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Abstract

Neural network models have recently been
applied to the task of automatic essay scor-
ing, giving promising results. Existing
work used recurrent neural networks and
convolutional neural networks to model
input essays, giving grades based on a sin-
gle vector representation of the essay. On
the other hand, the relative advantages of
RNNs and CNNs have not been compared.
In addition, different parts of the essay can
contribute differently for scoring, which is
not captured by existing models. We ad-
dress these issues by building a hierarchi-
cal sentence-document model to represent
essays, using the attention mechanism to
automatically decide the relative weights
of words and sentences. Results show that
our model outperforms the previous state-
of-the-art methods, demonstrating the ef-
fectiveness of the attention mechanism.

1 Introduction

Automatic essay scoring (AES) is the task of au-
tomatically assigning grades to student essays.
It can be highly challenging, requiring not only
knowledge on spelling and grammars, but also
on semantics, discourse and pragmatics. Tradi-
tional models use sparse features such as bag-
of-words, part-of-speech tags, grammar complex-
ity measures, word error rates and essay lengths,
which can suffer from the drawbacks of time-
consuming feature engineering and data sparsity.

Recently, neural network models have been
used for AES (Alikaniotis et al., 2016; Dong and
Zhang, 2016; Taghipour and Ng, 2016), giving
better results compared to statistical models with
handcrafted features. In particular, distributed
word representations are used for the input, and
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a neural network model is employed to combine
word information, resulting in a single dense vec-
tor form of the whole essay. A score is given based
on a non-linear neural layer on the representa-
tion. Without handcrafted features, neural network
models have been shown to be more robust than
statistical models across different domains (Dong
and Zhang, 2016).

Both recurrent neural networks (Williams and
Zipser, 1989; Mikolov et al., 2010) and convolu-
tional neural networks (LeCun et al., 1998; Kim,
2014) have been used for modelling input es-
says. In particular, Alikaniotis et al. (2016)
and Taghipour and Ng (2016) use a single-layer
LSTM (Hochreiter and Schmidhuber, 1997) over
the word sequence to model the essay, and Dong
and Zhang (2016) use a two-level hierarchical
CNN structure to model sentences and documents
separately. It has been commonly understood that
CNNs can capture local ngram information effec-
tively, while LSTMs are strong in modelling long
history. No previous work has compared the ef-
fectiveness of LSTMs and CNNs under the same
settings for AES. To better understand the con-
trast, we adopt the two-layer structure of Dong and
Zhang (2016), comparing CNNs and LSTMs for
modelling sentences and documents.

Not all sentences contribute equally to the scor-
ing of a given essay, and not all words contribute
equally within a sentence. We adopt the neural
attention model (Xu et al., 2015; Luong et al.,
2015) to automatically calculate weights for con-
volution features of CNNs and hidden state val-
ues of LSTMs, which has been used for obtain-
ing the most pertinent information for machine
translation (Luong et al., 2015), sentiment analy-
sis (Shin et al., 2016; Wang et al., 2016; Liu and
Zhang, 2017) and other tasks. In our case, the at-
tention mechanism can intuitively select sentences
and grams that are more aligned with the props or
obviously incorrect. To our knowledge, no prior
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work has investigated the effectiveness of atten-
tion models for AES.

Results show that CNN is relatively more ef-
fective for modelling sentences, and LSTMs are
relatively more effective for modelling documents.
This is likely because local ngram information are
more relevant to the scoring of sentence structures,
and global information is more relevant for scoring
document level coherence. In addition, attention
gives significantly more accurate results. Our fi-
nal model achieves the best result reported on the
ASAP1 test set. We release our code at https:
//github.com/feidong1991/aes.

2 Automatic Essay Scoring

2.1 Task

The task of AES is usually treated as a super-
vised learning problem, typical models of which
can be divided into three categories: classification,
regression and preference ranking. In the classi-
fication scenario, scores are divided into several
categories, each score or score range is regarded
as one class and the ordinary classification mod-
els are employed such as Naive Bayes (NB) and
SVMs (Larkey, 1998; Rudner and Liang, 2002).
In the regression scenario, each score is treated as
continous values for the essay and regression mod-
els are considered, like linear regression, Bayesian
linear ridge regression (Attali and Burstein, 2004;
Phandi et al., 2015). In the preference ranking sce-
nario, AES task is considered as a ranking problem
in which pair-wise ranking and list-wise ranking
are employed (Yannakoudakis et al., 2011; Chen
and He, 2013; Cummins et al., 2016). The former
considers the ranking between each pair of essays,
while the latter considers the absolute ranking of
each essay in the whole set.

Formally, an AES model is trained to minimize
the difference between its automatically output
scores and human given scores on a set of train-
ing data:

min
N∑
i=1

f(y∗i , yi),

s.t. yi = g(ti), i = 1, 2, ..., N

(1)

where N is the total number of essays in the train-
ing set, y∗i and yi are the golden score assigned
by human raters and prediction score made by the

1https://www.kaggle.com/c/asap-aes/data

AES system of i-th essay in the set respectively,
ti is feature representation of i-th essay, f is the
metric function between golden score and predic-
tion score, such as mean square error and mean
absolute error, and g is the mapping function from
feature ti to score yi.

2.2 Evaluation Metric
Many measurement metrics have be adopted to as-
sess the quality of AES systems, including Pear-
son’s correlation, Spearman’s ranking correlation,
Kendall’s Tau and kappa, especially quadratic
weighted kappa (QWK). We follow the Auto-
mated Student Assessment Prize (ASAP) compe-
tition official criteria which takes QWK as evalu-
ation metric, which is also adopted as evaluation
metric in (Dong and Zhang, 2016; Taghipour and
Ng, 2016; Phandi et al., 2015).

Kappa measures inter-raters agreement on the
qualitive items, here inter-raters refer to AES
system and human rater. QWK is modified
from kappa which takes quadratic weights. The
quadratic weight matrix in QWK is defined as:

Wi,j =
(i− j)2
(R− 1)2

, (2)

where i and j are the reference rating (assigned by
a human rater) and the system rating (assigned by
an AES system), respectively, andR is the number
of possible ratings.

An observed score matrix O is calculated such
thatOi,j refers to the number of essays that receive
a rating i by the human rater and a rating j by the
AES system. An expected score matrix E is cal-
culated as the outer product of histogram vectors
of the two (reference and system) ratings. The ma-
trix E needs to be normalized such that the sum of
elements in E and the sum of elements in O keep
the same. Finally, given the three matrices W , O
and E, the QWK value is calculated according to
Equation 3:

κ = 1−
∑
Wi,jOi,j∑
Wi,jEi,j

(3)

We evaluate our model using QWK as the metric,
and perform one-tailed t-test to determine the sig-
nificance of improvements.

3 Model

We employ a hierarchical neural model similar to
the sentence-document model of Dong and Zhang
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Figure 1: Sentence representation using ConvNet
and attention pooling

(2016) who consider essay script as being com-
posed of sentence sequences rather than word se-
quences. Different from their model, our neu-
ral model learns text representation with LSTMs,
which could model the coherence and corefer-
ence among sequences of sentences (i.e. captur-
ing more global information compared to CNNs).
Besides, attention pooling is both used on words
and sentences, which aims to capture more rele-
vant words and sentences that contribute to the fi-
nal quality of essays.

We investiage two types of word represen-
tations, one being character-based embedding,
which utilizes a convolutinal layer to learn word
representations from raw characters, and the other
being word embedding.

Characters For character-based word represen-
tation, we employ a convolutional layer over char-
acters in each word, followed by max-pooling
and average-pooling layers. The concatenation of
max-pooling and average-pooling forms the final
word representation for each word.

Let c1
i , c

2
i , ..., c

m
i be one-hot representation of

characters that make up the word wi, we have the
following word representation for wi using make-
up characters:

xci = Ecci (4)

zjci = f(Wc · [xjci : xj+h−1
ci ] + bc) (5)

x̃i = max
j

zjci (6)

x̂i = avg
j

zjci (7)

xi = x̃i ⊕ x̂i, (8)

where Ec is the embedding matrix, xci is the em-
bedding vector for ci, zjci is the feature map for
j-th character in i-th word wi after convolutional
layer, Wc, bc are the weights matrix and bias
vector respectively, h specifies the window size
in the convolutional layer and f is the activation

Figure 2: Document (Text) representation using
LSTM and attention pooling

function, here hyperbolic tangent function tanh
is used. x̃i and x̂i are max-pooling and average-
pooling vectors over zjci , and the final word wi’s
representation xi is the concatenation of x̃i and
x̂i.

Words Given a sentence of words sequence
w1,w2, ...,wn, an lookup layer map each wi into
a dense vector xi, i = 1, 2, ..., n.

xi = Ewi, i = 1, 2, ..., n (9)

where wi is one-hot representation of the i-th
word in the sentence, E is the embedding matrix,
xi is the embedding vector of i-th word.

3.1 Sentence Representation
After obtaining the word representations xi, i =
1, 2, ..., n, we employ a convolutional layer on
each sentence:

zi = f(Wz · [xji : xj+hw−1
i ] + bz), (10)

where Wz , bz are weight matrix and bias vector,
respectively, hw is the window size in the convo-
lutional layer and zi is the result feature represen-
tation.

Above the convolutional layer, attention pool-
ing is employed to acquire a sentence representa-
tion. The structure of a sentence representation is
depicted in Figure 1. The details of convolutional
and attention pooling layers are defined in the fol-
lowing equations.

mi = tanh(Wm · zi + bm) (11)

ui =
ewu·mi∑
ewu·mj

(12)

s =
∑

uizi, (13)

where Wm, wu are weight matrix and vector, re-
spectively, bm is the bias vector, mi and ui are
attention vector and attention weight respectively
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for i-th word. s is the final sentence representa-
tion, which is the weighted sum of all the word
vectors.

3.2 Text Representation

A recurrent layer is used to compose a docu-
ment (text) representation similar to the models of
Alikaniotis et al. (2016) and Taghipour and Ng
(2016). The main difference is that both earlier
work treat the essay script as a sequence of words
rathter than a sequence of sentences. Alikaniotis
et al. (2016) use score-specific word embeddings
as word features and take the last hidden state of
LSTM as text representation. Taghipour and Ng
(2016) take the average value over all the hidden
states of LSTM as text representation. In contrast
to the previous LSTM models, we use LSTM to
learn from sentence sequences and attention pool-
ing on the hidden states of LSTM to obtain the
contribution of each sentence to the final quality
of essays. The structure of a text representation
using LSTM is depicted in Figure 2.

Long short-term memory units are the modi-
fied recurrent units which are proposed to han-
dle the problem of vanishing gradients effec-
tively (Hochreiter and Schmidhuber, 1997; Pas-
canu et al., 2013). LSTMs use gates to control in-
formation flow, preserving or forgetting informa-
tion for each cell units. In order to control infor-
mation flow when processing a vector sequence,
an input gate, a forget gate and an output gate are
employed to decide the passing of information at
each time step. Assuming that an essay script con-
sists of T sentences, s1, s2, ..., sT with st being
the feature representation of t-th word st, we have
LSTM cell units addressed in the following equa-
tions:

it = σ(Wi · st + Ui · ht−1 + bi)
ft = σ(Wf · st + Uf · ht−1 + bf )
c̃t = tanh(Wc · st + Uc · ht−1 + bc)
ct = it ◦ c̃t + ft ◦ ct−1

ot = σ(Wo · st + Uo · ht−1 + bo)
ht = ot ◦ tanh(ct),

(14)

where st and ht are the input sentence and output
sentence vectors at time t, respectively. Wi, Wf

,Wc, Wo, Ui, Uf , Uc, and Uo are weight matri-
ces and bi, bf , bc, and bo are bias vectors. The
symbol ◦ denotes element-wise multiplication and
σ represents the sigmoid function.

After obtaining the intermediate hidden states
of LSTM h1,h2, ...,hT , we use another attention
pooling layer over the sentences to learn the final
text representation. The attention pooling helps to
acuquire the weights of sentences’ contribution to
final quality of the text. The attention pooling over
sentences is addressed as:

ai = tanh(Wa · hi + ba) (15)

αi =
ewα·ai∑
ewα·aj (16)

o =
∑

αihi, (17)

where Wa, wα are weight matrix and vector re-
spectively, ba is the bias vector, ai is attention vec-
tor for i-th sentence, and αi is the attention weight
of i-th sentence. o is the final text representation,
which is the weighted sum of all the sentence vec-
tors.

Finally, one linear layer with sigmoid function
applied on the text representation to get the final
score as described in Equation 18.

y = sigmoid(wyo + by) (18)

where wy, by are weight vector and bias vector, y
is the final score of the essay.

4 Training

Objective We use mean square error (MSE)
loss, which is also used in previous models. MSE
is widely used in regression tasks, which mea-
sures the average value of square error between
gold standard scores y∗i and prediction scores yi
assigned by the AES system among all the essays.
Given N essays, we calculate MSE according to
Equation 19.

mse(y, y∗) =
1
N

N∑
i=1

(yi − y∗i )2 (19)

The model is trained on a fixed number of
epochs and evaluated on the development set at ev-
ery epoch. We set the batch size to 10 and the best
model is selected on the performance of quadratic
weighted kappa on the development set. The de-
tails of model hyper-parameters are listed in Table
1.

Character Embeddings The character embed-
dings are initialized with uniform distribution
from [-0.05, 0.05]. The dimension of character
embeddings is set to 30. During the training pro-
cess, character embeddings are fine-tuned.
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Layer Parameter Name Parameter Value

Lookup char embedding dim 30
word embedding dim 50

CNN window size 5
number of filters 100

LSTM hidden units 100
Dropout dropout rate 0.5

epochs 50
batch size 10

initial learning rate η 0.001
momentum 0.9

Table 1: Hyper-parameters

Set #Essays Genre Avg Len. Range Med.
1 1783 ARG 350 2-12 8
2 1800 ARG 350 1-6 3
3 1726 RES 150 0-3 1
4 1772 RES 150 0-3 1
5 1805 RES 150 0-4 2
6 1800 RES 150 0-4 2
7 1569 NAR 250 0-30 16
8 723 NAR 650 0-60 36

Table 2: Statistics of the ASAP dataset; Range
refers to score range and Med. refers to median
scores. For genre, ARG specifies argumentative
essays, RES means response essays and NAR de-
notes narrative essays.

Word Embeddings We take the Stanford’s pub-
licly available GloVe 50-dimensional embed-
dings2 as word pretrained embeddings, which are
trained on 6 billion words from Wikipedia and
web text (Pennington et al., 2014). During the
training process, word embeddings are fine-tuned.

Optimization We use RMSprop (Dauphin et al.,
2015) as our optimizer to train the whole model.
The initial learning rate η is set to 0.001 and mo-
mentum is set to 0.9. Dropout regularization is
used to avoid overfitting and drop rate is 0.5.

5 Experiments

5.1 Setup
Data The ASAP dataset is used as evaluation
data of our AES system. The ASAP dataset con-
sists of 8 different prompts of genres as listed in
Table 2.

There are no released labeled test data from
the ASAP competition, thus we separate test
set and development set from the training set.
The partition exactly follows the setting used by
Taghipour and Ng (2016), which adopts 5-fold
cross-validation, in each fold, 60% of the data is
used as our training set, 20% as the development

2http://nlp.stanford.edu/projects/glove/

set, and 20% as the test set. The data is tok-
enized with NLTK3 tokenizer. All the words are
converted to lowercase and the scores are scaled
to the range [0, 1]. During evaluation phase,
the scaled scores are rescaled to original integer
scores, which are used to calculate evaluation met-
ric QWK values. The vocabulary size of the data
is set to 4000, by following Taghipour and Ng
(2016), selecting the most 4000 frequent words in
the training data and treating all other words as un-
known words.

Baseline models We take LSTM with Mean-
over-Time Pooling (LSTM-MoT) (Taghipour and
Ng, 2016) and hierarchical CNN (CNN-CNN-
MoT) (Dong and Zhang, 2016) as our baselines.
The former takes the essay script as a sequence of
words, which is text-level model and the latter re-
gards the script as a sequence of sentences, which
is sentence-level model.

LSTM-MoT uses one layer of LSTM over the
word sequences, and takes the average pooling
over all time-step states as the final text representa-
tion, which is called Mean-over-Time (MoT) pool-
ing (Taghipour and Ng, 2016). A linear layer with
sigmoid function follows the MoT layer to predict
the score of an essay script.

CNN-CNN-MoT uses two layers of CNN, in
which one layer operates over each sentence to ob-
tain representation for each sentence and the other
CNN is stacked above, followed by mean-over-
time pooling to get the final text representation.

LSTM-MoT is the current state-of-the-art neu-
ral model on the text-level and CNN-CNN-MoT is
a state-of-the-art model on the sentence-level. Be-
sides, LSTM-LSTM-MoT and LSTM-CNN-MoT
are adopted as another two baseline models. The
former model takes LSTMs to represent both sen-
tences and texts, and the latter uses CNN repre-
senting sentences and LSTM representing texts.
Both models use MoT pooling and are sentence-
level models. We compare our model (LSTM-
CNN-attent) with the baseline models to study
CNN representing sentences and LSTM represent-
ing texts.

5.2 Results
The results are listed in Table 3. Our
model LSTM-CNN-attent outperforms the base-
line model CNN-CNN-MoT by 3.0%, LSTM-
MoT by 2.2% on average quadratic weighted

3http://www.nltk.org
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Prompts LSTM-
MoT

CNN-
CNN-MoT

LSTM-
CNN-att

1 0.818 0.805 0.822
2 0.688 0.613 0.682
3 0.679 0.662 0.672
4 0.805 0.778 0.814
5 0.808 0.800 0.803
6 0.817 0.809 0.811
7 0.797 0.758 0.801
8 0.527 0.644 0.705
Avg. 0.742 0.734 0.764

Table 3: Comparison of quadratic weighted kappa
between different models on the test data.

LSTM-CNN-attent Average QWK
char 0.738
word 0.764
word + char 0.761

Table 4: Comparison of quadratic weight kappa
using different features on the test data.

kappa. The results are statistically significant with
p < 0.05 by one-tailed t-test. Even compared
with the ensemble model used by Taghipour and
Ng (2016), which ensembles 10 instances of CNN
and LSTM of different initializations, our model
still achieves 0.3% improvement on QWK.

5.3 Analysis

We perform several development experiments
to verify the effectiveness of sentence-document
model and text representation with LSTM and at-
tention pooling.

Characters and Words We explore a convo-
lutional layer to learn word representation from
char-based CNN to replace word embeddings. In
Table 4, we compare the performance of using
character embeddings, word embeddings and con-
catenation of two embeddings. Empirical results
show that with only character embedding features,
the performance of our model outperforms CNN-
CNN-MoT, and is close to LSTM-MoT. How-
ever, there is still a big gap between character
embedding and word embedding models, which
could come from the fact that we use pretrained
word embeddings, which helps improve the per-
formance. When both the word and character em-
beddings are used, the performance does not im-
prove. One possible explanation is that the ASAP
dataset is rather small given the model parameters,
which has a potential for overfitting if both words
and characters are used.

Model Model Type Pooling Avg
QWK

LSTM-MoT document-level MoT 0.742
LSTM-attent document-level attention 0.731
CNN-CNN-
MoT

sentence-level MoT 0.734

LSTM-LSTM-
MoT

sentence-level MoT 0.758

LSTM-CNN-
MoT

sentence-level MoT 0.759

LSTM-LSTM-
attent

sentence-level attention 0.762

LSTM-CNN-
attent

sentence-level attention 0.764

Table 5: Comparison between different model
types and pooling methods on the test data (only
word embeddings used).

Granularity The previous model LSTM-MoT
tackles the AES task by treating each essay script
as a sequence of words, which makes an es-
say an extra long sequence. The word num-
ber of one essay usually exceeds several hun-
dreds, which makes it difficult to directly use
LSTM to learn text representation if only last
hidden state is used. It has been verified by
Taghipour and Ng (2016) that LSTM with Mean-
over-Time pooling outperforms LSTM with only
last state. Though MoT pooling could alleviate
this problem by considering all the states infor-
mation, the model is still built on text-level rather
than sentence-level. Both LSTM-CNN-MoT and
LSTM-LSTM-MoT are sentence-document mod-
els. The former explores CNN for sentence rep-
resentation and LSTM for text representation, and
the latter use both LSTMs for sentence and text
representation with MoT pooling. In Table 5,
LSTM-CNN-MoT and LSTM-LSTM-MoT obtain
large improvements compared to LSTM-MoT, es-
pecially for prompt 8 essays, of which the aver-
age script length is the biggest. This shows that
sentence-document model tends to be more effec-
tive for long essays.

Local vs Global In Table 5, we compare LSTM-
CNN-MoT with CNN-CNN-MoT to analyze the
effectiveness of LSTM for text representation over
CNN. Both CNN-CNN-MoT and LSTM-CNN-
MoT learn hierarchical sentence-document repre-
sentations. The former employs two-level CNNs
for sentence representation and text representation
respectively, and mean-over-time pooling is both
used after two-level CNNs. The latter employs a
CNN to learn sentence representation at the bot-
tom, stacks one layer of LSTM above to learn
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text representation, and mean-over-time pooling
is also used after CNN and LSTM. Compared
with CNN-CNN-MoT in Table 5, LSTM-CNN-
MoT gives a big improvement. We believe that on
text representation layer, LSTMs can learn more
global information, such as sentence coherence,
while CNNs learn more local features, such as n-
grams and bag-of-words. LSTM-LSTM-MoT out-
performs CNN-CNN-MoT and gets slightly worse
than LSTM-CNN-MoT, which also shows that
LSTM is relatively more effective for modeling
the documents.

Mean-over-Time vs Attention pooling We
compare the two pooling methods adopted in our
model, namely mean-over-time pooling and at-
tention pooling in Table 5. The pooling layers
are used after both CNN and LSTM layer to get
sentence representation and text representation re-
spectively. We find that by attending over words
and sentences, we achieve the best performance,
which demonstrates that attention pooling helps
find the key words and sentences that contribute to
judging quality of essays. In contrast to MoT, each
word and sentence will be treated equally, which
violates human raters’ assessing process. Since
our model is based on the sentence-level rather
than the text-level, we can exert attention pooling
to focus on pertinent words and sentences. Note
that attention can be weakened when used for an
extra long sequence, such as the scenario in the
text-level model. Taghipour and Ng (2016) tried to
attend over words on their one-layer LSTM model,
but failed to beat the baseline model that employs
mean-over-time pooling, because of that text-level
model contains a quite long sequence of words,
which may weaken the effect of attention. On the
contrary, sentence-level model contains relatively
short sequences of words, which makes attention
more effective.

In Table 6, we briefly show two prompts from
the AES data, namely Prompt 4 and Prompt 8.
Prompt 4 asks for a response based on the last
paragraph of a given story and Prompt 8 requires a
true story about laughter. Prompt 4 has few num-
ber of sentences compared with Prompt 8. For
convenience, we take Prompt 4 essays as our ex-
amples to analyze the attention mechanism on sen-
tences, and Prompt 8 essays to analyze the atten-
tion mechanism on words n-grams. In Table 7, we
list all five sentences in order that make up of one
response essay from test set in Prompt 4. Each

Prompt Contents
Prompt
4

Read the last paragraph of the story. “When
they come back, Saeng vowed silently to her-
self, in the spring, when the snows melt and the
geese return and this hibiscus is budding, then I
will take that test again.”
Write a response that explains why the author
concludes the story with this paragraph. In your
response, include details and examples from the
story that support your ideas. 5

Prompt
8

We all understand the benefits of laughter. For
example, someone once said, “Laughter is the
shortest distance between two people.” Many
other people believe that laughter is an impor-
tant part of any relationship.
Tell a true story in which laughter was one ele-
ment or part.

Table 6: Contents of Prompt 4 and Prompt 8

sentence is associated with its attention weight as
shown in the table. The 4-th sentence has the
biggest attention weight among the five sentence,
then followed by the 5-th sentence. Intuitively, we
know the 4-th and 5-th sentence can give strong
supporting ideas to illustrate why the author con-
cludes the story with the last paragraph. There-
fore, it proves that our attention mechanism on
sentences captures the key sentences to represent
essays indeed.

In Table 8, we list three example sentences in
one essay from the prompt 8 test data. The essay
is written by students given the prompt described
in the Table 6. The highlighted words are the 5-
grams4 that have the highest attention score. It can
be easily seen that the highlighted 5-grams are the
most relevant to the prompt, which demonstrates
our attention-pooling takes an effect on learning
sentence representation.

6 Related Work

The first AES system dates back to 1960s (Page,
1968, 1994) when Project Essay Grade (PEG) was
developed. Following that, IntelliMetric 2, Intelli-
gent Essay Assessor (IEA) (Landauer et al., 1998;
Foltz et al., 1999) have come out. IEA uses La-
tent Semantic Analysis (LSA) to calculate the se-
mantic similarity between texts and assigns a score
to test text based on the score of the training text
which is most similar to the given test text. Other
commercial system, like e-rater system (Attali and

4Since we use a window size of 5 in CNN layer, the at-
tention pooling after CNN layer is attending over 5-grams
features.

5As Prompt 4 contains a long story in the prompt descrip-
tions, we only pick up the most relevant contents here.
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No. Sentences Attention
weights

1
there was a specific reason as to why
the author concluded the story with that
quote .

0.17568

2
the author wanted to show how the plant
gave saeng a new sense of determina-
tion .

0.20358

3
saeng previously was upset and tearing
the plant apart .

0.19651

4
but it seemed that she realized how the
plant was able to bud to the<unk> and
survive .

0.21264

5
so she now was determined to <unk>
the <unk> as well and retake the test
she failed .

0.21159

Table 7: Attention weights of sentences coming
from one student essay in Prompt 4 (The darkness
of blue indicates the relative magnitude of atten-
tion weights.

Prompt 8
Example 1 when i was a young boy i used

to laugh at anything i could , but as a
kid who did n’t ?

Example 2 as i got older and grew more , i developed
a great sense of humor that to my advan-
tage made me a young people <unk> .

Example 3 i grew more and more <unk> a
stronger , more confident sense of humor

.

Table 8: Examples of attention pooling over n-
grams features in Prompt 8 (The first row specifies
the prompt given by the essay designer).

Burstein, 2004), has been deployed in the English
language test, such as Test of English as a Foreign
Language (TOEFL) and Graduate Record Exam-
ination (GRE). Step-wise linear regression is em-
ployed in the e-rater systems along with grammat-
ical errors, lexical complexity as handcrafted fea-
tures.

In the research literature, Larkey (1998) uses
Naive Bayes model and takes AES as a classi-
fication model. Rudner and Liang (2002) ex-
plore multinomial Bernoulli Naive Bayes models
to classify texts into several categories of text qual-
ity based on content and style features. Chen et al.
(2010) formulates the AES task into a weakly su-
pervised framework and employ a voting algo-
rithm.

Other recent work formulate the task as a pref-
erence ranking problem (Yannakoudakis et al.,
2011; Phandi et al., 2015). Yannakoudakis et al.

(2011) formulate AES as a pairwise ranking prob-
lem by ranking the order of pair essays based on
their quality. Features consist of word n-grams,
deep linguistic features, including grammatical
complexity, POS n-grams and parsing trees fea-
tures. Chen and He (2013) formulate AES into a
list-wise ranking problem by considering the or-
der relation among the whole essays. Features
contain syntactical features, grammar and fluency
features as well as content and prompt-specific
features. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression focusing on
domain-adaptation tasks. All these previous meth-
ods are traditional discrete models using hand-
crafted discrete features.

Recently, Alikaniotis et al. (2016) employ a
long short-term memory model to learn features
for essay scoring task automatically without any
predefined feature templates. It leverages score-
specific word embeddings (SSWEs) for word rep-
resentations, and takes the last hidden states of a
two-layer bidirectional LSTM for essay represen-
tations. Taghipour and Ng (2016) also adopt a
LSTM model for AES, but use ordinary word em-
bedding and take the average pooling value of all
the hidden states of LSTM layer as the essay repre-
sentations. Dong and Zhang (2016) develop a hi-
erarchical CNN model for regression on AES task
by processing texts into sentences and using two
layers CNN on both sentence-level and text-level
to get the final text representation. Our work con-
tributes to the research literature by systematically
investigating CNN and LSTM on sentence-level
and text-level modeling, and the effectiveness of
attention network on automatically selecting more
relevant ngrams and sentences for the task.

Our work is also inline with recent work
on building hierarchical sentence-document level
representations of documents. Li et al. (2015)
build a hierarchical LSTM auto-encoder for doc-
uments. Yang et al. (2016) build hierarchi-
cal LSTM models with attention for document
and Tang et al. (2015) use a hierarchical Gated
RNN for sentiment classification. Ren and Zhang
(2016) use hierarchical CNN-LSTM model for
spam detection. We use a hierarchical CNN-
LSTM model for essay scoring, which is a regres-
sion task.
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7 Conclusion

We investigated a recurrent convolutional neural
network to learn text representation and grade es-
says automatically. Our model treated input essays
as sentence-document hierarchies, and employed
attention pooling to find the pertinent words and
sentences. Empirical results on ASAP essay data
show that our model outperforms state-of-art neu-
ral models for automatic essay scoring task, giving
the best performance. Future work explores the
advantage of neural models on cross-domain AES
task.
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