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Abstract

This paper describes UALing’s approach
to the CoNLL 2017 UD Shared Task us-
ing corpus selection techniques to re-
duce training data size. The methodol-
ogy is simple: We use similarity mea-
sures to select a corpus from available
training data (even from multiple corpora
for surprise languages) and use the re-
sulting corpus to complete the parsing
task. The training and parsing is done
with the baseline UDPipe system (Straka
et al., 2016). While our approach re-
duces the size of training data signifi-
cantly, it retains performance within 0.5%
of the baseline system. Due to the reduc-
tion in training data size, our system per-
forms faster than the naı̈ve, complete cor-
pus method. Specifically, our system runs
in less than 10 minutes, ranking it among
the fastest entries for this task. Our sys-
tem is available at https://github.
com/CoNLL-UD-2017/UALING.

1 Introduction

Universal Dependencies (UDs) (Nivre et al., 2016)
includes corpora from different languages anno-
tated with identical types of labels. This allows
for the examination of different theoretical (Schus-
ter and Manning, 2016) and practical applications
such as the CoNLL 2017 UD Shared Task (Zeman
et al., 2017).1 The specific practical task presented
here involves using these corpora in a supervised
learning approach in order to achieve the task’s
goal: Training with the multilingual UD data in
order to find dependency relationships not just for

1http://universaldependencies.org/
conll17

these known languages, but also for unknown or
little-known language.2

1.1 Theoretical Concepts
Supervised learning occurs when humans encode
their judgment into a set of data, which is in
turn used to train statistical models with the ulti-
mate goal of using these models to make accurate
predictions for previously unseen datasets—which
are often too large (and costly) or otherwise un-
available for humans to judge manually. Build-
ing these models of human judgment is neces-
sary in cases where explicit rules are too complex
to encode, ambiguous, or where such rules are
not known; rather than explicitly and programat-
ically encoding rules, supervised learning mod-
els ”learn” or at least ”contain” the rules through
models generated from human-judged data. Ide-
ally, the models are used to apply those same rules
to the unseen datasets.

The rules contained in human-judged train-
ing data are, necessarily, constrained to the do-
main from which the data derives.3 Unknown
domains—such as unknown languages—are dif-
ficult to handle, because the rules from another
known domain do not necessarily apply and the
rules for the target domain are thus not readily
known. Creating new corpora for specific do-
mains (which occurs often for biomedical-domain
data, for instance) drastically improves accuracy
for the given corpus domain (Clegg and Shepherd,
2005). The UD corpora extend training data across

2”Little-known” here implies that the language has little
to no human-annotated data—also known as under-resourced
languages.

3What constitutes a ”domain” may vary across different
contexts. Here, the term is used generally to denote sources
of data for which there exist significant similarity in gram-
matical rules, such as entire languages or much smaller top-
ics. In the context of the task, ”domain” generally refers to a
single language, as our target data is of unknown topics but
of a single language.
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numerous different language-domains. However,
adapting currently known data to new domains (in-
cluding new languages) is a difficult problem, par-
ticularly when human judgment is not available to
aid in the adaption.

Similarly, in many cases training data contains
rules not relevant or even contradictory to those
in unseen data. This occurs both interdomain—
where the training data contains data from a do-
main which is not relevant to the unseen data—and
intradomain—where training data from a domain
is not relevant to other data in the same domain.4

This data may not be necessary to building su-
pervised learning models because it does not con-
tain relevant rules; in some circumstances, training
data may even introduce rules to the model which
contradict rules in the unseen data.5 Still other
training data contains rules of marginal signifi-
cance to the model, where such rules apply only
to an extremely small segment of unseen data.

Without using supervised learning methods
which actively adapt the rules of these data types
to incoming unseen data, it is possible to (1) im-
prove algorithmic and model performance by re-
moving contradictory-rule training data, (2) im-
prove algorithmic performance without model per-
formance loss by removing irrelevant-rule train-
ing data, and (3) improve algorithmic performance
without significant performance loss by removing
marginal-significance rule data.

1.2 Resulting Methodology

For this paper, we introduce several methods of
automated corpus refinement in order to improve
and at best optimize supervised learning by ac-
complishing the goals enumerated above. Specifi-
cally, we propose and evaluate the use of similarity
measures to refine the training data set; these sim-
ilarity metrics ”select” training data of the same
domain and data which is closest in linguistic rules
to the target, unseen data from available corpora.

4Both interdomain and intradomain data are considered
and dealt with by the method proposed here, though the task
focuses on interdomain problems when considering different
language domains. Pure corpus compression, as also dis-
cussed herein, tends to focus on the intradomain problem.

5To illustrate, when considering supervised learning ap-
proaches to parts-of-speech annotating, in the domain of for-
mal scientific literature the word ”as” might more often be
used as a conjunction (as a synonym of ”because”) while in
journalism it might be more often used as an adverb. Models
trained on these different domains would likely result in dif-
ferent outcomes when labeling parts-of-speech due to these
differences.

Using only this similar training data ought to re-
move data containing contradictory or irrelevant
rules. Furthermore, similarity metrics provide an
opportunity to scale the included data by includ-
ing only the most similar data above a threshold,
which also has the potential to remove marginal-
significance training data. This method allows us
to drastically reduce corpus size while retaining
only the most similar—and, ideally, best—training
data. The overall effect on supervised learning
performance depends on how well the employed
similarity metric matches underlying rule similar-
ity.

To accomplish this, we create a corpus process-
ing pipeline in Java which calculates similarity and
selects data. In this implementation, the develop-
ment data set for monolingual parsing is consid-
ered a feature vector (§3), and similarity (§2) is
calculated between this vector and each sentence
in the single monolingual training data of the lan-
guage. We try to find a fixed selection thresh-
old (where sentences above the threshold are kept
in the new training dataset) for all languages for
monolingual parsing that provides the greatest per-
formance, though performance-per-compression
metrics are also valuable in some contexts. The
sample data set for surprise languages also consti-
tutes a feature vector (§4), and the program cal-
culates the similarity between this vector and each
sentence in the training data of all other languages.
We evaluate various selection thresholds to adapt
the under-resourced situation for each surprise lan-
guage. We use UDPipe 1.1 (Straka et al., 2016)
as the baseline system and the UD version 2.0
datasets (Nivre et al., 2017). We are able to re-
duce the size of training data down to 76.25% of
the original in average using the proposed method
while retaining UD parsing results are comparable
to the baseline system. We can actually increase
result accuracies for certain languages by using the
resulting compressed training datasets.

2 Similarity

In our methodology, we employ cosine similar-
ity as our similarity metric. The cosine similar-
ity measure is applied to two latent vectors in two
datasets. Let cos(d1, d2) be the cosine similarity,
which is calculated as follows:

cos(d1, d2) =
Vd1 · Vd2

‖Vd1‖‖Vd2‖
(1)

where two feature vectors of Vd1 and Vd2 are
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Les commotions cérébrales sont devenu si courante dans ce sport qu’ on les considére presque comme la routine .
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Figure 1: Treebank example: tri-gram POS sequences and dependency relationship between POS labels
are extracted for features of the similarity measure.

from training and development datasets. Among
the 64 languages with training data, 56 provide
development data as well. Therefore, we focus on
56 languages for the proposed corpus selection ap-
proaches. The entire development data set makes
one vector, and then the similarity is calculated be-
tween this vector and every sentence in the train-
ing data.

Various feature vectors are described in §3 and
§4 for the monolingual and cross-lingual corpus
selection approaches. For monolingual parsing,
we use training and development corpora of the
single language set for similarity measurement,
extracting the most pertinent training data from the
single corpus in order to compress and/or refine it.
For cross-lingual parsing when we deal with sur-
prise languages, we use training corpora from all
languages, comparing the target language data to
all known UD language corpora. This extracts the
most similar data from other languages, with the
hope that it is also similar in language grammar
and structure—and, hence, similar in annotation.

3 Monolingual Corpus Selection
Approaches

We use the following features for monolingual
parsing:

1. tri-gram POS sequences

2. dependency relationships between two POS
labels

Tri-gram POS sequences represent the tri-gram
universal POS labels (Petrov et al., 2012). Depen-
dency relationships represents the part of speech
labels of a dependent and a dependee, and their
dependency relationships.

3.1 Feature extraction

Tri-gram POS sequences are extracted from Uni-
versal POS labels of the sentence such as DET

NOUN ADJ, NOUN ADJ AUX, etc. (See Figure 1).
Uni-gram and bi-gram POS sequences are ex-
cluded because we found them to not be distinctive
between the languages with Universal POS labels
that we examined. We also extract dependency re-
lationships between POS labels for the similarity
measure such as NOUN nsubj VERB for com-
motions ... devenu where commotions/NOUN is
dependent on devenu/VERB with nsubj depen-
dency relation.6 Figure 2 shows two results by
using the different thresholds for tri-gram POS se-
quences and POS-dep-POS. Using similarity mea-
sures to select the subset of the original training
data, the proposed method slightly outperforms
the results obtained by the original training data
set with the similarity threshold θ = 0.1. Actually,
it improves the parsing result by 0.01% and 0.15%
only using 94% and 77% of the original training
datasets for German and Dutch, respectively.

Table 1 shows our entire results of the corpus se-
lection method for monolingual parsing on the dev
datasets using label attachment score (LAS) per
treebank. We train the full training datasets, and
trimmed datasets using similarity of tri-gram POS
sequences (pos) and POS-dep-POS (dep). We also
train the monolingual parsing models by using re-
sults the intersection of two similarity measures
(intersection). All results are tested on the dev
datasets without 8 languages which do not provide
dev datasets.7 Table 1 also shows results from the

6While current feature selection is based on Universal
POS labels, using language-specific POS labels for feature
selection is one possible way to extend our approach for the
monolingual corpus selection.

7 We also exclude results of ru syntagrus from the table
because of internal formatting errors that our corpus selection
method produced.
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Figure 2: Threshold estimation using Dutch (NL) and German (DE): Similarity thresholds for tri-gram
POS sequences and POS-dep-POS. Y-axis shows LAS (left) and the number of sentences (right).

method of length-based corpus selection (length).
Since the sentence lengths decay after the peak (of
the distribution of the numbers of sentences), our
length-based approach to reduce the data set by
length is to count the number of sentences before
the peak and keep up to that many sentences after
the peak.8 In Table 1, we also indicate ratios of
training datasets. This compression amount uses
the scale indicated by the entire (full) and its com-
pressed rates. For example, while grc uses 54.76%
( ) of the full training data set for length, its
results decreases only by 2.54%. Actually, grc
uses only 83.54% ( ) for intersection, it out-
performs by 0.41%. We improve parsing results
for 33 languages on dev data using the proposed
corpus selection method by measuring similarity.

8This method resulted in some languages having up to
80% of the sentences removed because the peak sentence
length was a small number of words. In order to make sure
that only the outliers in length are removed we change the
algorithm so that the peak value was between ten and twenty
words long. This fixes the problem where languages with a
low peak length having a large amount of sentences removed.

3.2 Discussion

Besides features that we presented, we also inves-
tigate a length-based approach to select the train-
ing data. Instead of using the peak of the distri-
bution of the numbers of sentences as in Table 1,
we calculate the simple average numbers of words
of the sentences in the dev data set. Then, we
obtain the training data set using thresholds with
average ± scale for the number of words, where
scale is the number of max(|avg −max|, |avg −
min|) words of the sentence in the dev data set.
max and min are the maximum and the mini-
mum numbers of words of the sentences. Figure
3 shows results and the number of sentences in
the trimmed training datasets using length thresh-
olds. We vary scale multipliers from 1 to 5. Fil-
tering based on sentence length can potentially re-
move unnecessary size from the training data and
possibly remove some inaccuracy, assuming that
longer sentences increase entropy and become in-
herently less predictable. However, as Figure 3
indicated this simple length-based approach can-
not keep up with the baseline results. While cor-
pus compression levels compare to the similarity-
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full length pos dep intersection
grc 49.79 47.24 48.67 49.49 50.20

grc proiel 65.87 57.95 65.66 66.40 66.69
ar 66.99 51.59 65.56 65.87 67.14
eu 67.48 52.35 66.94 67.86 67.32
bg 83.55 82.30 82.86 83.19 82.98
ca 81.80 75.23 81.26 81.05 81.59
zh 66.20 51.45 66.30 66.45 66.35
hr 73.87 72.64 73.41 74.23 74.33

cs cac 79.89 73.24 79.81 79.48 79.74
cs cltt 67.93 55.10 68.00 68.27 68.00

cs 79.42 76.48 79.42 79.03 79.42
da 72.68 59.66 73.29 73.78 73.83

nl lassysmall 73.05 58.06 73.57 74.12 72.88
nl 72.31 60.26 72.46 73.00 71.56
en 77.67 76.50 77.72 77.78 77.16

en lines 73.77 55.38 73.39 74.35 73.68
en partut 75.66 56.99 74.30 74.97 74.30

et 60.11 44.93 59.87 60.46 59.75
fi 74.99 73.30 73.90 74.76 73.81

fi ftb 75.17 75.17 73.49 74.04 73.18
fr 83.29 80.75 83.54 83.57 83.15

fr sequoia 81.73 80.41 81.74 81.82 81.74
gl 74.95 42.68 74.31 74.95 74.31
de 70.80 66.15 70.81 70.98 70.33

got 66.84 60.09 66.65 67.90 66.76
el 75.41 65.71 75.08 75.08 75.08
he 75.46 73.90 75.18 74.35 75.49
hi 85.85 77.60 85.62 85.49 85.49
hu 67.23 60.76 66.54 66.37 66.54
id 71.88 70.05 71.67 71.65 71.14
it 83.21 79.19 81.48 83.08 82.57

it partut 77.32 65.10 77.24 78.22 77.24
ja 92.42 82.50 92.12 91.99 92.06

ko 51.05 51.05 51.26 51.78 50.53
la ittb 69.43 58.16 69.48 68.71 68.54

la proiel 65.58 65.58 65.14 65.51 64.58
lv 63.02 48.34 61.97 62.78 62.87

no bokmaal 82.34 79.81 81.06 81.59 81.40
no nynorsk 80.20 79.93 79.95 80.07 79.72

cu 71.26 64.04 71.14 71.90 70.63
fa 75.93 50.92 75.73 75.88 75.29
pl 78.81 71.11 78.71 78.96 77.77

pt br 83.44 80.95 83.28 82.87 83.61
pt 81.87 80.74 81.87 80.74 81.87
ro 77.70 69.25 77.14 77.74 76.72
ru 54.21 50.80 54.63 53.77 53.94
sk 75.10 65.66 73.61 75.06 73.69
sl 79.72 69.10 79.19 79.73 79.20

es ancora 80.35 79.65 80.54 80.57 81.02
es 81.57 79.64 80.72 81.29 81.51

sv lines 73.43 69.37 73.92 73.40 73.19
sv 72.88 68.01 71.97 72.92 72.47
tr 53.91 45.92 51.95 54.19 51.99
ur 75.23 66.55 74.60 75.36 74.20
vi 54.16 44.44 53.82 53.38 54.10

average 72.6545 64.9818 72.2545 71.3636 71.0727

Table 1: Monolingual corpus selection results on dev datasets. The numerical entries are LAS, and the
bar indicates corpus compression amount. Length-based is trimmed based on the length of sentences in
training data. Tri-gram POS sequences and POS-relation-POS are trimmed based on similarities between
full training and dev data. intersection applies two feature extraction together (POS sequences and POS-
relation-POS trimming). Threshold is fixed for all languages (0.1). We also indicate ratios of trimming
of training datasets alongside parsing results.
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Figure 4: Threshold estimation for surprise languages: we fix 0.3 for tri-gram POS sequences and we
vary between 0.7 and 0.9 for POS-dep-POS. Y-axis shows LAS.

based approaches, parsing results drop signifi-
cantly. The empirical reasons that naive length-
based approaches do not work well may be worth
further consideration, but as a general matter the
length metric is overly simplistic and may omit
significant amounts of pertinent training data; sim-
ilarity metrics, by contrast, attempt to retain the
most pertinent data.

4 Cross-lingual Similarities for Surprise
Language Parsing

We use the same similarity measures to identify
the training data of the surprise language. Since
surprise languages are provided without training
data, we select the training datasets from training
datasets of all languages by calculating similar-
ities with sample datasets of surprise languages.
Figure 4 shows threshold estimation for surprise
languages. We fix the similarity threshold at 0.3
for tri-gram POS sequences because larger thresh-
olds provide too little training data, and the smaller
thresholds do not compress adequately. Thus, we

tune based on resulting corpus size.
We vary similarity threshold between 0.7 and

0.9 for POS-dep-POS. 0.3 for tri-gram POS se-
quences and 0.7 for POS-dep-POS both result in
a size of about 25% of the training data set for
monolingual corpus selection.

5 Results

For the submitted official results through TIRA
(Potthast et al., 2014), we use the intersection
model for all languages. Since we focus on the
corpus selection, we do not perform additional
preprocessing and we use the provided training
datasets as they are. We fix 0.1 both for tri-
gram POS sequences and POS-dep-POS because
it gives the best results for dev datasets for mono-
lingual training. We fix 0.3 for tri-gram POS se-
quences and we use the thresholds described in Ta-
ble 2 for POS-dep-POS to select training datasets
from all languages for surprise language parsing.
We provide the basic parsing model for PUD tree-
banks, for example, we use cs parsing model for
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bxr hsb kmr sme

0.8 0.9 0.8 0.7

Table 2: POS-dep-POS thresholds for surprise languages

lang BASELINE UDPipe 1.1 UALING

All treebanks 68.35 65.24
Big treebanks only 73.04 69.59

PUD treebanks only 68.33 64.29
Small treebanks only 51.80 52.27

Surprise languages only 37.07 34.57

Table 3: Summary of LAS results

cs pud treebank without any modification. We ob-
tain 65.24% LAS F1 score for the submitted model
where we position 22nd. Table 3 and 4 show the
summaries of LAS and results per treebank, re-
spectively.

6 Discussion and Conclusion

In this paper, we introduced the idea of refining the
training datasets to UD parsing and cross-lingual
parsing to select training datasets from the same
language and other languages, respectively. While
our approach reduced the size of training data sig-
nificantly, we retained performance within 0.5%
of the baseline system. Additionally, corpus re-
finement methods can also be of utmost impor-
tance in trimming the size of training data for
algorithmically intense algorithms or large scale
system deployment runtime performance. A total
runtime on entire treebanks is only around 10min
with a default setting, which is fast enough; ad-
ditional optimization may improve this. The size
of parsing models is smaller than the baseline be-
cause we use only the subset of the entire train-
ing datasets. Even though we don’t use any ex-
ternal data, our final results are competitive to the
baseline system even with smaller datasets. The
current results presented here show promise, and
there exists potential for further refinement by, for
instance, using different similarity metrics. Ex-
ploring different similarity metrics may further en-
hance performance for other NLP tasks as well as
UD parsing.
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fr partut 77.38 78.29 sl sst 46.45 46.09

fr pud 73.63 72.03 sme 30.60 31.77
fr sequoia 79.98 79.12 sv 76.73 75.32

ga 61.52 62.20 sv lines 74.29 72.63
gl 77.31 74.02 sv pud 70.62 69.43

gl treegal 65.82 66.12 tr 53.19 50.69
got 59.81 57.62 tr pud 34.53 33.55
grc 56.04 52.56 ug 34.18 34.97

grc proiel 65.22 62.07 uk 60.76 61.12
he 57.23 55.79 ur 76.69 74.92
hi 86.77 85.56 vi 37.47 35.98

hi pud 50.85 50.83 zh 57.40 55.85
hr 77.18 74.59

avg 68.35 65.24

Table 4: LAS results per treebank. We highlight the score where we can improve the results compared
to the baseline system.

206


