
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 71–79,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Adversarial Training for Cross-Domain Universal Dependency Parsing

Motoki Sato1 Hitoshi Manabe1 Hiroshi Noji1 Yuji Matsumoto1,2

1 Nara Institute of Science and Technology
2 RIKEN Center for Advanced Intelligence Project (AIP)

{ sato.motoki.sa7, manabe.hitoshi.me0, noji, matsu }@is.naist.jp

Abstract

We describe our submission to the CoNLL
2017 shared task, which exploits the
shared common knowledge of a language
across different domains via a domain
adaptation technique. Our approach is
an extension to the recently proposed ad-
versarial training technique for domain
adaptation, which we apply on top of
a graph-based neural dependency parsing
model on bidirectional LSTMs. In our
experiments, we find our baseline graph-
based parser already outperforms the offi-
cial baseline model (UDPipe) by a large
margin. Further, by applying our tech-
nique to the treebanks of the same lan-
guage with different domains, we observe
an additional gain in the performance, in
particular for the domains with less train-
ing data.

1 Introduction

In the CoNLL 2017 shared task (Zeman et al.,
2017), some language data is available in more
than one treebanks typically from different anno-
tation projects. While the treebanks differ in many
respects such as the genre and the source of the
text (i.e., original or translated text), the most no-
table difference is that the size of the treebanks
often varies significantly. For example, there are
three variants of English treebanks: en, en lines,
and en parunt, in which the largest dataset en con-
tains 12,543 training sentences while en lines and
en parunt contain only 2,738 and 1,090 sentences,
respectively.

In this paper, we describe our approach to
improve the parser performance for the tree-
banks with lesser training data (e.g., en lines and
en parunt), by jointly learning with the dominant

treebank of the same language (e.g, en). We for-
mulate our approach as a kind of domain adapta-
tion, in which we treat the dominant treebank as
the source domain while the others as the target
domains.

Our approach to domain adaptation, which we
call SharedGateAdvNet, is an extension to the re-
cently proposed neural architecture for domain
adaptation (Ganin and Lempitsky, 2015) with
adversarial training (Goodfellow et al., 2014),
which learns domain-invariant feature representa-
tions through an adversarial domain classifier. We
extend this architecture with an additional neural
layer for each domain, which captures domain-
specific feature representations. To our knowl-
edge this is the first study to apply the adversarial
training-based domain adaptation to parsing.

We utilize this architecture to obtain the rep-
resentation of each token of a sentence, and
feed it into a graph-based dependency parsing
model where each dependency arc score is cal-
culated using bilinear attention (Dozat and Man-
ning, 2017). Specifically, we obtain the domain-
specific and domain-invariant feature represen-
tations for each token via separate bidirectional
LSTMs (Bi-LSTMs), and then combine them via
a gated mechanism.

Our baseline method is our reimplementation of
the graph-based dependency parser with LSTMs
(Dozat and Manning, 2017) trained with a sin-
gle treebank. First, we observe that this model
is already much stronger than the official baseline
model of UDPipe (Straka et al., 2016) in most tree-
banks. We then apply our domain adaptation tech-
nique to the set of treebanks of the same language,
and in most cases we observe a clear improvement
of the scores, especially for the treebanks with
lesser training data. We also try our architecture
across multiple languages, i.e., a high-resource
language with a large treebank, such as English,

71



and a low-resource language with a small data set.
Interestingly, even though the mixed languages are
completely different, we observe some score im-
provements in low-resource languages with this
approach. Finally we rank the 6th place on the
main result of the shared task.

2 System overview

The CoNLL 2017 shared task aims at parsing
Universal Dependencies 2.0 (Nivre et al., 2017).
While its concern is parsing in the wild, i.e., from
the raw input text, in this work we focus only on
the dependency parsing layer that receives the to-
kenized and POS tagged input text. For all pre-
processing from sentence splitting to POS tagging,
we use the provided UDPipe pipeline. For obtain-
ing the training treebanks, we keep the gold word
segmentation while assign the predicted POS tags
with the UDPipe.1

We did a simple model selection with the de-
velopment data for choosing the final submitted
models. First, we trained our baseline graph-
based LSTM parsing model (Section 3) indepen-
dently for each treebank. Then for some languages
with more than one treebank, or low-resource lan-
guages with a small treebank alone, we applied our
proposed domain adaptation technique (Section 4)
and obtained additional models. For treebanks for
which we trained several models, we selected the
best performing model on the development set in
terms of LAS. For the other treebanks, we submit-
ted our baseline graph-based parser.

For the parallel test sets (e.g., en pub) with no
training data, we use the model trained on the
largest treebank of a target language. We did not
pay much attention to the surprise languages. For
Buryat (bxr), we just ran the model of Russian
(ru). For the other three languages, we ran the
model of English (en).

3 Biaffine Attention model

Our baseline model is the biaffine attention model
(Dozat and Manning, 2017), which is an exten-
sion to the recently proposed dependency parsing
method calculating the score of each arc indepen-
dently from the representations of two tokens ob-
tained by Bi-LSTMs (Kiperwasser and Goldberg,
2016). For labeled dependency parsing, this model

1We were not aware of the jack-knifed training data pro-
vided by the organizer at submission time.

first predicts the best unlabeled dependency struc-
ture, and then assigns a label to each predicted arc
with another classifier. For the first step, receiv-
ing the word and POS tag sequences as an input,
the model calculates the score of every possible
dependency arc. To obtain a well-formed depen-
dency tree, these scores are given to the maximum
spanning tree (MST) algorithm (Pemmaraju and
Skiena, 2003), which finds the tree with the high-
est total score of all arcs. The overview of the bi-
affine model is shown in Figure 1.

Let wt be the t-th token in the sentence. As
an input the model receives the word embedding
wt ∈ Rdword and POS embedding pt ∈ Rdpos for
each wt, which are concatenated to a vector xt.
This input is mapped by Bi-LSTMs to a hidden
vector rt, which is then fed into an extension of
bilinear transformation called a biaffine function
to obtain the score for an arc from wi (head) to wj

(dependent):

rt = Bi-LSTM(xt), (1)

h(arc−head)
i = MLP(arc−head)(ri),

h(arc−dep)
j = MLP(arc−dep)(rj),

s
(arc)
i,j = hT(arc−head)

i U (arc)h(arc−dep)
j

+hT(arc−head)
i u(arc),

where MLP is a multi layer perceptron. A weight
matrix U (arc) determines the strength of a link
from wi to wj while u(arc) is used in the bias term,
which controls the prior headedness of wi.

After obtaining the best unlabeled tree from
these scores, we assign the best label for every
arc according to s(label)

i,j , in which the k-th element
corresponds to the score of k-th label:

h(label−head)
i = MLP(label−head)(ri),

h(label−dep)
j = MLP(label−dep)(rj),

h(label)
i,j = h(label−head)

i ⊕ h(label−dep)
j ,

s(label)
i,j = hT(label−head)

i U(label)h(label−dep)
j

+hT(label)
i,j W (label) + u(label),

where U(label) is a third-order tensor, W (label) is a
weight matrix, and u(label) is a bias vector.

4 Domain Adaptation Techniques with
Adversarial Training

Here we describe our network architectures for do-
main adaptation. We present two different net-

72



Bi−LSTMs

Input 
embedding

x
1

x
2

x
3

MLP

BiaffineBiaffineBiaffine Biaffine

Figure 1: Overview of the biaffine model.

works both using adversarial training; the main
difference between them is whether we use a
domain-specific feature representation for each
domain. The basic architecture with adversar-
ial training (Section 4.1) is an application of the
existing domain adaptation technique (Ganin and
Lempitsky, 2015) that does not employ domain-
specific representations. We then extend this ar-
chitecture to add a domain-specific component
with a gated mechanism (Section 4.2).

In Section 5 we compare the empirical perfor-
mances of these two approaches as well as several
ablated settings.

4.1 Adversarial Training

Figure 2 describes the application of adversar-
ial training (Ganin and Lempitsky, 2015) for the
biaffine model. In this architecture all models
for different domains are parameterized by the
same LSTMs (Shared Bi-LSTMs), which output
rt (Eqn. 1) that are fed into the biaffine model.
The key of this approach is a domain classifier,
which also receives rt and tries to classify the do-
main of the input. During training the classifier is
trained to correctly classify the input domain. At
the same time, we train the shared BiLSTM lay-
ers so that the domain classification task becomes
harder. By this adversarial mechanism the model
is encouraged to find the shared parameters that
are not specific to a particular domain as much
as possible. As a result, we expect the target do-
main model (with lesser training data) is trained to
utilize the knowledge of the source domain effec-
tively. Note that the domain classifier in Figure 2
is applied for every token in the input sentence.

This domain adaptation technique can be im-
plemented by introducing the gradient reversal
layer (GRL). The GRL has no parameters asso-
ciated with it (apart from the hyper-parameter λ,

Domain 1

Shared
LSTMs

Domain 2

Biaffine

PredictBiaffine

Domain 1

Shared
LSTMs

Domain 2

Biaffine

PredictBiaffine

Gradient
Reversal

Layer

Domain 1

Domain 2

Domain
classifier

MLP

Figure 2: An application of the adversarial train-
ing for the biaffine model. In this basic architec-
ture all domains are modeled with a common sin-
gle Bi-LSTM network (Shared Bi-LSTMs).

which is not updated with backpropagation). Dur-
ing the forward propagation GRL acts as an iden-
tity transform, while during the backpropagation
GRL takes the gradient from the subsequent layer,
multiplies it by λ and passes it to the preceding
layer.

The parameter λ controls the trade-off between
the two objectives (the domain classifier and the
biaffine model) that shape the feature representa-
tion during training. The GRL layer Rλ(x) for the
forward and backward propagation is defined as
follows:

Rλ(x) = x;
dRλ

dx
= −λI.

4.2 Shared Gated Adversarial Networks

Now we present our extension to adversarial train-
ing described above, which we call the shared
gated adversarial networks (SharedGateAdvNet).

Figure 3 shows the overall architecture. The
largest difference from Figure 2 is the existence
of the domain-specific Bi-LSTMs (Not-shared Bi-
LSTMs) that we expect to capture the representa-
tions not fitted into the shared LSTMs and special-
ized to a particular domain. The model comprises
of the following three components.

Shared Bi-LSTMs As in the basic model with
adversarial training (Figure 2), the shared Bi-
LSTMs in this model try to learn the domain in-
variant feature representation via a domain classi-
fier, which facilitates effective domain adaptation.

Domain-specific Bi-LSTMs This domain-
specific component captures the information that
does not fit into the domain-invariant shared

73



Domain 1

Shared
LSTMs

Not-Shared
LSTMs

Domain 2

Gate

Gate

Biaffine

Gated
connection

Predict
Gradient
Reversal

Layer

Biaffine

Domain 1

Domain 2

Domain
classifier

Figure 3: The architecture of SharedGateAdvNet. Each token in the input sentence is passed to the
biaffine model through this network.

Bi-LSTMs. The domain-specific LSTMs exist on
each domain. Figure 3 shows the case when two
treebanks (domains) are trained at the same time.
When training with three treebanks, there exist
three Bi-LSTMs, one for each domain.

Gated connection The gated connection selects
which information to use between the domain-
invariant and domain-specific feature represen-
tations (the shared Bi-LSTMs and the domain-
specific Bi-LSTMs). We get the combined repre-
sentation rgate

t from these two vectors as follows:

gt = σ(U (gate)(rdom
t ⊕ rshare

t ) + u(gate)),
rgate
t = gt · rshare

t + (1− gt) · rdom
t ,

where σ is the sigmoid function. rshare is the out-
put of the shared Bi-LSTMs while rdom is the out-
put of the domain-specific Bi-LSTMs.

5 Experiments

5.1 Settings

For the settings of the biaffine models, we fol-
low the same network settings as Dozat and Man-
ning (2017): 3-layer, 400-dimentional LSTMs for
each direction, 500-dimentional MLP for arc pre-
diction, and 100-dimentional MLP for label pre-
diction. We use the 100-dimensional pre-trained
word embeddings trained by word2vec (Mikolov
et al., 2013) 2 and the 100-dimensional randomly
initialized POS tag embeddings. For the model

2The pre-trained word embeddings are provided by the
CoNLL 2017 Shared Task organizers. These are trained with
CommonCrawl and Wikipedia.

with adversarial training, we fix λ to 0.5.3 We ap-
ply dropout (Srivastava et al., 2014) with a 0.33
rate at the input and output layers. For optimiza-
tion, we use Adam (Kingma and Ba, 2014) with
the batch size of 128 and gradient clipping of 5.
We use early stopping (Caruana et al., 2001) based
on the performance on the development set.

5.2 Preliminary Experiment
Before selecting the final submitted model for
each treebank (Section 5.3) here we perform a
small experiment on selected languages (English
and French) to see the effectiveness of our domain
adaptation techniques.

English experiment First, for English, we com-
pare the performances of several domain adapta-
tion techniques as well as the baselines without
adaptation, to see which technique performs bet-
ter. We compare the following six systems:

• UDPipe: The official baseline parser (Straka
et al., 2016). This is a transition-based parser
selecting each action using neural networks.

• Biaffine: Our reimplementation of the graph-
based parser of Dozat and Manning (2017).
We use Chainer (Tokui et al., 2015) for our
implementation. We train this model inde-
pendently on each treebank.

• Biaffine-MIX: A simple baseline of domain
adaptation, which just trains a single biaffine
model across different domains. We obtain

3 We did not obtain any performance gains by scheduling
λ in our preliminary experiments.

74



Method
en en lines en partut

UAS LAS UAS LAS UAS LAS
UDPipe 83.83 80.13 79.00 74.68 78.26 74.23
Biaffine 86.19 82.45 81.94 77.64 80.01 75.52
Biaffine-MIX 86.19 82.28 82.23 76.95 83.34 78.02
Biaffine-MIX + Adv 86.05 82.36 82.47 77.45 83.38 78.37
SharedGateNet 86.17 82.42 82.67 78.28 84.06 80.09
SharedGateAdvNet 86.27 82.47 82.69 78.27 84.32 80.35

Table 1: The result of our preliminary English experiment across multiple domains. UDPipe and Biaffine
are trained separately for each language, while the other models are trained across all domains jointly.

Method
en en lines en partut fr fr partut fr sequoia

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Biaffine 86.19 82.45 81.94 77.64 80.01 75.52 90.39 88.11 86.79 83.70 87.20 84.90
Ours (domain) 86.27 82.47 82.69 78.27 84.32 80.35 90.26 88.06 88.71 86.18 87.64 85.27
Ours (domain, lang) 85.47 81.75 82.03 77.58 83.60 79.51 90.07 87.71 89.49 87.08 87.90 85.34

Table 2: The result of our preliminary experiment across different languages (English and French). Ours
(domain) is trained for each language across multiple domains by SharedGateAdvNet. Ours (domain,
lang) is trained with all six treebanks of two languages jointly. Joint training of two languages brings a
small improvement on the smaller French treebanks (fr partut and fr sequoia).

this by removing the domain classification
component in Figure 2.

• Biaffine-MIX + Adv: The model in Figure
2, which shares the same parameters across
multiple domains but adversarial training fa-
cilitates learning domain-invariant represen-
tations.

• SharedGateNet: A simpler version of our
proposed architecture (Figure 3), which does
not have the adversarial component but has
the gated unit controlling the strength of the
two, domain-invariant and domain-specific
Bi-LSTMs.

• SharedGateAdvNet: Our full architecture
(Figure 3) with both adversarial training and
the gated unit.

The result is shown in Table 1. First, we
find that our baseline biaffine parser already out-
performs the official baseline parser (UDPipe)
by a large margin (e.g., for English, 82.45 vs.
80.13 LAS), which suggests the strength of graph-
based parsing with Bi-LSTMs that enable the
model to capture the entire sentence as a context.
By just mixing the training treebanks (Biaffine-
MIX), we observe a score improvement for the
domains with less data, en lines and en parunt,
which only contain 2,738 and 1,090 sentences,

respectively. We also observe an additional
small gain with adversarial training (Biaffine-MIX
Adv). Comparing with this, our proposed archi-
tectures (SharedGateNet and SharedGateAdvNet)
perform better. This shows the importance of hav-
ing the domain-specific network layers. Our fi-
nal architecture SharedGateAdvNet slightly out-
performs SharedGateNet, indicating that the ad-
versarial technique also has its own advantage.

Since SharedGateAdvNet consitently outper-
forms the others in English, we only try this
method in the following experiments.

English and French experiment To see the ef-
fects of our approach when combining completely
different data, i.e., different language treebanks,
we perform a small experiment using two lan-
guages: English and French. French treebanks
are also divided into three domains and also are
imbalanced: fr (14,553 sentences), fr partut (620
sentences), and fr sequoria (2,231 sentences). We
compare the models trained within each language
(3 domains for each), and the model trained with
all six treebanks of English and French. The re-
sult is shown in Figure 2. Interestingly, especially
for fr partut and fr sequoria, we observe a small
score improvement by jointly learning two lan-
guages. The best model for fr is the biaffine model
without joint training. Note also that for en, the
effect of the adaptation technique is very small, or

75



Language
UAS LAS

UDPipe Biaffine SharedGateAdv UDPipe Biaffine SharedGateAdv
ar 80.13 82.97 - 73.04 76.35 -
bg 88.02 90.60 - 83.22 86.23 -
ca 88.37 90.57 - 85.28 87.42 -
cs 88.14 91.36 91.23 84.68 88.31 88.29 (i)

cs cac 86.81 89.03 89.77 83.50 85.65 86.73 (i)

cs cltt 72.65 75.88 78.87 69.01 71.43 75.23 (i)

cu 80.41 82.83 - 73.19 75.30 -
da 78.40 82.04 - 74.74 78.42 -
de 79.40 84.40 - 74.11 80.17 -
el 82.37 84.99 - 78.69 80.88 -
en 83.83 86.19 86.27 80.13 82.45 82.47 (i)

en lines 79.00 81.94 82.69 74.68 77.64 78.27 (i)

en partut 78.26 80.01 84.32 74.23 75.52 80.35 (i)

es 87.50 89.37 89.49 84.29 86.25 86.33 (i)

es ancora 87.53 90.34 90.26 84.54 87.76 87.61 (i)

et 69.26 70.57 - 60.16 59.01 -
eu 74.59 77.58 - 69.23 70.06 -
fa 83.89 87.02 - 79.81 83.15 -
fi 79.97 80.57 81.74 75.37 74.62 75.98 (i)

fi ftb 80.72 81.60 82.21 76.10 75.38 76.20 (i)

fr 88.72 90.39 90.07 86.36 88.11 87.71 (ii)

fr partut 77.82 86.79 89.49 73.67 83.70 87.08 (ii)

fr sequoia 84.35 87.20 87.89 81.93 84.90 85.33 (ii)

ga 74.57 80.28 - 63.47 72.70 -
gl 80.66 83.73 83.81 77.17 80.08 80.11 (i)

gl treegal 72.32 78.48 83.69 66.43 73.62 78.08 (i)

got 76.42 78.21 - 68.92 70.32 -
grc 62.12 66.13 69.16 55.23 58.77 61.23 (i)

grc proiel 77.35 80.74 81.83 72.03 75.43 76.22 (i)

he 83.93 86.12 - 78.03 80.13 -
hi 91.29 93.03 - 86.90 88.97 -
hr 81.99 85.66 - 76.40 79.79 -
hu 71.52 74.09 - 65.04 63.31 -
id 80.76 83.34 - 74.08 76.67 -
it 87.77 90.09 90.82 85.04 87.62 88.15 (i)

it partut 82.02 82.66 90.66 78.47 78.72 87.34 (i)

ja 94.31 95.48 - 92.94 94.15 -
kk 37.08 64.51 - 23.60 37.09 -
ko 63.71 67.01 - 56.41 59.04 -
la 56.93 67.41 73.06 47.13 58.65 64.53 (i)

la ittb 75.95 82.82 83.29 71.07 78.24 78.69 (i)

la proiel 75.31 79.30 80.34 69.11 72.83 73.74 (i)

lv 56.93 71.98 - 47.13 63.45 -
nl 79.57 85.44 85.38 74.55 80.21 80.28 (i)

nl lassysmall 79.59 85.01 86.59 75.46 81.17 82.53 (i)

no bokmaal 87.52 90.17 - 84.38 87.40 -
no nynorsk 85.79 88.51 - 82.49 85.54 -
pl 85.18 86.84 - 79.01 81.15 -
pt 88.37 90.75 91.02 85.20 87.84 87.79 (i)

pt br 88.37 90.53 90.93 86.26 88.36 88.75 (i)

ro 85.22 88.04 - 79.66 82.35 -
ru 80.13 82.79 84.01 75.07 77.14 78.98 (i)

ru syntagrus 89.69 92.07 91.86 86.84 89.48 89.23 (i)

sk 81.81 84.09 - 75.55 77.41 -
sl 81.81 87.12 87.17 80.72 83.80 83.73 (i)

sl sst 63.71 77.56 80.17 55.39 69.67 72.28 (i)

sv 77.94 80.32 82.27 73.64 75.28 77.91 (i)

sv lines 79.72 79.81 82.71 74.72 74.23 77.87 (i)

tr 63.41 64.77 - 55.70 53.88 -
ug 62.50 74.80 75.57 38.46 52.67 52.68 (iii)

uk 62.66 78.05 79.59 54.17 71.39 72.93 (iii)

ur 83.05 85.69 - 76.15 78.87 -
vi 63.99 65.98 - 56.34 57.91 -
zh 74.03 77.09 - 68.75 71.38 -

Table 3: The result of our experiment for model selection on the development data. (i), (ii), and (iii)
correspond to the differnt domain adaptation strategies found in the body.

76



negative, and these suggest our approach may be
ineffective for a treebank that already contains suf-
ficient amount of data.

Due to time constraints, we were unable to try
many language pairs for joint training, but this re-
sult suggests the parser may benefit from training
across different languages. For the final experi-
ment for model selection below, we try some other
pairs for some languages, and select those models
when they perform better.

5.3 Model Selection

As we summarize in Section 2 we perform a sim-
ple model selection for each language with the de-
velopment data in order to select the final submit-
ted models. Besides a biaffine model with a single
treebank, for some treebanks we additionally train
other models with our SharedGateAdvNet. Our
approach is divided into the following three strate-
gies according to the languages:

(i) Training multiple domains within a single
language. We try this for many languages,
such as English (en), Czech (cs), Spanish
(es), etc.

(ii) Training multiple domains across different
languages. Based on the positive result of
our preliminary experiment, we try this only
for obtaining French models (training jointly
with English treebanks).

(iii) Training two treebanks in different lan-
guages. We only try this for two very small
treebanks: Ukrainian (uk), which we train
with en, and Uyghur (ug), which we train
with Russian (ru) that we find performs better
than training with en.

See Table 3 for the results. Again, our base-
line biaffine parser outperforms UDPipe in most
treebanks. Training multiple domains in one lan-
guage often brings performance gains, in par-
ticular for smaller treebanks, as in the case for
English. For example, for Galician, LAS in
gl treegal largely improves from 73.63 to 78.08
with our joint training. The largest gain is obtained
in Italian (it partut), from 78.72 to 87.34, about 10
points improvement in LAS.

From these results, for example, we select our
SharedGateAdvNet model for cs cac while select
the biaffine model for cs, which does not benefit
from joint training.

Language
UAS LAS

UDPipe Ours Stanford UDPipe Ours Stanford
ar 71.19 73.34 76.59 65.30 67.78 71.96
ar pub 53.55 55.66 58.87 43.14 45.56 49.50
bg 87.79 89.95 92.89 83.64 85.97 89.81
bxr 46.97 44.07 51.19 31.50 27.20 30.00
ca 88.62 90.59 92.88 85.39 87.47 90.70
cs 86.46 89.74 92.62 82.87 86.50 90.17
cs cac 86.49 90.09 93.14 82.46 86.41 90.43
cs cltt 76.26 81.10 86.02 71.64 77.14 82.56
cs pub 84.42 87.22 89.11 79.80 82.30 84.42
cu 69.68 72.19 77.10 62.76 65.13 71.84
da 76.94 80.90 85.33 73.38 77.08 82.97
de 74.27 78.43 84.10 69.11 74.04 80.71
de pub 73.64 77.20 80.88 66.53 70.74 74.86
el 83.00 85.48 89.73 79.26 81.79 87.38
en 78.87 80.96 84.74 75.84 77.93 82.23
en lines 77.39 81.87 85.16 72.94 77.53 82.09
en partut 77.83 83.17 86.10 73.64 79.10 82.54
en pub 82.74 84.75 88.22 78.95 81.18 85.51
es 84.84 87.80 90.01 81.47 84.25 87.29
es ancora 86.97 89.93 92.11 83.78 87.27 89.99
es pub 84.71 86.91 88.14 77.65 79.66 81.05
et 67.71 69.00 78.08 58.79 57.72 71.65
eu 74.39 77.94 85.28 69.15 70.71 81.44
fa 83.36 86.06 89.64 79.24 82.01 86.31
fi 77.90 80.17 87.97 73.75 74.71 85.64
fi ftb 78.77 80.43 89.24 74.03 74.42 86.81
fi pub 82.24 82.40 90.60 78.65 77.11 88.47
fr 84.13 85.88 88.57 80.75 82.43 85.51
fr partut 81.69 84.79 88.64 77.38 80.31 85.05
fr pub 78.62 80.32 83.45 73.63 75.20 78.81
fr sequoia 82.62 85.85 88.48 79.98 83.10 86.53
ga 72.08 73.29 78.50 61.52 62.25 70.06
gl 80.66 83.51 85.87 77.31 80.13 83.23
gl treegal 71.17 73.60 78.28 65.82 66.84 73.39
got 67.13 67.84 73.10 59.81 60.20 66.82
grc 62.74 68.85 78.42 56.04 61.28 73.19
grc proiel 70.42 74.33 78.30 65.22 69.23 74.25
he 61.54 64.16 67.70 57.23 59.56 63.94
hi 90.97 92.64 94.70 86.77 88.70 91.59
hi pub 63.43 65.29 67.24 50.85 52.81 54.49
hr 83.20 85.47 90.11 77.18 79.32 85.25
hsb 61.70 49.38 67.83 53.83 41.32 60.01
hu 71.46 71.87 82.35 64.30 60.30 77.56
id 80.91 83.11 85.17 74.61 76.50 79.19
it 88.03 89.93 92.51 85.28 87.39 90.68
it pub 87.04 88.61 91.08 83.70 85.30 88.14
ja 73.52 74.46 75.42 72.21 73.27 74.72
ja pub 77.13 77.65 78.64 76.28 76.78 77.92
kk 41.92 40.12 43.51 24.51 22.49 25.13
kmr 46.20 31.68 47.71 32.35 23.18 35.05
ko 66.40 71.48 85.90 59.09 64.46 82.49
la 54.35 63.60 72.56 43.77 52.19 63.37
la ittb 80.78 85.53 89.44 76.98 82.20 87.02
la proiel 63.50 67.68 73.71 57.54 61.34 69.35
lv 67.14 68.83 79.26 59.95 60.20 74.01
nl 74.94 79.16 85.17 68.90 73.22 80.48
nl lassysmall 81.37 87.74 89.56 78.15 85.03 87.71
no bokmaal 86.14 88.55 91.60 83.27 86.05 89.88
no nynorsk 84.88 87.22 90.75 81.56 84.39 88.81
pl 85.08 86.89 93.98 78.78 80.68 90.32
pt 85.77 87.70 89.90 82.11 84.35 87.65
pt br 87.75 90.06 92.76 85.36 87.73 91.36
pt pub 80.10 82.58 83.27 73.96 76.35 77.14
ro 85.50 87.28 90.43 79.88 81.66 85.92
ru 79.28 82.75 87.15 74.03 77.63 83.65
ru syntagrus 89.30 91.68 82.31 86.76 89.31 75.71
ru pub 75.67 77.93 94.00 68.31 70.51 92.60
sk 78.14 81.11 89.58 72.75 75.28 86.04
sl 84.68 87.35 93.34 81.15 84.06 91.51
sl sst 53.79 57.47 61.71 46.45 50.16 56.02
sme 46.06 37.74 51.13 30.60 23.54 37.21
sv 80.78 83.71 88.50 76.73 79.68 85.87
sv lines 79.18 81.49 86.51 74.29 76.63 82.89
sv pub 75.09 77.47 81.90 70.62 72.89 78.49
tr 60.48 62.48 69.62 53.19 51.44 62.79
tr pub 55.01 52.95 58.72 34.53 31.17 37.72
ug 53.58 51.45 56.86 34.18 33.19 39.79
uk 69.78 70.22 81.44 60.76 60.73 75.33
ur 83.67 86.40 87.98 76.69 79.38 82.28
vi 42.12 44.01 46.14 37.47 38.99 42.13
zh 61.50 63.87 68.95 57.40 59.99 65.88
AVG. 74.40 76.35 81.30 68.35 70.13 76.29

Table 4: The main result on the test data.

77



5.4 Evaluation on Test data

The main result of CoNLL 2017 shared task on
the test data is shown in Table 4. In addition to
the official baseline (UDPipe) and our system, we
also report the scores of the winning system by
the Stanford team. See Zeman et al. (2017) for the
overview of the other participating systems.

Our system outperforms UDPipe in many test
treebanks, 69 out of 81 treebanks. We find many
cases that UDPipe performs better are when the
training teebank is very small, e.g., Kazakh (kk),
Ukrainian (uk), and Uyghur (ug), or not available
at all, i.e., surprise languages: Buryat (bxr), Kur-
manji (kmr), Upper Sorbian (hsb), and North Sàmi
(sme), for which our approach is somewhat naive
(Section 2) and UDPipe performs always better.
We can also see that for some treebanks (e.g., et,
fi pub and hu), our system performs better in UAS
while worse in LAS. This may be due to the design
of the baseline biaffine model, which determines
the best unlabeled tree before assigning the labels
(Section 3), i.e., does not perform labeled parsing
as a single task.

Our system (NAIST-SATO) achieves the over-
all average LAS of 70.13, which is the 6th rank
among 33 participants in the shared task. UDPipe
(68.35) is the 13th rank.

6 Related Work

A related approach to us in parsing is Ammar et al.
(2016), where a single multilingual dependency
parser parses sentences in several languages. Dif-
ferently from our final architecture their model
shares all parameters across different languages.
In this study, we found the importance of model-
ing language-specific syntactic features explicitly
with the separate Bi-LSTMs.

Our network architecture for domain adaptation
is an extension of Ganin and Lempitsky (2015),
which applies adversarial training (Goodfellow
et al., 2014) for the domain adaptation purpose.
There is little prior work applying this adversarial
domain adaptation technique to NLP tasks; Chen
et al. (2016) use it for cross-lingual sentiment clas-
sification, in which the adversarial component has
a classifier that tries to classify the language of an
input sentence. To our knowledge, this is the first
study applying adversarial training for parsing. In
addition to the simple application, we also pro-
posed an extended architecture with the domain
specific LSTMs and demonstrated the importance

of them.

7 Conclusion

We have proposed a domain adaptation technique
with adversarial training for parsing. By apply-
ing it on the recent state-of-the-art graph-based de-
pendency parsing model with Bi-LSTMs, we ob-
tained a consistent score improvement, especially
for the treebanks having less training data. For
the architecture design, we found the importance
of preparing the network layer capturing the do-
main specific representation. We also performed a
small experiment for training across multiple lan-
guages and had an encouraging result. In this
work, we have not investigated incorporating in-
formation on language families, so a natural future
direction would be to investigate whether typolog-
ical knowledge helps to select good combinations
of languages for training multilingual models.

Acknowledgments

We thank two anonymous reviewers for helpful
comments. This work was in part supported by
JSPS KAKENHI Grant Number 16H06981.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah A Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics (TACL) 5:431–444.

Rich Caruana, Steve Lawrence, and C. Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, MIT
Press, pages 402–408.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2016. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. arXiv preprint arXiv:1606.01614 .

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. Proc. International Conference on Learning
Representations (ICLR) .

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495 .

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

78



Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Sriram Pemmaraju and Steven S Skiena. 2003. Com-
putational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica R⃝. Cambridge
university press.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16). European
Language Resources Association (ELRA), Paris,
France.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS).

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael

Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

79


