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Abstract

We developed two simple systems for de-
pendency parsing: darc, a transition-based
parser, and mstnn, a graph-based parser.
We tested our systems in the CoNLL 2017
UD Shared Task, with darc being the of-
ficial system. Darc ranked 12th among 33
systems, just above the baseline. Mstnn
had no official ranking, but its main score
was above the 27th. In this paper, we
describe our two systems, examine their
strengths and weaknesses, and discuss the
lessons we learned.

1 Introduction

Universal Dependencies (UD) (Nivre et al.,
2016) is a cross-linguistically consistent annota-
tion scheme for dependency-based treebanks. UD
version 2.0 (UD2) (Nivre et al., 2017b,a) provided
the datasets for the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman et al., 2017). In the shared
task participating systems were evaluated through
the TIRA platform (Potthast et al., 2014). The
main evaluation metric was the labeled attachment
F1-score (LAS). 33 systems completed the official
evaluation, including the baseline UDPipe (Straka
et al., 2016).

We submitted a primary system darc and a
secondary system mstnn, with the primary sys-
tem partaking in the official evaluation. Both
are open sourced under the MIT license.1 The
two systems differ only in the parsing algo-
rithm. Darc is equipped with a transition-
based non-projective/projective parser. Mstnn is
equipped with a graph-based non-projective unla-
beled parser and a standalone labeler. Both sys-

1
https://github.com/CoNLL-UD-2017/darc

tems utilize a neural network classifier with simi-
lar input features.

In this paper, we start with a description of
our treatments for different datasets in the shared
task, and then the separate descriptions of our two
parsers, followed by an analysis of the results.

2 Treatments for datasets

We were tasked with producing parsed outputs for
81 test-sets, either from raw texts or from seg-
mented and tagged inputs produced by the base-
line system.

The outputs were required to conform to the
CoNLL-U format.2 In this format, each node
in a dependency-graph has ten fields named ID,
FORM, LEMMA, UPOSTAG, XPOSTAG, FEATS,
HEAD, DEPREL, DEPS, and MISC, where ID,
HEAD, and DEPREL defines an edge. Segmen-
tation establishes the graph/sentence boundaries
while filling in ID, FORM, and MISC. Tag-
ging fills in LEMMA, UPOSTAG, XPOSTAG,
and FEATS.

63 test-sets have corresponding treebanks in
UD2. These treebanks were the only training re-
sources we used.

2.1 Big treebanks

The majority of the treebanks in UD2 (55/63) con-
sist of train-sets and dev-sets. These are the big
treebanks.

For segmentation and tagging, we trained UD-
Pipe models on the train-sets and used the dev-sets
for parameter tuning.3 The only hyperparameter
tuned by the dev-sets was the number of train-
ing iterations. All the other hyperparameters were

2
http://universaldependencies.org/format.html

3Danish, Finnish-FTB, and Slovenian-SST treebanks are
missing the SpaceAfter=No information in MISC. For
training the tokenizers, this information was added.
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simply taken from the baseline models (Straka,
2017), because of our limited computing power.

The gold-standard train-sets were re-tagged by
our UDPipe models to produce training data for
our parsers.

2.2 Small treebanks
The remainder of the treebanks (8/63) consist only
of train-sets. These are the small treebanks.

Here we consulted the approach of the baseline
system, which split the train-sets into three parts:
train, tune, and dev. For our UDPipe models, both
the train-sets and tune-sets were used for training,
and the dev-sets for tuning. For our parser models,
the entirety of treebanks was used for training, and
all hyperparameters took the default values.

2.3 Parallel test-sets
The 14 parallel test-sets have no corresponding
treebanks, but the corresponding languages exist.
For these we used the preprocessed inputs from
the baseline system, and picked our parser models
according to the languages. If multiple treebanks
exist for the same language, we took the model
trained on the first one.

2.4 Surprise languages
4 test-sets have no corresponding languages,
though small samples of gold-standard data were
released as part of the shared task. Again, we used
the preprocessed inputs from the baseline system.

For each sample we applied our existing parser
models to pick the best treebank for training a
delexicalized model. These delexicalized models
rely mostly on UPOSTAG, but may utilize FEATS
as well. This setting, along with the other hyper-
parameters, were tuned by the sample data.4

3 Primary system: darc

Our primary system employs a transition-based
parser.

We adapted our parser from Chen and Manning
(2014), who used a neural network classifier in a
transition-based parsing algorithm known as the
arc-standard system (Nivre, 2008).

The neural network classifier requires little fea-
ture engineering, and therefore is easily adapt-
able for different languages, making it ideal for

4In the end, we used the Polish treebank for Buryat and
Kurmanji, Finnish for North Sami, and Slovenian for Upper
Sorbian. The FEATS field was used in the models for Buryat
and North Sami.

UD parsing. However, the arc-standard system is
only applicable to projective parsing, while over
half of the treebanks in UD2 have more than 10%
non-projective sentences in the train-sets. For
this reason, we adopted a non-projective variant
by adding a swap action to the transition sys-
tem (Nivre, 2009; Nivre et al., 2009). We chose ei-
ther the projective or the non-projective algorithm
based on how they performed for each treebank.
In the end, we used the non-projective one for all
but three treebanks.5

3.1 The transition algorithm

The algorithm produces a directed acyclic graph
from a sequence of nodes [w0, w1, . . . , wn], which
are the syntactic tokens of a sentence, where
w0 is a pseudo root node. The transition sys-
tem consists of several transition actions defined
over configurations. Each configuration is a
triple consisting of a stack σ, a buffer β, and a
set of edges A. From the initial configuration
c0 : (σ : [w0], β : [w1, w2, . . . , wn], A : {}), a se-
ries of transition actions are taken to produce a ter-
minal configuration cm : (σ : [w0], β : [ ], A).

Possible transition actions are listed below. A
different action is defined for each l in the set of
dependency labels.

shift
(σ, [wi|β], A) 7→ ([wi|σ], β, A)

left arcl

([wj , wi|σ], β, A) 7→ ([wj |σ], β, A∪{(wj , l, wi)})
right arcl

([wj , wi|σ], β, A) 7→ ([wi|σ], β, A∪{(wi, l, wj)})
where 0 ̸= i

swap
([wj , wi|σ], β, A) 7→ ([wj |σ], [wi|β], A)

where 0 < i < j

3.2 Input features

As input features, we use the set of 18 graph nodes
from Chen and Manning (2014):

• The top three words on the stack & buffer

• The first & second leftmost & rightmost chil-
dren of the top two words on the stack

5Persian, Spanish, and Vietnamese.
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• The leftmost-of-leftmost & rightmost-of-
rightmost children of the top two words on
the stack

For each node we take its FORM, LEMMA,
UPOSTAG, FEATS, and DEPREL fields. Each
field is represented through an embedding into the
real vector space. However, some treebanks have
no informative LEMMA. For these treebanks we
omit the LEMMA embedding, and double the di-
mension of the FORM embedding.6

All embeddings are trainable, except for the
FEATS embedding. Each FEATS is represented
by a vector of binary values, indicating the pres-
ence or absence of any attribute-value pairs in
the morphological vocabulary of its affiliated tree-
bank.

In any transition configuration, some nodes may
be missing, for which special dummy members
are in all embeddings. Special members are also
appointed for the root node. For FORM and
LEMMA, all hapaxes are replaced with a single
arbitrary symbol.

Table 1 lists the number of rows (min, max &
avg) and columns (dim) in the embedding matri-
ces.

field min max avg dim

FORM 70 58562 9070 32
LEMMA 89 29972 6321 32
UPOSTAG 13 19 18 12
DEPREL 21 55 37 16

Table 1: Shapes of embedding matrices

The amount of parameters in the embedding
matrices for FORM and LEMMA are substantial.
Initializing these parameters with pretrained em-
beddings has been shown to be beneficial (Chen
and Manning, 2014). To produce embeddings
which are more suitable for capturing syntactic
information, we used the tool developed by Ling
et al. (2015).7

The embeddings for UPOSTAG and DE-
PREL are randomly initialized from the
uniform(−0.5, 0.5) distribution.

6Korean, Portuguese-BR, English-LinES, Indonesian,
Swedish-LinES, and Uyghur.

7
https://github.com/wlin12/wang2vec/ with options

{-type 3 -hs 0 -min-count 2 -window 7
-sample 0.1 -negative 7 -iter 20}; Though
in fact [-min-count 2] had no effect, as we had all
hapaxes replaced by an obscure symbol.

3.3 Feedforward neural network

Our neural network classifier is implemented in
Keras (Chollet et al., 2015) with the TensorFlow
backend (Abadi et al., 2015).

The inputs are first transformed by a hidden
layer with 256 rectified linear units (ReLU), then
by a second, similar hidden layer, and finally by
a softmax layer with as many units as the number
of transition actions. The softmax output assigns a
probability prediction for each action.

The weights for all layers are initialized in a
random uniform distribution following He et al.
(2015). The ReLU layers have their biases ini-
tialized to ones, in order to alleviate the dying
ReLU problem. The network is trained through
backpropagation by the AdaMax (Kingma and Ba,
2014) algorithm.

In our experiments, we found it helpful to ap-
ply dropout (Srivastava et al., 2014) to both the
trainable embedding layers and the hidden lay-
ers. For our network, 25% dropout rate seems to
be the optimal. The 50% dropout rate suggested
by Srivastava et al. (2014) requires extending the
sizes of these layers, which would result in a poly-
nomial amount of increase in the number of pa-
rameters. Even though we did find a slight im-
provement in accuracy with a larger network and
a higher dropout rate, we rejected extending the
network because of our limited computing power.

For regularization, we apply the unit-norm con-
straint to the trainable embeddings, which ensures
that each column of the embedding matrices is
a unit vector. We found this helpful for stabi-
lizing the accuracy in later iterations and achiev-
ing higher scores. We also experimented with the
max-norm constraint, which only forces the norms
of the column vectors to be no greater than the
max-norm; We found that it can be better than the
unit-norm constraint, but only for certain optimal
max-norm values, which were different for every
dataset.

3.4 Training and parsing

These hyperparameters are tuned during training,
with their default values marked bold:

• Algorithm: projective, non-projective

• Batch-size: 16, 32, 64

• Iterations: maximally 16
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Our parser is greedy during parsing. From any
configuration, only the action with the highest
probability prediction is taken to advance into the
next configuration. In case the action suggested
by the classifier is illegal, the next best action is
taken.

The transition algorithm does not prevent mul-
tiple nodes from being attached to the pseudo root
node. However, this is not allowed in the UD tree-
banks. When this occurs, we keep the first attach-
ment, and attach the other nodes to that node with
the parataxis label.

Apart from the regular syntactic nodes, the
CoNLL-U format allows for empty-words and
multi-words. We completely ignore the empty-
words. We keep track of the multi-words, but ig-
nore them during parsing.

The evaluation is only concerned with the UD
labels, and not the language-specific subtypes. For
example, acl:relcl is considered to be the same as
acl. We experimented with removing the language
specific information before parsing, and we found
it to be helpful in some cases, but harmful in oth-
ers. Either way, the differences are negligible.

3.5 A comparison with Parsito

Our parser is very similar to the Parsito
parser (Straka et al., 2015) incorporated in UD-
Pipe, which is also a transition-based parser with
a feedforward neural network classifier.

The primary difference is in the training. Our
parser uses only a static oracle, while Parsito sup-
ports a dynamic oracle, and may additionally uti-
lize a search-based oracle.

The static oracle produces transition sequences
which must lead to the gold-standard parse trees.
A classifier trained only on the gold-standard tran-
sition sequences is not robust against its own er-
rors. When an error is made, the parser arrives
in a configuration which it has never seen be-
fore. To help the classifier make the best decision
possible in any configuration, the dynamic ora-
cle (Goldberg and Nivre, 2012) explores erroneous
transitions suggested by the classifier itself. Par-
sito’s search-based oracle applies the SEARN al-
gorithm (Daumé et al., 2009) to mitigate this prob-
lem.

Moreover, in addition to the projective and
non-projective transition systems, Parsito supports
link2 (Attardi, 2006), a partially non-projective
transition algorithm, which was used for more

than one-third of the baseline models.
Despite the limitations of our parser in compari-

son with UDPipe’s Parsito, it achieved comparable
results in the shared task.

4 Secondary system: mstnn

In our secondary system, a graph-based non-
projective unlabeled parser and a labeler are used.

4.1 Unlabeled parsing
We adapted the MSTParser (McDonald et al.,
2005) with a neural network classifier. Starting
with a fully connected directed graph, the classi-
fier scores the edges between every two nodes, and
then the Chu-Liu-Edmonds’ algorithm (Chu and
Liu, 1965; Edmonds, 1967) is applied to find the
maximum spanning arborescence. The algorithm
was implemented using NetworkX (Hagberg et al.,
2008).

The neural network classifier accepts the fol-
lowing inputs:

• The distance between the two nodes (the
arithmetic difference of their ID)

• FORM & LEMMA of the two nodes

• UPOSTAG of the two nodes and their left &
right & left-of-left & right-of-right neighbors

• FEATS of the two nodes and their left & right
neighbors

All features are constructed the same as in the
primary system, except for the added distance fea-
ture.8 The structure of the neural network is also
the same, except that the output layer consists of
a single sigmoid unit. The probability prediction
of the sigmoid unit is taken as the score associated
with the dependency arc in consideration.

4.2 Labeling
For labeling the edges, we implemented a lin-
ear support-vector classifier (Cortes and Vapnik,
1995) using LIBLINEAR (Fan et al., 2008) through
scikit-learn (Pedregosa et al., 2011).9

Input features to the classifier are the FORM,
LEMMA, UPOSTAG, and FEATS fields of the
two nodes, plus the UPOSTAG of their left & right
neighbors. The FEATS field is represented in the

8Also as in the primary system, some features were omit-
ted for certain treebanks.

9All hyperparameters used the default values.
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ranking darc baseline ÚFAL best score best system

all treebanks 12 68.41 68.35 69.52 76.30 Stanford (Stanford)
big treebanks 15 73.31 73.04 74.38 81.77 Stanford (Stanford)
small treebanks 12 52.46 51.80 53.75 61.49 C2L2 (Ithaca)
parallel test-sets 16 67.96 68.33 69.00 73.73 Stanford (Stanford)
surprise languages 18 34.47 37.07 35.96 47.54 C2L2 (Ithaca)

Old Church Slavonic 7 66.37 62.76 62.76 76.84 IMS (Stuttgart)
Gothic 8 61.92 59.81 62.80 71.36 IMS (Stuttgart)
Hindi 8 87.50 86.77 87.28 91.59 Stanford (Stanford)
German PUD 25 65.09 66.53 66.05 74.86 Stanford (Stanford)
Buryat 25 15.61 31.50 21.58 32.24 IMS (Stuttgart)
Korean 25 58.30 59.09 60.30 82.49 Stanford (Stanford)

Table 2: Official results (LAS)

UAS LAS
mstnn darc baseline ÚFAL mstnn darc baseline ÚFAL

all treebanks 71.03 74.22 74.41 75.39 61.13 68.41 68.35 69.52

Ancient Greek 66.29 64.92 62.74 65.37 54.78 58.20 56.04 57.39
Irish 73.61 72.81 72.08 73.10 57.55 62.97 61.52 62.87
Turkish 61.45 61.33 60.48 60.78 52.44 54.70 53.19 53.78
Uyghur 52.05 53.79 53.58 53.49 34.32 34.28 34.18 33.21

Table 3: Secondary results

same way as described above, while the other fea-
tures are constructed through one-hot encoding.

5 Results

The official test-run took 1 hour 47 minutes on a
single-core Intel Xeon CPU, which included seg-
mentation, tagging, and parsing. The secondary
system took 3 hours and 14 minutes.

In Table 2, we report our official LAS (labeled
attached F1-score) and our rankings among the 33
systems.10 We compare our system against the
baseline (UDPipe 1.1), ÚFAL (UDPipe 1.2), and
the best systems. Included are the macro-averaged
scores for all and some subsets of the treebanks,
plus three of our best-ranking & worst-ranking
per-treebank scores.

Our official system was far from the best, but it
was comparable to the two UDPipe systems, de-
spite having a much simpler parser. Parsing aside,
it had the highest all-tags F1-score with 73.92%,
thanks to the MorphoDiTa (Straková et al., 2014)
tool incorporated in UDPipe. However, the base-

10
http://universaldependencies.org/conll17/

results.html

line was very close with 73.74%.
In general, our primary system (darc) out-

performed our secondary system (mstnn), both
in LAS and UAS (unlabeled attached F1-score).
However, mstnn occasionally achieved better UAS
or LAS, as shown in Table 3.

6 Discussions

In Section 3.5 we made a comparison between our
darc parser and UDPipe’s Parsito parser. Specifi-
cally, Parsito supports better oracles and an addi-
tional transition algorithm. We attribute the com-
parable performance of our much simpler parser
to the following factors:

• We used more training data.

The baseline models were trained on sub-
sets of the train-sets, while using the rest for
parameter tuning, leaving the dev-sets un-
touched. Our models were trained on the en-
tire train-sets, and tuned on the dev-sets.

We believe this was the reason that we ranked
above the baseline but below ÚFAL.

• We used LEMMA when possible.
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In our experiments, we fixed the dimension-
ality of the lexical space, namely the target
real vector space where we embed the lexi-
cal representation (FORM and/or LEMMA)
of the vocabulary. We found that splitting the
dimensions between FORM and LEMMA, as
opposed to dedicating exclusively to either
one, consistently produced the best results.

Further evidence of this is that for four out
of the six treebanks where LEMMA was not
used, darc performed worse than the baseline.

Splitting the lexical space between FORM
and LEMMA actually decreases the num-
ber of parameters in the embedding matrices,
comparing with using FORM alone, because
LEMMA has fewer types.

• We had a better representation for FEATS.

Simply treating FEATS as atomic symbols is
subject to data sparsity as shown in Table 4.

FEATS max avg

type count 2487 430
hapax type count 561 92
entry type count 112 44

Table 4: Statistics for FEATS

Different types of FEATS are merely dif-
ferent combinations of morphological en-
tries, aka the attribute-value pairs. They are
compound symbols with a visible structure,
which should be preserved.

Our representation is explained in Sec-
tion 3.2. We experimented with normalizing
the FEATS vectors into unit vectors by their
L2-norm, or into probability distributions by
their L1-norm as in Alberti et al. (2015). But
simple binary indicators seemed to work the
best.

Despite the generally similar performance of
the original MSTParser in comparison with
transition-based parsers with similar learning al-
gorithms, our own mstnn did not meet the expec-
tation, when compared against darc.

The graph-based approach and the transition-
based approach are faced with different chal-
lenges, and produces different types of errors (Mc-
Donald and Nivre, 2007). The former suffers less

from the errors of local decisions, but the latter
usually benefits from richer features. In our case,
the neural network classifier in mstnn used much
less information from neighboring nodes than the
classifier in darc.

The separate labeler in mstnn was also subop-
timal. From UAS to LAS, the absolute drop was
4% higher for mstnn than it was for darc, which
actually means a 15.6% higher increase in error
rate. This exemplified a general problem with the
pipeline approach: Errors made in each step of
the pipeline stack up quickly, which is made even
worse by the snowball effect, where errors made
in one step bring about more errors in the follow-
ing steps. Another problem is that in a pipeline,
the information necessary for making the correct
decisions in one step may not be available until
later. We experimented with unlabeled parsing us-
ing darc, and despite facing a much simpler task
than labeled parsing, it yielded lower UAS.

The pipeline approach is a common weakness
of our both systems. We believe that for tasks
such as this one, an integrated end-to-end system
is more desirable.
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