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Abstract

Extending semantic parsing systems to
new domains and languages is a highly ex-
pensive, time-consuming process, so mak-
ing effective use of existing resources is
critical. In this paper, we describe a
transfer learning method using crosslin-
gual word embeddings in a sequence-to-
sequence model. On the NLmaps corpus,
our approach achieves state-of-the-art ac-
curacy of 85.7% for English. Most im-
portantly, we observed a consistent im-
provement for German compared with
several baseline domain adaptation tech-
niques. As a by-product of this approach,
our models that are trained on a com-
bination of English and German utter-
ances perform reasonably well on code-
switching utterances which contain a mix-
ture of English and German, even though
the training data does not contain any
code-switching. As far as we know, this
is the first study of code-switching in se-
mantic parsing. We manually constructed
the set of code-switching test utterances
for the NLmaps corpus and achieve 78.3%
accuracy on this dataset.

1 Introduction

Semantic parsing is the task of mapping a natu-
ral language query to a logical form (LF) such
as Prolog or lambda calculus, which can be ex-
ecuted directly through database query (Zettle-
moyer and Collins, 2005, 2007; Haas and Riezler,
2016; Kwiatkowksi et al., 2010).

Semantic parsing needs application or domain
specific training data, so the most straightforward
approach is to manufacture training data for each
combination of language and application domain.

However, acquiring such data is an expensive,
lengthy process.

This paper investigates ways of leveraging ap-
plication domain specific training data in one lan-
guage to improve performance and reduce the
training data needs for the same application do-
main in another language. This is an increasingly
common commercially important scenario, where
a single application must be developed for multi-
ple languages simultaneously. In this paper, we
investigate the question of transferring a seman-
tic parser from a source language (e.g. English)
to a target language (e.g. German). In particular,
we examine the situation where there is a large
amount of training data for the source language but
much less training data for the target language. It
is important to note that, despite surface language
differences, it has long been suggested that logi-
cal forms are the same across languages (Fodor,
1975), motivating transfer learning for this paper.

We conceptualize our work as a form of do-
main adaptation, where we transfer knowledge
about a specific application domain (e.g. naviga-
tion queries) from one language to another. Much
work has investigated feature-based domain adap-
tation (Daume III, 2007; Ben-David et al., 2007).
However, it is a non-trivial research question to
apply these methods to deep learning.

We experiment with several deep learning meth-
ods for supervised crosslingual domain adaptation
and make two key findings. The first is that we
can use a bilingual dictionary to build crosslin-
gual word embeddings, serving as a bridge be-
tween source and target language. The second
is that machine-translated training data can also
be used to effectively improve performance when
there is little application domain specific training
data in the target language. Interestingly, even
when training on the full dataset of the target lan-
guage, we show that it is still useful to lever-
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age information from the source language through
crosslingual word embeddings. We set new state-
of-the-art results on the NLmaps corpus.

Another benefit of joint training of the model
is that a single model has the capacity to under-
stand both languages. We show this gives the
model the ability to parse code-switching utter-
ances, where the natural language query contains
a mixture of two languages. Being able to handle
code-switching is valuable in real-world applica-
tions that expect spoken natural language input in
a variety of settings and from a variety of speak-
ers. Many people around the world are bilingual or
multilingual, and even monolingual speakers are
liable to use foreign expressions or phrases. Real
systems must be able to handle that kind of input,
and the method we propose is a simple and effi-
cient way to extend the capabilities of an existing
system.

As far as we know, this is the first study of code-
switching in semantic parsing. We constructed a
new set of code-switching test utterances for the
NLmaps corpus. Our jointly trained model obtains
a logical form exact match accuracy of 78.3% on
this test set.

Our contributions are:

• We achieve new state-of-the-art results on the
English and German versions of the NLmaps
corpus (85.7% and 83.0% respectively).

• We propose a method to incorporate bilin-
gual word embeddings into a sequence-to-
sequence model, and apply it to semantic
parsing. To the best of our knowledge, we
are the first to apply crosslingual word em-
bedding in a sequence-to-sequence model.

• Our joint model allows us to also process in-
put with code-switching. We develop a new
dataset for evaluating semantic parsing on
code-switching input which we make pub-
licly available.1

2 Related work

Deep learning and the sequence-to-sequence ap-
proach in particular have achieved wide success in
many applications, reaching state-of-the-art per-
formance for semantic parsing (Jia and Liang,
2016; Dong and Lapata, 2016), machine transla-
tion (Luong et al., 2015b), image caption gen-

1github.com/vbtagitlab/code-switching

eration (Xu et al., 2015), and speech recogni-
tion (Chorowski et al., 2014, 2015). Nevertheless,
transferring information in a deep learning model
about a source language to a target language is still
an open research question, and is the focus of this
paper.

Our work falls under crosslingual transfer learn-
ing category: we want to transfer a semantic parser
from one language to another language. The as-
sumption is that there is sufficient application do-
main specific training data in a source language to
train a semantic parser, but only a small amount of
application domain specific training data in the tar-
get language. We would like to leverage the source
language training data to improve semantic pars-
ing in the target language. It is common to exploit
the shared structures between languages for POS
tagging and Noun Phrase bracketing (Yarowsky
and Ngai, 2001), dependency parsing (Täckström
et al., 2012; McDonald et al., 2013), named en-
tity recognition (Tsai et al., 2016; Nothman et al.,
2013) and machine translation (Zoph et al., 2016).
However, as far as we know, there is no prior
work on crosslingual transfer learning for seman-
tic parsing, which is the topic of this paper.

There are several common techniques for trans-
fer learning across domains. The simplest ap-
proach is Fine Tune, where the model is first
trained on the source domain and then fine-
tuned on the target domain (Watanabe et al.,
2016). Using some form of regularization (e.g.
L2) to encourage the target model to remain sim-
ilar to the source model is another common ap-
proach (Duong et al., 2015a). In this approach, the
model is trained in the cascade style, where the
source model is trained first and then used as in
a prior when training the target model. It is of-
ten beneficial to jointly train the source and tar-
get models under a single objective function (Col-
lobert et al., 2011; Firat et al., 2016; Zoph and
Knight, 2016). Combining source and target data
together into a single dataset is a simple way to
jointly train for both domains. However, this ap-
proach might not work well in the crosslingual
case, i.e. transfer from one language to another,
because there may not be many shared features
between the two languages. We show how to
use crosslingual word embeddings (§3.3.1) as the
bridge to better share information between lan-
guages.

Instead of combining data, a more sophisticated
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GeoQuery ATIS

Number of utterances 880 5410

Jia and Liang (2016) 89.3 83.3
Zettlemoyer and Collins (2007) 86.1 84.6
Kočiský et al. (2016) 87.3 -
Dong and Lapata (2016) 87.1 84.6
Liang et al. (2011) 91.1 -
Kwiatkowksi et al. (2010) 88.6 82.8
Zhao and Huang (2015) 88.9 84.2

TGT Only 86.1 86.1

Table 1: Performance of the baseline attentional
model (TGT Only) on GeoQuery (Zettlemoyer
and Collins, 2005) and ATIS (Zettlemoyer and
Collins, 2007) dataset compared with prior work.
The best performance is shown in bold.

approach for joint training is to modify the model
to adapt for both domains (or languages). Watan-
abe et al. (2016) propose a dual output model
where each output is used for one domain. Kim
et al. (2016) extend the feature augmentation ap-
proach of Daume III (2007) for deep learning by
augmenting different models for each domain. In
this paper we experiment with multiple encoders
for the sequence-to-sequence attentional model, as
described in §3.2. While some of the methods we
investigate in this paper have been explored in the
domain of syntactic parsing - Tiedemann (2014)
used machine translation for cross-lingual trans-
fer, and Ammar et al. (2016) show that a single
parser can produce syntactic analyses in multiple
languages - our work applies them to semantic
parsing.

3 Model

We base our approach on the bidirectional
sequence-to-sequence (seq2seq) model with atten-
tion of Bahdanau et al. (2014). This attentional
model encodes a source as a sequence of vectors,
and generates output by decoding these sequences.
At each decoding time step, it “attends” to differ-
ent parts of the encoded sequence.

On a large dataset, it is difficult to improve
on a properly tuned seq2seq model with atten-
tion. As Table 1 shows, our baseline attentional
seq2seq model (described below), which we call
TGT Only in the figures and tables, achieves
competitive results on standard semantic parsing

Utterance

Representation S1 SmS2 S3

Ci

<s>

Encoder

Attention

Decoder 

w1 wi-1 wn

HT

HS

wi

How many Japanese restaurants are there in Paris ? 

Figure 1: The baseline attentional model as ap-
plied to our tasks. The input is the natural lan-
guage utterance and the output is the logical form.

datasets. We begin by describing the basic at-
tentional model and then present our methods for
transfer learning to different languages.

3.1 Baseline attentional model

The baseline attentional seq2seq model (TGT
Only) is shown in Figure 1. The source ut-
terance is represented as a sequence of vectors
S1, S2, . . . , Sm. Each Si is the output of an em-
beddings lookup. The model has two main com-
ponents: an encoder and a decoder. For the
encoder, we use a bidirectional recurrent neu-
ral network (RNN) with Gated Recurrent Units
(GRU) (Pezeshki, 2015). The source utterance
is encoded as a sequence of vectors HS =
(H1

S , H
2
S , . . . ,H

m
S ) where each vector Hj

S (1 ≤
j ≤ m) is the concatenation of the hidden states
of the forward and backward GRU at time j.

The attention mechanism is added to the model
through an alignment matrix α ∈ Rn×m, where n
is the number of target tokens in the logical form.
We add <s> and </s> to mark the start and end
of the target sentence. The “glimpse” vector ci of
the source when generating wi is ci =

∑
j αijH

j
S .

The decoder is another RNN with GRU unit. At
each time step, the decoder RNN receives ci in
addition to the previously-output word. Thus, the
hidden state2 at time i of the decoder is defined
as H i

T = GRU(H i−1
T , ci, wi−1), which is used to

2The GRU also carries a memory cell, along with the hid-
den state; we exclude this from the presentation for clarity of
notation.
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Train

Utt-original: What is the homepage of the cinema Cinéma Chaplin in Paris?

LF-original:
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),nwr(keyval(‘name’,
‘Cinéma Chaplin’)), qtype(findkey(‘website’)))

Utt-converted: What is the homepage of the cinema UNK UNK in Paris?

LF-converted:
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),nwr(keyval(‘name’,‘UNK UNK’)),
qtype(findkey(‘website’)))

Test
Utt-original: Would you tell me the phone number of Guru Balti in Edinburgh?
Utt-converted: Would you tell me the phone number of UNK UNK in Edinburgh?
LF-predicted: query(area(keyval(name,City of Edinburgh)),nwr(keyval(name,UNK UNK)),qtype(findkey(phone)))

LF-lexicalised:
query(area(keyval(name,City of Edinburgh)),nwr(keyval(name,‘Guru Balti’)),
qtype(findkey(phone)))

Figure 2: Handling of unknown word at train and test times. Training examples containing capitalised
low-frequency words are duplicated: in one copy, the capitalised low-frequency words are kept in both
the utterance (Utt-original) and the LF (LF-original), while in the other copy they are replaced with the
symbol UNK in both the utterance (Utt-converted) and the LF (LF-converted). At test time, unknown
words in the input utterance are replaced with UNK symbols (in Utt-converted); the UNK symbols in the
predicted LF (LF-predicted) are then replaced with the unknown words (LF-lexicalised).

predict word wi:

p(wi | w1 · · ·wi−1, HS) = softmax(g(H i
T )) (1)

where g is a linear transformation.
We use 70 dimensions for both the hidden states

and memory cells in the source GRUs and 60 di-
mensions for target GRUs. We train this model
using RMSprop (Tieleman and Hinton, 2012) to
minimize the negative log-likelihood using a mini-
batch of 256 and early stopping on development
data. The initial learning rate is 0.002 and is de-
cayed with decay rate 0.1 if we did not observe any
improvement after 1000 iterations. The gradients
are rescaled if theirL2 norm is greater than 10. We
implemented dropout for both source and target
GRU units (Srivastava et al., 2014) with input and
output dropout rates of 40% and 25% respectively.
The initial state of the source GRU is trainable,
and the initial state of target GRU is initialized
with the final states of the source GRUs. The non-
embeddings weights are initialized using Xavier
initialization (Glorot and Bengio, 2010). We also
tried stacking several layers of GRUs but did not
observe any significant improvement. Choice of
hyper-parameters will be discussed in more detail
in §4.2.

We initialize the word embeddings in the
model with pre-trained monolingual word em-
beddings trained on a Wikipedia dump using
word2vec (Mikolov et al., 2013). We use mono-
lingual word embeddings for all models except for

the jointly trained model, where we instead use
crosslingual word embeddings (§3.3.1).

In order to handle unknown words, during train-
ing, all words that are low frequency and capital-
ized are replaced with the special symbol UNK in
both utterance and logical form. Effectively, we
target low-frequency named entities in the dataset.
This is a simple but effective version of delexi-
calization, which does not require a named entity
recognizer.3 However, unlike previous work (Jia
and Liang, 2016; Gulcehre et al., 2016; Gu et al.,
2016), we also retain the original sentence in the
training data, which results in a substantial per-
formance improvement. The intuition is that the
model is capable of learning a useful signal even
for very rare words. During test time, we replace
(from left to right) the UNK in the logical form with
the corresponding word in the source utterance.
Figure 2 shows examples of handling unknown
words during training and testing. At train time,
the two words Cinéma and Chaplin are replaced
with UNK in both utterance and logical form. At
test time, the first and second UNK in the logical
form are replaced with the unknown words Guru
and Balti from the test utterance. We implement
this attentional model as our baseline. We now de-
tail our methods for transferring learning to other
languages.

3Using named entity recognition would be another solu-
tion but we did not want to rely on additional resources.
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English encoder German encoder

Where are exhibition centres? Wo gibt es Kindergärten in Hamburg?

Figure 3: Dual encoder model where each lan-
guage has a separate encoder but both share the
same decoder. Each training mini-batch only has
monolingual input, so only one encoder is used for
each mini-batch.

3.2 Dual encoder model

Multi-task learning is a common approach for
neural domain adaptation (Watanabe et al., 2016;
Duong et al., 2015b; Collobert et al., 2011; Luong
et al., 2015a). In this approach, the source and
target domains are jointly trained under a single
objective function. The idea is that many param-
eters can be shared between the source and target
domains, and the errors in the source domain can
inform the target domain and vice versa. Follow-
ing this idea, we extend the baseline attentional
model (§3.1) to dual encoders, one for the source
language and another for the target language. In
this work, we perform the evaluation with English
and German as both source and target languages,
i.e. in both directions (depending on the model).
The decoder is shared across languages as shown
in Figure 3. We refer to this as our Dual model.
The glimpse vector ci will be calculated using ei-
ther the source or target RNN encoder, motivated
by the fact that both source and target languages
use the same target logical form. The model is
trained on the combined data of both the source
and target languages. For each mini-batch, we
only use the source or target language data, and
make use of the corresponding RNN encoder.

3.3 All model

Another straightforward domain adaptation tech-
nique is to combine the source and target lan-
guage data. We create a new training data set

Dall = Ds ∪Dt where Ds and Dt are the training
data for source and target language. We refer to
this as our All model. The All model is a Dual
model, but both source and target RNNs are shared
and only the embedding matrices are different be-
tween source and target languages.

3.3.1 Crosslingual word embeddings
Overcoming lexical differences is a key challenge
in crosslingual domain adaptation. Prior work on
domain adaptation found features that are com-
mon across languages, such as high-level linguis-
tic features extracted from the World Atlas of Lan-
guage Structures (Dryer and Haspelmath, 2013),
crosslingual word clusters (Täckström et al., 2012)
and crosslingual word embeddings (Ammar et al.,
2016). Here, we extend crosslingual word em-
beddings as the crosslingual features for semantic
parsing.

We train crosslingual word embeddings across
source and target languages following the ap-
proach of Duong et al. (2016), who achieve high
performance on several monolingual and crosslin-
gual evaluation metrics. Their work is essentially
a multilingual extension of word2vec, where they
use a context in one language to predict a tar-
get word in another language. The target words
in the other language are obtained by looking up
that word in a bilingual dictionary. Thus, the in-
put to their model is monolingual data in both
languages and a bilingual dictionary. We use
monolingual data from pre-processed Wikipedia
dump (Al-Rfou et al., 2013) with bilingual dictio-
nary from Panlex (Kamholz et al., 2014).

We initialize the seq2seq source embeddings of
both languages with the crosslingual word embed-
dings. However, we do not update these embed-
dings. We apply crosslingual word embeddings
(+XlingEmb) to the All model (§3.3) and the
Dual encoder model (§3.2) and jointly train for
the source and target language. For other models
described in this paper, we initialize with mono-
lingual word embeddings.

3.4 Trans model

The above crosslingual word embeddings need a
bilingual dictionary to connect between the source
and target language. In addition, we can also lever-
age a machine translation system as the connec-
tion between languages. For this case, we de-
fine a Trans model, which applies the baseline
attentional model with training data Dtrans =
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English utterance (from NLmaps) How many universities are there in Paris?
German utterance (from NLmaps) Wie viele Universitäten hat Paris?
Code-switching (constructed) Wie viele Universitäten are there in Paris?

Logical form
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),
nwr(keyval(‘amenity’,‘university’)),qtype(count))

Table 2: Example of data from the NLmaps corpus. The English and German utterances are translations
of each other and they share the same logical form. We constructed code-switching utterances for all the
logical forms in the NLmaps test corpus.

translate(Ds) ∪ Dt, where translate is
the function to translate the data from the source
language to the target language. For the experi-
ments reported in this paper, we use Google Trans-
late (Wu et al., 2016).

4 Experiments

In this section, we evaluate the methods proposed
in §3 for transfer learning for semantic parsing.
The aim is to build a parser for a target language
with minimum supervision given application do-
main specific training data for a source language.
The question we want to answer is whether it is
possible to share information across languages to
improve the performance of semantic parsing.

4.1 Dataset
We use the NLmaps corpus (Haas and Riezler,
2016), a semantic parsing corpus for English and
German. We evaluated our approach on this cor-
pus because it is the only dataset which provides
data in both English and German. Table 2 presents
typical examples from this dataset, together with
a constructed code-switching utterance. Utter-
ances from different languages are assigned the
same logical forms, thus motivating the approach
taken in this paper. We tokenize in way simi-
lar to Kočiský et al. (2016).4 For each language,
the corpus contains 1500 pairs of natural language
queries and corresponding logical forms for train-
ing and 880 pairs for testing. We use 10% of the
training set as development data for early stop-
ping and hyper-parameter tuning. For evalua-
tion, we use exact match accuracy for the logical
form (Kočiský et al., 2016).

4.2 Hyper-parameter tuning
Hyper-parameter tuning is important for good per-
formance. We tune the baseline attentional model

4We remove quotes, add spaces around parenthesis and
separate the question mark at the end of the utterance.

(§3.1) on the development data by generating 100
configurations which are permutations of different
optimizers, source and target RNN sizes, RNN cell
type5, dropout rates and mini-batch sizes. We then
use the same configuration for all other models.

4.3 Learning curves

We experimented with transfer learning from
English→ German and German→ English.
We use all the data in the NLmaps corpus for the
source language and vary the amount of data for
the target language. Figure 4 shows the learning
curve for transfer learning in both directions.

The first observation is that the baseline at-
tentional model trained on the target only (TGT
Only) is very robust when trained on large
datasets but performs poorly on small datasets.
The Dual model performs similarly to the base-
line attentional model for English and slightly
worse for German. The simple method of com-
bining the data (All model) performs surpris-
ingly well, especially on small datasets where
this model is ≈ 20% better than the baseline at-
tentional model for both languages. Incorporat-
ing crosslingual word embeddings (+XlingEmb)
consistently improves the performance for all data
sizes. The improvement is more marked for the
English → German direction. Finally, if we
have a machine translation system, we can fur-
ther improve the performance on a target language
by augmenting the data with translations from the
source language. This simple method substan-
tially improves performance on a target language,
especially in the small dataset scenario. More
surprisingly, if we don’t use any target language
data and train on Dtrans = translate(Ds) we
achieve 61.3% and 48.2% accuracy for English
and German respectively (Figure 4). This corre-
sponds to a distant supervision baseline where the

5We tried with LSTM, GRU and Highway networks.
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Figure 4: Learning curves for English and German with various models. TGT Only applies the baseline
attentional mode (§3.1) to the target language data alone. Dual uses the dual encoders from §3.2. All is
similar with TGT Only but trained on the combined data of both languages. All+XlingEmb, instead
of monolingual word embeddings, uses crosslingual word embeddings (§3.3.1). Trans model uses a
machine translation system (§3.4). At 1500 sentences, since we do not have development data for early
stopping, we train the model for exactly 10k iterations.

training data is “silver standard” given by a ma-
chine translation system. This baseline is equiv-
alent to supervised learning on 600 and 450 gold
sentences on English and German respectively.

We also tried several other models such as Fine
Tune, where the model is trained on the source lan-
guage first and then fine tuned on the target lan-
guage but the performance is similar to the TGT
Only model. The other baseline we implemented
is L2, where we use the source language model as
the prior to the target language objective function
through anL2 regularization. However, we did not
observe any performance gain, as was also noticed
by Watanabe et al. (2016).

4.4 Discussion

Figure 4 shows the learning curves at various data
points. Table 3 presents the results for mod-
els trained on all target language data (1500 sen-
tences). The Dual encoder performs the worst.
The baseline supervised learning on target data
only (TGT Only) performs surprisingly well,
probably because it is highly tuned. When train-
ing on combined English and German data (All
model), we observe a slight decrease in perfor-
mance for both English and German. Even when
training on the full target language dataset, using
crosslingual word embeddings improves the per-

English German

Haas and Riezler (2016) 68.3 -
Kočiský et al. (2016) 78.0 -
Dual 82.3 78.1
TGT Only 84.2 81.3
All 83.6 80.3
All+XlingEmb 85.7 82.3
Trans 83.8 83.0

Table 3: Results on the full datasets. The best re-
sult is shown in bold.

formance by about 2% in both English and Ger-
man which highlights the effectiveness of crosslin-
gual word embeddings. As shown in Figure 4,
adding a machine translation system helps im-
mensely for small datasets. On a full dataset, how-
ever, we only observe a small improvement for
German but degradation in performance for En-
glish using Trans model. This might be because
machine translations are hardly perfect. With a
high level of confidence when training on full
dataset, added translations do not contribute much
to the model. Importantly, however, these results
are substantially better than the previous state-of-
the-art result reported in Kočiský et al. (2016).
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Model Accuracy

German TGT Only 14.5
English TGT Only 16.3
All 76.8
All+XlingEmb 78.3

Table 4: Accuracy of seq2seq models on the code-
switching test utterances. The monolingual En-
glish and German seq2seq models (TGT Only)
are trained only on English and German utterances
respectively, while the All and All+XlingEmb
models are trained on both sets of utterances. The
best result is shown in bold.

5 Code-switching

An interesting result is that by jointly training
the model on both English and German, we can
now also handle code-switching data, where a nat-
ural language utterance is a mixture of English
and German. We evaluate our jointly trained
model’s ability to parse utterances consisting of
both English and German on our manually con-
structed code-switching testset.6 An example of
constructed code-switching utterance is shown in
Table 2. Note that our models are only trained on
“pure” English and German utterances; there are
no code-switching training examples in the input.

Code-switching is a complex linguistic phe-
nomenon and there are different accounts of
the socio-linguistic conventions governing its
use (Poplack, 2004; Isurin et al., 2009; MacSwan,
2017), as well as of the structural properties of ut-
terances with code-switching (Joshi, 1982). Here
we focus on the simple kind of code-switching
where a single phrase is produced in a different
language than the rest of the utterance. Our dataset
was created by a fluent bilingual speaker who gen-
erated code-switching utterances for each of the
880 examples in the NLmaps test set. Approxi-
mately half of the utterances are “Denglish” (i.e.,
a German phrase embedded in an English ma-
trix sentence) and half are “Gamerican” (an En-
glish phrase embedded in a German matrix sen-
tence). NLmaps includes English and German ut-
terances for each test example, and where possible
our code-switching utterance was a combination
of these (some of our code-switching examples di-
verge from the corresponding English and German

6github.com/vbtagitlab/code-switching

utterances if this improves fluency).
Table 4 presents the results of our models on

this new test set. This makes clear that the
All+XlingEmb model performs noticeably bet-
ter than the baseline monolingual models on the
code-switching test examples, even though there
were no such examples in the training set.

6 Conclusion

In this paper, we investigate ways to transfer in-
formation from one (source) language to another
(target) language in a single semantic parsing ap-
plication domain. This paper compared various
transfer learning models with a strong sequence-
to-sequence baseline. We found that a simple
method of combining source and target language
data works surprisingly well, much better than
more complicated methods such as a Dual model
or L2 regularization. If bilingual dictionaries are
available, crosslingual word embeddings can be
constructed and used to further improve the per-
formance. We observed ≈ 20% improvement for
small datasets compared to the strong baseline at-
tentional model. Moreover, this improvement can
almost be doubled if we leverage some machine
translation system. Even on the full dataset, our
jointly trained model with crosslingual word em-
beddings gives state-of-the-art results for seman-
tic parsing of the English and German versions of
NLmaps corpus.

This paper also investigated the performance
of semantic parsers on code-switching utterances
that combine English and German. We created
a new code-switching test set, and showed that
our simple jointly trained model with crosslingual
word embeddings achieves 78.3% exact match ac-
curacy on this set, which is more than 60% bet-
ter than a corresponding monolingual sequence-
to-sequence model.

For future work, we would like to try delexical-
ization as part of training and experiment with bet-
ter ways of handling unknown word such as a copy
mechanism (Jia and Liang, 2016; Gu et al., 2016;
Gulcehre et al., 2016). Investigating a more so-
phisticated network architecture that can perform
multilingual semantic parsing more accurately, or
with less training data is another fruitful research
direction. This work has only scratched the sur-
face in terms of code switching. We would like to
exploit the pragmatic and socio-linguistic context
to better handle code-switching.
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