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Abstract

We describe our contribution to the
CoNLL 2016 Shared Task on shallow dis-
course parsing.1 Our system extends the
two best parsers from previous year’s com-
petition by integration of a novel implicit
sense labeling component. It is grounded
on a highly generic, language-independent
feedforward neural network architecture
incorporating weighted word embeddings
for argument spans which obviates the
need for (traditional) hand-crafted fea-
tures. Despite its simplicity, our system
overall outperforms all results from 2015
on 5 out of 6 evaluation sets for English
and achieves an absolute improvement in
F1-score of 3.2% on the PDTB test section
for non-explicit sense classification.

1 Introduction

Text comprehension is an essential part of Nat-
ural Language Understanding and requires capa-
bilities beyond capturing the lexical semantics of
individual words or phrases. In order to under-
stand how meaning is established, altered and
transferred across words and sentences, a model
is needed to account for contextual information
as a semantically coherent representation of the
logical discourse structure of a text. Different
formalisms and frameworks have been proposed
to realize this assumption (Mann and Thompson,
1988; Lascarides and Asher, 1993; Webber, 2004).

In a more applied NLP context, shallow dis-
course parsing (SDP) aims at automatically de-

1http://www.cs.brandeis.edu/˜clp/
conll16st
Our parser code is available at: https://github.com/
acoli-repo/shallow-discourse-parser

tecting relevant discourse units and to label the re-
lations that hold between them. Unlike deep dis-
course parsing, a stringent logical formalization
or the establishment of a global data structure, for
instance, a tree, is not required.

With the release of the Penn Discourse Tree-
bank (Prasad et al., 2008, PDTB) and the Chi-
nese Discourse Treebank (Zhou and Xue, 2012,
CDTB), annotated training data for SDP has be-
come available and, as a consequence, the field has
considerably attracted researchers from the NLP
and IR community. Informally, the PDTB anno-
tation scheme describes a discourse unit as a syn-
tactically motivated character span in the text, aug-
mented with relations pointing from the second ar-
gument (Arg2, prototypically, a discourse unit as-
sociated with an explicit discourse marker) to its
antecedent, i.e., the discourse unit Arg1. Relations
are labeled with a relation type (its sense) and the
associated discourse marker (either as found in the
text or as inferred by the annotator). PDTB distin-
guishes explicit and implicit relations depending
on whether such a connector or cue phrase (e.g.,
because) is present, or not.2 As an illustrative ex-
ample without such a marker, consider the follow-
ing two adjacent sentences from the PDTB:

Arg1: The real culprits are computer makers such as IBM

that have jumped the gun to unveil 486-based products.

Arg2: The reason this is getting so much visibility is that

some started shipping and announced early availability.

In this implicit relation, Arg1 and Arg2 are
directly related. The discourse relation type
is Expansion.Restatement—one out of roughly
twenty finegrained tags marking the sense relation

2The set of relation types is completed by alternative lex-
icalization (AltLex, discourse marker rephrased), entity rela-
tion (EntRel, i.e., anaphoric coherence), resp. the absence of
any relation (NoRel).
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between any given argument pair in the PDTB.

Our Contribution: We participate in the
CoNLL 2016 Shared Task on SDP (Xue et al.,
2016; Potthast et al., 2014) and propose a novel,
neural network-based approach for implicit sense
labeling. Its system architecture is modular,
highly generic and mostly language-independent,
by leveraging the full power of pre-trained word
embeddings for the SDP sense classification
task. Our parser performs well on both English
and Chinese data and is highly competitive with
the state-of-the-art, though does not require
manual feature engineering as employed in most
prior works on implicit SDP, but rather relies
extensively on features learned from data.

2 Related Work

Most of the literature on automated discourse pars-
ing has focused on specialized subtasks such as:

1. Argument identification
(Ghosh et al., 2012; Kong et al., 2014)

2. Explicit sense classification
(Pitler and Nenkova, 2009)

3. Implicit sense classification
(Marcu and Echihabi, 2002; Pitler et al., 2009;
Lin et al., 2009; Zhou et al., 2010; Park
and Cardie, 2012; Biran and McKeown, 2013;
Rutherford and Xue, 2014)

A minimal requirement for any full-fledged end-
to-end discourse parser is to integrate at least these
three processes into a sequential pipeline. How-
ever, until recently, only a handful of such parsers
have existed (Lin et al., 2014; Biran and McKe-
own, 2015; duVerle and Prendinger, 2009; Feng
and Hirst, 2012). It has been enormously diffi-
cult to evaluate the performance of these systems
among themselves, and also to compare the effi-
ciency of their individual components with other
competing methods, as i.) those systems rely on
different theories of discourse, e.g., PDTB or RST;
and ii) different (sub)modules involve custom set-
tings, feature- and tool-specific parameters, (esp.
for the most challenging task of implicit sense la-
beling). Furthermore, iii) most previous works are
not directly comparable in terms of overall accu-
racies as their underlying evaluation data suffers
from inconsistent label sizes among studies (e.g.,
full sense inventory vs. simplified 1- or 2-level
classes, cf. Huang and Chen (2011)).

Fortunately, with the first edition of the shared
task on SDP, Xue et al. (2015) had established a
unified framework and had made an independent
evaluation possible. The best performing partici-
pating systems – most notably those by Wang and
Lan (2015) and Stepanov et al. (2015) – have re-
implemented the well-established techniques, for
example the one by Lin et al. (2014).

2.1 Deep Learning Approaches to SDP

In last year’s shared task, first implementations on
deep learning have seen a surge of interest: Wang
et al. (2015) and Okita et al. (2015) proposed a re-
current neural network for argument identification
and a paragraph vector model for sense classifi-
cation. Distributed representations for both argu-
ments were obtained by vector concatenation of
embeddings.

An earlier attempt in a similar direction of rep-
resentation learning (Bengio et al., 2013) has been
made by Ji and Eisenstein (2014). The authors
demonstrated successfully how to discriminatively
learn a latent, low-dimensional feature represen-
tation for RST-style discourse parsing, which has
the benefit of capturing the underlying meaning of
elementary discourse units without suffering from
data sparsity of the originally high dimensional in-
put data.

Closely related, Li et al. (2014) introduced a
recursive neural network for discourse parsing
which jointly models distributed representations
for sentences based on words and syntactic in-
formation. The approach is motivated by Socher
et al. (2013) and models the discourse unit’s root
embedding to represent the whole discourse unit
which is being obtained from its parts by an itera-
tive process. Their system is made up of a binary
structure classifier and a multi-class relation clas-
sifier and achieves similar performance compared
to Ji and Eisenstein (2014).

Very recently, Liu et al. (2016) and Zhang et
al. (2015) have successfully applied convolutional
neural networks to model implicit relations within
the PDTB-framework. Along these lines and in-
spired by the work in Weiss (2015), we also see
great potential in the use of neural network-based
techniques to SDP. Similarly, our approach trains
a modular component for shallow discourse pars-
ing which incorporates distributed word represen-
tations for argument spans by abstraction from
surface-level (token) information. Crucially, our
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approach substitutes the traditional sparse and
hand-crafted features from the literature to ac-
count for a minimalist, but at the same time, gen-
eral (latent) representation of the discourse units.
In the next sections, we elaborate on our novel
neural network-based approach for implicit sense
labeling and how it is fit into the overall system
architecture of the parser.

3 A Neural Sense Labeler for Implicit
and Entity Relations

We construct a neural network-based module for
the classification of senses for both implicit and
entity (EntRel) relations.3 As a very general
and highly data-driven approach to modeling dis-
course relations, our classifier incorporates only
word embeddings and basic syntactic dependency
information. Also, in order to keep the setup eas-
ily adaptable to new data and other languages,
we avoid the use of very specific and costly
hand-crafted features (such as sentiment polari-
ties, word-pair features, cue phrases, modality,
production rules, highly specific semantic infor-
mation from external ontologies such as VerbNet,
etc.), which has been the main focus in traditional
approaches to SDP (Huang and Chen, 2011; Park
and Cardie, 2012; Feng and Hirst, 2012). In-
stead, we substitute (sparse) tokens in the argu-
ment spans, with dense, distributed representa-
tions, i.e. word embeddings, as the main source
of information for the sense classification compo-
nent. Closely related, Zhang et al. (2015) have
explored a similar approach of constructing ar-
gument vectors by applying a set of aggregation
functions on their token vectors, however, without
the use of additional (syntactic) information, while
embedding their vectors into a single-layer neural
network only.

In our experiments, we used the pre-trained
GoogleNews vectors (for English) and the Giga-
word-induced vectors (for Chinese) provided by
the shared task as a starting point.4 We further
trained the word vectors on the raw Wall Street
Journal texts, thus tuning the embeddings toward
the data at hand, with the goal of considerably im-

3The reason to combine both relation types has been a de-
sign decision as EntRels are very similar to implicit relations
and are also missing a connective. AltLex relations seemed
too few to have any statistical impact on the performance of
our experiments and have been ignored altogether.

4http://www.cs.brandeis.edu/˜clp/
conll16st/dataset.html

proving their predictive power in the sense classi-
fication task. Specifically, the pre-trained vectors
of size 300 were updated by the skip-gram method
(Mikolov et al., 2013)5 in multiple passes over the
Newswire texts with decreasing learning rate. This
procedure is supposed to improve the quality of
the embeddings and also their coverage.

Our new word vector model provides general
vector representations for each token in the two
argument spans6, which forms the basis for pro-
ducing compositional vectors to represent the two
spans. Compositional vectors that introduce a
fixed-length representation of a variable-length
span of tokens are practical features for feedfor-
ward neural networks. Thus, we may combine the
token vectors of each span by simply averaging
vectors, or – following Mitchell and Lapata (2008)
– by calculating an aggregated argument vector ~v′:

~v′(j) =
1

k(j)

k(j)∑
i=1

V (j)i +
k(j)∏
i=1

V (j)i (1)

for arguments j ∈ {1, 2}, where k(j) = |t(j)|
defines their lengths in the number of tokens and∏

applies the pointwise product � over the token
vectors in V (j).

Both procedures produce rather simple argu-
ment representations that do not account for word
order variation or any other sentence structure in-
formation, yet they serve as decent features for
discourse parsing and other related tasks. By in-
troducing pointwise multiplication of the token
vectors, the elements that represent assumed in-
dependent, latent semantic dimensions are not
merely lumped together across vectors, but are
allowed to scale according to their mutual rele-
vance.7

Improving upon the compositional representa-
tion produced by Equation 1, we incorporate addi-
tional syntactic dependency information: for each
token in an argument span, we calculate the depth
d from the corresponding sentence’s root node and
weight the token vector by 1

2d before applying the

5We found window size of 8 and min term count = 3 to
be optimal. Neural networks were trained using the gensim
package: http://radimrehurek.com/gensim/.

6We ignore unknown tokens for which no vectors exist.
7 In our experiments, Equation 1 outperformed simpler

strategies of either average or multiplication alone. This also
indicates that it is beneficial to not completely suppress di-
mensions with near-zero values for single tokens.
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Figure 1: The feature construction process from argument spans (light blue) and neural architecture (dark
blue) for implicit sense classification (incl. EntRel) . Dotted lines represent pointwise vector operations.

aggregating operators.8

The bottom of Figure 1 illustrates the first step
of the process, i.e. mapping tokens to their corre-
sponding vectors based on the updated word vec-
tor model, as well as the token depth weighting.
Secondly, the aggregation operators are applied,
i.e., the sum (+) of the pointwise product (

∏
/�)

and average (avg) of the vectors. Finally, the com-
positional vectors for each of the arguments are
concatenated (⊕) and serve as input to a feedfor-
ward neural network.

Given the composed argument vectors, we set
up a network with one hidden layer and a softmax
output layer to classify among 20 implicit senses
for English and 9 for Chinese, plus an additional
EntRel label. Other relations, such as AltLex, are
not modeled. We train the network using Nes-
terov’s Accelerated Gradient (Nesterov, 1983) and
optimized all hyper-parameters on the develop-
ment set. Best results were achieved with rectified
linear activation with learnable leak rate and gain

8Tokens that are missing in the parse tree, such as punctu-
ation symbols, are weighted by 0.25, in our optimal setting.

(lgrelu), 40-60 hidden nodes and weight decay and
hidden node regularization of 0.0001.9

4 The Competition Tasks & Pipelines

We participate in the closed track of the shared
task, specifically in both full and supplementary
tasks (sense-only) on English and Chinese texts.
Full tasks require a participant’s system to iden-
tify argument pairs and to label the sense relation
that holds between them. In each supplementary
task, gold arguments are provided so that the per-
formance of sense labeling does not suffer from
error propagation due to incorrectly detected ar-
gument spans.

We combine different existent modules to ad-
dress the specific settings and classification needs
of both full and supplementary tasks for both lan-

9The learning rate was set to 0.0001. Momentum of 0.35-
0.6 and 60 hidden nodes performed well for the English tasks,
and momentum of 0.85 and 40 hidden nodes for Chinese
(with fewer output nodes). Good results were also obtained
by Parametric Rectified Linear Unit (prelu) activation, as
well as the combination of larger hidden layer and stronger
regularization (e.g., L1 regularization of 0.1 on 100 nodes).
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guages. The modules and their combination with
our implicit neural sense classifier will be outlined
in the following sections.

4.1 English Full Task Pipeline (EFTP)
For the full task, we exploit the high-quality
argument extraction modules of the two best-
performing systems by Wang and Lan (2015,
W&L) and Stepanov et al. (2015) from last year’s
competition (re-using their original implementa-
tions): Specifically, we initially run both systems
for all explicit relations only, and keep those pre-
dicted arguments and sense labels – from either
of the two systems – which maximize F1-score
on the development set. With this simple heuris-
tic, we hope to improve upon the best results from
W&L, as, for instance, Stepanov et al. (2015) per-
form particularly well on all temporal relations,
while W&L’s tool handles the majority of other
senses well.

For all implicit and EntRel relations, we keep
the exact argument spans obtained from the W&L
system and reject all sense labels. In a second step,
we re-classify all these implicit relations by our
neural net-based architecture described in Section
3 given only the tokens and their dependencies in
both argument spans. Finally, we merge all com-
bined explicit and re-classified implicit relations
into the final set for evaluation.

4.2 English Supplementary Task Pipeline
(ESTP)

We make use of the system by Stepanov et al.
(2015) to label all explicit relation senses, and
classify all other relations with an empty token list
for connectors (i.e., implicit and EntRels) by our
neural network architecture from Section 3.

4.3 Chinese Full Task Pipeline (CFTP)
Since for the Chinese full task no reusable argu-
ment extraction tools were available, we have set
up a minimalist (baseline) implementation whose
individual steps we sketch briefly:

1. Connective detection is realized by means of
a sequence labeling/CRF model.10 Features are
unigram and bigram information from the to-
kens, their parts-of-speech, dependency head,
dependency chain, whether the token is found
as a connector in the training set, and its relative
position within the sentence.

10https://taku910.github.io/crfpp/

2. Argument extraction is based on the output of
predicted connectives for both inter- and intra-
sentence relations. As an additional feature, we
found the IOB chain for the syntactic path of a
token to be useful.11

3. We heuristically post-process the CRF-labeled
argument tokens in order to assign connectors
to same-sentence or separate-sentence Arg1
and Arg2 spans.

4. The so-obtained explicit argument pairs are
sense labeled by a (linear-kernel) SVM clas-
sifier12 with the connector word as the only
feature, following the minimalist setting in
Chiarcos and Schenk (2015).

5. As implicit relations we consider all inter-
sentential relations which are not already part
of an explicit relation. Same-sentence relations
are ignored altogether.

4.4 Chinese Supplementary Task Pipeline
(CSTP)

For the provided argument pairs, we label ex-
plicit relations (i.e. those containing a non-empty
connector) by the SVM classifier which has been
trained using only a single feature – the connec-
tor token. For all other relations, we again em-
ploy our neural network-based strategy described
in Section 3. The overall architecture is exactly
the same as for the English subtask; only the (hy-
per)parameters have been updated in accordance
with the Chinese training data.

5 Evaluation

5.1 English Full Task
Table 1 shows the performance of our full-task
pipeline (EFTP) which integrates our novel feed-
forward neural network architecture for implicit
sense labeling. The figures suggest that our min-
imalist approach is highly competitive and can
even outperform the best results from last year’s
competition in terms of F1-scores on two out of
three evaluation sets (cf. last implicit column).

Overall, with the integration of the combined
systems by W&L and Stepanov et al. (2015), we
can improve upon the state-of-the-art by an abso-
lute increase in F1-score of 0.5% on the blind test

11This information was generated using the script from
http://ilk.uvt.nl/team/sabine/chunklink/
chunklink_2-2-2000_for_conll.pl

12https://www.csie.ntu.edu.tw/˜cjlin/
libsvm/
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set– which is marginal but only due to the fruit-
ful re-classification of the already-provided (and
therefore fixed) argument spans.

Measured on the development set, we found
that the dependency depth weighting contributes
to an absolute improvement in accuracy of 1.5%
for non-explicit relations.

set system overall explicit implicit

dev
W&L 37.84 48.16 28.70
EFTP 40.21 50.87 30.99

test
W&L 29.69 39.96 20.74
EFTP 29.78 40.44 20.60

blind
W&L 24.00 30.38 18.78
EFTP 24.47 30.74 19.63

Table 1: English full task F1-scores.

5.2 English Supplementary Task
Without error propagation from argument identi-
fication, and with the gold arguments provided in
the evaluation sets, the performance of our implicit
sense labeling component is even better; cf. Ta-
ble 2: on both PDTB evaluation sets F1-scores
increase by 2.7% and 3.16% (absolute) and by
6.32% and up to 9.17% (relative) on the devel-
opment and test section, respectively.

Strikingly, however, the prediction quality on
the blind test set is worse than expected. We as-
sume that this is partly due to the (slightly) het-
erogeneous content of the annotated Wikinews, as
opposed to the original Penn Discourse Treebank
data on which our system performs extraordinarily
well.

set system overall explicit implicit

dev
W&L 65.11 90.00 42.72
ESTP 66.90 91.35 45.42

test
W&L 61.27 90.79 34.45
ESTP 62.64 90.13 37.61

blind
W&L 54.76 76.44 36.29
ESTP 52.32 76.40 31.85

Table 2: English sense-only task F1-scores.

5.3 Chinese Full Task
This year’s edition of the shared task has been
the first to address shallow discourse parsing for
Chinese Newswire texts. Given no prior (directly

comparable) results on Chinese SDP so far, we
simply report the performance of our system on
all evaluation sets in Table 3.

set system overall explicit implicit
dev CFTP 22.16 17.45 22.67
test CFTP 24.21 28.73 22.26

blind CFTP 12.90 18.56 10.80

Table 3: Chinese full task F1-scores.

5.4 Chinese Supplementary Task
A final evaluation has been concerned with the
sense-only labeling of gold-provided arguments
for Chinese. We want to point out that the neural
network architecture for implicit relations (with
70.59% F1-score on the dev set, cf. Table 4) has
beaten all our other experiments: In particular,
we have conducted an SVM setup in which we
employed the traditional word-pair features sub-
stituted by Brown clusters 3200 (65.12%), and
special additive Arg1/Arg2 combinations of word
embeddings – yielding only 62.8% which equals
the majority class baseline indicating no predictive
power for any given kernel type.

set system overall explicit implicit

dev CSTP 75.72 96.10 70.59
test CSTP 77.01 96.34 71.87

blind CSTP 63.73 80.39 57.59

Table 4: Chinese sense-only task F1-scores.

6 Conclusion

In the context of the CoNLL 2016 Shared Task on
shallow discourse parsing, we have described our
participating system and its architecture. Specif-
ically, we introduced a novel feedforward neural
network-based component for implicit sense la-
beling whose only source of information are pre-
trained word embeddings and syntactic dependen-
cies. Its highly generic and extremely simple de-
sign is the main advantage of this module. It has
proven to be language-independent, easy to tune
and optimize and does not require the use of hand-
crafted – rich – linguistic features.

Still its performance is highly competitive with
the state-of-the-art on implicit sense labeling and
builds a solid groundwork for future extensions.
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