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Abstract

Understanding stories – sequences of
events – is a crucial yet challenging nat-
ural language understanding task. These
events typically carry multiple aspects of
semantics including actions, entities and
emotions. Not only does each individ-
ual aspect contribute to the meaning of the
story, so does the interaction among these
aspects. Building on this intuition, we pro-
pose to jointly model important aspects
of semantic knowledge – frames, entities
and sentiments – via a semantic language
model. We achieve this by first represent-
ing these aspects’ semantic units at an ap-
propriate level of abstraction and then us-
ing the resulting vector representations for
each semantic aspect to learn a joint rep-
resentation via a neural language model.
We show that the joint semantic language
model is of high quality and can gener-
ate better semantic sequences than models
that operate on the word level. We further
demonstrate that our joint model can be
applied to story cloze test and shallow dis-
course parsing tasks with improved perfor-
mance and that each semantic aspect con-
tributes to the model.

1 Introduction

Understanding a story requires understanding se-
quences of events. It is thus vital to model se-
mantic sequences in text. This modeling process
necessitates deep semantic knowledge about what
can happen next. Since events involve actions,
participants and emotions, semantic knowledge
about these aspects must be captured and modeled.

Consider the examples in Figure 1. In Ex.1,
we observe a sequence of actions (commit, arrest,
charge, try), each corresponding to a predicate

Ex.1 (Actions - Frames) Steven Avery committed
murder. He was arrested, charged and tried.
Opt.1 Steven Avery was convicted of murder.
Opt.2 Steven went to the movies with friends.
Alter. Steven was held in jail during his trial.

Ex.2 (Participants - Entities) It was my first time
ever playing football and I was so nervous. During
the game, I got tackled and it did not hurt at all!
Opt.1 I then felt more confident playing football.
Opt.2 I realized playing baseball was a lot of fun.
Alter. However, I still love baseball more.

Ex.3 (Emotions - Sentiments) Joe wanted to be-
come a professional plumber. So, he applied to a
trade school. Fortunately, he was accepted.
Opt.1 It made Joe very happy.
Opt.2 It made Joe very sad.
Alter. However, Joe decided not to enroll because
he did not have enough money to pay tuition.

Figure 1: Examples of short stories requiring
different aspects of semantic knowledge. For all
stories, Opt.1 is the correct follow-up, while Opt.2
is the contrastive wrong follow-up demonstrating
the importance of each aspect. Alter. showcases
an alternative correct follow-up, which requires
considering different aspects of semantics jointly.

frame. Clearly, “convict” is more likely than “go”
to follow such sequence. This semantic knowl-
edge can be learned through modeling frame se-
quences observed in a large corpus. This phe-
nomena has already been studied in script learn-
ing works (Chatman, 1980; Chambers and Juraf-
sky, 2008b; Ferraro and Van Durme, 2016; Pi-
chotta and Mooney, 2016a; Peng and Roth, 2016).
However, modeling actions is not sufficient; par-
ticipants in actions and their emotions are also im-
portant. In Ex. 2, Opt.2 is not a plausible answer
because the story is about “football”, and it does
not make sense to suddenly change the key en-
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Models Context Input Generated Ending
4-gram Steven Avery committed murder. He was

arrested, charged and tried.
With law by the judge <UNK> ...

RNNLM same as above The information under terrorism ...
Seq2Seq same as above He decided for a case.
FC-SemLM commit.01 arrest.01 charge.05 try.01 convict.01

FES-LM

PER[new]-commit.01-ARG[new](NEG)

ARG[new]-convict.01-PER[old](NEG)
ARG[new]-arrest.01-PER[old](NEU)
ARG[new]-charge.05-PER[old](NEU)
ARG[new]-try.01-PER[old](NEG)

Table 1: Comparison of generative ability for different models. For each model, we provide Ex.1 as
context and compare the generated ending. 4-gram and RNNLM models are trained on NYT news data
while Seq2Seq model is trained on the story data (details see Sec. 5). These are models operated on the
word level. We compare them with FC-SemLM (Peng and Roth, 2016), which works on frame abstrac-
tions, i.e. “predicate.sense”. For the proposed FES-LM, we further assign the arguments (subject and
object) of a predicate with NER types (“PER, LOC, ORG, MISC”) or “ARG” if otherwise. Each argu-
ment is also associated with a “[new/old]” label indicating if it is first mentioned in the sequence (decided
by entity co-reference). Additionally, the sentiment of a frame is represented as positive (POS), neural
(NEU) or negative (NEG). FES-LM can generate better endings in terms of soundness and specificity.
The FES-LM ending can be understood as “[Something] convict a person, who has been mentioned be-
fore (with an overall negative sentiment)”, which can be instantiated as ”Steven Avery was convicted.”
given current context.

tity to “baseball”. In Ex.3, one needs understand
that “being accepted” typically indicates a positive
sentiment and that it applies to “Joe”.

As importantly, we believe that modeling these
semantic aspects should be done jointly; other-
wise, it may not convey the complete intended
meaning. Consider the alternative follow-ups in
Figure 1: in Ex.1, the entity “jail” gives strong
indication that it follows the storyline that men-
tions “murder”; in Ex.2, even though “football”
is not explicitly mentioned, there is a comparison
between “baseball” and “football” that makes this
continuation coherent; in Ex.3, “decided not to en-
roll” is a reasonable action after “being accepted”,
although the general sentiment of the sentence is
negative. These examples show that in order to
model semantics in a more complete way, we need
to consider interactions between frames, entities
and sentiments.

In this paper, we propose a joint semantic lan-
guage model, FES-LM, for semantic sequences,
which captures Frames, Entities and Sentiment
information. Just as “standard” language mod-
els built on top of words, we construct FES-LM
by building language models on top of joint se-
mantic representations. This joint semantic rep-
resentation is a mixture of representations corre-

sponding to different semantic aspects. For each
aspect, we capture semantics via abstracting over
and disambiguating text surface forms, i.e. seman-
tic frames for predicates, entity types for seman-
tic arguments, and sentiment labels for the over-
all context. These abstractions provide the basic
vocabulary for FES-LM and are essential for cap-
turing the underlying semantics of a story. In Ta-
ble 1, we provide Ex.1 as context input (although
FC-SemLM and FES-LM automatically generate
a more abstract representation of this input) and
examine the ability of different models to generate
an ending. 4-gram, RNNLM and Seq2Seq models
operate on the word level, and the generated end-
ings are not satisfactory. FC-SemLM (Peng and
Roth, 2016) works on basic frame abstractions and
the proposed FES-LM model adds abstracted en-
tity and sentiment information into frames. The
results show that FES-LM produces the best end-
ing among all compared models in terms of se-
mantic soundness and specificity.

We build the joint language model from plain
text corpus with automatic annotation tools, re-
quiring no human effort. In the empirical study,
FES-LM is first built on news documents. We
provide perplexity analysis of different variants of
FES-LM as well as for the narrative cloze test,
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where we test the system’s ability to recover a ran-
domly dropped frame. We further show that FES-
LM improves the performance of sense disam-
biguation for shallow discourse parsing. We then
re-train the model on short commonsense stories
(with the model trained on news as initialization).
We perform story cloze test (Mostafazadeh et al.,
2017), i.e. given a four-sentence story, choose
the fifth sentence from two provided options. Our
joint model achieves the best known results in the
unsupervised setting. In all cases, our ablation
study demonstrates that each aspect of FES-LM
contributes to the model.

The main contributions of our work are: 1) the
design of a joint neural language model for seman-
tic sequences built from frames, entities and sen-
timents; 2) showing that FES-LM trained on news
is of high quality and can help to improve shallow
discourse parsing; 3) achieving the state-of-the-art
result on story cloze test in an unsupervised setting
with the FES-LM tuned on stories.

2 Semantic Aspect Modeling

This section describes how we capture different
aspects of the semantic information in a text snip-
pet via semantic frames, entities and sentiments.

2.1 Semantic Frames

Semantic frame is defined by Fillmore (1976):
frames are certain schemata or frameworks of
concepts or terms which link together as a system,
which impose structure or coherence on some as-
pect of human experience, and which may contain
elements which are simultaneously parts of other
such frameworks. In this work, we simplify it by
defining a semantic frame as a composition of a
predicate and its corresponding argument partici-
pants. The design of PropBank frames (Kingsbury
and Palmer, 2002) and FrameNet frames (Baker
et al., 1998) perfectly fits our needs. Here we re-
quire the predicate to be disambiguated to a spe-
cific sense, thus each frame can be uniquely rep-
resented by its predicate sense. These frames pro-
vide a good level of generalization as each frame
can be instantiated into various surface forms in
natural texts. For example, in Ex.1, the seman-
tic frame in Opt.1 would be abstracted as “con-
vict.01”. We associate each of these frames with
an embedding. The arguments of the frames are
modeled as entities, as described next.

Additionally, in accordance with the idea pro-

Ex.4 The doctor told Susan that she was busy.
The doctor told Susan that she had cancer.
Mary told Susan that she had cancer.

Figure 2: Examples of the need for different lev-
els of entity abstraction. For each sentence, one
wants to understand what the pronoun “she” refers
to, which requires different abstractions for two
underlined entity choices depending on context.

posed by Peng and Roth (2016), we also ex-
tend the frame representations to include discourse
markers since they model relationships between
frames. In this work, we only consider explicit
discourse markers between abstracted frames. We
use surface forms to represent discourse markers
because there is only a limited set. We also assign
an embedding with the same dimension as frames
to each discourse marker.

To unify the representation, we formally use
ef to represent an embedding of a disambiguated
frame/discourse marker. Such embedding would
later be learned during language model training.

2.2 Entities

We consider the subject and object of a predicate
as the essential entity information for modeling se-
mantics. To achieve a higher level of abstraction,
we model entity types instead of entity surface
forms. We choose to assign entities with labels
produced by Named Entity Recognition (NER), as
NER typing is reliable.1

In fact, it is difficult to abstract each entity into
an appropriate level since the decision is largely
affected by context. Consider the examples shown
in Figure 2. For the first sentence, to correctly un-
derstand what “she” refers to, it is enough to just
abstract both entities “the doctor” and “Susan” to
the NER type “person”, i.e. the semantic knowl-
edge being person A told person B that person A
was busy. However, when we change the context
in the second sentence, the “person” abstraction
becomes too broad as it loses key information for
this “doctor - patient” situation. The ideal seman-
tic abstraction would be “a doctor told a patient
that the patient had a disease”. For the third sen-
tence, it is ambiguous without further context from
other sentences. Thus, entity abstraction is a deli-
cate balance between specificity and correctness.

1Though there are a number works on fine-grained entity
typing (Yogatama et al., 2015; Ren et al., 2016), their perfor-
mances are between 65% and 75%, much lower than NER.
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Besides type information, Ex.2 in Figure 1
shows the necessity of providing new entity infor-
mation, i.e whether or not an entity is appeared for
the first time in the whole semantic sequence. This
corresponds well with the definition of anaphroc-
ity in co-reference resolution, i.e. whether or not
the mention starts a co-reference chain. Thus, we
can encode this binary information as an addi-
tional dimension in the entity representation.

Thus, we formally define re as the entity rep-
resentation. It is the concatenation of two entity
vectors rsub and robj for subject entity and object
entity respectively. Both rsub and robj are con-
structed as a one hot vector2 to represent an en-
tity type, plus an additional dimension indicating
whether or not it is a new entity (1 if it is new).

2.3 Sentiments

For a piece of text, we can assign a sentiment value
to it. It can either be positive, negative, or neutral.
In order to decide which one is most appropriate,
we first use a look-up table from word lexicons
to sentiment, and then count the number of words
which corresponds to positive (npos) and negative
(nneg) sentiment respectively. If npos > nneg, we
determine the text as positive; and if npos < nneg,
we assign the negative label; and if the two num-
bers equal, we deem the text as neutral. We use
one hot vector for three sentiment choices, and de-
fine sentiment representation as rs.

3 FES-LM - Joint Modeling

We present our joint model FES-LM and the neu-
ral language model implementation in this sec-
tion. The joint model considers frames, entities
and sentiments together to construct FES repre-
sentations in order to model semantics more com-
pletely. Moreover, we build language models on
top of such representations to reflect the sequen-
tial nature of semantics.

3.1 FES Representation

We propose FES-LM as a joint model to em-
bed frame, entity and sentiment information to-
gether. Thus for each sentence/clause (specific to
a frame), we can get individual representations for
the frame (i.e. ef ), entity types and new entity in-
formation corresponds to subject and object of the
frame (i.e. re), and sentiment information (i.e. rs).

2Each dimension of the vector indicates an entity type (bi-
nary 0/1), and the vector contains exactly one element of 1.

Thus, we construct the FES representation as:

rFES = ef +Were +Wsrs.

We,Ws are two matrices transforming entity and
sentiment representations into the frame embed-
ding space, which are added to the correspond-
ing frame embedding. These two parameters are
shared across all FES representations. During lan-
guage model training, we learn frame embeddings
ef as well as We and Ws. An overview of the FES
representation in a semantic sequence is shown in
Figure 3. Note that if the frame embedding repre-
sents a discourse marker, we set the correspond-
ing entity and sentiment representations as zero
vectors since no entity/sentiment is matched to a
discourse marker. It is our design choice to add
the entity and sentiment vectors to the frame em-
beddings, which creates a unified semantic space.
During training, the interactions between different
semantic aspects are captured by optimizing the
loss on the joint FES representations.3

3.2 Neural Language Model

To model semantic sequences and train FES repre-
sentations, we build neural language models. The-
oretically, we can utilize any existing neural lan-
guage model. We choose to implement the log-
bilinear language model (LBL) (Mnih and Hinton,
2007) as our main method since previous works
have reported best performance using it (Rudinger
et al., 2015; Peng and Roth, 2016).

For ease of explanation, we assume that a
semantic sequence of FES representations is
[FES1,FES2,FES3, . . . ,FESk], with FESi being
the ith FES representation in the sequence. It as-
signs each token (i.e. FES representation) with
three components: a target vector v(FES), a con-
text vector v′(FES) and a bias b(FES). Thus, we
model the conditional probability of a token FESt

given its context c(FESt):

p(FESt|c(FESt)) =
exp(v(FESt)ᵀu(c(FESt)) + b(FESt))∑

FES∈V exp(v(FES)ᵀu(c(FESt)) + b(FES))
.

Here, V denotes the vocabulary (all possible FES
representations) and we define

3An alternative design choice is to concatenate the vec-
tor representations from different semantic aspects together,
but we did not get better empirical results compared to our
current design.
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Frame Embedding 𝑒"

Entity Representation 𝑟$

Sentiment 
Representation 𝑟%

FES Representation 𝑟&'( …

Sentence/Clause

𝑊$
𝑊%

…

Figure 3: An overview of the FES representation in a semantic sequence. Semantic frames are
represented by vector rf . The entity representation re is the concatenation of rsub and robj , both consist
of two parts: an one-hot vector for entity type plus an additional dimension to indicate whether or not it
is a new entity. The sentiment representation rs is also one-hot.

u(c(FESt)) =
∑

ci∈c(FESt)

qi � v′(ci).

Note that � represents element-wise multiplica-
tion and qi is a vector that depends only on the po-
sition of an FES representation in context, which is
also a model parameter. For language model train-
ing, we maximize the overall sequence probability∏k

t=1 p(FESt|c(FESt)).

4 Building FES-LM

In this section, we explain how we build FES-LM
from un-annotated plain text.

4.1 Dataset and Preprocessing

Dataset We first use the New York Times (NYT)
Corpus4 (from year 1987 to 2007) to train FES-
LM. It contains over 1.8M documents in to-
tal. To fine tune the model on short sto-
ries, we re-train FES-LM on the ROCStories
dataset (Mostafazadeh et al., 2017) with the model
trained on NYT as initialization. We use the train
set of ROCStories, which contains around 100K
short stories (each consists of five sentences) 5.
Preprocessing We pre-process all documents
with Semantic Role Labeling (SRL) (Punyakanok
et al., 2004) and Part-of-Speech (POS) tag-
ger (Roth and Zelenko, 1998). We also imple-
ment the explicit discourse connective identifica-
tion module of a shallow discourse parser (Song
et al., 2015). Additionally, we utilize within doc-
ument entity co-reference (Peng et al., 2015a) to
produce co-reference chains to get the new entity

4Available at https://catalog.ldc.upenn.edu/LDC2008T19
5Available at http://cs.rochester.edu/nlp/rocstories/

information. To obtain all annotations, we employ
the Illinois NLP tools6.

4.2 FES Representation Generation

As shown in Sec. 3, each FES representation is
built from basic semantic units: frame / entity /
sentiment. We describe our implementation de-
tails on how we extract these units from text and
how we further construct their vector representa-
tions respectively.
Frame Abstraction and Enrichment We directly
derive semantic frames from semantic role label-
ing annotations. As the Illinois SRL package is
built upon PropBank frames, we map them to
FrameNet frames via VerbNet senses to achieve
a higher level of abstraction. The mapping is de-
terministic and partial7. For unmapped PropBank
frames, we retain their original PropBank forms.
We then enrich the frames by augmenting them to
verb phrases. We apply three heuristic rules: 1) if
a preposition immediately follows a predicate, we
append the preposition e.g. “take over”; 2) if we
encounter the role label AM-PRD which indicates
a secondary predicate, we append it to the main
predicate e.g. “be happy”; 3) if we see the se-
mantic role label AM-NEG which indicates nega-
tion, we append “not” e.g. “not like”. We further
connect compound verbs together as they repre-
sent a unified semantic meaning. For this, we ap-
ply a rule that if the gap between two predicates
is less than two tokens, we treat them as a unified
semantic frame defined by the conjunction of the
two (augmented) semantic frames, e.g. “decide to

6Available at http://cogcomp.org/page/software/
7We use the mapping file http://verbs.colorado.edu/verb-

index/fn/vn-fn.xml to do it. For example, “place” and “put”
with the same VerbNet sense id “9.1-2” are both mapped to
the FrameNet frame “Placing”.
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Vocabulary Size Sequence Size
FES F E S #seq #token

NYT 4M 15K 100 7 1.2M 25.4M
ROCStories 200K 1K 98 7 100K 630K

Table 2: Statistics on FES-LM vocabularies and
sequences. We compare FES-LM trained on NYT
vs. ROCStories; “FES” stands for unique FES
representations while “F” for frame embeddings,
“E” for entity representations, and “S” for senti-
ment representations. “#seq” is the number of se-
quences, and “#token” is the total number of to-
kens (FES representations) used for training.

buy” being represented by “decide.01-buy.01”.
To sum up, we employ the same techniques

to deal with frames as discussed in Peng and
Roth (2016), which allows us to model more fine-
grained semantic frames. As an example of this
processing step, “He didn’t want to give up.” is
represented as “(not)want.01-give.01[up]”. Each
semantic frame (here, including discourse mark-
ers) is represented by a 200-dimensional vector ef .
Entity Label Assignment For each entity (here
we refer to subject and object of the predicate), we
first extract its syntactic head using Collins’ Head
Rule. To assign entity types, we then check if the
head is inside a named entity generated by NER. If
so, we directly assign the NER label to this entity.
Otherwise, we check if the entity is a pronoun that
refers to a person i.e. I, me, we, you, he, him, she,
her, they, them; in which case, we assign “PER”
label to it. For all other cases, we simply assign
“ARG” label to indicate the type is unknown.

In order to assign “new entity” labels, we check
if the head is inside a mention identified by the co-
reference system to start a new co-reference chain.
If so, we assign 1; otherwise, we assign 0. On
ROCStories dataset, we add an additional rule that
all pronouns indicating a person will not be “new
entities”. This makes the co-reference decisions
more robust on short stories.8

The entity representation re is eventually con-
structed as a one-hot vector for types of 5 dimen-
sions and an additional dimension for “new entity”
information. As we consider both subjects and ob-
jects of a frame, re is of 12 dimensions in total. If
either one of the entities within a frame is missing
from SRL annotations, we set its corresponding 6
dimensions as zeros.
Sentiment Representation Generation We first

8The same rule is not applied on news, since pronouns
indicating a person can start a co-reference chain in news.

determine the polarity of a word by a look-up ta-
ble from two pre-trained sentiment lexicons (Liu
et al., 2005; Wilson et al., 2005). We then count
the number of positive words versus negative
words to decide the sentiment of a piece of text
as detailed in Sec. 2. This process is done on text
corresponding to each frame, i.e. a sentence or a
clause. Since we have two different lexicons, we
get two separate one-hot sentiment vectors, each
with a dimension of 3. Thus, the sentiment repre-
sentation is the concatenation of the two vectors, a
total dimension of 6.

4.3 Neural Language Model Training

For the NYT corpus, we treat each document as
a single semantic sequence while on ROCStories,
we see each story as a semantic sequence. Ad-
ditionally, we filter out rare frames which appear
less than 20 times in the NYT corpus. Statistics on
the eventual FES-LM vocabularies (unique FES
representations) and semantic sequences in both
datasets are shown in Table 2. Note that the num-
ber of unique FES representations reflects the rich-
ness of the semantic space that we model. On both
datasets, it is about 200 times over what is mod-
eled by only frame representations. At the same
time, we do not incur burden on language model
training. It is because we do not model unique
FES representations directly, and instead we are
still operating in the frame embedding space.9

We use the OxLM toolkit (Baltescu et al., 2014)
with Noise-Constrastive Estimation (Gutmann and
Hyvarinen, 2010) to implement the LBL model.
We set the context window size to 5 and pro-
duce 200-dimension embeddings for FES repre-
sentations. In addition to learning language model
parameters, we also learn frame embeddings ef
along with parameters forWe (12x200 matrix) and
Ws (6x200 matrix).

5 Evaluation

We first show that our proposed FES-LM is of high
quality in terms of language modeling ability. We
then evaluate FES-LM for shallow discourse pars-
ing on news data as well as application for story
cloze test on short common sense stories. In all
studies, we verify that each semantic aspect con-
tributes to the joint model.

9The FES representation space can be seen as entity and
sentiment infused frame embedding space.
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CBOW SG LBL
Perplexity
FES-LM 133.8 135.8 126.0
Narrative Cloze Test (Recall@30)
FES-LM 38.9 37.3 43.2
FES-LM - Entity 35.3 33.1 38.4
FES-LM - Sentiment 34.9 32.8 36.3

Table 3: Quality comparison of neural language
models. We report results for perplexity and nar-
rative cloze test. Both evaluations are done on the
gold PropBank data (annotated with gold frames).
LBL outperforms CBOW and SG on both tests.
We carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively.

5.1 Quality of FES-LM
To evaluate the modeling ability of different neu-
ral language models, we train each variant of
FES-LM on NYT corpus and report perplex-
ity and narrative cloze test results. Here, we
choose the Skip-Gram (SG) model (Mikolov et al.,
2013b) and Continuous-Bag-of-Words (CBOW)
model (Mikolov et al., 2013a) for comparison with
the LBL model. We utilize the word2vec package
to implement both SG and CBOW. We set the con-
text window size to be 10 for SG and 5 for CBOW.

We employ the same experimental setting as de-
tailed in Peng and Roth (2016). Results are shown
in Table 3. They confirm that LBL model per-
forms the best with the lowest perplexity and high-
est recall for narrative cloze test.10 Note that the
numbers reported are not directly comparable with
those in literature (Rudinger et al., 2015; Peng and
Roth, 2016), as we model much richer semantics
even though the numbers seem inferior. We fur-
ther carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively11. The results show that senti-
ment contributes more than entity information.

5.2 Application on News
We choose shallow discourse parsing as the task to
show FES-LM’s applicability on news. In particu-
lar, we evaluate on identifying the correct sense of
discourse connectives (both explicit and implicit

10We also tried Neural-LSTM (Pichotta and Mooney,
2016a) and context2vec (Melamud et al., 2016) model, but
we cannot get better results.

11The ablation study is not done for perplexity test because
FES-LM with less semantic aspects yields smaller vocabu-
lary, which naturally leads to lower perplexity.

ones). We choose Song et al. (2015), which uses
a supervised pipeline approach, as our base sys-
tem. We follow the same experimental setting as
described in Peng and Roth (2016), i.e. we add ad-
ditional conditional probability features generated
from FES-LM into the base system. We evaluate
on CoNLL16 (Xue et al., 2016) test and blind sets,
following the train and development split from
the Shared Task, and report F1 using the official
shared task scorer.

Table 4 shows the results for shallow dis-
course parsing with added FES-LM features. We
get significant improvement over the base sys-
tem(*) (based on McNemar’s Test) and outper-
form SemLM, which only utilizes frame infor-
mation in the semantic sequences. We also ri-
val the top system (Mihaylov and Frank, 2016) in
the CoNLL16 Shared Task (connective sense clas-
sification subtask). Note that the FES-LM used
here is trained on NYT corpus. The ablation study
shows that entity aspect contributes less than sen-
timent aspect in this application.

5.3 Application on Stories
For the story cloze test on the ROCStories dataset.
We evaluate in an unsupervised setting, where we
disregard the labeled development set and directly
test on the test set12. We believe this is a better set-
ting to reflect a system’s ability to model seman-
tic sequences compared to the supervised setting
where we simply treat the task as a binary classifi-
cation problem with a development set to tune.

We first generate a set of conditional probabil-
ity features from FES-LM. For each story, we ex-
tract semantic aspect information as described in
Sec. 2 and construct the joint FES representation
according to the learned FES-LM. We then uti-
lize the conditional probability of the fifth sen-
tence s5 given previous context sentences C as
features. Suppose the semantic information in
the fifth sentence can be represented by rFES k,
we can then define the features as p(s5|C) =
p(rFES k|rFES (k-1), rFES (k-2), · · · , rFES (k-t)), t =
1, 2, · · · , k.We get multiple features depending on
how long we go back in the context in terms of
FES representations. Note that one sentence can
contain multiple FES representations depending
on how many semantic frames it has. For simplic-
ity, we assume a single FES representation rFES k

12The test set contains 1, 871 four-sentences long stories
with two fifth sentence options for each, of which only one is
correct; and we report the accuracy.

179



CoNLL16 Test CoNLL16 Blind
Explicit Implicit Overall Explicit Implicit Overall

Base (Song et al., 2015)* 89.8 35.6 60.4 75.8 31.9 52.3
SemLM (Peng and Roth, 2016) 91.1 36.3 61.4 77.3 33.2 53.8
Top (Mihaylov and Frank, 2016) 89.8 39.2 63.3 78.2 34.5 54.6
FES-LM (this work) 91.0 37.5 61.8 78.3 34.4 54.5
FES-LM - Entity 90.8 37.1 61.6 77.9 34.0 54.1
FES-LM - Sentiment 90.5 36.9 61.3 77.3 33.8 53.9

Table 4: Shallow discourse parsing results. With added FES-LM features, we get significant improve-
ment (based on McNemar’s Test) over the base system(*) and outperform SemLM, which only models
frame information. We also rival the top system (Mihaylov and Frank, 2016) in the CoNLL16 Shared
Task (connective sense classification subtask).

Baselines
Seq2Seq 58.0%
DSSM (Mostafazadeh et al., 2016) 58.5%
Seq2Seq with attention 59.1%
Individual Aspect S. M.V.
F-LM 57.8% 56.3%
E-LM 52.1% 52.6%
S-LM 54.2% 54.9%
Joint Model S. M.V.
FES-LM (this work) 62.3% 61.6%
FES-LM - Entity 61.5% 61.7%
FES-LM - Sentiment 61.1% 60.9%

Table 5: Accuracy results for story cloze text in
the unsupervised setting. “S.” represents the in-
ference method with the single most informative
feature while “M.V.” means majority voting. FES-
LM outperforms the strongest baseline (Seq2Seq
with attention) by 3 points. The difference is
statistically significant based on McNemar’s Test.
Additional ablation studies show that each seman-
tic aspect contributes to the joint model.

for s5. In practice, we get at most 12 FES repre-
sentations as context. We align the features by t,
indicating how long we consider the story context.
Thus, for each story, we generate at most 12 pairs
of conditional probability features. Evey pair of
such features can yield a decision on which ending
is more probable. Here, we test two different infer-
ence methods: a single most informative feature
(where we go with the decision made by the pair
of features which have the highest ratio) or ma-
jority voting based on all feature pairs. Note that
we need to re-train FES-LM on the stories (train
set of ROCStories, 5-sentence stories, no negative
examples provided)13.

13It is because of domain difference, e.g. average length of
semantic sequence is different (stories are shorter while news

We compare FES-LM with Seq2Seq base-
lines (Sutskever et al., 2014). We also train the
Seq2Seq model on the train set of ROCStories,
where we set input as the 4-sentence context and
the output as the 5th ending sentence for each
story. At test time, we get probability of each op-
tion ending from the soft-max layer and choose
the higher one as the answer. We use an LSTM
encoder (300 hidden units) and decode with an
LSTM of the same size. Since it is operated on the
word level, we use pre-trained 300-dimensional
GloVe embeddings (Pennington et al., 2014) and
keep them fixed during training. In addition,
we add an attention mechanism (Bahdanau et al.,
2014) to make the Seq2Seq baseline stronger.
We also report DSSM from Mostafazadeh et al.
(2016) as the previously best reported result14.
To study how each individual aspect affects the
performance, we develop neural language mod-
els on frames (F-LM), entities (E-LM) and sen-
timents (S-LM) as additional baseline models sep-
arately. We use the same language model train-
ing and feature generation techniques as FES-LM.
Particularly, for F-LM, it is the same model as FC-
SemLM defined in Peng and Roth (2016). Note
that individual aspects cannot capture the seman-
tic difference between two given options for all
instances. For those instances that the baseline
model fails to handle, we set the accuracy as 50%
(expectation of random guesses).

The accuracy results are shown in Table 5.
The best result we achieve (62.3%) outperforms
the strongest baseline (Seq2Seq with attention,
59.1%). It is statistically significant based on Mc-
Nemar’s Test (α = 0.01), illustrating the superior

are longer, see in Table 2).
14DSSM’s model parameters are trained on the ROCSto-

ries corpus while hyper parameters are determined on the de-
velopment set.
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semantic modeling ability of FES-LM. Results are
mixed comparing the two inference methods. The
ablation study further confirms that each semantic
aspect has its worth in the joint model.

6 Related Work

Our work is built upon the previous work (Peng
and Roth, 2016). It generated a probabilistic
model on semantic frames while taking into ac-
count discourse information, and showed appli-
cations to both co-reference resolution and shal-
low discourse parsing. This line of work is
in general inspired by script learning. Early
works (Schank and Abelson, 1977; Mooney and
DeJong, 1985) tried to learn scripts via construc-
tion of knowledge bases from text. More recently,
researchers focused on utilizing statistical models
to extract high-quality scripts from large amounts
of data (Chambers and Jurafsky, 2008a; Bejan,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding et al., 2015; Rudinger
et al., 2015; Pichotta and Mooney, 2016b,a). Other
works aimed at learning a collection of structured
events (Chambers, 2013; Cheung et al., 2013; Bal-
asubramanian et al., 2013; Bamman and Smith,
2014; Nguyen et al., 2015; Inoue et al., 2016).
In particular, Ferraro and Van Durme (2016) pre-
sented a unified probabilistic model of syntactic
and semantic frames while also demonstrating im-
proved coherence. Several works have employed
neural embeddings (Modi and Titov, 2014b,a; Fr-
ermann et al., 2014; Titov and Khoddam, 2015).
Some prior works have used scripts-related ideas
to help improve NLP tasks (Irwin et al., 2011;
Rahman and Ng, 2011; Peng et al., 2015b). Most
recently, Mostafazadeh et al. (2016, 2017) pro-
posed story cloze test as a standard way to test
a system’s ability to model semantics. They re-
leased ROCStories dataset, and organized a shared
task for LSDSem’17.

7 Conclusion

This paper proposes FES-LM, a joint neural lan-
guage model for semantic sequences built upon
frames, entities and sentiments. Abstractions on
these semantic aspects enable FES-LM to generate
better semantic sequences than models working on
the word level. Evaluations show that the joint
model helps to improve shallow discourse parsing
and achieves the best result for story cloze test in
the unsupervised setting. In future work, we plan

to extend FES-LM to capture more semantic as-
pects and work towards building a general seman-
tic language model.
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pens next? event prediction using a compositional
neural network model. In AAAI.

M. Gutmann and A. Hyvarinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In AISTATS.

N. Inoue, Y. Matsubayashi, M. Ono, N. Okazaki, and
K. Inui. 2016. Modeling context-sensitive selec-
tional preference with distributed representations. In
COLING.

J. Irwin, M. Komachi, and Y. Matsumoto. 2011. Nar-
rative schema as world knowledge for coreference
resolution. In CoNLL Shared Task.

B. Jans, S. Bethard, I. Vulić, and M. F. Moens. 2012.
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