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Abstract

This paper describes our system for the
CoNLL-2016 Shared Task on Shallow
Discourse Parsing on English. We adopt
a cascaded framework consisting of nine
components, among which six are casted
as sequence labeling tasks and the remain-
ing three are treated as classification prob-
lems. All our sequence labeling and clas-
sification models are implemented based
on linear models with averaged perceptron
training. Our feature sets are mostly bor-
rowed from previous works. The main fo-
cus of our effort is to recall cases when
Arg1 locates at sentences far before the
connective phrase, with some yet limited
success.

1 General Description

This paper descirbes our participating system for
CoNLL-2016 discourse parsing shared task (Xue
et al., 2016). We participate in the closed track,
and due to the time limitation, we focus on En-
glish. Given an document, which contains sev-
eral paragraphs and each paragraph is composed
of a few sentences, discourse parsing aims to
identify explicit and non-explict discourse rela-
tions, including explicit connnective phrases (CP),
explicit/non-explicit arguments and senses. Figure
1 presents a graphical illustration of the task.

Following the official requirement, we use Sec-
tion 2-21 of the PDTB 2.0 (Prasad et al., 2008;
Prasad et al., 2014) as the training data, Section
22 as the development data, and Section 23 as the
test data. A blind test is also used for evaluation.
Table 1 presents the data statistics.

Due to the complexity of the task, our sys-
tem follows previous practice and employs a cas-

∗Correspondence author.

Figure 1: Illustration of discourse parsing.

Train Dev
Document 2000 100
Paragraph 17619 783
Sentence 38967 1675

Explicit relations 14722 680
Non-explicit relations 17813 756

Table 1: Data statistics of English.

caded framework and comprises 9 components,
as shown in Figure 2. In the following, we will
introduce each component in detail. The codes
are released at http://hlt.suda.edu.cn/
˜zhli for future research study.

2 Classification and Sequence Labeling
Based on Linear Model

In this work, we implement our classification and
sequence labeling models based on linear model
due to its simplicity and good performance on va-
riety of natural language processing tasks (Collins,
2002). Given an input instance x and a label y, a
linear model defines the score of labeling x as y:

Score(x, y) = w · f(x, y)
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Figure 2: Framework of our system.

where f(.) is a feature vector constructed accord-
ing to a hand-crafted feature template list and w is
the corresponding feature weight vector.

The decoding task in the linear model is to find
the maximum-scoring label:

ŷ = arg max
y

Score(x, y)

To learn w, we use the standard online train-
ing procedure, which use one instance for feature
weight update at a time:

w(t+1) = w(t) + f(x, y∗)− f(x, ŷ)

where t is the global time of feature weight up-
dates (i.e., the number of instances used for feature
weight updates so far); ŷ is the best label accord-
ing to the current feature weights w(t); y∗ is the
gold-standard label. In this sense, online training
is also known as decoding-based training, mean-
ing that decoding is invoked during training.

Following Collins (2002), after training, we use
the averaged feature weights

∑T
t=1 w(t)/T for fi-

nal evaluation, which is known as averaged per-
ceptron.

For sequence labeling tasks, y is a sequence of
labels instead of a single label. Besides many uni-
gram features which only consider the label in the
current position, as used in multi-class classifica-
tion tasks, we also use label-transition bigram fea-
tures in our sequence labeling models. The train-
ing procedure is nearly the same with the case of
classification problems, except that a dynamic pro-
gramming based decoding algorithm is need for
exact search for the optimal label sequence ŷ.

Figure 3: Example of a parse tree from which we
extract features.

3 CP Identification

Given an input document, the first task is to ex-
tract all connective phrases (CPs) (e.g., “so that”)
in the document,1 which we refer to as CP identi-
fication. We directly adopt the method described
in previous works (Wang and Lan, 2015; Kong et
al., 2015), and take two steps for this task.

1. Candidate CP extraction. We extract all
candidate CPs in the input document by ex-
act matching with a phrase dictionary. If a
string in a sentence exactly matchs a phrase
in the dictionary, it then is considered as a
candidate CP and will be verified in the sec-
ond step. The dictionary is provided by the
official organizer and contains 100 phrases.

2. CP classification. In this step, we use a sta-
tistical classifier based on the linear model to
check whether each candidate CP functions
as a CP or not.

We directly borrow and merge the features pro-
posed in Lin et al. (2014) and Pitler and Nenkova
(2009), as listed in Table 2. We spent little time
on feature engineering, since we found our model
achieved similar accuracy to last year’s best sys-
tem (Wang and Lan, 2015) using these features.
On the dev data, our proposed CP identification
method achieves 95.23% precison, 93.96% recall,
and 94.59% F score. Figure 3 gives an example of
the parse tree to better illustrate the features.

1Since a discourse connective may contain more than one
words, we use “connective phrase” as a more accurate termi-
nology in this paper.
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Lexical: word (CP), POS (CP), POS (prev1(CP)), POS (next1(CP)),
word (prev1(CP)) + word (CP), POS (prev1(CP)) + POS (CP), POS (prev1(CP)) + POS (first1(CP)),
word (CP) + word (next1(CP)), POS (CP) + POS (next1(CP)), POS (last1(CP)) + POS (next1(CP))
Syntactic: label (govern node(CP)), label (parent(govern node(CP))),
label (l sib (govern node(CP))), label (r sib (govern node(CP))), path to root(govern node(CP)),

Table 2: Features for CP classification. word (p): word sequence of the given phrase p; POS (p): POS tag
sequence of p; prev1(p): the first previous position of p; next1(p): the first next position of p; first(p):
the first position of p; last(p): the last position of p; govern node(p): the highest node in the parse tree
that covers p; parent(o): the parent node of the node o in the parse tree; l sib (o): the left sibling node
of o in the parse tree; r sib (o): the right sibling node of o in the parse tree; path to root(o): the label
sequence along the path from the node o to the root node in the parse tree.

Distance Train Dev
0 8880 447
1 4047 162
2 560 18
3 244 11
4 131 6
5 79 9
≥6 202 7

Table 3: Distribution of instances in terms of dis-
tance between the sentence containing Arg1 and
the sentence containing CP, where “0” means that
Arg1 locates at the same sentence containing CP,
“1” means that Arg1 is in the previous sentence of
the sentence containing CP, and so on. We throw
instances in which Arg1 or Arg2 locates at multi-
ple sentences.

4 Explicit-Arg1 Sentence Locator:
Sequence Labeling

As far as we know, most previous participating
systems last year assume that Arg1 lies in the same
sentence or the previous sentence of CP. However,
we find that there exist many cases that Arg1 lo-
cates at longer-distance sentences from the CP. Ta-
ble 3 shows data statistics regarding the sentence-
level distance of Arg1 and CP.

We also find that there are cases that Arg1 lo-
cates at more than one sentences, and the sen-
tences may be discontinuous, as shown in Table
4. However, for simplicity, in this work we throw
away training instances when Arg1 locates at more
than one sentence.

For the Explicit-Arg1 sentence locator, we
adopt a sequence labeling model and try to re-
call cases of long-distance Arg1. The model starts
from the sentence containing CP (with an index 0),

#Sentence Train Dev
1 14231 (0) 661 (0)
2 364 (44) 14 (1)
3 70 (18) 4 (2)
≥4 57(22) 1(1)

Table 4: Distribution of instances in terms of the
number of sentences that one Arg1 locates at,
where the numbers in parenthesis mean the case
when the sentences are discontinuous.

and perform dynamic programming based search
from right to left. For simplicity, we set the win-
dow size to 6, meaning that the model considers at
most six sentences, from the 0th sentence contain-
ing CP, to the 5th sentence in front. For the fea-
tures, we directly adopt those described in Lin et
al. (2014), Pitler et al. (2009), Pitler and Nenkova
(2009), and Knott (1996).

Especially, we design a three-tag label set in or-
der to enforce the model to return exactly one sen-
tence with Arg1.

1. Arg1 yes: the current sentence contains
Arg1.

2. None yes: the current sentence does not con-
tain Arg1, but some sentence in its right does
contain Arg1.

3. None no: the current sentence and all sen-
tences in its right do not contain Arg1.

Using such label set, we can conveniently con-
strain the model not to return a sequence where
Arg1 occurs more than once by constrained de-
coding. The idea is that during decoding we do
not allow a set of illegal transitions: {Arg1 yes
→ Arg1 yes, Arg1 yes → None no, None yes →
None no, None yes → Arg1 yes}.
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Label Set Constrained
w/o Error Propagation Explicit, w/ Error Propagation

Accuracy Arg1 Arg2 Arg1/2 Sense

3 tags
none 86.18 50.85 73.39 42.25 38.70
test 88.09 51.00 73.98 42.70 39.30

train & test 81.03 48.78 70.42 40.03 36.53
2 tags none 85.74 51.15 73.68 42.70 39.15

PS/SS classification none 89.12 51.89 74.13 43.14 39.61

Table 5: Results of different Explicit-Arg1 sentence locators on dev data.

Label Set Constrained
Distance

0 1 2 3 4 5

3 tags
none 424 (424) 256 (162) 0 0 0 0
test 458 (445) 222 (154) 0 0 0 0

train & test 415 (409) 197 (131) 34 (5) 12 (3) 6 (0) 16 (3)
2 tags none 497 (444) 182 (139) 1 (0) 0 0 0

PS/SS classification none 445 (444) 235 (162) – – – –

Table 6: Result analysis of different Explicit-Arg1 sentence locators on dev data. We report the distribu-
tion of the outputs of each model in terms of distance between the predicted sentence containing Arg1 and
the sentence with CP, where numbers in parenthesis count correct prediction according to gold-standard
answers.

As discussed in Section 2, our model is based
on a linear model and uses online training to learn
the feature weights. Moreover, online training is a
decoding-based training procedure, meaning that
a best result is found by the decoding procedure
based on the current feature weights, and the result
is then used for weight update. Therefore, we have
three options for applying constrained decoding.

1. None: We do not use any constraints and
apply post-processing to handle inconsistent
outputs. When the model classifies multiple
sentence into Arg1, we only keep the nearest
sentence tagged as Arg1. If no sentence is
tagged as Arg1, we use the sentence contain-
ing CP as Arg1.

2. Test: We add constraints during the test
phase. In the train phase, the optimal ŷ is
directly used for feature weight update with-
out post-processing. However, we may also
post-process ŷ so that it contains exactly one
Arg1 label before feature update weight dur-
ing training, which we leave for future work.

3. Train & test: We add constraints during both
train and test phases.

For comparison, we also implement a model
based on a two-tag label set of {Arg1, None}, in

which we cannot guarantee the output label se-
quence always contains only one Arg1 through
constrained decoding. Therefore, we post-process
the results in the similar way to the case of the
three-tag model with no constraint.

Table 5 reports the results both with and with-
out error propagation. The “PS/SS classification”
model is our re-implementation of the method de-
scribed in Wang and Lan (2015) under our lin-
ear model framework with only unigram features,
which only considers the current and previous sen-
tences of CP with a binary classifier. The three-tag
model performs best with “test” constraints, and
surprisingly worse with “train & test” constraints.
Even though the “PS/SS classification” model is
very simple, it is very competitive and achieves
better results on the dev data than our proposed
three-tag sequence labeling model. We will look
into this issue in future.

Table 6 further investigates the ability of dif-
ferent models on recalling cases when the sen-
tence containing Arg1 locates far before the sen-
tence containing CP. Although using “train & test”
constraints leads to bad performance, we actually
find that the model can actually recall cases when
Arg1 locates at long-distance sentences, whereas
the model with “test” constraints and the model
with “none” constraints almost always return re-
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sults that Arg1 locates at the sentence with CP or
the previous sentence. We will look into this prob-
lem in future.

5 Explicit-Arg1/2 Word Locator:
Sequence Labeling

Data statistics show that for explicit relations,
nearly all Arg2 locates at the the same sentence
with CP. Therefore, based on the results of Arg1
sentence locator, we have two cases to handle:
Arg1 and Arg2 locate at the same sentence with
CP (SS), or Arg1 locates at a previous sentence
of CP (PS). Then, we use three sequence label-
ing models to locate the exact words of Arg1/2.
All three models perform at the level of words,
and each time assign a “Arg1/Arg2/None” tag to a
word.

Many systems in CoNLL-2015 (Xue et al.,
2015) evaluation also treat Arg1/2 word loca-
tion as a sequence labeling problem, and uses
conditional random filed (CRF) based models
(Stepanov et al., 2015; Nguyen et al., 2015;
Lalitha Devi et al., 2015) or recurrent neural net-
works (RNN) (Wang et al., 2015).

5.1 Explicit: SS Arg1/2 Word Locator

For the SS case, the sequence labeling model per-
forms decoding from left to right on the CP sen-
tence, and classifies each word into four cate-
gories: “Arg1/Arg2/None/CP”. The words inside
the CP (given as input) are fixed to be “CP” be-
fore decoding, and all other words are not allowed
to be tagged as “CP” during decoding. For the fea-
tures, we directly adopt those described in Lin et
al. (2014), Pitler et al. (2009), Pitler and Nenkova
(2009), Knott (1996), Kong et al. (2015). On the
dev data, the model achieves an word-level accu-
racy of 53.45% without error propagation.

5.2 Explicit: PS Arg1 Word locator

For the PS case, we first use a sequence labeling
model to locate the words of Arg1. The model
perform decoding from left to right on the sen-
tence returned by the Explicit-Arg1 sentence loca-
tor, and classifies each word into two categories:
“Arg1/None”. For the features, we directly adopt
those described in Lin et al. (2014), Pitler et al.
(2009), Knott (1996). On the dev data, the model
achieves an word-level accuracy of 67.14% with-
out error propagation.

True Positive False Positive
Train 16940 4850
Dev 718 200

Table 7: Distribution of adjacent sentences having
non-explicit relation.

5.3 Explicit: PS Arg2 Word Locator

To locate the Arg2 words in the PS case, we use
a sequence labeling model to perform decoding
from left to right on the CP sentence, and classi-
fies each word into two categories: “Arg2/None”.
Please note that the words in CP always have a
special tag “CP” when decoding. For the fea-
tures, we directly adopt those described in Lin
et al. (2014), Pitler et al. (2009), Wang and Lan
(2015), Kong et al. (2015), Knott (1996). On the
dev data, the model achieves an word-level accu-
racy of 67.14% without error propagation.

6 Explicit Sense Classification

After obtaining the CP and the Arg1/2 words, we
then use a linear model based classifier to classify
the sense of each explicit relation. We directly
adopt the features described in Lin et al. (2014).
On the dev data, the model achieves an accuracy
of 87.65% without error propagation.

7 Non-explicit Sense Classification

After processing the explicit relations, we then
turn to the problem of non-explicit relation pars-
ing. As suggested by the official organizer, if two
adjacent sentences do not have explicit relation
after previous processing, we consider them as a
candidate sentence pair having non-explicit rela-
tion. Please note that we only consider sentence
pairs that are in the same paragraph.

As far as we know, most previous work di-
rectly considers all adjacent sentences without ex-
plicit relation as having non-explicit relation, and
use a classifier to predict their non-explicit senses.
However, our data statistics in Table 7 show that
there exist many false non-explicit cases, which
we call negative instances. We add a special tag
“None” into the non-explicit sense set and use
such false non-explicit cases as negative training
instances , so that the trained classifier can make
not-a-non-explicit-relation decision. However, our
preliminary results show that adding negative in-
stances does not improve parser performance on
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Component
Dev Test Blind test

P R F P R F P R F

All Arg1 extractor 57.31 62.40 59.75 53.43 56.86 55.09 41.85 53.89 47.11

All Arg2 extractor 70.06 76.27 73.03 67.30 71.62 69.40 57.73 74.33 64.99

All Arg1&Arg2 extractor 47.84 52.08 49.87 42.75 45.50 44.08 33.66 43.34 37.90

All Sense 32.72 30.47 31.56 27.47 25.84 26.63 24.49 18.94 21.36

Explicit Connectives 93.53 95.07 94.29 94.69 94.79 94.74 89.57 92.57 91.04

Explicit Arg1 extractor 50.59 51.42 51.00 44.96 45.01 44.99 41.19 42.57 41.86

Explicit Arg2 extractor 73.38 74.59 73.98 72.05 72.13 72.09 68.71 71.00 69.84

Explicit Arg1&Arg2 extractor 42.35 43.05 42.70 37.38 37.42 37.40 32.91 34.01 33.46

Explicit Sense 39.16 39.45 39.30 32.97 32.97 32.97 27.99 26.98 27.47

Non-Explicit Arg1 extractor 62.17 72.31 66.86 59.74 67.44 63.36 41.81 68.08 51.80

Non-Explicit Arg2 extractor 67.06 78.00 72.12 62.99 71.11 66.81 48.39 78.80 59.96

Non-Explicit Arg1&Arg2 extractor 52.78 61.38 56.76 47.64 53.78 50.52 34.30 55.86 42.50

Non-Explicit Sense 26.12 22.56 24.21 21.83 19.35 20.51 19.95 12.10 15.06

Table 8: Official results of our system on the dev, test, and blind test datasets. “All” means both explicit
and non-explicit relations.

the dev data. We will look into this problem in
future.

For the features, we directly adopt those de-
scribed in Lin et al. (2014), Pitler et al. (2009),
Rutherford and Xue (2014), Kong et al. (2015).
On the dev data, the model achieves an accuracy
of 34.04% without error propagation.

8 Non-explicit Arg1/2 Word Locator:
Sequence Labeling

According to data statistics, if two adjacent sen-
tences have non-explicit relation, Arg1 locates at
the first sentence while Arg2 locates at the sec-
ond sentence. Therefore, we use two separate se-
quence labeling models to locate Arg1/2 words in
the two sentences respectively. If the non-explicit
sense is “EntRel”, we directly label the whole first
sentence as Arg1 and the whole second sentence as
Arg2, according to data statistics. For the features,
we directly adopt those described in Lin et al.
(2014), Pitler et al. (2009), Wang and Lan (2015),
Kong et al. (2015). On the dev data, the two
models achieve word-level accuracy of 68.14% on
Arg1 and 75.82% on Arg2 without error propaga-
tion.

9 Final Results

Table 8 shows the official results of our system on
the dev, test and blind test datasets from the orga-
nizers through the TIRA platform (Potthast et al.,
2014). Our system ranks the 7th place among 14

Linear Maximum Entropy
Explicit Sense 39.30 44.60 (+5.30)

All Sense 31.56 32.81 (+1.25)

Table 9: Comparison of the linear model and
the maximum entropy model on Explicit relations
with error propagation on dev data.

systems in both test and blind test datasets in the
closed track of CoNLL-2016 shared task on shal-
low discourse parsing of English.

10 Explicit Sense Classification with a
Maximum Entropy Model

After obtaining the evaluation results of all sys-
tems, we find that our system achieves clearly
lower performances on sense classifications than
other systems. Therefore, we replace the linear
classification model with a log-linear maximum
entropy model in the Explicit sense classification
task. We use AdaGrad for deciding the feature up-
date step (Duchi et al., 2011). Table 9 shows the
results. We can see that using maximum entropy
leads to large improvement.

We then try to replace the linear model with
the maximum entropy model in the CP classifica-
tion task, but obtain very little gain, possibly be-
cause the accuracy is already very high with the
linear model. We plan to use the maximum en-
tropy model for non-explicit sense classification.
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11 Conclusions and Future Work

So far, our approach is composed of too many
components without any interaction. In the fu-
ture, we would like to pursue two directions. First,
we will try to design a more principled and uni-
fied framework so that tasks at different levels
can influence each other. Second, we plan to try
other machine learning techniques such as neu-
ral networks for better representing and modeling
discourse-level information.
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