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Abstract

In this paper we describe the system by
METU team for universal dependency
parsing of multilingual text. We use a neu-
ral network-based dependency parser that
has a greedy transition approach to de-
pendency parsing. CCG supertags contain
rich structural information that proves use-
ful in certain NLP tasks. We experiment
with CCG supertags as additional features
in our experiments. The neural network
parser is trained together with dependen-
cies and simplified CCG tags as well as
other features provided.

1 Introduction

Combinatory Categorial Grammar (Steedman,
2000) (CCG) is widely used for natural language
processing for its desirable properties of gener-
ative expressiveness and its transparent interface
of syntax and underlying semantic interpretation.
CCG has been used for creating fast and accu-
rate parsers (Hockenmaier and Steedman, 2002),
(Clark and Curran, 2007), (Auli and Lopez, 2011),
(Lewis and Steedman, 2014). In addition to this,
the structural information in the CCG categories,
which is a lexicalised grammar, has been shown
to improve performance of various other systems
when used indirectly. Examples are multilingual
dependency parsing and machine translation (Am-
bati et al., 2013a; Çakıcı, 2008; Birch et al., 2007).

In this paper, we describe a system we created
for CoNLL Shared Task of 2017 (Zeman et al.,
2017) Multilingual Parsing from Raw Text to Uni-
versal Dependencies (Nivre et al., 2016, 2017b)
1 . We use CCG categories induced from the
CCGBank (Hockenmaier and Steedman, 2007) to

1Results are announced at http://universaldependencies.
org/conll17/results.html

supertag different languages with these structural
information-packed tags. We aim to show that
CCG categories for English may be used to im-
prove parsing results for other languages, espe-
cially similar ones.

In the next section, we give a brief background
on the dependency parsing problem and CCG cat-
egories that have been shown to improve perfor-
mance on various tasks either directly or indi-
rectly. Section 3 gives the implementation details
for the METU system and in Section 4 results are
discussed.

2 Background

Combinatory Categorial Grammar is a lexicalised
grammar formalism that has a transparent syntax-
semantics interface which means one can create
rich semantic interpretations in parallel with pars-
ing (Steedman, 2000). Several fast and highly ac-
curate CCG parsers have been introduced in the
literature. These parsers make use of the CCG-
Bank (Hockenmaier and Steedman, 2002) that is
created by inducing a CCG Grammar from the
Penn Treebank (Marcus et al., 1993). The CCG
categories of each word are extracted and referred
to as supertags or CCG tags throughout the paper.

Different types of supertags such as the ones
encoding predicate argument structure or mor-
phosyntactic information have been shown to
increase parsing performance in several studies
starting with Bangalore and Joshi (1999). The
importance of supertagging in parsing accuracy
has been shown in various studies such as Falen-
ska et al. (2015), Ouchi et al. (2014) and Foth
et al. (2006) for different types of supertags such
as combinations of dependency labels and depen-
dent positions, and by Clark and Curran (2004) for
CCG categories as supertags. The use of induced
CCG grammar was also evaluated as an extrinsic
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model in Bisk et al. (2016). They show that al-
though using full CCG derivation trees is superior,
CCG lexicon-based grammars also increase per-
formance in a semantics task.

CCG categories have been successfully used
in parsing studies as external features and were
shown to increase the performance. Note that
this use of CCG categories does not allow us
to fully access the power of CCG formalism but
rather provides a way to use the rich structural
information as a means of supertags. Çakıcı
(2008) first uses automatically-induced CCG cat-
egories from the Turkish treebank as extended
(fine) tags (Buchholz and Marsi, 2006) in Mac-
Donald’s parser (McDonald et al., 2005). Then
they were used for Hindi dependency parsing by
Ambati et al. (2013a). Birch et al. (2007) and
Nadejde et al. (2017) showed that statistical ma-
chine translation benefits from using structurally
rich CCG categories (supertags/tags) in the source
or target language.

Chen and Manning (2014) proposed a neural
network classifier for use in a greedy, transition-
based dependency parser. They created a three
layer network in which the input layer is fed with
word, POS tag and label embeddings, and after
the feed forward step, the error is back-propagated
to the input layer in order to tune embeddings.
They randomly initialized the POS tag and label
embeddings, however, as pre-trained word vec-
tors, they used a combination of the embeddings
in Collobert et al. (2011) and their trained 50 di-
mensional word2vec vectors. As this parser only
learns and uses dense features with word repre-
sentations, its parsing speed is at least two times
faster than its closest opponent while also improv-
ing the accuracy by 2% for English and Chinese.
Andor et al. (2016) also created a transition-based
dependency parser based on neural networks and
word embeddings after the Chen and Manning
(2014) work. They proposed to use global instead
of local model normalizations to overcome label
bias problem with feed forward neural networks.
Their parser achieved higher accuracies than for-
mer studies in English, Chinese and some other
languages as stated in their results.

Dozat and Manning (2016) created a neural
network oriented graph based dependency parser.
They used bi-affine classifiers to predict arcs and
labels. They achieved state-of-the-art or com-
petent accuracies on graph-based parsing for six

languages. They improved LAS and UAS score
by 1% from previous most accurate graph based
parser.

Transition-based dependency parser created by
(Kuncoro et al., 2016) is performing as current
state-of-the-art with using recurrent neural net-
work grammars. They also outperform most per-
forming graph based parser with increasing attach-
ment scores by almost 2% for English.

3 Method

Gold-standard CCG categories do not exist for
languages except a few ones. In order to ex-
plore the effects of CCG supertagging on multi-
lingual universal dependencies we assign simpli-
fied CCG-based supertags to the multilingual data
by using dependency relations from English CCG-
bank (Hockenmaier and Steedman, 2007). We la-
bel training and development data sets for different
languages using a tagger trained on English su-
pertagged data and then we use the supertagged
training and development data sets for each lan-
guage in training CCG-based supertaggers and de-
pendency parsers for test data sets in UD tree-
banks.

Figure 1 shows the overall system that we use
for the multilingual universal dependency parsing
task (Zeman et al., 2017). We train separate mod-
els for dependency parsing for each language.

Section 3.1 explains how we transfer CCG-
based supertags to UD training and development
data sets, Section 3.2 explains how we train a se-
quence tagger for assigning supertags to test data
and finally Section 3.3 explains how the depen-
dency parser is trained using these supertags.

3.1 Assigning CCG Categories Using
Dependency Relations

Dependency relations and predicate-argument
structures encoded in CCG categories are paral-
lel most of the time, even though the parent-child
directions are different in many cases. Figure
2 shows a sentence from PTB (and CCGbank)
with dependency relations above the sentence and
predicate-argument relations below the sentence.
Many of the edges are symmetric in dependency
relations and predicate-argument structure derived
from the lexical categories. Figure 3 shows an en-
larged view of a part of the sentence in Figure 2 in
order to make the labels clearer.

In order to supertag the data, first, the CCGbank
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Figure 1: System overview

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .
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Figure 2: Example: wsj 0001.1

(Hockenmaier and Steedman, 2007) and the Penn
Treebank (Marcus et al., 1993) are merged by con-
verting PTB to CONLLU format using Stanford
CoreNLP tool (Manning et al., 2014). We then
aligned the tokens in both data sets so that CCG
categories from CCGbank can be transfered to the
MISC field in the CONLLU data.

CCG category (S[dcl]\NP)/(S[b]\NP)
Without subcategories (S\NP)/(S\NP)
Without directions (S-NP)-(S-NP)

Table 1: Category simplification for supertags

A logistic regression classifier is trained to label
the tokens in training and development sets using
Scikit-Learn (Pedregosa et al., 2011). The classi-
fier only uses universal part-of-speech tags and de-

CCG category Simplified category
en (S\NP)\(S\NP) (S-NP)-(S-NP)
tr (S\NP[nom])/(S\NP[nom]) (S-NP)-(S-NP)

Table 2: Two adverb categories that take a verb as
their arguments in Turkish and English

pendency relations as its features since other fea-
tures are not common among languages. We use
an overly simplified version of CCG categories
by removing directional information and features
from the CCG supertags. This over-generalization
results in decreasing the supertagging accuracy,
however, it is necessary so that the English depen-
dency directional information is not imposed on
other languages with different word orders. Ta-
ble 1 shows the simplification of a CCG category
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join the board as a nonexecutive director
VERB DET NOUN ADP DET ADJ NOUN
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Figure 3: Example: A part of wsj 0001.1

to create a supertag. In Table 2, two adverbs are
shown with different CCG categories in two lan-
guages. Note that the directions of the slashes
in the original forms are different due to different
word-order in these languages..

We use dependency relation labels between the
word, its head, the head of the head, its dependents
and the dependents of its head as features in the
tagger. We also use universal part of speech tags
for each one of the mentioned words. In English,
the only language for which we have the gold stan-
dard CCG tags and dependency relations aligned,
the re-tagging accuracy is 91.78%. If we addition-
ally use extended part-of-speech tags and CCG ar-
gument positions as labels relative to (before or
after) the current word, the accuracy increases to
93.55% on English for CCG categories with di-
rectional information. However, these are not uni-
versal in all languages, so we drop these features.
Table 3 shows the features that are extracted for a
sample word.

We run this tagger, trained on English CCG
data, on every language to generate training and
development files with CCG-based supertags for
training supetaggers and dependency parsers that
will work on test data.

3.2 CCG Sequence Tagging for Training

A supertagger for each language is built us-
ing CCG-based supertags transferred with depen-

KEY VALUE KEY VALUE
idx 16 pos NOUN
head pos VERB head rel dobj
h head pos VERB h head rel dobj-ccomp
dep count 4 h dep count 3
dep 1 pos DET dep 1 rel det
dep 2 pos ADJ dep 2 rel amod
dep 3 pos NOUN dep 3 rel nmod
dep 4 pos NOUN dep 4 rel nmod
h dep 1 pos NOUN h dep 1 rel nsubj
h dep 2 pos AUX h dep 2 rel aux
h dep 3 pos NOUN h dep 3 rel dobj

Table 3: Features used in the tagger

dency relations. This tagger is a CRF model (Laf-
ferty et al., 2001) built using CRFSuite (Okazaki,
2007). The features are word, part-of-speech tags,
key-value pairs in FEATS columns, prefixes and
suffixes up to 5 characters, previous and follow-
ing words and POS tags in a 2-token window. The
CRF supertagger on CCGbank with these features
(trained only on sections 02-05, tested on section
00) has an accuracy of 93.74%. Lewis and Steed-
man (2014) give 91.3%, Curran et al. (2007) give
92.6% accuracy with their maximum entropy tag-
ger.

Table 4 show features extracted for the word
“çalışacak” in sentence “İnşaatta çalışacak vasıfsız
işçilerin ...”
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KEY VALUE KEY VALUE
Aspect Perf Mood Ind
Polarity Pos Tense Fut
VerbForm Part hyp False
num False pnc False
upp False prefix 1 ç
prefix 2 ça prefix 3 çal
prefix 4 çalı prefix 5 çalış
suffix 1 k suffix 2 ak
suffix 3 cak suffix 4 acak
w çalışacak w+1 vasıfsız
w+2 işçilerin w-1 İnşaatta
w-2 word-1 p VERB
p+1 ADJ p+2 NOUN
p-1 NOUN p-2 POS-1
x Verb x+1 Adj
x+2 Noun x-1 Noun
x-2 XPOS-1

Table 4: Features used in the tagger

The tagger tries to recover the supertags that are
assigned using the dependency relations. On En-
glish, the recovery accuracy is 87.36%. Table 5
shows the accuracy of the supertagger on several
languages. Note that these are not based on the
correct CCG categories but on the assigned su-
pertags via the tagger explained on Section 3.1.
This tagger is used on test data preprocessed by
UDpipe (Straka et al., 2016) with POSTAGS and
FEATS. Then the tagged test data is passed to the
dependency parser.

Language CCG Accuracy

ar 83.47

el 88.90

en 87.36

es 89.70

de 86.45

fr 91.41

he 86.55

tr 77.97

zh 83.83

Table 5: CCG tagger accuracy on several lan-
guages

3.3 Dependency Parsing

Two different dependency parsers are experi-
mented with in this study which are powered by

two different techniques. First, CCG-based su-
pertags are integrated into the maximum-spanning
tree parser ()MSTParser) (McDonald et al., 2005;
McDonald, 2006) which is known as the first high-
performing graph-based dependency parser. This
parser uses discrete local features as input, and
thus, the supertags are directly added to this set of
features. This implementation shows us the effect
of supertagging in a system where the similarities
between the supertag groups are not captured se-
mantically. The following parameters are used in
all experiments unless otherwise stated:
order = 2,
loss type = no punctuation,
decode type = projective.

We use the Chen and Manning (2014) neu-
ral network-based dependency parser to observe
how similarities in our supertags affect the model.
This parser has been chosen as a baseline as it
is the pioneer in using word embeddings for all
the features in parsing process. Furthermore, it
was given as the parser in the baseline system
in Straka et al. (2016) that we compare our re-
sults with. In our parser CCG tags are repre-
sented with 100 dimensional vectors instead of
discrete features. The supertags are obtained from
the CCG-based supertagger described in the pre-
vious section. In experiments, the following pa-
rameters are used: embedding size = 100 and
hidden layer size = 200. For word embeddings,
pre-trained 100 dimensional word embeddings by
Ginter et al. (2017) are used. For POS tags and
supertags, vectors are initialized randomly and are
fed to the neural network during training.

4 Results

First, we present our experiments before the re-
lease of the test data, then we present the results
on the shared task.

4.1 Pre-evaluation

In MSTParser pre-evaluation experiments, we use
the Penn Treebank Wall Street Journal segmenta-
tion split as sections 2-21 for training and section
23 as the test set. Extra training parameters are as
the following:
training − k = 5
loss− type = nopunc
decode− type = proj
order = 2
unless stated otherwise in the results. Detailed
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descriptions of these parameters can be found in
McDonald et al. (2006). These parameters re-
produce similar results as McDonald and Pereira
(2006) which we use as a baseline to compare our
improvements. The version in which the CCG
supertags were added also uses the same config-
uration. Table 6 shows labelled and unlabelled
accuracies in detail in these experiments. Accu-
racy results are obtained from the evaluator built
in MSTParser itself. Training and testing times
were similar throughout different experiments ex-
plained here.

Parser Configuration UAS LAS

MSTParser (1st order) 90.7 87.6

MSTParser (2nd order) 91.4 88.3

- xpos (2nd order) 91.1 88.0

- xpos + CCG tags (2nd order) 94.3 90.5

+ CCG tags (2nd order) 94.5 90.8

Table 6: Accuracy on MSTParser with CCG su-
pertags in English (pre-evaluation)

In the pre-evaluation Chen and Manning
(2014)’s parser experiment, we also use the Penn
Treebank for English as sections 2-21 for training,
section 22 as development and section 23 as
the test set. For word embedding file, GloVe 50
dimensional data is used (Pennington et al., 2014).
Extra configurational parameters are:
−maxIter : 20000
−trainingThreads : 10
−embeddingSize : 50
where maxIter stands for maximum it-
eration step in neural network training,
trainingThreads for number of threads to
use during training and embeddingSize for
embedding vector size for words, POS tags and
supertags.

Reproduction of the results from the original
study and our results with our supertags are given
in Table 7. These results are obtained by the eval-
uation method of the original parser.

Also, in the pre-evaluation phase, we test our
Chen and Manning (2014) parser-based system on
Turkish, German and French data. Shared task-
provided data is used for training and development
purposes. Word embeddings are used as 100 di-
mensional vectors from Ginter et al. (2017). Ex-
cept this difference, all other configuration param-

Parser Configuration UAS LAS

Chen & Manning 91.3 89.8

Chen & Manning + CCG supertags 95.7 94.6

Table 7: Accuracy on (Chen and Manning, 2014)
parser with CCG tags in English (pre-evaluation)

eters are the same as in English experiments. Ta-
ble 8 shows the results. As we see in the results,
the tagger predicting the French supertags trans-
ferred from English data performs well since the
two languages are similar. Also, German tags are
inferrable as it is also close to English in grammat-
ical structure. On the other hand, this is not rele-
vant for Turkish, as grammatically, the two lan-
guages are quite different. Word order is one of
the major differences between these two languages
that might have affected the results.

Language pre-UAS pre-LAS post-UAS post-LAS

Turkish 74.0 61.1 65.8 54.9

German 90.3 80.7 85.4 76.9

French 90.7 75.0 88.1 73.5

Table 8: Accuracy on the Chen and Manning
(2014) parser with CCG-based supertags in other
languages (pre-evaluation). pre-UAS and pre-
LAS stands for accuracies obtained with Chen
& Manning, while post-UAS and post-LAS with
Chen & Manning + Supertags.

Language Shared Task Baseline Our Result
English 82.25 73.40
Spanish 76.76 77.54
Turkish 52.06 48.53
German 71.53 67.97
French 74.57 77.48

Table 9: Our CONLL 2017 Shared task results vs
Shared Task baselines (LAS F1 Score)

4.2 Shared Task
In Table 9, we give our shared task results with
baselines. Here, we see a drop in accuracy com-
pared to our pre-evaluation phase. The main dif-
ferences between the systems are pre-trained em-
bedding source and embedding sizes for words,
POS tags and labels. In our development exper-
iments, we believe, we are able to capture simi-
larities between POS tags and supertags more ef-
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ficiently as the embedding size is smaller and the
cardinalities of these groups are quite low. This
also applies to word embeddings. Other than this,
the training iteration count remains the same dur-
ing experiments. This may be required as we in-
crease the number of features and it needs to be
tuned.

For each of the PUD treebanks, we select a
model trained on the same language. For some of
the languages for which we cannot train a parser,
either due to lack of training data or word vectors,
and also for the surprise languages, we selected
a similar language in the same language family.
Table 10 shows the model assignments for the un-
known languages.

Language Selected Language Selected

bxr ru kmr fa

sme fi hsb cs

ar pud ar cs pud cs

de pud de en pud en

es pud es fi pud fi

fr partut fr fr pud fr

ga en gl treegal gl

got de hi pud hi

it pud it ja pud ja

kk tr la la ittb

pt pud pt ru pud ru

sl sst sl sv pud sv

tr pud tr ug tr

uk ru

Table 10: Selected models for surprise languages
and ones without models on training data

Table 11 shows the LAS score of the system on
different categories of treebanks as reported in the
Shared task paper. All treebanks are shown with
the official macro-averaged LAS F1 score. As
expected, the system performs better on big tree-
banks where there are more data instances. PUD
treebanks have a big treebank in the same lan-
guage, therefore the results are close. The differ-
ence between our system and the best performing
ones is bigger for the small treebanks. The rea-
son for this is that we only train on the language
dataset itself and do not use data from other lan-
guages for the small treebanks. This causes spar-
sity issues with the supertagger and the parser. We

try to use model trained on a similar language for
the surprise languages, however this does not re-
sult in a reasonable accuracy since the lexicons
are usually very different even if the languages are
from the same family and the supertagging relies
mostly on the lexical entries and features extracted
from them since we do not have the dependency
information while decoding. POS tagging error
that propagates through the pipeline also affects
the performance.

Language Set LAS F1 Score

All treebanks 61.98

Big treebanks only 68.77

PUD treebanks only 65.30

Small treebanks only 30.84

Surprise languages only 19.39

Table 11: Test results of different categories

Table 12 shows the results of our system on
TIRA (Potthast et al., 2014) evaluations of UD test
data for each language (Nivre et al., 2017a).

5 Conclusion and Future Work

We experimented with the effects of introducing
CCG-based supertags on multilingual universal
dependency parsing by taking a radical approach
of transferring CCG categories from English to
other languages. We used the similarities in de-
pendency formalism and the universal POS tags
in order to create CCG lexicons for each language
included in the shared task. Since this is a diverse
set of languages from different language families
and different structural and orthographic proper-
ties this transferring is not ideal for many lan-
guages.

The existing CCG lexicons for languages such
as Turkish were not used for the task since the uni-
versal dependency release of Turkish and the de-
pendency treebank the Turkish CCG lexicon were
induced from are not aligned on word/tokenization
level. Therefore we could not provide accuracy on
that data.

We hypothesise that using CCG lexicons from
a different language family, especially one with
a different word order, may increase the perfor-
mance of the supertaggers since English only cov-
ers a small subset of syntactic properties in a di-
verse set of languages.
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Language LAS F1 Score Language LAS F1 Score

ar pud 42.68 ar 63.81

bg 82.07 bxr 18.18

ca 82.43 cs cac 79.52

cs cltt 68.71 cs pud 77.06

cs 79.89 cu 60.33

da 68.09 de pud 65.94

de 67.97 el 76.71

en lines 70.36 en partut 72.38

en pud 75.97 en 73.40

es ancora 80.89 es pud 75.26

es 77.54 et 52.08

eu 59.01 fa 75.73

fi ftb 72.13 fi pud 69.47

fi 66.46 fr partut 71.50

fr pud 71.15 fr sequoia 75.96

fr 77.48 ga 13.26

gl treegal 42.91 gl 75.25

got 20.05 grc proiel 60.08

grc 49.11 he 55.32

hi pud 49.63 hi 84.54

hr 71.39 hsb 19.59

hu 52.40 id 68.83

it pud 80.99 it 83.01

ja pud 74.69 ja 70.62

kk 16.48 kmr 15.86

ko 64.25 la ittb 70.90

la proiel 52.23 la 17.21

lv 56.34 nl lassysmall 71.12

nl 64.73 no bokmaal 78.51

no nynorsk 76.19 pl 76.40

pt br 83.17 pt pud 68.97

pt 76.48 ro 76.75

ru pud 65.81 ru syntagrus 80.88

ru 71.40 sk 70.96

sl sst 38.00 sl 78.14

sme 23.95 sv lines 71.93

sv pud 67.38 sv 74.06

tr pud 29.24 tr 48.53

ug 15.66 uk 31.68

ur 75.40 vi 36.51

zh 53.84

Table 12: Test results

After a manual alignment and tagging proce-
dure, the Turkish data can be used in both training
and evaluation. We can also group the languages
and use similar families of languages to train a
common system for them in the future.

One important addition to future work is to in-
duce the CCG supertags in each language includ-
ing the smaller datasets similar to the approaches

used in (Ambati et al., 2013b,a; Çakıcı, 2008) and
use these tags in our experiments. We believe
adding the specific directional information in CCG
categories will help in making more use of the in-
formation in the potentially very rich supertags.

Combining two or more CCG lexicons and tag-
ging with the combined model might also be an
interesting experiment.

For parsing, we plan to experiment with differ-
ent word embedding sizes and tune the deep learn-
ing parameters. Other than these, we will experi-
ment over neural networks integrated into graph-
based dependency parsers. In future, we are plan-
ning to use pre-trained POS and CCG tag embed-
dings in our experiments. If these embeddings can
be extracted from corpora on all available tags, this
will reduce training time and increase parsing ac-
curacy.
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