Edge Potential
N0wS0o Edge Potential

Table 3: Rich Non-Local Features vs. Rich Linguistic Features

261

Feature Group Morphological Augmentations

Single
h
x

Pairs
h1h2
h1x2
x1h2

Three Words (A)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Three Words (B)
h1h3
h1x3
x1h3

Valency h

Unigram (A)
h
x

Bigram
h1h2
h1x2
x1h2

Third Order (A)
h
x

Third Order (B)
h
x

Third Order (C)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Table 4: Morphological Augmentation of Rich Linguistic Feature Groups

262

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. http://aclweb.org/anthology/P/P16/P16-
1231.pdf.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 1455–1465.
http://dl.acm.org/citation.cfm?id=2390948.2391114.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajic.
2013. Joint morphological and syntactic analysis
for richly inflected languages. TACL 1:415–428.
http://dblp.uni-trier.de/db/journals/tacl/tacl1.html.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X. pages 149–164.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42Nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, ACL
’04. https://doi.org/10.3115/1218955.1218970.

Yoav Goldberg and Joakim Nivre. 2012. A dy-
namic oracle for arc-eager dependency parsing.
In COLING 2012, 24th International Confer-
ence on Computational Linguistics, Proceedings
of the Conference: Technical Papers, 8-15 De-
cember 2012, Mumbai, India. pages 959–976.
http://aclweb.org/anthology/C/C12/C12-1059.pdf.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Number 2 in Synthesis
Lectures on Human Language Technologies. Mor-
gan & Claypool Publishers.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting
Liu, and Wenliang Chen. 2014. Joint op-
timization for chinese POS tagging and de-
pendency parsing. IEEE/ACM Trans. Audio,
Speech & Language Processing 22(1):274–286.
https://doi.org/10.1109/TASLP.2013.2288081.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint
models for chinese pos tagging and dependency
parsing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 1180–1191.
http://dl.acm.org/citation.cfm?id=2145432.2145557.

Amir More and Reut Tsarfaty. 2016. Data-driven mor-
phological analysis and disambiguation for morpho-
logically rich languages and universal dependen-
cies. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 337–348.
http://aclweb.org/anthology/C16-1033.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. pages
915–932.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the spmrl 2014 shared task
on parsing morphologically-rich languages. pages
103–109.

Djame Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, D. Jinho Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim

263

Nivre, Adam Przepiórkowski, Ryan Roth, Wolf-
gang Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliński, Alina Wróblewska, and Ville-
monte Eric de la Clergerie. 2013. Proceed-
ings of the fourth workshop on statistical pars-
ing of morphologically-rich languages. Associa-
tion for Computational Linguistics, pages 146–182.
http://aclweb.org/anthology/W13-4917.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Reut Tsarfaty and Yoav Goldberg. 2008. Word-based
or morpheme-based? annotation strategies for mod-
ern Hebrew clitics. In Proceedings of LREC.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level chinese dependency
parsing. In In Proceedings of the ACL.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics 37(1):105–151.
https://doi.org/10.1162/coli a 00037.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume
2. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 188–193.
http://dl.acm.org/citation.cfm?id=2002736.2002777.

264

