
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 182–190,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Delexicalized transfer parsing for low-resource languages using
transformed and combined treebanks

Ayan Das, Mohammad Affan Zafar, Sudeshna Sarkar
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, WB, India
ayan.das@cse.iitkgp.ernet.in

affanzafar07@gmail.com
sudeshna@cse.iitkgp.ernet.in

Abstract

This paper describes the IIT Kharagpur
dependency parsing system in CoNLL-
2017 shared task on Multilingual Pars-
ing from Raw Text to Universal Depen-
dencies. We primarily focus on the low-
resource languages (surprise languages).
We have developed a framework to com-
bine multiple treebanks to train parsers
for low resource languages by a delexical-
ization method. We have applied trans-
formation on the source language tree-
banks based on syntactic features of the
low-resource language to improve perfor-
mance of the parser. In the official evalua-
tion, our system achieves macro-averaged
LAS scores of 67.61 and 37.16 on the en-
tire blind test data and the surprise lan-
guage test data respectively.

1 Introduction

A dependency parser analyzes the relations among
the words in a sentence to determine the syntactic
dependencies among them where the dependency
relations are drawn from a fixed set of grammati-
cal relations. Dependency parsing is a very impor-
tant NLP task and has wide usage in different tasks
such as question answering, semantic parsing, in-
formation extraction and machine translation.

There has been a lot of focus recently on de-
velopment of dependency parsers for low-resource
languages i.e., the languages for which little or no
treebanks are available by cross-lingual transfer
parsing methods using knowledge derived from
treebanks of other languages and the resources
available for the low-resource languages (McDon-
ald et al., 2011; Tiedemann, 2015; McDonald
et al., 2011; Zeman and Resnik, 2008; Rasooli and
Collins, 2015).

The Universal Dependencies (http:
//universaldependencies.org/) (Nivre
et al., 2016) project has enabled the development
of consistent treebanks for several languages
using an uniform PoS, morphological features
and dependency relation tagging scheme. This
has immensely helped research in multi-lingual
parsing, cross-lingual transfer parsing and the
comparison of language structures over several
languages.

The CONLL 2017 shared task focusses on
learning syntactic parsers starting from raw text
that can work over several typologically different
languages and even surprise languages for which
no training data is available using the common an-
notation scheme (UD v2). The details of the task
are available in the overview paper (Zeman et al.,
2017).

For parsing the surprise languages we trained
delexicalized parser models. In order to improve
performance on the surprise languages we applied
syntactic transformation on some source language
treebanks based on the information obtained from
the “The World Atlas of Language Structures”
(WALS) (Haspelmath, 2005) and sample data and
used the transformed treebanks to train the parsers
for the surprise languages. The details of the tree-
banks are discussed in Section 3.1.

The rest of the paper is organized as follows. In
Section 2 we describe the corpora and resources
used to build our system. In Section 3 we describe
in details the methods used to train the parser mod-
els. In Section 4 we describe the experiments and
report the results, and, we conclude in Section 5.

2 Corpus and resources

We used the treebanks (UD v2.0) (Nivre et al.,
2017b) which were officially released for the
shared task to train our parser models. The dataset

182



consists of 70 treebanks on 50 different languages.
There are multiple treebanks for some languages
such as Arabic, English, French, Russian etc. For
the shared task, only the training and development
data was released. The small sample treebanks
(approximately 20 sentences per language) for the
surprise languages were made available separately
one week before the test phase.

We have used the pre-trained word vectors of
50 dimensions provided by the organizers to train
the parser models. For tokenization and tagging
we used the baseline models provided by the orga-
nizers. Our parser models were trained using the
Parsito parser (Straka et al., 2015) implemented
in UDPipe (Straka et al., 2016) text-processing
pipeline system.

3 System description

Our parser worked on parsed the tokenized and
tagged files (*-udpipe.conllu) provided by
the organizers rather than the raw text files. We
first discuss the steps for training the models for
surprise languages in Section 3.1 followed by
methods used to train the models for the new par-
allel treebanks in Section 3.2 and known treebanks
in Section 3.3.

3.1 Surprise language

The surprise languages are Buryat (bxr), Kurmanji
(Kurdish) (kmr), North Sámi (sme) and Upper
Sorbian (hsb) for which sample data of approxi-
mately 20 annotated sentences per language was
made available. No training or test data is avail-
able for the surprise languages.

We have used cross-lingual parser transfer to
develop parsers for the surprise languages using
the treebanks of resource-rich languages (McDon-
ald et al., 2011). Annotation projection (Hwa
et al., 2005) and delexicalized transfer (Zeman and
Resnik, 2008) are the two major methods of cross-
lingual parser transfer.

However, annotation projection requires paral-
lel data which is not available for the surprise lan-
guages. Hence, we used the delexicalized parser
transfer method to train parser models for the sur-
prise languages. Training delexicalized parser in-
volves supervised training of a parser model on a
source language (SL) treebank without using any
lexical features and then applying the model di-
rectly to parse sentences in the target language
(TL). Zeman and Resnik (2008) and Søgaard

(2011) have shown that cross-lingual transfer by
delexicalization works best for syntactically re-
lated language pairs.

The first step was to identify the languages
which are syntactically related to the surprise lan-
guages and whose treebanks are in Universal De-
pendency corpus. We observed that Upper Sorbian
being a slavonic language is typologically related
to Czech, Polish and to some extent Slovak. North
Sámi is spoken in the northern parts of Norway,
Sweden and Finland. It belongs to the family of
Finno-Ugric languages and hence has typological
similarities with Estonian, Finnish and Hungarian.
Kurmanji has typological similarities with Persian
and Turkish. Buryat is spoken in Monglia. Al-
though none of the languages whose treebanks are
available in Universal Dependencies corpus be-
long to the family of Buryat yet we guessed that
Kazakh, Tamil, Hindi and Urdu might have some
similarities with Buryat based on the syntactic fea-
tures and phrasal structures of the languages.

In order to verify our guesses, we tested the
delexicalized models trained on individual tree-
banks on the sample data for the surprise lan-
guages and ranked them based on LAS. We ob-
served that our guesses were quite close to the
actual results except a few cases. Table 3.1 lists
the top-5 languages for each of the surprise lan-
guage based on LAS score. Encouraged by the
above results that support our guesses we explored
a transformation-based method to further reduce
the syntactic differences between the surprise lan-
guages and the corresponding source languages.
Besides attempting to reduce the syntactic dif-
ferences between the languages we also experi-
mented with combining the treebanks for which
the individual LAS scores were highest to further
boost the LAS on the surprise languages.

3.1.1 Syntactic feature based transformation
Aufrant et al. (2016) have shown that local re-
ordering of words of the source sentence using
PoS language model and linguistic knowledge de-
rived from WALS improve performance of the
delexicalized transfer parser even for syntactically
different SL-TL pairs. The reordering features
they use are relative orderings of the adjectives,
adpositions, articles (definite and indefinite) and
demonstratives with respect to the corresponding
modified nouns in the TL.

However, for language pairs that differ in the
arrangement of verb arguments, local rearrange-

183



Buryat Kazakh
(43.14)

Latvian
(37.25)

Hindi
(37.25)

Tamil
(35.95)

Finnish-ftb
(35.29)

Kurmanji
(Kurdish)

Polish
(45.04)

Persian
(42.15)

Bulgarian
(41.74)

Romanian
(40.91)

Czech
(40.5)

North Sámi Finnish
(54.42)

Swedish
(51.02)

Estonian
(48.98)

Norwegian
(46.26)

Lithuanian
(45.58)

Upper Sorbian Slovak
(71.5)

Slovenian
(65.9)

Bulgarian
(63.91)

Polish
(63.48)

Czech
(62.83)

Table 1: Top 5 languages whose delex models gave the highest LAS on the surprise language sample
data

81A 84A 87A 85A 37A 38A 88A 86A aux cop cco-
mp

xco-
mp

acl advcl 90A

bxr SOV - pre post × × pre pre post post post - pre pre ×
kmr SOV - post pre pre pre pre post pre post pre pre post pre ×
sme SVO - pre post × × × pre pre post - pre post pre post
hsb SVO - pre pre pre pre pre post - - post post post post ×

Table 2: Ordering of the head-modifier pairs in the target language as derived from the universal depen-
dency treebank statistics. “pre” indicates that the modifier precedes the head, “post” indicates that the
modifier succeeds the head and “-” indicates that the ordering cannot be decided. “×” shows that the
dependency does apply to the language. Some of the feature identifiers are derived from WALS: 81A -
order of subject, object and verb in a sentence, 84A - order of object, oblique and verb, 87A - ordering of
ADJ and NOUN, 85A - ordering of ADP and NOUN, 37A/38A - ordering of Definite/Indefinite articles
and NOUN, 88A - ordering of Demonstrative and NOUN, 86A - ordering of genitive and NOUN, 90A -
ordering of relative clause and VERB

Our system Best scores Our rank
UAS LAS UAS LAS

All test data 73.68 67.61 81.30 (Stan.) 76.30 (Stan.) 19
Surprise
treebanks

49.98 37.16 58.40 (C2L2) 47.54 (C2L2) 10

Big treebanks 77.32 72.68 85.16 (Stan.) 81.77 (Stan.) 18
New parallel

treebanks
74.45 67.42 80.17 (Stan.) 73.73 (Stan.) 17

Small
treebanks

59.14 48.33 70.59 (C2L2) 61.49 (C2L2) 22

Table 3: UAS and LAS on blind test as obtained by primary system run and their comparison with the
best runs. Stan. and C2L2 refer to the systems submitted by Stanford University and C2L2 (Ithaca)
respectively

ments based on PoS tags may not be enough to
address the difference between the two languages.
Hence, we hypothesize that a reordering of SL
sentences based on more generic features such as
dependency relations (subject, object, indirect ob-
ject, clausal complement) might result in improve-
ment in accuracy of the parser.

An example of syntactic transformation In
order to illustrate the syntactic difference be-
tween two languages we put forth an example for
English-Kurmanji (Kurdish) language pair.

The example in figure 1 shows the syntactic
difference between the two languages - English
and Kurmanji (Kurdish) - and how the transforma-
tion of the English sentence makes it syntactically

184



Figure 1: Transformation of English sentence to
match the syntax of Kurdish sentence based on the
syntactic features of Hindi

closer to Kurmanji (Kurdish). English language
sentences have a SVO sentence structure while
Kurmanji (Kurdish) has a SOV sentence structure.
Moreover, in English the oblique arguments tend
to appear after the object in the sentence while in
Kurmanji (Kurdish) the oblique arguments tend to
appear before the object.

The English sentence “Me and my friend had
fish last night” may be translated to Kurmanji
(Kurdish) as “ Min û hevalê min şeva din ması̂
xwar (Me and friend my night last fish had)”. In
this sentence pair Me and my friend (Min û hevalê
min) and fish (ması̂) are the subject and the object
of the main verb had (xwar) and last night (şeva
din) is the non-core (oblique) argument indicating
the time of occurrence of the verb. Also, in Kur-
manji (Kurdish), the adjectival modifiers and gen-
itives occur after the modified noun e.g., hevalê
min (friend my) and şeva din (night last), while in
English these modifiers occur before the modified
noun e.g. my friend and last night.

3.1.2 Transformation features

Apart from the features proposed by Aufrant et al.
(2016) we obtained the order of subject-object-
verb (SOV), order of object-oblique-verb, and the
relative order of relative clause, auxiliaries, copula
verbs, clausal complements, clausal modifier (ad-
jectival and adverbial) with respect to the modified

verb from WALS and the statistics of sample data.
The relative ordering of head-modifier pairs based
on the features derived from treebanks was deter-
mined using the following heuristic. If a particular
order appears in at least 90% cases out of the total
number of occurrences of the feature (dependency
tag) then we use that ordering corresponding to
the feature. Else we do not do any transforma-
tion based on that feature. We relied on the WALS
features and the statistics of the sample data to de-
rive the syntactic features and ignored the features
that did not appear in these two sources. For ex-
ample, although Buryat, Upper Sorbian and Kur-
manji have relative clauses we neither did we find
mention of the feature in WALS for the language
nor did we find that relation in sample data for
these languages. Hence, we did not use that re-
lation during transfer. In Table 3.1 we summarize
the transformation features and the corresponding
orderings used for each surprise language.

We categorized the dependency relations into
six classes.

• Clausal complements : ccomp, xcomp

• Subject : nsubj, nsubj:pass, csubj, csubj:pass

• Object : obj, iobj

• Modifiers : acl, advcl, amod, aux, case, cop,
det (Pronominal type = Article or Demonstra-
tive, and, Definiteness = Definite, Indefinite)

• Other dependencies : Dependency labels
that do not belong to the above five classes
(cc, conj, punct, mwe, foreign etc.).

Among the determiners we only considered the
articles and demonstratives. We further divide the
members of class modifiers into pre-modifiers and
post-modifiers depending upon the position they
take in the sentences with respect to the parent
word in TL.

3.1.3 Tree-traversal based transformation
algorithm

Given a source language sentence S =
{w1, · · · , wm}, where m is the length of S,
let TS be the parse tree of S. The transformation
is carried out in two steps.

• Step 1: Remove the words corresponding to
the dependency relations that do not hold in
the TL from the SL parse tree e.g., remove

185



Demonstratives when North Sámi is the tar-
get language.

• Step 2: Rewrite the sentence by a tree-
traversal method depending upon the order-
ing of the head-modifier pairs based on the
transformation features.

Corresponding to each target language we have
separate transformation procedures. The Proce-
dure BuildTree is common for all the target lan-
guages. In this procedure we construct the tree
data structure where each node in the tree corre-
sponds to a word in the sentence. Each node con-
sists subject, object, clausal complement, premod-
ifier, postmodifier and other-modifier lists. The
lists of a node are filled up only by the dependents
of the corresponding word in the dependency tree.
The subjects, objects and the clausal complements
of the word are added to the corresponding lists.
While constructing the pre-modifier, post-modifier
and other modifier lists the module refers to a
look-up table to obtain the order of the modifiers in
the TL and place the modifiers in the correspond-
ing lists. All the lists are not necessarily filled
up e.g., if none of the dependents hold a subject
relation (nsubj or nsubj:pass) with the word then
the subject list of the corresponding node remains
empty.

We have separate procedures for transforming
the SL trees for each TL. The sentences are trans-
formed by traversing the trees according to the
ordering of the dependencies in the TL e.g., the
subtrees corresponding to the modifiers in the
pre-modifier list and the modifiers in the other-
modifier list that appear before the current word
in the SL sentence are traversed first, then the
word of the current node is added to the trans-
formed word list, followed by traversal of the sub-
trees corresponding to the modifiers in the post-
modifier list and the words in other-modifiers list
that appear after the current word in the SL sen-
tence. Also, if the TL has SVO sentence struc-
ture, first the subtree corresponding to the sub-
ject is traversed, the verb is added to the trans-
formed list and finally the subtree corresponding
to the object is traversed. Procedure TraverseAnd-
TransformTree illustrates the steps used for trans-
forming the SL tree when the the target language
follows SOV ordering of verb arguments and the
clausal complements occur before the verb.

Lang-
uage

Treebanks Transfo-
rmation

Number
of
tokens

bxr Kazakh
(kk)

- 547

kmr
Polish

(pl)
-

175600

Slovenian
(sl)

37A,
38A,
86A,
87A

sme
Finnish

(fi)
-

187920
Estonian

(et)
88A

Lithuanian

(lt)

85A,
88A,
cop,

xcomp,
acl, advcl

hsb
Slovak

(sk)
-

273680
Slovak

(sk)
81A,
37A,
38A,
86A,

ccomp,
advcl

Slovenian
(sl)

37A,
38A,
86A

Table 4: The treebanks combined to train the
parser models for surprise languages in the pri-
mary system. The ‘Transformation’ column lists
the syntactic features on which the source tree-
banks were transformed. ‘-’ implies untrans-
formed treebank

3.1.4 Steps for training the parser for
surprise languages

For each language we used the following steps to
train the delexicalized parser:

1. We obtained the syntactic features proposed
by Aufrant et al. (2016) from WALS and the
sample data.

2. Besides the features obtained in step 1, we
also derived some more syntactic features
from WALS and sample data statistics such
as ordering of subject (S)-object (O)-verb (V)

186



Procedure BuildTree
input : Source language parse tree TS

output: Tree data structure T
1 T = node nroot, containing the root word

(wroot), POS (poswroot), empty children list
(clroot), parent link (proot) = null

2 for each word wi in S except the root word do
3 Form a node ni containing, wi, poswi , cli,

pi, dependency relation with pi = di

4 Add ni to the children list of pi

5 Add ni to the pre−modifier,
post−modifier or other −modifier
list based on TL features

6 return T

in a sentence, relative ordering of auxiliaries,
copula verbs, clausal complements, adjecti-
val and adverbial clausal modifiers.

3. We transformed all the available treebanks
based on the syntactic features described in
step 1 and the combination of the features
stated in step 1 and 2 using the appropriate
transformation procedures.

4. We trained separate delexicalized models for
untransformed treebanks and both types of
transformations such that corresponding to
each source language there are three models
- one trained on untransformed treebank and
two on transformed treebanks. Universal De-
pendencies v2.0 corpus consists of 70 tree-
banks. Hence, after transformation we have
70 × 3 = 210 treebanks.

5. We ranked the 210 models based on their
LAS on the sample data provided for the sur-
prise language and broke ties based on UAS
and chose the top 20 treebanks for our next
step.

6. We trained 20 models by combining the tree-
banks in the top-k ordering (top-1, top-2,· · · ,
top-20) and selected the model that gave the
highest LAS on the sample data. The tree-
banks were combined by concatenating the
treebank files to form a single treebank e.g.
for the top-2 model, we concatenated the two
treebanks which ranked first and second with
respect to the LAS on the sample data and
used the concatenated treebank to train the
top-2 model. In Table 3.1.4 we summarize

Procedure TraverseAndTransformTree
input : Source language parse tree data

structure T
output: Transformed source language parse

tree TR
S

1 TR
S = RearrangeNodes(T)

2 return TR
S

3 Procedure RearrangeNodes(Root node
nroot of tree datastructure T)

4 Rearranged word sequence (SR) =
TraverseTree(nroot)

5 TR
S = null

6 for i in SR do
7 iRp = index of parent of i in SR

8 Add (i,iRp ,dj) to TR
S

9 return TR
S

10 Procedure TraverseTree(node t)
11 SR=null
12 if t has empty children list then
13 Add word (wt) of t to SR

14 else
15 for Child ct in clt with clausal

complements (ccomp, xcomp)
dependency relation do

16 TraverseTree(ct)
17 for Child ct in clt with subject

(nsubj) dependency relation do
18 TraverseTree(ct)
19 for Child ct in clt with dobj, iobj

dependency relation do
20 TraverseTree(ct)
21 for Child ct in clt that are

pre-modifiers of t or in other
dependencies appearing before t
in S do

22 TraverseTree(ct)
23 Add word (wt) of t to SR

24 for Child ct in clt that are
post-modifiers of t or in
other dependencies appearing
after t in S do

25 TraverseTree(ct)
26 return SR

187



the LAS of our combined treebanks on the
sample data. We report only those top-k com-
binations that have been used in the submit-
ted systems.

3.2 Known language, new parallel treebank
New parallel treebanks were provided for 14 lan-
guages in the test data. Out of these 14 lan-
guages, we trained the models for German, Hindi,
Japanese and Turkish on the single UD treebanks
available for each of these languages. Multiple
treebanks are available for each of the remain-
ing 10 languages, viz, Arabic, Czech, English,
Finnish, French, Italian, Portuguese, Russian and
Swedish.

For each language with multiple treebanks we
followed the following steps:

1. We combined all the treebanks in that lan-
guage and trained a parser model on the com-
bined treebank.

2. We tested the combined model and the mod-
els trained on the individual treebanks on the
development sets of all individual treebanks.

3. We used the combined model for the paral-
lel treebank if it gives uniform UAS and LAS
scores across all the development sets and
gave significant improvement over the mod-
els trained on individual treebanks. Else we
used the model trained on the treebank that
gave best result across all the treebanks.

We used the combined models for Swedish, En-
glish, Finnish, French, Italian, Portuguese, Rus-
sian. For Arabic and Czech we used the models
trained on the main treebanks (lcode: ’ar’ and ’cs’,
tcode: ’0’) of the respective languages.

3.3 Known language, known treebank
We trained separate models for each of the 70
Universal Dependecies v2.0 treebanks. We used
word, PoS and dependency relation embeddings
of 50 dimensions. Apart from these parameters
we used the default parameter settings of the UD-
Pipe parser to train our models. The ’small’ tree-
banks for which for which no development data
was available, we used the training data itself as
development data.

4 Experiments and results

Our system comprises of 88 models. 70 models
were trained on the individual treebanks available

from http://universaldependencies.
org/, 14 models were trained for the new par-
allel treebanks and 4 models for the surprise lan-
guage. Given the language code (lcode) and tree-
bank code (tcode), our system identifies the parser
model corresponding to the input test treebank and
parses the sentences in the treebank file.

The systems were ranked based on macro-
averaged LAS. The final evaluation of the parser is
on blind test data sets (Nivre et al., 2017a) through
TIRA platform set up by Potthast et al. (2014).
We submitted 9 systems (softwarek, where k ∈
{2, · · · , 10}). The systems differ in the models
trained for the surprise languages. The models
corresponding to the known language treebanks
and the new parallel treebanks were same in all
the systems. Since the test set was blind, the first
four systems (software 2 to 5) consisted of a com-
bination of models for the surprise languages that
were expected to perform best based on the per-
formance on the sample treebanks. The remaining
5 consisted of models corresponding to combina-
tions of top-k (k= 1, 5, 10, 15, 20) models for each
of the surprise languages. Table 3.1.3 lists the tree-
banks combined to train the models for our pri-
mary system. We summarize the macro-averaged
LAS scores for the surprise languages for the 8
models in Table 3.3. The highest scoring system
for the surprise languages (software2) consists of
top-2 model for Buryat, top-10 model for Kur-
manji (Kurdish) and top-6 models for North Sámi
and Upper Sorbian. The results using the primary
system is summarized in Table 3.1 and the macro-
average over all submitted softwares are listed in
Table 3.3.

5 Conclusion

In this work, we have implemented a system for
parsing sentences in several typologically differ-
ent languages with a special focus on surprise lan-
guages for the CoNLL 2017 Shared Task. We
have developed a system for combining treebanks
to train parsers for surprise languages and ap-
plied syntactic transformation of source languages
based on the syntactic features of the target lan-
guages to improve performance on the target lan-
guages. We derived the syntactic features from the
WALS and sample data provided. On the surprise
languages, the macro-averaged LAS F1-score of
our primary system is 37.16 while that of the best
performing system (Stanford) is 47.54. However,

188



Combin-
ation bxr kmr hsb sme

UAS LAS UAS LAS UAS LAS UAS LAS
Top-1 63.1 43.14 51.2 45.04 76.52 71.52 63.95 54.52
Top-2 62.18 41.81 52.07 45.87 78.26 73.7 70.75 57.82
Top-3 58.17 39.22 45.04 40.91 78.26 74.13 70.75 59.86
Top-5 54.25 35.95 47.93 41.74 76.52 71.52 62.59 48.98
Top-6 53.59 32.03 48.6 42.43 77.61 74.13 72.11 59.18
Top-10 59.5 40.52 49.6 43.39 76.96 73.7 72.11 55.1
Top-15 58.17 41.18 40.5 35.54 77.83 74.57 70.75 59.18
Top-20 53.59 38.56 45.87 42.15 78.04 73.7 67.35 54.42

Table 5: UAS and LAS scores of models trained on treebank combinations on the surprise language
sample data

bxr kmr sme hsb Macro-averaged
LAS F1 score

Overall
macro-averaged
LAS F1 score

Primary system
(software3)

26.60 32.03 35.25 54.78 37.16 67.61

software2 29.98 32.38 33.27 55.4 37.75 67.75
software4 26.60 32.03 35.25 53.37 36.81 67.60
software5 29.98 32.38 32.05 53.37 36.94 67.60

Top-1 (software6) 26.60 32.18 32.83 52.92 36.13 67.56
Top-5 (software7) 29.08 32.97 32.88 54.85 37.44 67.63
Top-10 (software8) 28.91 32.38 33.03 53.54 36.96 67.62
Top-15 (software9) 31.65 32.27 32.05 53.37 37.33 67.62

Top-20 (software10) 30.44 32.51 32.95 53.23 37.28 67.62

Table 6: Comparison of LAS F1 scores of the submitted systems and their macro-averages on the surprise
language test data. The system with highest macro-averaged LAS F1 score (software2) is composed of
top-2, top-10, top-6, top-6 models for bxr, kmr, sme and hsb respectively. The software4 is composed of
top-1, top-2, top-3, top-15 models for bxr, kmr, sme and hsb respectively and the software5 is composed
of top-2, top-10, top-15, top-15 models for bxr, kmr, sme and hsb respectively. For the remaining systems
(software6-10) we combined the top-5, top-10, top-15 and top-20 treebanks respectively.

the macro-averaged LAS F1-score of our best per-
forming system is 37.75. Our rank with respect to
the surprise languages is 10.

The overall macro-averaged LAS F1-score of
our primary system is 67.61 as compared the best
performing system that has an macro-averaged
LAS F1 score of 76.30. The overall macro-
averaged LAS F1-score of our best-performing
system is 67.75. Our overall rank is 19.

References
Lauriane Aufrant, Guillaume Wisniewski, and Franois

Yvon. 2016. Zero-resource dependency parsing:
Boosting delexicalized cross-lingual transfer with
linguistic knowledge. In Proceedings of COLING

2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, Osaka, Japan,
pages 119–130. http://aclweb.org/anthology/C16-
1012.

Martin Haspelmath. 2005. The world atlas of language
structures / edited by Martin Haspelmath ... [et al.].
Oxford University Press Oxford.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering 11:11–311.

Ryan McDonald, Slav Petrov, and Keith Hall.
2011. Multi-source transfer of delexical-
ized dependency parsers. In Proceedings
of the Conference on EMNLP. Associa-

189



tion for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 62–72.
http://dl.acm.org/citation.cfm?id=2145432.2145440.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer of de-
pendency parsers. In Proceedings of the 2015
Conference on EMNLP. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 328–338.
http://aclweb.org/anthology/D15-1039.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International

Workshop on Treebanks and Linguistic Theories
(TLT 14).

Jörg Tiedemann. 2015. Improving the cross-
lingual projection of syntactic dependencies.
In Proceedings of the 20th Nordic Conference
of Computational Linguistics (NODALIDA
2015). Linköping University Electronic Press,
Sweden, Vilnius, Lithuania, pages 191–199.
http://www.aclweb.org/anthology/W15-1824.

D. Zeman and Philip Resnik. 2008. Cross-language
parser adaptation between related languages. NLP
for Less Privileged Languages pages 35 – 35.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

190


