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Abstract

We present the LMU system for the
CoNLL-SIGMORPHON 2017 shared task
on universal morphological reinflection,
which consists of several subtasks, all con-
cerned with producing an inflected form
of a paradigm in different settings. Our
solution is based on a neural sequence-
to-sequence model, extended by prepro-
cessing and data augmentation methods.
Additionally, we develop a new algorithm
for selecting the most suitable source form
in the case of multi-source input, outper-
forming the baseline by 5.7% on aver-
age over all languages and settings. Fi-
nally, we propose a fine-tuning approach
for the multi-source setting, and combine
this with the source form detection, in-
creasing accuracy by a further 4.6% on av-
erage.

1 Introduction

Many of the world’s languages have a rich mor-
phology, i.e., make use of surface variations of
lemmata in order to express certain properties, like
the tense or mood of a verb. This makes a variety
of natural language processing tasks more chal-
lenging, as it increases the number of words in
a language drastically; a problem morphological
analysis and generation help to mitigate. How-
ever, a big issue when developing methods for
morphological processing is that for many mor-
phologically rich languages, there are only few
or no relevant training data available, making it
impossible to train state-of-the-art machine learn-
ing models (e.g., (Faruqui et al., 2016; Kann and
Schütze, 2016b; Aharoni et al., 2016; Zhou and
Neubig, 2017)). This is the motivation for the
CoNLL-SIGMORPHON-2017 shared task on uni-

versal morphological reinflection (Cotterell et al.,
2017a), which animates the development of sys-
tems for as many as 52 different languages in 6
different low-resource settings for morphological
reinflection: to generate an inflected form, given
a target morphological tag and either the lemma
(task 1) or a partial paradigm (task 2). An exam-
ple is

(use, V;3;SG;PRS) 7→ uses

In this paper, we describe the LMU system for
the shared task. Since it depends on the language
and the amount of resources available for training
which method performs best, our approach con-
sists of a modular system. For most medium- and
high-resource, as well as some low-resource set-
tings, we make use of the state-of-the-art encoder-
decoder (Cho et al., 2014a; Sutskever et al., 2014;
Bahdanau et al., 2015) network MED (Kann and
Schütze, 2016b), while extending the training data
in several ways. Whenever the given data are not
sufficient, we make use of the baseline system,
which can be trained on fewer instances.

While we submit solutions for every language
and setting, our main focus is on task 2 of the
shared task and the main contributions of this pa-
per correspondingly address a multi-source input
setting: (i) We develop CIS (”choice of important
sources”), a novel algorithm for selecting the most
appropriate source form for a target tag from a
partially given paradigm, which is based on edit
trees (Chrupała, 2008). (ii) We propose to cast
the task of multi-source morphological reinflec-
tion as a domain adaptation problem. By fine-
tuning on forms from a partial paradigm, we im-
prove the performance of a neural sequence-to-
sequence model for most shared task languages.

Our final methods, averaged over languages,
outperform the official baseline by 7.0%, 18.5%,
and 16.5% for task 1 and 8.7%, 10.1%, and
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10.3% for task 2 for the low-, medium-, and high-
resource settings, respectively.

Furthermore, our submitted sytem—a combina-
tion of our methods with the baseline system—
surpasses the baseline’s accuracy on test for both
tasks as well as all languages and settings. Differ-
ences in performance are between 8.69% (task 1
low) and 17.94% (task 1 medium).

2 Morphological Reinflection

The paradigm of a lemma wl is a set of tuples of
inflected forms fk and tags tk describing the prop-
erties of the inflected word, which we formally de-
note as:

π(wl) =
{(
fk[wl], tk

)}
tk∈T (wl)

(1)

with T (wl) being the set of possible tags for wl.
An example is the following paradigm of the

Spanish lemma soñar:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

The shared task has two subtasks: task 1 con-
sists of predicting a certain form fi[wl], given the
lemma wl and the target tag ti. For task 2, one
or more source forms are given for each lemma
(multi-source input). Thus, additional information
about the way a lemma is inflected is known and
can be leveraged.

3 Preprocessing Methods

We apply the following preprocessing methods.

String preprocessing. We determine for each
language if it is predominantly prefixing or suf-
fixing, using the same algorithm as the shared task
baseline system (Cotterell et al., 2017a). For pre-
fixing languages, we invert all words. An example
for the prefixing language Navajo is:

chidı́→ ı́dihc

New character handling. The source and target
vocabularies for the languages are constructed us-
ing the respective training and development sets.
Therefore, out-of-vocabulary symbols can appear
in the test sets, resulting in symbols the model has
no information about. In order to address this, we
substitute such characters by a special NEW sym-
bol and train the model on it by including it in
the additional training samples we create, cf. §4.

In the output, NEW is substituted back by the new
characters in the input in order of appearance. An
example from the German development data is:

Phloëm→ PhloNEWm

Tag extension. Explicit information is usually
handled better by machine learning methods than
implicit information. Therefore, we search for op-
tional subtag slots, in contrast to those that are al-
ways occupied by some value, e.g., an optional
negation subtag, in contrast to the part-of-speech
subtag which, for most languages, is always ei-
ther Verb, Noun or Adjective, but never empty.
For all optional subtags, we artificially introduce
a negated form.

4 Training Data Augmentation Methods

Additional source-target form pairs. We col-
lect all forms belonging to the same lemma.
We then add additional samples by constructing
source-target combinations for other sources than
the lemma, using the members of each paradigm.
For the two samples lemmai → word1 and
lemmai→ word2 we can introduce the new sam-
ples word1→ word2 and word2→ word1.1

Autoencoding samples. We further create sam-
ples for a sequence autoencoding task, i.e., we add
mappings of words to themselves, with a special
copy tag A. No morphological tags are given. This
is a way to multi-task train on autoencoding the
input string and reinflection, as we maximize the
joint log-likelihood

L(θ)=
∑

(wl,ts,tt)∈T
log pθ (ft(wl) | e(fs(wl), tt))

(2)

+
∑

w∈W
log pθ(w | e(w))

for the training data T , source and target tags ts
and tt, a lemma wl and an encoding function e
depending on θ, as well as a set of stringsW . We
apply two variants: autoencoding the lemmata and
forms from the original training set, or using ran-
dom strings for this. Random strings are produced
in the following way. We first construct all pos-
sible bigrams B from the vocabulary of the lan-
guage. We then combine those with a random se-
quence of characters r of a random length between

1The respective source and target tags are part of the input,
but omitted here for clarity.
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1 and 4 in the following way: b1 + b2 +r+ b3 + b4
for bi ∈ B. Constructing random strings like this
has the positive side-effect that we can add a NEW
to the vocabulary.

Rule-based data generation. We imitate a rule-
based system by, given a source form and a tar-
get form, defining the prefix (resp. suffix) of a
word as the word minus the longest common suf-
fix (resp. prefix). We then create an additional
training example by generating a random string s
and prepending (resp. appending) source and tar-
get prefixes (resp. suffixes) to s. For example, in
German, we can find the following rule for the 2nd
person singular form:

*en→ *st

From this we can create additional training in-
stances like the following.

(jfgdgfen, V;2;SG;PRS) 7→ jfgdgfst

(Ahggen, V;2;SG;PRS) 7→ Ahggst

We apply this procedure to all pairs of a source and
a target tag that appear less than t times in train for
a certain threshold t.

5 System Architecture

We apply the encoder-decoder network MED
(Kann and Schütze, 2016a), due to its success in
last year’s edition of the shared task (Cotterell
et al., 2016). While we extend it by new train-
ing data augmentation methods and, for task 2, the
additional algorithms described below, we do not
make changes to the model’s architecture. We will
shortly describe MED and the shared task baseline
system in this section.

5.1 MED
Encoder. The format of the input of the encoder
is the same as in (Kann and Schütze, 2016a), but
with a small modification to be able to handle un-
labeled data: Given the set of morphological sub-
tags M that each target tag is composed of (e.g.,
the tag 1SgPresInd contains the subtags 1, Sg, Pres
and Ind), and the alphabet Σ of the language of ap-
plication, our input is of the form (A | M∗) Σ∗, i.e.,
it consists of either a sequence of subtags or the
symbol A signaling that the input is not annotated
and should be autoencoded, and (in both cases) the
character sequence of the input word. All parts of
the input are represented by embeddings.

(a) The lemma is the
only accepted source
form.

(b) Additional source
forms with a higher
priority than the lemma
have been determined.

Figure 1: Comparison of the traditional view (left) and the re-
sult of CIS (right). Possible source forms in green, the target
form in blue. Thickness of the arrows represents priorities of
source forms. Most forms of the paradigm have been omitted
because of space limitations.

We encode the input x = x1, x2, . . . , xTx us-
ing a bidirectional gated recurrent neural network
(GRU) (Cho et al., 2014b). We then concatenate
the forward and backward hidden states to obtain
the input hi for the decoder.

Decoder. The decoder is a uni-directional
attention-based GRU, defining a probability dis-
tribution over strings in Σ∗:

p(y | x) =

Ty∏

t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using
the encoder hidden states together with attention
weights. A detailed description of the encoder-
decoder model can be found in (Bahdanau et al.,
2015).

5.2 Baseline System

The shared task baseline system (BL) is well-
suited for low-resource settings. It first aligns each
input and output string, and than extracts possible
prefix or suffix substitution rules from the train-
ing data. At test time, it applies the most suitable
one in the following way: Every input is searched
for the longest contained prefix or suffix and the
rule belonging to the affix and given target tag is
applied to obtain the output. Whether prefixes or
suffixes are used depends on the language and is
determined using the training set.
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Figure 2: Edit tree for the transformation from abgesagt
“canceled” to absagen “to cancel”. Each node contains the
length of the parts before and after the respective LCS, e.g.,
the leftmost node contains the length of the parts before and
after the LCS of abge and ab. The prefix sub indicates that
the node is a substitution operation.

6 Choice of Important Sources

As our choice of important sources (CIS) algo-
rithm is based strongly on edit trees (Chrupała,
2008), we will introduce them first.

Edit trees. An edit tree e(σ, τ) is a way to spec-
ify a transformation between a source string σ and
a target string τ (Chrupała, 2008). It is constructed
by first determining the longest common substring
(LCS) (Gusfield, 1997) of σ and τ and then mod-
eling the prefix and suffix pairs of the LCS recur-
sively. In the case of an empty LCS, e(σ, τ) corre-
sponds to the substitution operation that replaces
σ with τ . Figure 2 shows an example.

CIS. The entire task of paradigm completion
is built upon the notion that the members of a
paradigm are not independent. However, for many
languages, some slots of a paradigm are more
dependent on each other: For example, gehen,
gehe and ging are all forms of the same German
paradigm, but when aiming to produce the 3rd per-
son plural past tense form gingen, the task is easier
when starting from the (more similar) form ging.
In fact, in many cases, the entire paradigm is com-
pletely deterministic when the right paradigm slots
are known. A set of forms that determines all other
inflected forms is called principal parts.

(Cotterell et al., 2017b) use this property of
morphologically rich languages to induce topolo-
gies in order to jointly decode entire paradigms
and to thus make use of all known forms.
However, they suppose to be able to compute
and use good estimates for the probabilities
p(fi(wl)|fj(wl)) for source form fj(wl) and tar-
get form fi(wl), since they use at least 632 en-
tire paradigms per part of speech and language for
training. Using a minimum spanning tree, they ap-
proximate a solution to the maximum-a-posteriori

Figure 3: Overview of a fine-tuning setup. In our case, “in-
domain” refers to the partial paradigm to be completed; “out-
of-domain” refers to all other paradigms.

(MAP) inference problem.
In order to be able to apply our approach to

low-resource settings, we focus instead on find-
ing the best source form for each target form in
a language, and CIS works as follows. We cal-
culate edit trees for each pair (fj(wl), fi(wl)) for
each lemma wl in the training data. We then count
the number of different edit trees for each pair of
source and target tag (tj , ti) and build an impor-
tance list for each tag ti, giving higher priorities
to source tags with lower counts. The intuition be-
hind this is that the fewer different edit trees ap-
pear in the training set, the more deterministic the
paradigm slot i is, given a certain source slot j.

At test time, we find the form from the given
slots of the paradigm which has the highest impor-
tance score, and use it to generate the target form.
Note that, as the lemma is always given, there will
never be a need to use a worse source form than
the lemma.

7 Fine-Tuning for Multi-Source Input

For sequence-to-sequence models for neural ma-
chine translation, it has been shown that special-
ized models for a certain domain are able to ob-
tain better performances than general ones (Lu-
ong and Manning, 2015). One way to perform
such a domain adaptation is fine-tuning: a general
model, which has been trained on out-of-domain
data, is further trained on (newly) available in-
domain data, cf. Figure 3. This brings the con-
ditional probability p(y1, ..., ym|x1, ..., xn) for an
output sequence (y1, ..., ym) given an input se-
quence (x1, ..., xn) closer to the target distribu-
tion.

Here, we propose to improve multi-source mor-
phological reinflection by treating each paradigm
as a separate domain and performing “domain
adaptation” everytime a new paradigm should be
completed by the model.

In particular, we have one base model (for
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n ≤ 1.5 1.5 < n < 10 10 ≤ n
danish arabic albanian
english bengali armenian

norwegian-bokmal bulgarian basque
norwegian-nynorsk czech catalan

dutch haida
estonian hindi
faroese italian
finnish khaling
french persian

georgian portuguese
german quechua
hebrew sorani

hungarian spanish
icelandic turkish

irish urdu
kurmanji welsh

latin
latvian

lithuanian
lower-sorbian
macedonian

navajo
northern-sami

polish
romanian
russian

scottish-gaelic
serbo-croatian

slovak
slovene
swedish

ukrainian

Table 1: Average amount n of sources given per paradigm,
for the development set.

each setting and language), trained on all avail-
able training examples. The original training data
corresponds to out-of-domain data in a domain
adaptation setting. At test time, we construct for
each partial paradigm Pknown all possible training
examples in the way described in the paragraphs
about additional source-target form pairs and au-
toencoding in §4. Thus, for |Pknown| = n, we
end up with (up to) n ∗ (n− 1) +Na in-domain
samples for fine-tuning whereNa is the number of
autoencoding training samples. We then for each
partial paradigm fine-tune the original base model
on all examples constructed from Pknown, which
match the in-domain data for domain adaptation.
Thus, we end up with a different fine-tuned model
for each partial paradigm in the test set.

Our method is expected to perform best in a set-
ting in which many forms of each paradigm are
given as input, e.g., when n is big. Table 1 indi-
cates for which language we would therefore ex-
pect could performance.

8 Experiments

8.1 Systems
Task1. For task 1, we apply MED*: MED in
combination with all preprocessing methods men-
tioned in §3 and the following data augmenta-
tions. We create additional source-target form
pairs where possible and create autoencoding sam-
ples, random ones as well as from the original
data. Further, we create 5 additional rule-based
samples for each existing sample of all source-
target tag combinations that appear less than t =
10 times in the training set for a language.

We employ ensembles of 5 MED* models,
which are trained for 90 (low and medium) or 45
(high) epochs. Ensembling is done by majority
voting.

Task2. We again apply MED*. However, for
task 2 we do not create rule-based samples.2 Mod-
els for the low-resource, medium-resource and
high-resource settings are trained for 45, 30 and
20 epochs, respectively. For task 2, we do not use
ensembling.

At test time, we preprocess each newly incom-
ing paradigm in the same way as the training data,
except for the creation of random copy samples.
We then fine-tune the base model for each new
paradigm according to §7 for 25 additional epochs.
Additionally, we choose the best source form for
each required target tag and predict each inflected
form for this input (MED*+FT+CIS).

The limited amount of data makes it impos-
sible to obtain competitive performance using
MED* for some languages and settings (espe-
cially for languages with only few given slots per
paradigm), even after applying all data augmen-
tation methods described above. Thus, we apply
the baseline model for those cases, but combine
it with CIS (cf. §6) to improve its performance
(BL+CIS). We do not apply preprocessing or data
augmentation methods for BL, as they would not
influence its performance.

Shared task submission. The best approach de-
pends on both the language and the setting. Thus,
our final submission for each case is obtained
by either BL, BL+CIS, the MED* ensemble, or
MED*+FT+CIS, selected using the accuracy on
the development set.

2Using rule-based examples for training leads to worse
performance of the fine-tuned system, even though the base
system turns out to be better. Thus, we do not use it.
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low medium high
BL MED* MED* (ENS) BL MED* MED* (ENS) BL MED* MED* (ENS)

albanian 0.216 0.102 0.129 0.661 0.849 0.878 0.781 0.966 0.975
arabic 0.215 0.237 0.298 0.400 0.804 0.842 0.477 0.930 0.952
armenian 0.378 0.444 0.488 0.766 0.897 0.914 0.891 0.972 0.975
bulgarian 0.331 0.437 0.480 0.750 0.814 0.837 0.900 0.969 0.974
catalan 0.552 0.560 0.598 0.832 0.903 0.930 0.942 0.981 0.983
czech 0.408 0.318 0.341 0.807 0.815 0.856 0.904 0.927 0.937
danish 0.598 0.636 0.654 0.781 0.830 0.845 0.891 0.934 0.960
dutch 0.537 0.500 0.521 0.717 0.828 0.862 0.868 0.968 0.971
english 0.762 0.831 0.852 0.902 0.928 0.940 0.950 0.964 0.968
faroese 0.307 0.347 0.386 0.587 0.595 0.672 0.747 0.817 0.867
finnish 0.162 0.120 0.147 0.425 0.682 0.754 0.785 0.939 0.954
french 0.630 0.579 0.635 0.761 0.789 0.820 0.836 0.889 0.914
georgian 0.712 0.802 0.845 0.900 0.925 0.928 0.940 0.991 0.995
german 0.537 0.541 0.593 0.715 0.772 0.800 0.812 0.894 0.912
hebrew 0.279 0.335 0.366 0.400 0.798 0.831 0.558 0.987 0.991
hindi 0.310 0.781 0.782 0.866 0.964 0.974 0.940 1.000 1.000
hungarian 0.172 0.300 0.346 0.417 0.708 0.763 0.711 0.856 0.874
icelandic 0.342 0.341 0.364 0.614 0.647 0.689 0.761 0.873 0.913
italian 0.449 0.392 0.467 0.738 0.920 0.927 0.799 0.978 0.974
latvian 0.621 0.483 0.536 0.851 0.834 0.861 0.910 0.965 0.977
lower-sorbian 0.343 0.451 0.488 0.705 0.788 0.817 0.860 0.966 0.973
macedonian 0.500 0.577 0.664 0.823 0.901 0.913 0.919 0.957 0.964
navajo 0.184 0.166 0.198 0.313 0.415 0.460 0.383 0.838 0.897
northern-sami 0.154 0.136 0.174 0.357 0.639 0.711 0.611 0.954 0.968
norwegian-nynorsk 0.508 0.489 0.559 0.633 0.671 0.687 0.783 0.883 0.923
persian 0.273 0.405 0.457 0.654 0.892 0.913 0.776 0.999 1.000
polish 0.419 0.366 0.431 0.752 0.751 0.780 0.894 0.909 0.925
portuguese 0.603 0.633 0.684 0.929 0.938 0.944 0.974 0.986 0.993
quechua 0.172 0.567 0.615 0.681 0.965 0.977 0.947 1.000 1.000
russian 0.428 0.319 0.366 0.750 0.763 0.801 0.820 0.909 0.919
scottish-gaelic 0.480 0.600 0.620 0.520 0.940 0.960 – – –
serbo-croatian 0.213 0.286 0.324 0.658 0.812 0.844 0.840 0.900 0.920
slovak 0.419 0.467 0.495 0.707 0.788 0.795 0.852 0.940 0.960
slovene 0.474 0.494 0.522 0.819 0.865 0.883 0.898 0.966 0.981
spanish 0.586 0.465 0.554 0.854 0.891 0.910 0.906 0.965 0.974
swedish 0.543 0.590 0.607 0.737 0.772 0.796 0.854 0.901 0.914
turkish 0.143 0.280 0.255 0.331 0.801 0.852 0.729 0.977 0.982
ukrainian 0.729 0.350 0.393 0.715 0.757 0.775 0.863 0.929 0.934
urdu 0.303 0.669 0.687 0.861 0.955 0.962 0.958 0.996 0.995
welsh 0.150 0.340 0.460 0.540 0.910 0.920 0.670 0.990 0.990
basque 0.000 0.140 0.180 0.020 0.860 0.870 0.060 0.990 0.990
bengali 0.440 0.610 0.680 0.750 0.980 0.980 0.840 0.990 0.990
estonian 0.226 0.242 0.271 0.624 0.796 0.832 0.762 0.985 0.992
haida 0.340 0.480 0.570 0.560 0.920 0.910 0.690 0.970 0.970
irish 0.318 0.188 0.222 0.447 0.626 0.694 0.543 0.891 0.929
khaling 0.039 0.157 0.184 0.184 0.879 0.901 0.538 0.995 0.998
kurmanji 0.823 0.818 0.620 0.884 0.904 0.916 0.922 0.934 0.943
latin 0.160 0.139 0.028 0.368 0.430 0.489 0.456 0.735 0.795
lithuanian 0.235 0.168 0.193 0.530 0.592 0.618 0.647 0.867 0.906
norwegian-bokmal 0.690 0.722 0.743 0.798 0.820 0.838 0.906 0.907 0.925
romanian 0.441 0.335 0.392 0.702 0.715 0.764 0.804 0.863 0.893
sorani 0.205 0.175 0.232 0.528 0.794 0.823 0.643 0.899 0.910
Average: 0.386 0.421 0.456 0.647 0.804 0.832 0.751 0.902 0.916

Table 2: Accuracies for task 1, for BL, MED* and MED* ensembles. Upper part: development languages; lower part: surprise
languages.

8.2 MED Hyperparameters

We use the same hyperparameters for all MED
models, i.e., all languages, tasks and amounts of
resources. In particular, we keep them fixed to
the following. Encoder and decoder RNNs each
have 100 hidden units and the embeddings size
is 300. For training we use ADADELTA (Zeiler,

2012) with minibatch size 20. Following Le et al.
(2015), we initialize all weights in the encoder,
decoder and the embeddings except for the GRU
weights in the decoder to the identity matrix. Bi-
ases are initialized to zero. We use dropout with a
coefficient of 0.5. As this is the model we use to
produce test results for the shared task, we report
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Task 1 Task 2
Low 100 535
Medium 994 2285
High 9825 8578

Table 3: Average amount of training examples per task and
resource quantity.

the best numbers obtained on the development set
during training (“early stopping”). We compare
the 1-best accuracy of all systems, i.e., the per-
centage of predictions that match the true answer
exactly.

8.3 Data

The official shared task data consists of sets for 52
different languages, 2 tasks and 3 different settings
with varying amount of resources.3 An overview
of the (averaged) amount of samples per task and
setting is given in Table 3. Development and test
sets are the same for all settings for each respective
task and language. The gold labels for the test set
are not published yet, so the experiments in this
paper are performed on the development set.

8.4 Results

We compare our approaches to the official shared
task baseline. Detailed results for task 1 and task
2 are shown in Table 2 and Table 4, respectively.

Task 1. Table 2 shows the results obtained by
MED*, both for single models and ensembles. As
can be seen, MED* already outperforms the base-
line for the majority of languages in all settings; in
average by 0.035, 0.157 and 0.151, respectively.
MED*’s performance is worse for the low data
quantity than for the others. This is an expected
result, as neural networks are known to require a
huge amount of training instances.

Ensembling increases the final accuracy for all
settings, by an average of 0.035 (low), 0.028
(medium) and 0.014 (high).

Task 2. As can be seen in Table 4, combining BL
and CIS outperforms BL on its own for many lan-
guages, especially in the low-resource setting. The
highest improvements for the low-, medium- and
high-resource setting are for Hungarian (0.362),
Latin (0.440) and Latin (0.429), respectively. For
some languages, e.g., Catalan, Danish or Urdu,
choosing a good source form seems to not be im-
portant. For a few languages, results even get

3A list of all languages can be found in Tables 2 and 4.

worse. We will discuss some of those cases in §9.
Overall, however, we obtain 0.087 (low), 0.066
(medium) and 0.019 (high) improvement on av-
erage over all languages, which clearly shows the
usefulness of CIS.

MED* on its own does not achieve competi-
tive performance for task 2. We attribute this to
the limited number of different lemmata given for
training, resulting in an overfitting model, learn-
ing, e.g., to produce certain character combina-
tions for certain tags. However, MED*+FT+CIS
outperforms both BL as well as BL+CIS for many
languages in the medium- and high-resource set-
tings and even in some low-resource scenarios.
Comparing the obtained accuracies with Table 1, it
gets obvious that languages with a higher amount
of given source forms per paradigm achieve bet-
ter results after fine-tuning, many times reaching a
higher accuracy than BL, even in the low-resource
setting. In contrast, fine-tuning works poorly for
languages with ≤ 1.5 given source forms per
paradigm. In total, using MED*+FT+CIS, we ob-
tain an average improvement of 0.068 (low), 0.101
(medium) and 0.103 (high) over the baseline.

8.5 Official Shared Task Evaluation
Our submitted system obtained average accu-
racies of 0.4659 (low), 0.8264 (medium) and
0.947 (high) for task 1, and 0.6776 (low), 0.8202
(medium) and 0.8852 (high) for task 2, respec-
tively. This corresponds to place 5 of 18, 3 of
19 and 7 of 15 for the high-, medium- and low-
resource settings of task 1, respectively. Remark-
ably, the difference to the best system for the two
higher settings is less than 0.01.

Among 3 submissions for task 2, our system
comes first. It beats the baseline by 17.16 (low),
15.54 (medium) and 10.84 (high).

9 Remaining Challenges

Certain parts of our system do not perform as well
for some languages as we would expect. In this
section we will discuss those cases in more detail.

CIS. For some languages, e.g., Danish or En-
glish, CIS does not influence the performance.
This might be due to those languages not having
paradigm slots that are regularly closer to certain
slots than others.

One other problem for the algorithm are train-
ing instances that consist of multiple separate
words, e.g., the edit trees for “ride a bike” 7→
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low medium high
BL BL+ MED* MED*+ BL BL+ MED* MED*+ BL BL+ MED* MED*+

CIS FT+CIS CIS FT+CIS CIS FT+CIS
albanian 0.160 0.249 0.000 0.619 0.882 0.280 0.016 0.865 0.942 0.434 0.240 0.960
arabic 0.380 0.428 0.011 0.706 0.553 0.704 0.059 0.907 0.566 0.733 0.533 0.953
armenian 0.722 0.855 0.001 0.933 0.785 0.962 0.210 0.969 0.856 0.806 0.517 0.983
bulgarian 0.553 0.592 0.006 0.571 0.640 0.646 0.200 0.747 0.819 0.810 0.677 0.911
catalan 0.942 0.938 0.000 0.877 0.958 0.970 0.266 0.962 0.965 0.976 0.759 0.992
czech 0.307 0.346 0.008 0.312 0.610 0.635 0.160 0.580 0.841 0.839 0.429 0.806
danish 0.567 0.567 0.284 0.287 0.753 0.753 0.541 0.410 0.827 0.827 0.673 0.680
dutch 0.588 0.666 0.057 0.608 0.796 0.932 0.509 0.796 0.845 0.965 0.812 0.969
english 0.784 0.784 0.544 0.576 0.832 0.832 0.852 0.784 0.900 0.900 0.900 0.924
faroese 0.513 0.592 0.000 0.171 0.559 0.674 0.234 0.578 0.651 0.738 0.430 0.761
finnish 0.517 0.629 0.017 0.581 0.720 0.743 0.143 0.899 0.709 0.772 0.470 0.948
french 0.864 0.876 0.000 0.877 0.893 0.936 0.379 0.951 0.982 0.959 0.824 0.983
georgian 0.793 0.853 0.000 0.834 0.900 0.922 0.532 0.909 0.933 0.954 0.793 0.966
german 0.610 0.647 0.123 0.625 0.662 0.748 0.255 0.764 0.705 0.813 0.619 0.874
hebrew 0.380 0.683 0.012 0.786 0.417 0.701 0.217 0.895 0.547 0.743 0.596 0.950
hindi 0.698 0.719 0.000 0.970 0.746 0.867 0.040 0.970 0.961 0.563 0.719 1.000
hungarian 0.255 0.617 0.000 0.627 0.453 0.823 0.238 0.824 0.585 0.877 0.503 0.949
icelandic 0.439 0.546 0.000 0.333 0.531 0.683 0.083 0.588 0.617 0.753 0.380 0.751
italian 0.769 0.843 0.000 0.809 0.839 0.901 0.075 0.927 0.901 0.896 0.503 0.976
latvian 0.790 0.839 0.001 0.565 0.852 0.926 0.330 0.825 0.877 0.953 0.705 0.951
lower-sorbian 0.362 0.532 0.003 0.509 0.670 0.811 0.302 0.769 0.866 0.878 0.650 0.867
macedonian 0.396 0.562 0.001 0.367 0.832 0.858 0.175 0.740 0.942 0.964 0.749 0.876
navajo 0.306 0.404 0.008 0.313 0.385 0.502 0.088 0.517 0.408 0.593 0.282 0.650
northern-sami 0.314 0.485 0.000 0.243 0.499 0.841 0.028 0.758 0.562 0.905 0.201 0.912
Norwegian-nynorsk 0.439 0.445 0.127 0.122 0.604 0.604 0.452 0.341 0.610 0.579 0.560 0.555
persian 0.822 0.159 0.000 0.990 0.911 0.185 0.203 0.997 0.889 0.190 0.854 1.000
polish 0.506 0.596 0.002 0.327 0.694 0.787 0.170 0.704 0.794 0.831 0.619 0.820
portuguese 0.951 0.973 0.001 0.934 0.969 0.987 0.243 0.969 0.975 0.995 0.741 0.991
quechua 0.973 1.000 0.000 0.972 0.973 0.973 0.234 0.996 0.972 0.999 0.796 0.999
russian 0.412 0.503 0.039 0.382 0.830 0.843 0.400 0.816 0.900 0.907 0.756 0.915
scottish-gaelic 0.449 0.498 0.004 0.441 0.441 0.506 0.087 0.490 – – – –
serbo-croatian 0.285 0.291 0.001 0.363 0.570 0.601 0.095 0.683 0.863 0.850 0.166 0.898
slovak 0.647 0.705 0.006 0.447 0.720 0.779 0.295 0.659 0.777 0.805 0.530 0.789
slovene 0.616 0.834 0.000 0.583 0.767 0.886 0.352 0.834 0.798 0.943 0.636 0.933
spanish 0.787 0.882 0.000 0.901 0.911 0.895 0.192 0.971 0.954 0.908 0.717 0.978
swedish 0.421 0.475 0.049 0.208 0.635 0.795 0.282 0.643 0.723 0.843 0.583 0.789
turkish 0.124 0.624 0.000 0.805 0.613 0.876 0.303 0.977 0.825 0.921 0.697 0.994
ukrainian 0.523 0.594 0.007 0.411 0.734 0.709 0.285 0.655 0.808 0.760 0.452 0.773
urdu 0.670 0.670 0.010 0.883 0.680 0.680 0.027 0.953 0.991 0.488 0.221 0.982
welsh 0.601 0.349 0.000 0.857 0.693 0.864 0.127 0.939 0.752 0.903 0.258 0.960
basque 0.040 0.180 0.005 0.890 0.051 0.182 0.021 0.891 – – – –
bengali 0.661 0.928 0.036 0.780 0.847 0.963 0.100 0.906 0.847 0.965 0.238 0.933
estonian 0.385 0.734 0.001 0.806 0.551 0.767 0.064 0.953 0.581 0.779 0.273 0.951
haida 0.554 0.810 0.000 0.937 0.802 0.849 0.002 0.937 – – – –
irish 0.317 0.439 0.045 0.375 0.424 0.493 0.137 0.592 0.474 0.530 0.411 0.692
khaling 0.247 0.495 0.011 0.973 0.546 0.627 0.279 0.992 0.840 0.659 0.638 0.996
kurmanji 0.633 0.648 0.003 0.449 0.790 0.798 0.279 0.695 0.875 0.844 0.679 0.878
latin 0.336 0.594 0.000 0.157 0.449 0.889 0.112 0.691 0.493 0.922 0.301 0.820
lithuanian 0.536 0.669 0.006 0.487 0.615 0.831 0.059 0.744 0.662 0.879 0.302 0.876
norwegian-bokmal 0.417 0.438 0.396 0.306 0.590 0.590 0.576 0.340 0.750 0.750 0.715 0.667
romanian 0.151 0.232 0.008 0.062 0.630 0.715 0.077 0.561 0.773 0.786 0.284 0.744
sorani 0.534 0.532 0.000 0.630 0.661 0.561 0.065 0.879 0.646 0.599 0.488 0.898
Average: 0.520 0.607 0.035 0.588 0.682 0.748 0.220 0.783 0.783 0.802 0.549 0.886

Table 4: Accuracies for task 2. All systems are described in the text. Upper part: development languages; lower part: surprise
languages.

“riding a bike” and “hike” 7→ “hiking” are not the
same, even though they should be. Such cases po-
tentially confuse the algorithm. A solution could
be to detect training examples which consist of
more than one token and split them up, in order
to just consider the inflecting word.

Fine-tuning. For some settings and languages,
e.g., Danish or Bokmål, the fine-tuned model ob-
tains a lower accuracy than the base MED* model.
While this might seem strange at first, when com-
paring to Table 1, it gets clear that this is mainly
the case for languages where, besides the lemma,
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no forms of a paradigm are given. This results in
the model being fine-tuned on autoencoding the
lemma, and thus a strong bias to copy the input,
which can hurt performance. A possible solution
might be to apply a combination of fine-tuning and
multi-domain training as proposed, e.g., by Chu
et al. (2017) for neural machine translation. We
leave respective experiments for future work.

10 Conclusion

We presented the LMU system for the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection, which is based on an
encoder-decoder network. We introduced two new
methods for handling multi-source morphological
reinflection: CIS, a source form selection algo-
rithm based on edit trees and a fine-tuning ap-
proach similar in spirit to domain adaptation. On
average over all participating languages, our ap-
proaches outperform the official shared task base-
line for both tasks and all settings.
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