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Abstract
The task of relation classification in the
biomedical domain is complex due to the
presence of samples obtained from het-
erogeneous sources such as research ar-
ticles, discharge summaries, or electronic
health records. It is also a constraint
for classifiers which employ manual fea-
ture engineering. In this paper, we pro-
pose a convolutional recurrent neural net-
work (CRNN) architecture that combines
RNNs and CNNs in sequence to solve this
problem. The rationale behind our ap-
proach is that CNNs can effectively iden-
tify coarse-grained local features in a sen-
tence, while RNNs are more suited for
long-term dependencies. We compare our
CRNN model with several baselines on
two biomedical datasets, namely the i2b2-
2010 clinical relation extraction challenge
dataset, and the SemEval-2013 DDI ex-
traction dataset. We also evaluate an at-
tentive pooling technique and report its
performance in comparison with the con-
ventional max pooling method. Our re-
sults indicate that the proposed model
achieves state-of-the-art performance on
both datasets.1

1 Introduction

Relation classification is the task of identifying
the semantic relation present between a given
pair of entities in a piece of text. Since most
search queries are some forms of binary fac-
toids (Agichtein et al., 2005), modern question-
answering systems rely heavily upon relation clas-
sification as a preprocessing step (Fleischman

1The code for the can be found at:
https://github.com/desh2608/
crnn-relation-classification.

et al., 2003; Lee et al., 2007). Accurate relation
classification also facilitates discourse processing
and precise sentence interpretations. Hence, this
task has witnessed a great deal of attention over
the last decade (Mintz et al., 2009; Surdeanu et al.,
2012).

In the biomedical domain, in particular, extract-
ing such tuples from data may be essential for
identifying protein and drug interactions, symp-
toms and causes of diseases, among others. Fur-
ther, since clinical data tends to be obtained from
multiple (and diverse) information sources such as
journal articles, discharge summaries, and elec-
tronic patient records, relation classification be-
comes a more challenging task.

To identify relations between entities, a vari-
ety of lexical, syntactic, or pragmatic cues may
be exploited, which results in a challenging vari-
ability in the type of features used for classifi-
cation purpose. Due to this variability, a num-
ber of approaches have been suggested, some of
which rely on features extracted from POS tag-
ging, morphological analysis, dependency pars-
ing, and world knowledge (Kambhatla, 2004; San-
tos et al., 2015; Suchanek et al., 2006; Mooney
and Bunescu, 2005; Bunescu and Mooney, 2005).
Deep learning architectures have recently gathered
much interest because of their ability to conve-
niently extract relevant features without the need
of explicit feature engineering. For this reason, a
number of convolutional and recurrent neural net-
work models (Zeng et al., 2014; Xu et al., 2015b)
have been used for this task.

In this paper, we propose a model that uses
recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs) in sequence to
learn global and local context, respectively. We re-
fer to this as CRNN, following the naming conven-
tion used in (Huynh et al., 2016). We argue that in
order for any classification task to be effective, the
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regression layer must see a complete representa-
tion of the sentence, i.e., both short and long-term
dependencies must be appropriately represented in
the sentence embedding. This argument forms the
basis of our approach. In a deep learning frame-
work, since the complete information available to
the classifier at the top-level is obtained through
manipulation of the sentence embedding itself, the
task of relation classification essentially emulates
other popular objectives such as text classification
and sentiment analysis if the representation for the
entity types are integrated in the sentence. Al-
though our proposed model uses RNNs and CNNs
in sequence, it is only two layers deep, as op-
posed to the very deep architectures proposed ear-
lier (Conneau et al., 2016). This simplicity al-
lows for intuitive understanding of each level of
the model, while still learning a sufficiently com-
plex representation of the input sentence.

In addition to local and global contexts, we also
experiment with attention for relation classifica-
tion. Although attention as a concept is relatively
well-known, especially in computational neuro-
science (Itti et al., 1998; Desimone and Duncan,
1995), it became popular only recently with appli-
cations to image captioning and machine transla-
tion (Xu et al., 2015a; Vinyals et al., 2015; Bah-
danau et al., 2014). Attention has also been em-
ployed to some success in relation classification
tasks (Wang et al., 2016a; Zhou et al., 2016a). In
our experiments, we use an attention-based pool-
ing strategy and compare the results with those ob-
tained using conventional pooling methods. Our
model variants are accordingly named CRNN-
Max and CRNN-Att, depending upong the pool-
ing scheme used.

Our model is distinctive in that it does not
rely upon any linguistic feature for relation clas-
sification. In domains such as biomedicine,
texts may not always be written in syntacti-
cally/grammatically correct form. Furthermore,
lack of necessary training data may not provide
good feature extractors such as those in generic
domains. Hence, we explored only models with-
out any extra features. Of course, adding other fea-
tures such as part-of-speech taggers or dependency
parsers, if they are available easily, may improve
the performance further. Our key contributions in
this paper are as follows:

• We propose and validate a two-layer archi-
tecture comprising RNNs and CNNs in se-

quence for relation classification in biomed-
ical text. Our model’s performance is com-
parable to the state-of-the-art on two bench-
mark datasets, namely the i2b2-2010 clin-
ical relation extraction challenge, and the
SemEval-2013 DDI extraction dataset, with-
out any need for handcrafted features.

• We analyze and discuss why such a model ef-
fectively captures short and long-term depen-
dencies in a sentence, and demonstrate why
this representation facilitates classification.

• We evaluate an attention-based pooling tech-
nique and compare its performance with con-
ventional pooling strategies.

• We provide evidence to further the argument
in favor of using RNNs to obtain regional em-
beddings in a sentence.

2 Related Research

CNNs have been effectively employed in NLP
tasks such as text classification (Kim, 2014), sen-
timent analysis (Dos Santos and Gatti, 2014), re-
lation classification (Zeng et al., 2014; Nguyen
and Grishman, 2015b), and so on. Similarly,
RNN models have also been used for similar
tasks (Johnson and Zhang, 2016). The improved
performance of these models is due to several rea-
sons:

1. Pretrained word vectors are used as inputs
for most of these models. These embed-
dings capture the semantic similarity between
words in a global context better than one-hot
representations.

2. CNNs are capable of learning local features
such as short phrases or recurring n-grams,
similar to the way they provide translational,
rotational and scale invariance in vision.

3. RNNs utilize the word order in the sentence,
and are also able to learn the long-term de-
pendencies.

These observations amply motivate a model
which captures both short-term and long-term de-
pendencies using a combination of CNNs and
RNNs to form a robust representation of the sen-
tence. Earlier, researchers have proposed RCNN
models that compute “regional embeddings” us-
ing a CNN at the first level, and these embeddings
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(a) CRNN-Max (b) CRNN-Att

Figure 1: Architecture of the proposed models. For representation purpose, the following configuration has been used: d = nO

= 3, f1 = f2 = 2, nc = 4, and |C| = 3.

are then fed into an RNN layer which uses se-
quence information to generate the sentence repre-
sentation (Huynh et al., 2016; Wang et al., 2016b;
Chen et al., 2017; Nguyen and Grishman, 2015a).
These models are similar to ones that have also
been employed to some success for visual recog-
nition (Donahue et al., 2015). However, such mod-
els are still limited because the RNN may “forget”
features that occurred in the past if the sequence is
very long.

We solve this problem by obtaining the output
of the RNN at each time step (or word), and then
pooling small phrases. This method of using a “re-
current+pooling” module for regional embedding
is inspired from (Johnson and Zhang, 2016), who
showed that for text categorization, embeddings of
text regions, which can convey higher-level con-
cepts than single words in isolation, are more use-
ful than word embeddings. We also experiment
with attention-pooling to integrate weighted fea-
tures from discontinuous regions in the sentence.

3 Proposed Method

Given a sentence S with marked entities e1 and e2,
belonging to entity types t1 and t2, respectively,
and a set of relation classes C = {c1, . . . , cm} we
formulate the task of identifying the semantic re-
lation as a supervised classification problem, i.e.,
we learn a function f : (S, E, T ) → C, where
S is the set of all sentences, E is the set of en-
tity pairs, and T denotes the set of entity types.
Our training objective is to learn a joint represen-
tation of the sentence and the entity types, such
that a softmax regression layer predicts the cor-
rect label. To learn such an embedding, we pro-
pose a two-layer neural network architecture con-

sisting of a “recurrent+pooling” layer and a “con-
volutional+pooling” layer in sequence. This ar-
chitecture is diagrammatically described in Fig. 1,
and the remainder of this section explains each of
the layers in detail.

3.1 Embedding layer

The only features we use from S are the words
themselves. The vector representation of these
words is obtained using the GloVe method (Pen-
nington et al., 2014).

Pre-trained word vectors are used for the word
embeddings and the words not present in the em-
beddings list are initialized randomly. All the
word vectors are updated during training.

3.2 Recurrent layer

RNN is a class of artificial neural networks which
utilizes sequential information and maintains his-
tory through its intermediate layers (Graves et al.,
2009). We use long short-term memory (LSTM)
based model (Hochreiter and Schmidhuber, 1997),
which uses memory and gated mechanism to com-
pute the hidden state. In particular we use a bidi-
rectional LSTM model (Bi-LSTM) similar to the
ones used in (Graves, 2013; Huang et al., 2015).

Let h(t)
l and h(t)

r be the outputs obtained from
the forward and backward direction of the LSTM
at time t. Then the combined output is given as

z(t) = h
(t)
l : h(t)

r , z(t) ∈ RnO . (1)

where : denotes the concatenation operation. We
obtain the output at each word and pass it to the
first pooling layer.
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3.3 First pooling layer
The recurrent layer generates word-level embed-
dings that incorporate information from the past
and future context. Sometimes the word itself may
not be important for the sentence representation,
and in such cases, it may be better to extract the
most important features from short phrases using
a pooling technique. If f1 denotes the length of
the filter used for pooling, and (z1, . . . , zm) is the
sequence of vectors obtained from the previous
layer, then

p = (p1, p2, . . . , pm−f1+1), (2)

where pi ∈ RnO is given as

pi = max
1≤j≤f1

[zi+j ], (3)

i.e. the maximum among all vectors zi+1 to zi+f1 .

3.4 Convolutional layer
We apply convolution on p to get local features
from each part of the sentence (Collobert and
Weston, 2008). Consider a convolutional filter
parametrized by weight vector wc ∈ RnO∗f2 ,
where f2 is the length of filter. Then the output
sequence of convolution layer would be

hic = f(wc · pi:i+f2−1 + bc), (4)

where i = 1, 2, . . . ,m − f1 − f2 + 2, · is dot
product, f is the rectifier linear unit (ReLU) func-
tion (f(x) = max{0, x}), and bc ∈ R is the bias
term. The parameters wc and bc are shared across
all convolutions i = 1, 2, . . . ,m − f1 − f2 + 2.
On applying nc such filters, we obtain an output
matrix Hc ∈ Rnc×(m−f1−f2+2).

3.5 Second pooling layer
The output of the convolutional layer is of vari-
able length (m − f1 − f2 + 2), since it depends
on the length m of the input sentence. To ob-
tain fixed length global features for the entire sen-
tence, we apply pooling over the entire sequence.
For this, we experiment with two different pool-
ing schemes based on which our model has two
variations, namely CRNN-Max and CRNN-Att.

3.5.1 Max pooling over time
Max pooling over time (Collobert and Weston,
2008) takes the maximum over the entire sentence,
with the assumption that all the relevant informa-
tion is accumulated in that position. Since the in-
put to this layer are the local convolved vectors,

this strategy essentially extracts the most impor-
tant features from several short phrases. The out-
put is then given as

zpool = max
1≤i≤(m−f1−f2+2)

[hic], (5)

where zpool ∈ Rnc is the dimension-wise maxi-
mum over all hic’s.

3.5.2 Attention-based pooling
A max pooling scheme may fail when impor-
tant cues are distributed across different clauses
in the sentence. We solve this problem by us-
ing an attention-based pooling scheme, which ob-
tains an optimal feature dimension-wise by tak-
ing weighted linear combinations of the vec-
tors. These weights are trained using an atten-
tion mechanism such that more important fea-
tures are weighed higher (Bahdanau et al., 2014;
Yang et al., 2016; Zhou et al., 2016b). The at-
tention mechanism produces a vector α of size
m − f1 − f2 + 2, and the values in this vector
are the weights for each phrase obtained from the
convolutional layer feature vectors.

Hatt = tanh(Wα
1 Hc)

α = Softmax(Wα
2
THatt)

zatt = αHT
c (6)

Here, Hc is the matrix of CNN output vec-
tors, Wα

1 ,W
α
2 ∈ Rnc×nc is the parameter matrix,

α ∈ Rm−f1−f2+2 are the attention weights, and
zatt ∈ Rnc is the output of the pooling layer. The
attention weights are a function of the input sen-
tence, and hence α is different for every sentence.

3.6 Fully connected and softmax
To obtain a classifier over the extracted global fea-
tures, we use a fully connected layer consisting of
|C| nodes, where C is the set of all possible rela-
tion classes, followed by a softmax layer to gen-
erate a probability distribution over the set of all
possible labels. The final output is given as

p(ci|x) = Softmax(W o
i z + boi ), (7)

where W o and bo are the weight and bias param-
eters, and z may be either zpool or zatt, depend-
ing on the second pooling layer scheme. The pre-
dicted output y′ is obtained as

y′ = arg max
ci∈C

p(ci|x). (8)
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Class Train size Test size
TrCP 436 108
TrAP 2131 532
TrWP 109 26
TrIP 165 41

TrNAP 140 34
TeRP 2457 614
TeCP 409 101
PIP 1776 443

None 44588 11146
Total 52211 13045

Table 1: Number of training and testing instances for each
relation type in the i2b2 dataset.

4 Experiments

4.1 Datasets

We have used 2 datasets for experimentation,
namely the i2b2-2010 clinical relation extrac-
tion challenge dataset (Sun et al., 2013), and
the SemEval-2013 DDI extraction dataset (Se-
gura Bedmar et al., 2013).

i2b2-2010 relation extraction
This dataset contains sentences from discharge
summaries collected from three different hospi-
tals and have 8 relation types: treatment caused
medical problems (TrCP), treatment administered
medical problem (TrAP), treatment worsen med-
ical problem (TrWP), treatment improve or cure
medical problem (TrIP), treatment was not ad-
ministered because of medical problem (TrNAP),
test reveal medical problem (TeRP), test con-
ducted to investigate medical problem (TeCP),
and medical problem indicates medical problem
(PIP). If a sentence has more than two entities, we
make an instance for each pair. Since only 170 of
the 394 original training documents and 256 of the
477 testing documents were available for down-
load, we combined all the training and testing in-
stances, and then split it in a 80:20 ratio for train-
ing and test sets respectively. The statistics of the
dataset are described in Table 1.

SemEval 2013 DDI extraction
This dataset contains annotated sentences from
two sources, Medline abstracts (biomedical re-
search articles) and DrugBank database (docu-
ments written by medical practitioners). The
dataset is annotated with following four kinds of
interactions: advice (opinion or consultation re-
lated to the simultaneous use of the two drugs),
effect (effect of the DDI together with pharma-
codynamic effect or mechanism of interaction),

Class Train Test
Before After Before After

Mechanism 1318 1264 302 302
Effect 1685 1620 360 360
Advice 826 820 221 221
Int 189 140 96 96
None 23756 12651 4737 3046
Total 4018 3844 979 979

Table 2: Number of training and testing instances for each
relation type in the DDI extraction dataset.

mechanism (pharmacokinetic mechanism), and int
(drug interaction without any other information).
Dataset provides the training and test instances
by sentences. Similar to i2b2 relation extrac-
tion dataset if a sentence has more than two drug
names, all possible pairs of drugs in the sentence
have been separately annotated, such that a single
sentence having multiple drug names leads to sep-
arate instances of drug pairs and corresponding in-
teraction. Statistics of the dataset (along with neg-
ative instance filtering, discussed in Section 4.1.1)
is shown in Table 2.

4.1.1 Preprocessing
As a preprocessing step, we replace the enti-
ties in the i2b2 dataset with the corresponding
entity types. For instance, the sentence: “He
was given Lasix to prevent him from conges-
tive heart failure.” was converted to: “He was
given TREATMENT A to prevent him from PROB-
LEM B.” Similarly, for the DDI extraction dataset,
the two targeted drug names are replaced with
DRUG-A and DRUG-B respectively, and other
drug names in the same sentence are replaced
with DRUG-N. Further, all numbers were replaced
with the keyword NUM. Similar to the earlier
studies (Sahu and Anand, 2017; Liu et al., 2016;
Rastegar-Mojarad et al., 2013), negative instances
were filtered from training sets.

4.2 Implementation details

Pretrained 100-dimensional word vectors in the
embedding layer are obtained using the GloVe
method (Pennington et al., 2014) trained on a
corpus of PubMed open source articles (Muneeb
et al., 2015), and are updated during the train-
ing process. We use both l2 regularization and
dropout (Srivastava et al., 2014) techniques for
regularization. Dropout is applied only on the out-
put of the second pooling layer, and it prevents
co-adaptation of hidden units by randomly drop-
ping few nodes. After tuning the hyperparameters
on a validation set (20% of training set), the val-
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ues of 0.01 (0.001) and 0.7 (0.5) were found op-
timal for the regularization parameter and dropout
for the i2b2 (DDI extraction) dataset, respectively.
We use Adam technique (Kingma and Ba, 2014)
to optimize our loss function, with a learning rate
of 0.01. For all the models, nO and nC were tuned
on the validation set, and values of 200 and 100
were found to be optimal. Hyperparameters of
baseline methods were taken from the values sug-
gested in the respective papers. Entire neural net-
work parameters and feature vectors are updated
while training. We have implemented the pro-
posed model in Python language using the Tensor-
flow package (Abadi et al., 2016). We experiment
with different filter sizes for f1 and f2 and discuss
the results in Section 5.1.

4.3 Baseline methods

We compare our models with 5 methods that have
earlier been used for relation classification to satis-
factory results. These baselines were selected for
one of the following three purposes.

Feature-based methods
We selected a feature-based SVM classifier (Rink
et al., 2011) that uses several handcrafted features
such as distance of word from entities, POS tags,
chunk tags, etc., to compare whether our mod-
els were able to outperform classifiers with rigor-
ous feature engineering. It is to be noted that we
use our own implementation of the SVM classifier
(using the scikit-learn (Pedregosa et al., 2011) li-
brary), using features as described in (Sahu et al.,
2016).

Single-layer neural networks
We selected a multiple-filter CNN with max-
pooling (Sahu et al., 2016) and an LSTM model
with max and attentive pooling (Sahu and Anand,
2017). In Section 5.5, we compare our models
with these single layer models to justify using a
combination of RNN and CNN to learn long-term
and short-term dependencies, respectively. To ob-
serve the effect of the network model independent
of the feature set, we use only the word embed-
dings as features for each of these models. Further,
we used the same hyperparameters as mentioned
in the respective papers.

Recurrent convolutional neural network
This model, inspired from (Wang et al., 2016b),
obtains regional embeddings using a convolutional

f1\f2 2 3 4 5 6
1 59.97 58.96 59.30 59.18 60.03
2 59.84 56.69 60.89 62.45 61.03
3 60.46 61.77 58.85 57.34 59.81

Table 3: Average F1 scores on varying filter sizes f1 and f2

in the CRNN-Att model for i2b2 dataset.

layer. These are then fed into a recurrent layer and
a single output is obtained after traversing the en-
tire sequence. We compare our models with this
RCNN model to observe the effect of obtaining
outputs at every word, as opposed to at the end of
the sequence.

5 Results and Discussion

5.1 Effect of filter sizes f1 and f2

We experiment with various combinations of fil-
ter sizes f1 and f2 on the i2b2 dataset using our
CRNN-Att model. Since f1 denotes the size of
the first pooling filter, it essentially represents the
amount of information present in a regional em-
bedding that is fed into the convolutional layer.
If f1 is too small (f1 = 1, i.e., no pooling), em-
beddings from seemingly unimportant words may
get through, and if it is large (f1 ≥ 3), individ-
ual embeddings may get pooled such that a few
words dominate the majority of regions. For the
filter size f2 in the convolutional layer, a mid-
range value (4 to 6) was found to work well. This
may be because this layer learns to identify short
phrases which are usually of this length. These
observations were common for both datasets. The
F1 scores for various combinations of filter sizes
on the i2b2 data are shown in Table 3. In the re-
maining experiments, we choose (f1,f2) = (2,5)
for both our model variants.

5.2 Initialization and tuning of word
embeddings

The only feature used in our models is the word
vectors for every word in the sentence. We per-
form several experiments on the i2b2 data to ob-
serve the effect of word vector initialization and
update on the model performance. The results are
summarized in Table 5.

Interestingly, the best performing model uses
randomly initialized word embeddings that are not
updated during training. This is in contrast to
earlier studies (Sahu and Anand, 2017; Collobert
and Weston, 2008) where pretrained embeddings
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Model i2b2-2010 DDI extraction
Precision Recall F1 score Precision Recall F1 score

SVM (Rink et al., 2011) 67.44 57.85 59.31 65.39 40.13 49.74
CNN-Max (Sahu et al., 2016) 55.73 50.08 49.42 68.15 46.58 54.05
LSTM-Max (Sahu and Anand, 2017) 57.54 55.40 55.60 73.98 59.96 65.41
LSTM-Att (Sahu and Anand, 2017) 65.23 56.77 60.04 53.43 64.86 58.27
RCNN (Wang et al., 2016b) 50.07 45.34 46.47 – – –
CRNN-Max 67.91 61.98 64.38 72.91 60.88 65.89
CRNN-Att 64.62 62.14 62.45 69.03 59.04 63.24

Table 4: Comparison of our proposed models CRNN-Max and CRNN-Att, with baselines, on the i2b2-2010 and DDI extraction
datasets.

Initialization update CRNN-Max CRNN-Att
Random Trainable 62.78 61.19
Random Non-trainable 64.38 61.51
PubMed Trainable 60.60 62.45
PubMed Non-trainable 58.49 59.35

Table 5: Effect of initialization and update of word embed-
dings in our proposed models, in terms of F1 score, using the
i2b2-2010 datset.

Class Size SVM CNN LSTM-Max RCNN CRNN-Max CRNN-Att
TrCP 108 34.90 34.01 35.48 18.30 43.18 47.66
TrAP 532 63.48 46.69 58.74 45.15 67.39 63.94
TrWP 26 7.41 10.26 0.00 0.00 16.67 9.52
TrIP 41 9.09 21.74 0.00 0.00 25.71 34.48

TrNAP 34 5.13 15.87 0.00 0.00 36.36 18.60
TeRP 614 80.44 63.52 73.50 67.01 80.32 76.31
TeCP 101 30.30 27.63 25.20 11.48 39.46 39.76
PIP 443 49.44 49.30 51.54 45.05 58.04 55.53

Table 6: Classwise performance (in terms of F1 score) of
various models on the i2b2 dataset.

usually improved model performances by 3-4%.
However, this result aligns with the observations
made in (Johnson and Zhang, 2015) and supports
the argument for one-hot LSTMs. It may be en-
lightening to discuss why such a result is obtained.

First, we note that in the formulas for LSTM,
e.g., ut = tanh(W(u)xt + U(u)ht−1 + b(u)),
if xt is the one-hot representation of a word, the
term W(u)xt serves as a word embedding. Thus,
a one-hot LSTM inherently includes a word em-
bedding in its computation. Further, a word vector
lookup is a linear operation, and hence it may be
merged into the LSTM layer itself by multiplying
the LSTM weights by the word embedding matrix.
This means that the expressive power of an LSTM
which uses pretrained vectors is the same as that
of one which uses randomly initialized word em-
beddings. It has also been shown in earlier stud-
ies that pretrained embeddings do not improve the
performance of networks as the number of layers
increases.

Johnson et al. (2015) even argued that the em-
bedding layer can be replaced with a one-hot

representation without compromising on the per-
formance. Empirically, inclusion of an embed-
ding layer makes training from scratch more diffi-
cult, even with the help of adaptive learning rates.
Similar observations have been made regarding
CNNs (Kim, 2014; Johnson and Zhang, 2014).

5.3 Comparison with baseline methods
Table 4 shows the results obtained on the i2b2 and
DDI extraction datasets using our proposed mod-
els, as compared to the baseline methods. Our
models outperform the baselines even without the
need for explicit feature engineering. It is interest-
ing to note that our CRNN-Max performs better
than the CRNN-Att, and a similar result has also
been observed earlier in (Sahu and Anand, 2017).

Class-wise performance analysis
We compare class-wise performance of our mod-
els on the i2b2 dataset with some of the baselines,
and this is summarized in Table 6. It is evident
that performances improve with training size, and
from the confusion matrices (not shown here), we
found that samples of a lower frequency class were
misclassified into a higher frequency class com-
prising the same entity types. For instance, sam-
ples belonging to TrWP (Treatment Worsen medi-
cal Problem) were often classified as TrAP (Treat-
ment Administered medical Problem).

5.4 Effect of attention-based pooling
Our CRNN-Att model uses an attention-based
technique in the final pooling layer, i.e. it obtains
a weighted linear combination of different phrases
depending upon their relative importance in the
sentence embedding. To confirm this, we visual-
ize attention weights in a CRNN-Att model with
(f1, f2) = (1, 3), for 5 samples in the i2b2 dataset
through a heat map as shown in Figure 2. Since
weights are assigned to phrases rather than words,
to obtain attention for each word we take the mean
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Figure 2: Attention heatmap for 5 sentences selected from the i2b2-2010 dataset. A darker background corresponds to a larger
attention weight.

of weights of all phrases that the word is present
in. The figure shows that the attentive pooling
scheme is able to select important phrases depend-
ing upon the classification label. It is evident that
the model assigns a higher weight to semantically
relevant words such as “showed,” “question,” and
“revealed”.

5.5 Long and short term dependencies

We conjecture that our proposed CRNN models
perform better than single layer CNNs or RNNs
because they capture both local and global con-
texts efficiently. To confirm our hypothesis, we
determine the average sentence lengths and entity
separations for several sets of sentences belong-
ing to classes where our models performed well,
and for classes where either the CNN model or the
LSTM-Max model performed relatively well, for
the i2b2-2010 dataset. These results are visualized
in the box plots shown in Fig. 3.

From the figure, we note that our models
CRNN-Max and CRNN-Att perform significantly
better than a CNN model in classifying long sen-
tences with large entity separation, while CNN
models work well with shorter sentences where
the entities are less separated. This is evident by
observing the median and range of lower to up-
per quartile values in the figure. This confirms
our conjecture that our models learn long-term
dependencies better than a simple CNN model.
Similarly, our proposed models perform better on
a larger range of sentence lengths than LSTMs,
which may be due to more effective modeling of
local contexts.

(a)

(b)

Figure 3: Box plots for distribution of (a) sentence lengths
and (b) entity separation for sentence sets. A representation
of the form {X}\{˜Y} denotes the set of sentences correctly
classified by model X but wrongly classified by model Y. The
numbers at the top are the median values for each box.

5.6 Effect of linguistic features

The SVM baseline model described earlier con-
sists of the following features obtained for each
word in the sentence: word embedding, part-of-
speech (POS) tag, chunk tag, distance from first
entity, distance from second entity, and entity type.
Of these, the entity type feature is already used
in our CRNN model in the preprocessing step
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Class Size SVM CRNN-Max #1 #2
TrCP 108 34.90 36.91 11 30
TrAP 532 63.48 68.85 83 93
TrWP 26 7.41 0.00 1 0
TrIP 41 9.09 0.00 2 0

TrNAP 34 5.13 0.00 1 0
TeRP 614 80.44 81.29 69 83
TeCP 101 30.30 36.90 5 14
PIP 443 49.44 60.66 45 110

Total 1899 59.31 63.78 217 330

Table 7: Classwise performance comparison between SVM
and CRNN-Max using linguistic features. #1 denotes num-
ber of sentences of a class classified correctly by SVM but
incorrectly by CRNN-Max; #2 denotes vice-versa.

by replacing the entities with their corresponding
types. Furthermore, we have also described ex-
periments with initialization and update of word
embeddings.

In this section, we add the four other linguis-
tic features in our proposed model to observe its
performance in comparison with the SVM model.
Table 7 summarizes this comparison.

Although the F1 scores for the models are rel-
atively close, the precision (P) and recall (R) vary
significantly: P is 67.44 and 61.00, while R is
57.85 and 67.54, for the SVM and CRNN-Max
models, respectively. Our CRNN-Max model,
therefore, is more sensitive while the SVM clas-
sifier has a higher specificity. Furthermore, it is
evident that SVM outperforms our model only
on classes with a disproportionately low instance
count. We may argue that due to the presence
of more features and less number of records, our
model gets over-trained only on the larger classes.
This problem may then be avoided with better reg-
ularization, to achieve even higher performance.

6 Conclusion

In this work, we proposed and evaluated a two-
layer architecture comprising recurrent and con-
volutional layers in sequence to learn global and
local contexts in a sentence, which was then
used for relation classification. To the best of
our knowledge, this is the first attempt at com-
bining CNNs and RNNs in sequence for a re-
lation classification task in biomedical domain.
Two variants of the model, namely CRNN-Max
and CRNN-Att, were evaluated on the i2b2-2010
dataset and the SemEval 2013 DDI extraction
dataset, and max-pooling was found to perform
better than attentive pooling. Even though our
method employed only word embeddings as in-

put feature, it was able to conveniently outper-
form state-of-the-art techniques that use extensive
feature engineering. Finally, our results indicated
that a “recurrent+pooling” layer effectively gener-
ates regional embedding without the need for pre-
trained word vectors. It would be interesting to
see whether one-hot word vectors perform better
than randomly initialized embeddings. We may
also benefit from probing whether tree-based or
non-continuous convolutions work as well as our
CRNN models for learning long and short term de-
pendencies for relation classification.
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