
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 207–217,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

From Raw Text to Universal Dependencies – Look, No Tags!

Miryam de Lhoneux∗ Yan Shao∗ Ali Basirat∗ Eliyahu Kiperwasser†

Sara Stymne∗ Yoav Goldberg† Joakim Nivre∗

∗Department of Linguistics and Philology †Computer Science Department
Uppsala University Bar-Ilan University
Uppsala, Sweden Ramat-Gan, Israel

Abstract

We present the Uppsala submission to the
CoNLL 2017 shared task on parsing from
raw text to universal dependencies. Our
system is a simple pipeline consisting of
two components. The first performs joint
word and sentence segmentation on raw
text; the second predicts dependency trees
from raw words. The parser bypasses
the need for part-of-speech tagging, but
uses word embeddings based on universal
tag distributions. We achieved a macro-
averaged LAS F1 of 65.11 in the official
test run and obtained the 2nd best result
for sentence segmentation with a score of
89.03. After fixing two bugs, we obtained
an unofficial LAS F1 of 70.49.

1 Introduction

The CoNLL 2017 shared task differs from most
previous multilingual dependency parsing tasks
not only by using cross-linguistically consistent
syntactic representations from the UD project
(Nivre et al., 2016), but also by requiring sys-
tems to start from raw text, as opposed to pre-
segmented and (often) pre-annotated words and
sentences. Since systems are only evaluated on
their output dependency trees (and indirectly on
the word and sentence segmentation implicit in
these trees), developers are free to choose what
additional linguistic features (if any) to predict as
part of the parsing process.

The Uppsala team has adopted a minimalistic
stance in this respect and developed a system that
does not predict any linguistic structure over and
above a segmentation into sentences and words
and a dependency structure over the words of each
sentence. In particular, the system makes no use
of part-of-speech tags, morphological features, or

lemmas, despite the fact that these annotations are
available in the training and development data.

In this way, we go against a strong tradition in
dependency parsing, which has generally favored
pipeline systems with part-of-speech tagging as a
crucial component, a tendency that has probably
been reinforced by the widespread use of data sets
with gold tags from the early CoNLL tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007). Even
models that perform joint inference, like those of
Hatori et al. (2012) and Bohnet et al. (2013), de-
pend heavily on part-of-speech tags, so we were
unlikely to reach top scores in the shared task
without them. However, from a scientific perspec-
tive, we thought it would be interesting to explore
how far we can get with a bare-bones system that
does not predict redundant linguistic categories.
In addition, we take inspiration from recent work
showing that character-based representations can
at least partly obviate the need for part-of-speech
tags (Ballesteros et al., 2015).

The Uppsala system is a very simple pipeline
consisting of two main components. The first is a
model for joint sentence and word segmentation,
which uses the BiRNN-CRF framework of Shao
et al. (2017) to predict sentence and word bound-
aries in the raw input and simultaneously marks
multiword tokens that need non-segmental analy-
sis. The latter are handled by a simple dictionary
lookup or by an encoder-decoder network. We use
a single universal model regardless of writing sys-
tem, but train separate models for each language.
The segmentation component is described in more
detail in Section 2.

The second main component of our system is a
greedy transition-based parser that predicts the de-
pendency tree given the raw words of a sentence.
The starting point for this model is the transition-
based parser described in Kiperwasser and Gold-
berg (2016b), which relies on a BiLSTM to learn

207

informative features of words in context and a
feed-forward network for predicting the next pars-
ing transition. The parser uses the arc-hybrid tran-
sition system (Kuhlmann et al., 2011) with greedy
inference and a dynamic oracle for exploration
during training (Goldberg and Nivre, 2013). For
the shared task, the parser has been modified to use
character-based representations instead of part-of-
speech tags and to use pseudo-projective parsing
to capture non-projective dependencies (Nivre and
Nilsson, 2005). The parsing component is further
described in Section 3.

Our original plans included training a single
universal model on data from all languages, with
cross-lingual word embeddings, but in the limited
time available we could only start exploring two
simple enhancements. First, we constructed word
embeddings based on the RSV model (Basirat and
Nivre, 2017), using universal part-of-speech tags
as contexts (Section 4). Secondly, we used multi-
lingual training data for languages with little or no
training data (Section 5).

Our system was trained only on the training sets
provided by the organizers (Nivre et al., 2017a).
We did not make any use of large unlabeled data
sets, parallel data sets, or word embeddings de-
rived from such data. After evaluation on the of-
ficial test sets (Nivre et al., 2017b), run on the
TIRA server (Potthast et al., 2014), the Uppsala
system ranked 23 of 33 systems with respect to
the main evaluation metric, with a macro-average
LAS F1 of 65.11. We obtained the 2nd highest
score for sentence segmentation overall (89.03),
and top scores for word segmentation on several
languages (but with relatively high variance).

However, after the test phase was concluded,
we discovered two bugs that had affected the re-
sults negatively. For comparison, we therefore
also include post-evaluation results obtained af-
ter eliminating the bugs but without changing any-
thing else, resulting in a macro-average LAS F1
of 70.49. Because of the nature of one of the
bugs, the corrected results were obtained by run-
ning our system on a local server instead of the
official TIRA server (see Section 6). We discuss
our results in Section 6 and refer to the shared task
overview paper (Zeman et al., 2017) for a thor-
ough description of the task and an overview of
the results.

2 Sentence and Word Segmentation

We model joint sentence and word segmentation
as a character-level sequence labeling problem in
a Bi-RNN-CRF model (Huang et al., 2015; Ma
and Hovy, 2016). We simultaneously predict sen-
tence boundaries and word boundaries and iden-
tify multi-word tokens that require further trans-
duction.

In the BiRNN-CRF architecture, characters –
regardless of writing system – are represented as
dense vectors and fed into the bidirectional recur-
rent layers. We employ the gated recurrent unit
(GRU) (Cho et al., 2014) as the basic recurrent
cell. Dropout (Srivastava et al., 2014) is applied to
the output of the recurrent layers, which are con-
catenated and passed further to the first order chain
CRF layer. The CRF layer models conditional
scores over all possible boundary tags given the
features extracted by the BiRNN from the vector
representations of the input characters. Incorpo-
rating the transition scores between the successive
labels, the optimal sequence of labels that indicate
different types of boundaries can be obtained effi-
ciently via the Viterbi algorithm.

As illustrated in Figure 1, following Shao et al.
(2017), we employ the boundary tags B, I, E, and
S to indicate a character positioned at the begin-
ning (B), inside (I), or at the end (E) of a word, or
occurring as a single-character word (S). To this
standard tag set, we add four corresponding tags
(K, Z, J, D) to label corresponding positions in
multi-word tokens, and a special tag X to mark
characters, mostly spaces, that do not belong to
words/tokens. Finally, we mark a character that
occurs at the end of a sentence. T is employed if
the character is a single-character word and U is
used otherwise.

Multi-word tokens are transcribed without con-
sidering contextual information. For most lan-
guages, the number of unique multi-word tokens
is rather limited and can be covered by dictio-
naries built from the training data. However, if
there are more than 200 unique multi-word to-
kens contained in the training data, we employ an
attention-based encoder-decoder (Bahdanau et al.,
2014) equipped with shared long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the basic recurrent cell. At test time, multi-word
tokens are first queried in the dictionary. If not
found, the segmented words are generated via the
encoder-decoder as a sequence-to-sequence trans-

208

Characters: ... La sede del condado es Ottawa. En ...
Tags: ... BEXBIIEXKZJXBIIIIIEXBEXBIIIIETXBE ...

Figure 1: Tags employed for sentence and word segmentation. Note that the token del is a multiword
token that should be transcribed to de and el and should therefore be tagged KZJ instead of BIE.

Character embedding size 50
GRU/LSTM state size 200
Optimizer Adagrad
Initial learning rate (main) 0.1
Decay rate 0.05
Gradient Clipping 5.0
Initial learning rate (encoder-decoder) 0.3
Dropout rate 0.5
Batch size 10

Table 1: Hyper-parameters for segmentation.

duction.
Table 1 shows the hyper-parameters adopted for

the main network as well as the encoder-decoder,
which is trained separately from the main net-
work. We use one set of parameters for all tree-
banks. The weights of the neural networks, in-
cluding the embeddings, are initialized using the
scheme introduced in Glorot and Bengio (2010).
The network is trained using back-propagation,
and all embeddings are fine-tuned during training
by back-propagating gradients. Adagrad (Duchi
et al., 2011) with mini-batches is employed for
optimization. The initial learning rate η0 is up-
dated with a decay rate ρ as ηt = η0

ρ(t−1)+1 when
training the main network, where t is the index of
the current epoch. We use early stopping (Yao
et al., 2007) with respect to the performance of
the model on the validation sets. For the encoder-
decoder, 5% of the training data is randomly sub-
tracted for validation. The score is calculated via
how many outputs exactly match the references.
For the main network, the F1-score is employed to
measure the performance of the model after each
epoch during training on the development set.

The general segmentation model is applied to
all languages with small variations for Chinese
and Vietnamese. For Chinese, the concatenated
trigram model introduced in Shao et al. (2017) is
employed. For Vietnamese, we first separate punc-
tuation marks and then use space-delimited units
as the basic elements for boundary prediction.

Bug in test results: After the official evalua-
tion, we discovered a bug in the segmenter, which

affected words and punctuation marks immedi-
ately before sentence boundaries. After fixing the
bugs, both word segmentation and sentence seg-
mentation results improved, as seen from our post-
evaluation results included in Section 6.

3 Dependency Parsing

The transition-based parser from Kiperwasser and
Goldberg (2016b) uses a configuration containing
a buffer B, a stack Σ, and a set of arcs A. In the
initial configuration, all words from the sentence
plus a root node are in the buffer and the arc set
is empty. A terminal configuration has a buffer
with just the root and an empty stack, and the arc
set then forms a tree spanning the input sentence.
Parsing consists in performing a sequence of tran-
sitions from the initial configuration to the termi-
nal one, using the arc-hybrid transition system,
which allows three types of transitions, SHIFT,
LEFT-ARCd and RIGHT-ARCd, defined as in Fig-
ure 2.

The LEFT-ARCd transition removes the first
item on top of the stack (i) and attaches it as a
modifier to the first item of the buffer j with label
d, adding the arc (j, d, i). The RIGHT-ARCd tran-
sition removes the first item on top of the stack (j)
and attaches it as a modifier to the next item on
the stack (i), adding the arc (i, d, j). The SHIFT

transition moves the first item of the buffer i to the
stack. To conform to the constraints of UD repre-
sentations, we have added a new precondition to
the LEFT-ARCd transition to ensure that the spe-
cial root node has exactly one dependent. Thus, if
the potential head i is the root node, LEFT-ARCd is
only permissible if the stack contains exactly one
element (in which case the transition will lead to
a terminal configuration). This precondition is ap-
plied only at parsing time and not during training.

A configuration c is represented by a feature
function φ(·) over a subset of its elements and
for each configuration, transitions are scored by a
classifier. In this case, the classifier is a multi-layer
perceptron (MLP) and φ(·) is a concatenation of
BiLSTM vectors on top of the stack and the be-

209

Initialization: c0(x = (w1, . . . , wn)) = ([], [1, . . . , n, 0], ∅)
Termination: Ct = {c ∈ C | c = ([], [0], A)}

Transition Condition
LEFT-ARCd (σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j, d, i)}) j 6= 0 ∨ σ = []

RIGHT-ARCd (σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, d, j)})
SHIFT (σ, i|β,A)⇒ (σ|i, β, A) i 6= 0

Figure 2: Transitions for the arc-hybrid transition system with an artificial root node (0) at the end of the
sentence. The stack Σ is represented as a list with its head to the right (and tail σ) and the buffer B as a
list with its head to the left (and tail β).

ginning of the buffer. The MLP scores transitions
together with the arc labels for transitions that
involve adding an arc (LEFT-ARCd and RIGHT-
ARCd). For more details, see Kiperwasser and
Goldberg (2016b).

The main modification of the parser for the
shared task concerns the construction of the
BiLSTM vectors, where we remove the reliance
on part-of-speech tags and instead add character-
based representations. For an input sentence of
length n with words w1, . . . , wn, we create a se-
quence of vectors x1:n, where the vector xi rep-
resenting wi is the concatenation of a word em-
bedding, a pretrained embedding, and a character
vector. We construct a character vector che(wi)
for each wi by running a BiLSTM over the char-
acters chj (1 ≤ j ≤ m) of wi:

che(wi) = BILSTM(ch1:m)

As in the original parser, we also concatenate these
vectors with pretrained word embeddings pe(wi).
The input vectors xi are therefore:

xi = e(wi) ◦ pe(wi) ◦ che(wi)
Our pretrained word embeddings are further de-

scribed in Section 4. A variant of word dropout is
applied to the word embeddings, as described in
Kiperwasser and Goldberg (2016a), and we apply
dropout also to the character vectors.

Finally, each input element is represented by a
BiLSTM vector, vi:

vi = BILSTM(x1:n, i)

For each configuration c, the feature extractor con-
catenates the BiLSTM representations of core ele-
ments from the stack and buffer. Both the embed-
dings and the BiLSTMs are trained together with
the model. The model is represented in Figure 3.

Internal word embedding dimension 100
Pre-trained word embedding dimension 50
Character embedding dimension 12
Character BI-LSTM Dimensions 100
Hidden units in MLP 100
BI-LSTM Layers 2
BI-LSTM Dimensions (hidden/output) 200 / 200
α (for word dropout) 0.25
Character dropout 0.33
pagg (for exploration training) 0.1

Table 2: Hyper-parameter values for parsing.

With the aim of training a multilingual parser,
we additionally created a variant of the parser
which adds a language embedding to input vectors
in a spirit similar to what is done in Ammar et al.
(2016). In this setting, the vector for each word xi
is the concatenation of a word embedding, a pre-
trained word embedding, a character vector, and
a language embedding li with the language corre-
sponding to the word. As was mentioned in the
introduction, our experiments with this model was
limited to the languages with little data. Those ex-
periments are described in Section 5.

xi = e(wi) ◦ pe(wi) ◦ che(wi) ◦ e(li)

The final change we made to the parser was to
use pseudo-projective parsing to deal with non-
projective dependencies. Pseudo-projective pars-
ing, as described in Nivre and Nilsson (2005),
consists in a pre-processing and a post-processing
step. The pre-processing step consists in pro-
jectivising the training data by reattaching some
of the dependents and the post-processing step
attempts to deprojectivise trees in output parsed
data. In order for information about non-
projectivity to be recoverable after parsing, when

210

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

STACK

jumped root

BUFFER

Configuration:

the brown fox

concat

Cf Cf Cf

Cb Cb Cb

h et

Character BiLSTM:

XX

b r o n f o x j u e dw m pt h e

Scoring:

(score(LEFT−ARC),score(RIGHT−ARC),score(SHIFT))

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

e(brown)

pe(brown)

e(fox)

pe(fox)

e(jumped)

pe(jumped)pe(the)

e(the)

Figure 3: Illustration of the neural model scheme of the transition-based parser when calculating the scores of the possible
transitions in a given configuration. The configuration (stack and buffer) is depicted in the top left corner. Each transition is
scored using an MLP that is fed the vectors of the first word in the buffer and the three words at the top of the stack, and a
transition is picked greedily. Each vector is a BiLSTM encoding of the word. Each xi is a concatenation of a word vector, a
character vector, and an additional external embedding vector for the word. Character vectors are obtained using a BiLSTM
over the characters of the word. An example is given at the bottom left of the figure. The figure depicts a single-layer BiLSTM,
while in practice we use two layers. When parsing a sentence, we iteratively compute scores for all possible transitions and
apply the best scoring action until the final configuration is reached.

projectivising, arcs are renamed to encode infor-
mation about the original parent of dependents
which get re-attached. We used MaltParser (Nivre
et al., 2006) for this. More specifically, we used
the head schema, as described in Nivre and Nils-
son (2005). This method increases the size of the
dependency label set. In order to keep training ef-
ficient, we cap the number of dependency relations
to the 200 most frequently occurring ones in the
training set.

We did no hyper-parameter tuning for the parser
component but instead mostly used the values that
had been found to work well in Kiperwasser and
Goldberg (2016b), except for the BiLSTM hidden
layer which we increased as we had increased the
dimensions of the output layer by using pseudo-
projective parsing. The hyper-parameter values
we used are in Table 2. We used the dynamic or-
acle as well as the extended feature set (the top
3 items on the stack together with their rightmost
and leftmost modifiers as well as the first item on
the buffer and its leftmost modifier). We trained
the parsers for 30 epochs and picked the model
that gave the best LAS score on the development
sets for languages for which we had a development
set, the last epoch otherwise.

The code is available at https://github.

com/UppsalaNLP/uuparser.

Bug in test results: Our official test run suffered
from a bug in the way serialization is handled
in dynet. As reported in https://github.com/clab/
dynet/issues/84, results may differ if the machine
on which a model is used does not have the exact
same version of boost as the machine on which the
model was trained. Our post-evaluations results
were obtained by using exactly the same models
but parsing the test data on the machine on which
they were trained.

4 Pre-Trained Word Embeddings

Our word embedding method is based on the RSV
method introduced by Basirat and Nivre (2017).
RSV extracts a set of word vectors in three main
steps. First it builds a co-occurrence matrix for
words that appear in certain contexts. Then, it nor-
malizes the data distribution in the co-occurrence
matrix by a power transformation. Finally, it
builds a set of word vectors from the singular vec-
tors of the transformed co-occurrence matrix.

We propose to restrict the contexts used in RSV
to a set of universal features provided by the UD
corpora. The universal features can be any com-
bination of universal POS tags, dependency re-

211

lations, and other universal tags associated with
words. Given the set of universal features, each
word is associated with a high-dimensional vec-
tor whose dimensions correspond to the universal
features. The space formed by these vectors can be
seen as a multi-lingual syntactic space which cap-
tures the universal syntactic properties provided
by the UD corpora.

We define the set of universal features as
{tw, th, (tw, d, th)}, where tw and th are the uni-
versal POS tags of the word of interest and its par-
ent in a dependency tree, and d is the dependency
relation between them. It results in a set of uni-
versal word vectors with fairly large dimensions,
13 794. The values of the vector elements are set
with the probability of seeing each universal fea-
ture given the word. These vectors are then cen-
tered around their mean and the final word vectors
are built from the top k right singular vectors of the
matrix formed by the high-dimensional universal
word vectors:

Υ = λ
√
vVvk (1)

where v is the size of vocabulary, V is the matrix
of right singular vectors, λ is the scaling factor that
controls the variance of the data.

The word vectors are extracted from the train-
ing part of the UD corpora for all words whose
frequencies exceed 5, resulting in 204, 024 unique
words. The number of dimensions, k, is set to 50
and the scaling parameter λ is set to 0.1 as sug-
gested by Basirat and Nivre (2017). Adding these
pre-trained word embeddings improved results on
development sets by 0.44 points on average.

5 Multilingual Models

The shared task contained four surprise languages,
Buryat, Kurmanji, North Sami, and Upper Sor-
bian, for which there was no data available until
the last week, when we had a few sample sen-
tences for each language. Two of the ordinary lan-
guages, Kazakh and Uyghur, had a similar situa-
tion, since they had less than 50 sentences in their
training data. We therefore decided to treat those
two languages like the surprise languages.

For segmentation, we utilized the small amount
of available annotated data as development sets.
We applied all the segmentation models trained on
larger treebanks and adopted the one that achieved
the highest F1-score as the segmentation model for
the surprise language. We thus selected Bulgarian

for Buryat, Slovenian for North Sami, Czech for
Upper Sorbian, Turkish for Kurmanji, Russian for
Kazakh as well as Persian for Uyghur.

For parsing, we trained our parser on a small
set of languages. For each surprise language, we
used the little data we had for that language, and
in addition a set of other languages, which we will
call support languages. In this setting we took ad-
vantage of the language embedding implemented
in the parser. Since the treebanks for the support
languages have very different sizes, we limited the
number of sentences from each treebank used per
epoch to 2263 for North Sami and 2500 for the
other languages, in order ot use a more balanced
sample. For each epoch we randomly picked a
new sample of sentences for each treebank larger
than this ceiling. We chose the support languages
for each surprise language based on four criteria:

• Language relatedness, by including the lan-
guages that were most closely related to each
surprise language.

• Script, by choosing at least one language
sharing the same script as each surprise lan-
guage, which might help our character em-
beddings.

• Geographical closeness to the surprise lan-
guage, since geographically close languages
often influence each other and can share
many traits and have loan words.

• Performance of single models, by evaluating
individual models for all other languages on
each surprise language, and choosing support
languages from the set of best performing
languages.

We used a single multi-lingual model for Kazakh
and Uyghur, since they are related. Table 3 shows
the support languages used for each surprise lan-
guage. Since we used all available surprise lan-
guage data in the training, we could not use it
also as development data, to pick the best epoch.
We instead used the average LAS score on the
development data for all support languages that
had available development data. We did not use
the pseudo-projective method for the surprise lan-
guages, and we did not use pre-trained word em-
beddings.

212

Surprise Support languages
Buryat Russian-SynTagRusgps, Russiangs, Japanesepr, Kazakhps, Bulgarians

Kurmanji Turkishgs, Persianr, Finnish-FTBps, Germanps, Slovenian-SSTps

North Sami Finnishrs, Finnish-FTBprs, Estonianrs, Hungarianprs, Norwegian-Nynorskgps

Upper Sorbian Czechprs, Slovakprs, Slovenianprs, Polishprs, Germangs

Kazakh+Uyghur Russian-SynTagRusgps, Hungarianp, Turkishpr, Persians, Arabics

Table 3: Support languages, and treebanks, used for each surprise language. Superscripts show reason
for inclusion: r(elated), s(cript), g(eography), p(erformance).

6 Results and Discussion

Table 4 summarizes the results for the Uppsala
system with respect to dependency accuracy (LAS
F1) as well as sentence and word segmentation.
For each metric, we report our official test score
(Test), the corrected score after eliminating the
two bugs described in Section 2 and Section 3
(Corr),1 and the difference between the corrected
score and the official UDPipe baseline (Straka
et al., 2016) (positive if we beat the baseline and
negative otherwise). To make the table somewhat
more readable, we have also added a simple color
coding. Post-evaluation scores that are signifi-
cantly higher/lower than the baseline are marked
with two shades of green/red, with brighter colors
for larger differences. Thresholds have been set to
1 and 3 points for LAS, 0.5 and 1 points for Sen-
tences, and 0.1 and 0.5 points for Words.

Looking first at the LAS scores, we see that our
system improves over the baseline in most cases
and by a comfortable margin. In addition, we think
we can distinguish three clear patterns:

• Our post-evaluation results are substantially
worse than the baseline (only) on the six low-
resource languages. This indicates that our
cross-lingual models perform poorly without
the help of part-of-speech tags when there is
little training data. It should, however, also
be kept in mind that the baseline had a spe-
cial advantage here as it was allowed to train
segmenters and taggers using jack-knifing on
the test sets.

• Our post-evaluation results are substantially
better than the baseline on languages with
writing systems that differ (more or less)

1Note that the overview paper mentions the second of
these bugs (i.e. the dynet bug) and reports our results with
only that bug fixed. Note also that, for practical reasons,
all our post-evaluation results were obtained on the system
where models had been trained, as mentioned in the intro-
duction.

from European style alphabetic scripts, in-
cluding Arabic, Chinese, Hebrew, Japanese,
Korean, and Vietnamese. For all languages
except Korean, this can be partly (but not
wholly) explained by more accurate word
segmentation results.

• Our post-evaluation results are substantially
better than the baseline for a number of mor-
phologically rich languages, including An-
cient Greek, Arabic, Basque, Czech, Finnish,
German, Latin, Polish, Russian, and Slove-
nian. This shows that character-based repre-
sentations are effective in capturing morpho-
logical regularities and compensate for the
lack of explicit morphological features.

To further investigate the efficiency of our cross-
lingual models, we ran them for two of the sup-
port languages with medium size training data that
were not affected by the capping of data. Table 5
shows the results of this investigation. For Esto-
nian the North Sami cross-lingual model that in-
cludes the closely related Finnish, was better than
the monolingual model. For Hungarian, on the
other hand, the monolingual model was better than
both cross-lingual models. The model for North
Sami, with related languages did perform better
than the model for Kazakh+Uyghur with only un-
related languages, however. These results indicate
that cross-lingual training without part-of-speech
tags can help for a language with a medium sized
treebank, but it seems that closely related support
languages are needed, which was not the case for
any of the surprise languages.

For word segmentation, we have already noted
that our universal model works well on some of
the most challenging languages, such as Chinese,
Japanese and Vietnamese, and also on the Semitic
languages Arabic and Hebrew. This is not surpris-
ing, given that the model was first developed for
Chinese word segmentation, but it is interesting to

213

LAS F1 Sentences Words
Language Test Corr Diff Test Corr Diff Test Corr Diff
ar 65.96 68.68 3.38 77.32 78.21 -6.36 94.81 94.99 1.30
ar pud 47.34 50.70 7.56 97.18 98.66 -1.34 94.32 95.30 4.48
bg 81.25 85.38 1.74 93.36 95.23 2.40 99.70 99.91 0.00
bxr 17.14 18.01 -13.49 86.93 87.37 -4.44 97.77 97.71 -1.64
ca 85.42 87.08 1.69 99.43 99.59 0.64 99.78 99.79 -0.18
cs 85.88 86.83 3.96 93.97 92.79 0.76 99.96 99.98 0.08
cs cac 83.66 85.75 3.29 99.76 99.68 -0.32 99.97 99.99 0.00
cs cltt 59.84 75.67 4.03 92.99 96.95 1.89 99.54 99.78 0.43
cs pud 80.21 82.27 2.47 94.18 95.55 -0.88 98.42 99.25 -0.04
cu 57.88 67.04 4.28 39.71 43.72 7.67 99.73 99.94 -0.02
da 70.63 77.70 4.32 81.12 83.41 4.05 99.93 100.00 0.31
de 72.61 75.27 6.16 80.47 81.47 2.36 99.44 99.67 0.02
de pud 68.04 70.90 4.37 87.16 86.83 0.34 96.42 96.43 -1.57
el 72.77 80.46 1.20 90.38 91.09 0.30 99.83 99.80 -0.08
en 75.88 79.62 3.78 76.91 80.26 7.04 98.38 99.05 0.38
en lines 67.52 75.80 2.86 86.84 87.17 1.33 99.82 99.96 0.02
en partut 63.55 76.11 2.47 98.20 98.10 0.59 99.55 99.54 0.05
en pud 75.61 80.49 1.54 95.28 96.15 -0.98 99.45 99.59 -0.07
es 82.17 84.26 2.79 95.37 94.16 0.01 99.81 99.84 0.15
es ancora 84.60 86.79 3.01 98.06 98.46 1.41 99.89 99.92 -0.03
es pud 78.16 79.01 1.36 93.41 93.39 -0.03 99.39 99.34 -0.13
et 49.01 58.67 -0.12 92.74 93.23 8.03 99.69 99.90 0.13
eu 69.84 73.82 4.67 99.67 100.00 0.42 99.97 100.00 0.04
fa 76.13 81.89 2.65 98.75 99.50 1.50 99.32 99.61 -0.03
fi 74.59 78.41 4.66 90.88 91.48 6.92 99.62 99.71 0.08
fi ftb 71.85 76.25 2.22 86.98 87.16 3.33 99.91 99.99 0.11
fi pud 76.22 80.05 1.40 92.02 91.64 -2.03 99.39 99.59 -0.02
fr 80.36 83.66 2.91 93.85 94.32 0.73 99.50 99.53 0.66
fr partut 69.17 80.84 3.46 99.13 99.50 1.50 99.01 99.50 0.55
fr pud 73.51 75.25 1.62 93.52 91.33 -0.99 97.38 97.34 -0.83
fr sequoia 74.96 82.85 2.87 81.89 84.95 1.20 99.31 99.48 0.42
ga 52.81 63.35 1.83 95.70 95.35 -0.46 99.62 99.78 0.49
gl 74.09 79.01 1.70 96.36 96.83 0.68 99.91 99.96 0.04
gl treegal 56.79 65.85 0.03 82.71 83.79 2.16 98.42 98.23 -0.39
got 56.69 62.62 2.81 29.65 35.01 7.16 100.00 100.00 0.00
grc 50.94 58.83 2.79 98.70 98.93 0.50 96.78 99.98 0.03
grc proiel 63.86 69.04 3.82 49.31 48.86 5.75 99.99 99.98 -0.02
he 63.72 67.75 10.52 99.29 99.69 0.30 91.18 91.19 6.37
hi 74.34 89.13 2.36 99.29 99.11 -0.09 92.74 99.99 -0.01
hi pud 45.15 53.31 2.46 94.85 95.00 4.17 92.27 98.65 0.84
hr 75.43 79.51 2.33 97.75 97.25 0.33 99.90 99.91 -0.02
hsb 45.63 47.92 -5.91 91.65 89.88 -0.81 99.28 98.76 -1.08
hu 54.55 65.90 1.60 96.56 97.65 3.80 99.85 99.89 0.07
id 72.11 76.13 1.52 92.66 93.55 2.40 100.00 100.00 0.01
it 84.84 87.33 2.05 99.07 99.38 2.28 99.85 99.86 0.13
it pud 83.28 85.59 1.89 93.39 93.90 -2.68 99.27 99.28 0.11
ja 65.71 81.54 9.33 94.92 94.92 0.00 84.26 93.59 3.91
ja pud 71.80 83.26 6.98 97.31 97.31 2.42 86.34 94.30 3.24
kk 18.24 17.14 -7.37 87.52 86.26 4.88 96.56 96.46 1.55
kmr 19.37 20.39 -11.96 94.49 94.08 -2.94 97.15 97.06 -1.79
ko 69.87 74.72 15.63 92.39 93.01 -0.04 99.63 99.99 0.26
la 38.93 46.26 2.49 98.04 97.41 -0.68 100.00 100.00 0.01
la ittb 80.04 82.34 5.36 94.34 92.93 -0.31 99.97 99.99 0.00
la proiel 58.74 63.17 5.63 30.24 34.66 8.86 99.99 100.00 0.00
lv 52.36 59.75 -0.20 93.45 93.65 -4.94 99.20 99.13 0.22
nl 69.83 74.41 5.51 75.15 76.16 -0.98 99.73 99.85 -0.03
nl lassysmall 77.56 83.58 5.43 85.33 87.00 8.38 99.85 99.97 0.04
no bokmaal 83.22 86.04 2.77 96.44 96.20 0.44 99.84 99.87 0.12
no nynorsk 81.12 84.41 2.85 94.56 93.67 2.44 99.93 99.92 0.07
pl 77.39 82.33 3.55 98.91 99.46 0.55 99.90 99.93 0.05
pt 80.97 83.25 1.14 90.33 90.43 0.64 99.37 99.45 -0.07
pt br 86.15 88.19 2.83 96.51 97.04 0.20 99.80 99.87 0.03
pt pud 72.43 74.48 0.52 93.58 94.50 -1.15 98.39 98.48 -0.94
ro 79.40 81.68 1.80 96.57 96.02 2.60 99.77 99.75 0.11
ru 71.65 77.99 3.96 97.16 96.91 0.49 99.83 99.90 -0.01
ru pud 65.22 70.78 2.47 98.66 98.80 -0.15 97.31 97.34 0.16
ru syntagrus 88.04 89.61 2.85 98.64 98.78 0.97 99.51 99.63 0.06
sk 69.35 75.98 3.23 85.32 87.17 3.64 99.97 99.96 -0.04
sl 80.14 84.16 3.01 98.67 98.11 -1.13 99.96 99.97 0.01
sl sst 36.97 46.76 0.31 19.03 19.52 2.80 97.75 100.00 0.18
sme 11.70 11.72 -18.88 98.27 97.59 -1.20 98.44 96.75 -3.13
sv 73.45 79.86 3.13 97.26 95.96 -0.41 99.86 99.77 -0.07
sv lines 69.42 76.37 2.08 87.89 88.12 1.68 99.86 99.99 0.01
sv pud 62.40 69.52 -1.10 84.63 81.14 -9.06 98.56 98.47 0.21
tr 48.29 52.84 -0.35 96.29 96.44 -0.19 96.57 97.51 -0.38
tr pud 29.79 32.84 -1.69 92.08 90.75 -3.16 96.82 96.93 0.31
ug 28.35 30.98 -3.20 68.76 69.36 5.81 97.82 98.74 0.22
uk 47.00 59.33 -1.43 90.04 92.18 -0.41 99.41 99.52 -0.29
ur 64.96 79.31 2.62 98.60 98.60 0.28 94.55 100.00 0.00
vi 37.99 42.68 5.21 87.30 89.49 -3.10 86.63 86.70 4.23
zh 60.47 65.25 7.85 98.20 98.80 0.61 93.81 93.43 4.52
Average 65.11 70.49 2.14 89.03 89.48 0.99 98.20 98.79 0.30

Table 4: Results for LAS F1, sentence and word segmentation. Test = official test score; Corr = corrected
score; Diff = difference Corr − Baseline.

214

Language Models
sme kk-ug mono

Hungarian 62.67 61.64 65.91
Estonian 59.59 – 58.46

Table 5: LAS F1 scores comparing cross-lingual
and monolingual models.

see that it generalizes well and gives competitive
results also on European style alphabetic scripts,
where it is mostly above or very close to the base-
line. After fixing the bug mentioned in Section 2,
our word segmentation results are only 0.02 below
the best official result.

The sentence segmentation results are generally
harder to interpret, with much greater variance and
really low scores especially for some of the classi-
cal languages that lack modern punctuation. Nev-
ertheless, we can conclude that performing sen-
tence segmentation jointly with word segmenta-
tion is a viable approach, as our system achieved
the second highest score of all systems on sentence
segmentation in the official test results. After bug
fixing, it is better than any of the official results.

All in all, we are pleased to see that a bare-bones
model, which does not make use of part-of-speech
tags, morphological features or lemmas, can give
reasonable performance on a wide range of lan-
guages.

7 Conclusion

We have described the Uppsala submission to the
CoNLL 2017 shared task on parsing from raw
text to universal dependencies. The system con-
sists of a segmenter, which extracts words and
sentences from a raw text, and a parser, which
builds a dependency tree over the words of each
sentence, without relying on part-of-speech tags
or any other explicit morphological analysis. Our
post-evaluation results (after correcting two bugs)
are on average 2.14 points above the baseline,
despite very poor performance on surprise lan-
guages, and the system has competitive results
especially on languages with rich morphology
and/or non-European writing systems. Given the
simplicity of our system, we find the results very
encouraging.

There are many different lines of future research
that we want to pursue. First of all, we want to
explore the use of multilingual models with lan-
guage embeddings, trained on much larger data
sets than was practically possible for the shared

task. In this context, we also want to investigate
the effectiveness of our multilingual word embed-
dings based on universal part-of-speech tags, de-
riving them from large parsed corpora instead of
the small training sets that were used for the shared
task. Finally, we want to extend the parser so that
it can jointly predict part-of-speech tags and (se-
lected) morphological features. This will allow us
to systematically study the effect of using explicit
linguistic categories, as opposed to just relying on
inference from raw words and characters. For seg-
mentation, we want to investigate how our model
deals with multiword tokens across languages.

Acknowledgments

We are grateful to the shared task organizers and
to Dan Zeman in particular, and we acknowledge
the computational resources provided by CSC in
Helsinki and Sigma2 in Oslo through NeIC-NLPL
(www.nlpl.eu). Our parser will be made available
in the NLPL dependency parsing laboratory.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics 4:431–444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
pages 349–359.

Ali Basirat and Joakim Nivre. 2017. Real-valued syn-
tactic word vectors (RSV) for greedy neural depen-
dency parsing. In Proceedings of the 21st Nordic
Conference on Computational Linguistics (NoDaL-
iDa). pages 21–28.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajič. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Association
for Computational Linguistics 1:415–428.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL). pages
149–164.

215

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. pages 249–256.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics 1:403–414.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, POS tagging, and dependency
parsing in Chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (ACL). pages 1045–1053.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree
LSTMs. Transactions of the Association for Com-
putational Linguistics 4:445–461.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
673–682.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics.
pages 1064–1074.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007. pages 915–
932.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC). pages 2216–2219.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL). pages 99–106.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative (CLEF 14).
Springer, Berlin Heidelberg New York, pages 268–
299.

Yan Shao, Christian Hardmeier, Jörg Tiedemann, and
Joakim Nivre. 2017. Character-based joint seg-
mentation and POS tagging for Chinese using bidi-
rectional RNN-CRF. ArXiv e-prints: 1704.01314
(cs.CL).

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings

216

of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
2007. On early stopping in gradient descent learn-
ing. Constructive Approximation 26(2):289–315.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

217

