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Introduction

The 2016 Conference on Computational Natural Language Learning is the twentieth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2016 will be held on August 11-12, 2016, and is co-located with the 54th annual meeting of the
Association for Computational Linguistics (ACL) in Berlin, Germany.

In order to accommodate papers with extended proofs and experimental material, CoNLL 2016 accepted
only long papers, allowing 9 pages of content plus unlimited pages of references and supplementary
material. We received 186 submissions in total, out of which 13 had to be rejected for formal reasons,
and 21 were withdrawn by the authors. Of the remaining 149 papers, 30 papers were chosen to appear
in the conference program, resulting in an overall acceptance rate of 20%. All accepted papers appear
here in the proceedings.

As in previous years, CoNLL 2016 features a shared task, this year on Shallow Discourse Parsing.
Papers accepted for the shared task are collected in a companion volume of CoNLL 2016.

To fit the paper presentations in a 2-day program, 21 long papers were selected for oral presentation,
and 9 papers were presented as posters. The papers selected for oral presentation are distributed in six
main sessions. Poster presenters were given the chance to present their poster in a short oral spotlight
presentation.

For the first time, CoNLL 2016 announced a special topic on statistical natural language learning
beyond linear models and convex optimization. The special topic was embraced by several authors and
is reflected by the invited talks given by Jürgen Schmidhuber and Fernanda Ferreira.

We would like to thank all the authors who submitted their work to CoNLL 2016, as well as the program
committee for helping us select the best papers out of many high-quality submissions. We are also
grateful to our invited speakers, who graciously agreed to give talks at CoNLL.

Special thanks are due to the SIGNLL board members, Xavier Carreras and Julia Hockenmaier, for
their valuable advice and assistance in putting together this year’s program, and to Ben Verhoeven, for
maintaining the CoNLL 2016 web page. We are grateful to the ACL organization for helping us with
the program, proceedings and logistics. Finally, our gratitude goes to our sponsor, Google Inc., for
supporting the best paper award at CoNLL 2016.

We hope you enjoy the conference!

Yoav Goldberg and Stefan Riezler
CoNLL 2016 conference co-chairs
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Keynote Talk

Human Processing of Disfluent Speech:
Basic Findings, Theoretical Approaches, and Implications for Natural

Language Processing

Fernanda Ferreira

Abstract Disfluencies occur in human speech at the rate of about one per minute; therefore, any ade-
quate theory of human language comprehension must explain how listeners process utterances containing
them. Our theoretical approach is based on a 15-year program of research that has uncovered a number
of fundamental mechanisms enabling humans to process disfluencies efficiently, including mechanisms
that are backward looking (reanalysis of the input) and ones that are anticipatory or forward looking
(prediction). This presentation will review the theory, the evidence that supports it, and the outstanding
questions that are currently being investigated. I will also consider implications for refining NLP sys-
tems, which must be robust to speaker error and which should be capable of adapting to characteristics
of particular speakers and language communities.

Biography of Speaker Fernanda Ferreira is Professor of Psychology and Member of the Graduate
Group in Linguistics at the University of California, Davis. She obtained her Ph.D. in Cognitive Psy-
chology in 1988 from the University of Massachusetts, Amherst, and prior to moving to UC Davis in
2015, she held faculty positions at Michigan State University and the University of Edinburgh. She has
published over 100 papers and her research has been funded by the NSF and the NIH in the US, and the
ESRC in the UK. She served as Editor in Chief of the Journal of Experimental Psychology: General, and
she is currently an Associate Editor of Cognitive Psychology and of Collabra, an Open Access journal
recently launched by University of California Press. She is a Fellow of the American Psychological So-
ciety and the Royal Society of Edinburgh, and she is currently an elected member of the Psychonomic
Society’s Governing Board.
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Keynote Talk

RNNaissance

Jürgen Schmidhuber

Abstract Our deep learning artificial neural networks have won numerous contests in pattern recogni-
tion and machine learning. They are now widely used by the world’s most valuable public companies. In
particular, Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) are very useful not
only for speech recognition but also for Computational Language Learning. I will discuss state-of-the-art
results in numerous applications.

Biography of Speaker Since age 15 or so, the main goal of professor Jürgen Schmidhuber has been
to build a self-improving Artificial Intelligence (AI) smarter than himself, then retire. He has pioneered
self-improving general problem solvers since 1987, and Deep Learning Neural Networks (NNs) since
1991. The recurrent NNs developed by his research groups at the Swiss AI Lab IDSIA (USI & SUPSI)
& TU Munich were the first to win official international contests. They have revolutionized handwriting
recognition, speech recognition, machine translation, image captioning, and are now available to over a
billion users through Google, Microsoft, IBM, Baidu, and many other companies. DeepMind is heavily
influenced by his lab’s former students (including 2 of DeepMind’s first 4 members and their first PhDs
in AI, one of them co-founder, one of them first employee). His team’s Deep Learners were the first to
win object detection and image segmentation contests, and achieved the world’s first superhuman visual
classification results, winning nine international competitions in machine learning & pattern recogni-
tion (more than any other team). They also were the first to learn control policies directly from high-
dimensional sensory input using reinforcement learning. His research group also established the field
of mathematically rigorous universal AI and optimal universal problem solvers. His formal theory of
creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic in-
formation theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity
Art, the information age’s extreme form of minimal art. Since 2009 he has been member of the Euro-
pean Academy of Sciences and Arts. He has published 333 peer-reviewed papers, earned seven best
paper/best video awards, the 2013 Helmholtz Award of the International Neural Networks Society, and
the 2016 IEEE Neural Networks Pioneer Award. He is also president of NNAISENSE, which aims at
building the first practical general purpose AI.
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Computational Natural Language Learning:
±20years ±Data ±Features ±Multimodal ±Bioplausible

David M. W. Powers
Artificial Intelligence and Cognitive Science Group

School of Computer Science, Engineering and Mathematics
Flinders University, Adelaide, South Australia
David.Powers@flinders.edu.au

Abstract

This speech celebrates the 20th anniver-
sary of the CoNLL conference and looks
back 20 years before CoNLL and 20 years
into the future in an attempt to paint a
longterm roadmap of Computational Nat-
ural Language Learning. The founders of
CoNLL agonized hard and long over what
to call our nascent field, and how to en-
sure that we kept all the interdisciplinary
diversity that we had in those early days,
including preserving the richness of views
in a field that encompassed many contro-
versies. We will explore this diversity with
a focus on new directions that are develop-
ing; we will reflect on the changing nature
of our technology including the decelera-
tion of Moore’s Law and the emergence of
Big Data; and we will consider the impact
of and on ubiquitous technologies ranging
from wearables to multimedia, from intel-
ligent phones to driverless cars.

1 Introduction

Machine Learning has moved out of the lab and
into the field, and the explosion of language-
related learning-research is a massive part of
this. Companies like Google, Facebook and Ama-
zon, as well as IBM, Apple and Microsoft, have
emerged as huge players in our playground, and
important sponsors!

One of the most important changes we’ve seen
over the last two decades is that we’ve fallen off
the Moore’s Law curve as far as single core pro-
cessors are concerned1 - for CoNLL’s first decade
SPECInt performance was a around 50%, for our

1http://preshing.com/20120208/a-look-
back-at-single-threaded-cpu-performance

second decade it was more like 20% and accord-
ing to NVidia it looks like being more like 5%
for the next decade. The emphasis must now be
on working smart and processing in parallel, but
at the same time we are introducing much higher
software and data overheads with managed code
and extensive markup.

20 years ago few households had a personal
computer or a mobile phone, while today few
western families wouldn’t possess a range of
equipment from phones to pads to MP-players to
cars and the list goes on with microwaves, wash-
ing machines and airconditioners, averaging over
20 processing units per household. All of these
can be expected to be part of the Internet of Things
in the very near future. Recent developments are
not focussing on doing more with our computers,
but using our computers more flexibly and univer-
sally, with “the cloud” and “hands free” operation
being major drivers of the technology race, with
language technology “in the cloud” helping to deal
with spoken or typed operations that would until
recently have been regarded as office functions,
with call centres being outsourced to computers,
with IBM’s Watson challenging the quizmasters at
their own game, in their own language, and mov-
ing onto a wide range of “Cognitive Computing”
applications. I will focus initially on this changing
context.

The Association for Computational Linguistics
reached 50 recently, starting with a strong focus
on Machine Translation that was originally part
of the name, and SIGNLL affiliated itself with
ACL in 1993 to reflect our driving interest in lan-
guage2: “Computational Linguistics is the sci-
entific study of language from a computational
perspective. . . providing computational models of
various kinds of linguistic phenomena.”

2http://www.aclweb.org/portal/
what-is-cl
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Artificial Intelligence is at least 60 years old,
and SIGNLL adopted the “Natural Language”
teminology of AI to make the connection to a rich
history of AI research in NL that seldom, however,
made use of Machine Learning, and rarely con-
sidered the Linguistic and Psycholinguistic prob-
lems of how human language works and how chil-
dren learn language. But we didn’t want NLL
to be seen as just another application of Machine
Learning, particularly as we (and our sister SIG-
DAT) developed increasingly large and expensive
resources, including tagged corpora. Thus we
moved away from the name “Machine Learning of
Natural Language” which was the title of the book
based on my own PhD thesis (Powers and Turk,
1989) while the AAAI event I organized added
“and Ontology” (Powers, 1991a).

It is worth citing the aims of SIGNLL as pre-
sented to ACL when we formalized our affiliation
as a SIG, and noting that all areas of language and
ontology, linguistics and psycholinguistics, are in-
tended to be in scope for SIGNLL and CoNLL:

SIGNLL aims to promote research in:

• automated acquisition of syntax,
morphology and phonology

• automated acquisition of semantic and
ontological structure

• automated acquisition of inter-linguistic
correspondences

• learning to recognize or produce spoken
and written forms

• modelling human language acquisition
theory and processes3

I reviewed over the last couple of days CoNLL’s
two full decades of proceedings, but its hard to
single out some for special attention when others
are equally worthy. So I will instead review from
the perspective of a set of “±features”, of compu-
tation and language and learning, that are I feel
becoming increasingly important to CoNLL, and
will set the stage for the next two decades. In rela-
tion to the SIGNLL aims, my feature-driven wan-
dering will visit each of them broadly, but I see
huge opportunity for crossover between these five
categories and their internal subareas. So rather
than separating them arbitrarily, I will draw them

3http://ifarm.nl/signll/about/

together, emphasizing aspects that I think are im-
portant to the future of the field as a whole. I par-
ticularly want to encourage interdisciplinary col-
laboration and a Computational Cognitive Science
(CoCoSci) that not only seeks to engineer better
technologies, but also seeks to exploit and model
and inform our understanding of human language
and cognition.

From the beginning, SIGNLL and CoNLL pro-
moted and welcomed interdisciplinary researchers
and collaborations, but today most of us have
a primary background in computing, and we at-
tract mainly computing and engineering students.
While the founders of CoNLL all had very inter-
disciplinary background, it is a daunting prospect
to try to keep up with related fields when our own
has grown so massive. In conclusion, I will make
some suggestions as to how we can address this.

2 ±Applications

One of the new buzzwords the last two decades
have brought is “Applications” or “Apps”. When
we set up SIGNLL we boringly referred to “soft-
ware and data”, and APIs were libraries, and tools
and applications weren’t distinguished; personal
computers didn’t have real user level multipro-
cessing capabilities, and it was only after found-
ing SIGNLL in 1993 that the path through Win-
dows 95/98/XP opened up the PC world, and Ap-
ple made its resurgence with the iMac and OSX,
while SUN with Java started to blur the distinction
between computer and network.

Software as a commodity is probably the
biggest single change to the scene since CoNLL
was started, and this is reflected in CoNLL through
our sponsorships and the major corporate labs in
this area. But the new challenge for us is mobil-
ity in a borderless world-wide cloud... Already the
World Wide Web, and Google, with the web as a
data resource, and information retrieval as a major
application and focus for research, are putting a
new complexion on our field. And now the mo-
bile age has arrived and Apps on phones offer
unprecedented ubiquitous interactivity, with new
demands on language technology ranging from
speech recognition to automated help desk, to
instant speakable machine translation, to educa-
tional games and location-aware monitoring and
advice.

The older focus on Machine Translation and
Speech Recognition, which brought AI into dis-
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Figure 1: ECAs for teaching children in 2008 & 2010 and
assisting the elderly in 2010 & 2015 (AnnaCares.com)

repute in the 1960s and 1970s with overconfident
claims and predictions, has now resurged with suc-
cesses due largely to the Big Data resources avail-
able (particularly to search engine companies) as
well as the huge parallel computational resources
available (particularly to search engine compa-
nies) and the ability to drive our statistical ma-
chine learning or artificial network tools harder
and deeper (as exploited by the same companies).
Now the challenge is to get these technologies into
a mobile format that is interactive and dynamic,
location and activity aware, and not so dependent
on instant cheap access to the cloud.

We also have new and rich opportunity to col-
lect data from these ubiquitous, multisensor de-
vices and their increasingly intelligent Apps. We
can do eyetracking, we are already developing
applications that improve speech recognition and
machine translation by offering choices, and a
major research direction of mine is Unconscious
Computer Interface where these choices and cor-
rections are made below the level of conscious-
ness, like our everyday articulation choices in
speech and writing. This tracking and choice data
is an immensely rich resource, but is also associ-
ated with ethical and privacy considerations, so it
is best used for dynamic online training on device.

Traditionally, CoNLL’s focus has been on un-
derstanding language, although Machine Transla-
tion has transferred to same-language paraphrase
and summarization, and multilingual representa-
tion can be useful for monolingual generation.
Additionally, CoNLL’s focus has been on learn-
ing language, but from the beginning we have
also interacted with the Computer Assisted Lan-
guage Learning community, and there are inter-
esting synergies as the resources and techniques
developed for language learning are turned into
teaching Apps. We’ve developed systems for
teaching English (Powers et al., 2008; Ander-
son et al., 2008; Chiu et al., 2012; Anderson et
al., 2012), teaching social skills to children with
autism (Milne et al., 2010), as well as applica-
tions in aged care and health space4 (Powers et
al., 2010). These recent systems incorporate bots
and games and simulated environments into talk-
ing/thinking/teaching heads and Embodied Con-
versational Agents (ECAs), while allowing us to
understand the effect of different features of the
system on human acceptability, understanding and

4http://annacares.com
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learning (Stevens et al., 2016). An interesting
‘uncanny valley’ aspect of this has been our re-
gression from human-indistinguishable disembod-
ied heads to cartoon-like embodied agents, while
at the same time controlling age, sex and ethnic-
ity components as determined by focus groups for
each application (Fig. 1).

Could we put more Mobile Apps into CoNLL?

3 ±Parallelism

Parallel computers, distributed computers, the
internet and the cloud, are complemented by
naturally parallel paradigms, include the Func-
tional/Logic Programming paradigms, or the Map-
Reduce paradigm that seems to have taken on a life
of its own, and of course the Parallel Distributed
Processing of the Artificial Neural Network. The
brain is of course massively parallel, but at the
same time spoken language and conscious thought
are both intrinsically sequential.

When we founded SIGNLL and CoNLL, there
were several competing massive custom-designed
supercomputers out there, but the time and dol-
lar cost of the custom design meant that they were
seldom really that much ahead of the mainstream
servers. It was actually animation, games and
graphical hardware that drove parallelism to the
mainstream, with the incorporation of GPUs in
most modern PCs, and the development of the
GPGPU and Intel’s Phi, bringing enormous power
to our fingertips - as well as NVidia’s supercom-
puter (and deep learning network) in a box.5

Many of our low level operations can be per-
formed in parallel - as elementary keyword look-
ups are performed in search, with AND and OR
operations turning into streaming INTERSECT
and UNION operations. Semantic networks and
activation models are naturally parallel, as are Ar-
tificial Neural Networks. Yet the regular systolic
nature of current ANNs is highly suited to GPU
architectures, and there is significant challenge as-
sociated with exploiting them for more ad hoc net-
work structures.

On the other hand high level modularity and
multimodality naturally give rise to components
that effectively run in parallel but need to co-
ordinate efficiently. For example our HeadX
(Luerssen et al., 2010) employs both shared mem-
ory and socket streams to coordinate speech and

5http://www.nvidia.com/object/
deep-learning-system.html

face synthesis while managing keyboard, mouse
and speech interactivity. Although our focus on
language might seems straightforward when we
consider text, the natural form of language is
speech, and the natural grounding of semantics in
our physical, social and cultural world. Processing
video for person, face, lip and eye tracking is an
increasing load as NLL moves out of the lab and
into a multimodal world, sensed through a phone
with limited power in terms of both processing and
battery capacity.

Furthermore, much of our limited power, along
with the subtle features embedded in our data, is
lost in repeated compression and decompression,
as well as dealing with massive amounts of mul-
tiple kinds markup that must be selectively pro-
cessed or skipped when embedded in a sequen-
tial stream. Conversely, access to and addition
of additional streams of annotation is more effi-
ciently achieved in a distributed parallel way,6 and
we are not only producing synchronized parallel
streams for individual microphones and cameras,
but for subregions and macroblocks, and image
frames, and unidirectional and bidirectional pre-
diction frames that provide information about mo-
tion and allow utilizing information about atten-
tion.

Parallelism will be increasingly key to CoNLL.

4 ±Data

The research of SIGNLL, like its sister SIGDAT,
is driven by data, often Big Data. My own interest
is more on unsupervised learning (Powers, 1984;
Powers, 1991b; Leibbrandt and Powers, 2012), but
even unsupervised systems need to be evaluated,
and formal evaluation was a missing element in
our early research. For supervised learning, an-
notated data is essential, and the Penn Treebank
(Marcus et al., 1993) was a great resource in those
early days and is still influential today.

In his presentation for the 10th anniversary of
CoNLL, Walter Daelemans (2006) notes that there
are huge costs in developing such corpora, that
there are issues with annotator agreement, and that
our trained systems might give high overall accu-
racies, or low error rates, but for key ambiguity
problems error rates of 20-30% are common - and
my own exploration of “problems” with my unsu-
pervised learning using BNC2 for evaluation actu-
ally showed that BNC tags were wrong as much as

6http://alveo.edu.au/

4



60% of the time for certain specialized cases (e.g.
for the PoS labeling of “work” in “going to work”
the corpus tags have an accuracy of only 39.1%).

We need more of a focus on understanding our
data, ensuring it is clean and accurate, and that
the numbers that we use to characterize its accu-
racy are actually reflective of the hard cases rather
than just the easy cases (Entwisle and Powers,
1998). Zipf’s law tells us that the top 150 words
of English suffice to account for half the tokens
of running English text, and these and other func-
tional words, as well as words with unambiguous
or highly predictive affixes, quickly leads us to
what in normal accuracy terms would be regarded
as a creditable performance. This is a particular
case of the 80:20 rule - the first 80% of accuracy is
achieved very easily. Another sign of the problem
with our tagging and parsing is limiting consider-
ation to sentences of 40 words or less.

A further problem with corpora is that they wear
out quickly! That is datasets get overused, and
we treat them as an ML resource where we try
to tweak every last percentage point of accuracy,
using every trick in the book, but in the end with
0.05 significance testing one in twenty researchers
is likely to show an improvement over their base-
line system just by being different - adding noise
can do the trick! As Cohen (1994) suggests, Sta-
tistical Hypothesis Inference Testing is worthy of
its acronym.

We need further work on developing good cor-
pora, including multimodal corpora where this is
a richer basis for unsupervised learning, and for
automated validation and correction, that is not
just text corpora with syntactic or semantic anno-
tations, but corpora involving audio-visual speech
and longitudinal contextual data (Roy, 2009). One
driving force of this is having the same data avail-
able for CoNLL as babies have when they are
learning data, but another is the Memories4Life
GrandChallenge of capturing all the important
moments of our lives and exploiting the ubiqui-
tous computing and audiovisual resources of to-
day’s mobile devices, with practical applications
already being developed for alleviating dementia.

Data will continue to be pivotal to CoNLL.

5 ±Features

In the previous section, I mentioned the issue with
tags for supervised training and/or evaluation of
systems. Now I want to focus more on the devel-

opment and evaluation of the utility of unsuper-
vised features, and to connect back to our Apps as
I propose once again an approach that allows this
through the use of application-oriented evaluation
Powers(1991a; 2005) - don’t try to evaluate tags or
features or structures directly, but comparatively in
real world (or in early stages toy world) applica-
tions. Often when we talk about features we think
specifically of features in visual, auditory or other
signals. This is indeed what I am talking about –
linguistic features derive from these modalities.

One special case is unsupervised discovery of
tags, including both syntactic (PoS) and seman-
tic tags. Much of the “unsupervised” learning we
see at CoNLL already assumes a “linguistically”
motivated set of tags, and often a pre-tagged cor-
pus, for which there is no psychological, neuro-
logical or other empirical evidence other than pro-
fessors/linguists have managed to formalize some
kind of system and students/annotators have man-
aged to learn the system.

If we think of the tagging and parsing with the
tags as their “applications”, we then have a spe-
cial case of the proposal in the previous section to
compare systems based on evaluation of the ap-
plication, but in the end I’d still like to take it to a
real world application eventually - after all nobody
actually knows (yet) how we process language in
our heads, and understanding this is our fifth goal.
The same learning techniques applied to different
sets of tags gives us a comparison - but we must
be sure to use an evaluation technique that doesn’t
implicitly bias when we have different numbers of
classes (Powers, 2008). Furthermore when we do
compare techniques or parameterizations or tweak
biases and thresholds, we should be wondering
whether the difference are real and bioplausible,
and whether they are universal or an artefact of
specific data.

Tags are in fact a special kind of feature in that
they are descrete and there are few enough of them
to give them names (outside of Categorial Gram-
mar). Letters of the alphabet (graphemes) also
belong to this special subclass by definition, and
similarly by assumption the same applies to other
emic units (e.g. phonemes and morphemes, in-
cluding affixes and functional words). The situa-
tion is more difficult at the level of words and sen-
tences - I actually have my doubts as to whether
those are real units psychologically in pre-literate
language, as they are defined somewhat arbitrarily
by the placement of punctuation: why ‘out of’ and
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not ‘into’ - and what is the current status of ‘upto’?
Is it ‘today’ or ‘to-day’ or ‘to day’ or ‘the day’; is it
‘one of’ or ‘one off’, ‘would have’ or ‘would of’?
Do these units even have well-defined boundaries
in speech? Can we tell which word a particular
speech code vector actually belongs to? And all
this is without descending to the etic level... There
is an intrinsically fuzzy aspect to language, and
it is hugely context dependent in a way that tran-
scends the traditional phonetic, morphemic, syn-
tactic and semantic levels implicit in CoNLL’s first
two aims. But it is in working towards the last two
aims, in a ubiquitous, mobile, multimodal context,
that we will effectively address the dynamics of
language, and finally resolve all the fuzziness and
ambiguity.

CoNLL will discover new vistas of features.

6 ±Multimodal

CoNLL has been very successful in relation
to SIGNLL’s first three “automated acquisition”
aims! But what of the fourth “[hand]written and
spoken” aim? And have we really got “seman-
tics” and “ontology” under control as per the sec-
ond aim? Since I first used it in the early 1980s,
and incorporated it in my 1991 symposium title
and the SIGNLL aims, the word “ontology” has
come to mean something more like “taxonomy”
rather than its traditional and etymological idea of
“our understanding of the world”. In the 1980s
our focus was in trying to find an alternative to the
word “semantics”, which in practice was becom-
ing “look it up in the dictionary” or “follow a link
in a semantic net”.

Feldman et al. (1990) introduced the idea of
L0 as the basic bootstrap language task based on
a simple toy world model, while Harnad (1987;
1990; 1991) used the term “symbol grounding”
and argued strongly that even simulated worlds
weren’t enough, and earlier still (Hayes, 1979) had
used the phrase “naive physics” to describe what
he thought was needed.

Between 1984 and 1991 my students had devel-
oped and were using the Magrathea robot world
extension to Prolog (Powers and Turk, 1989) but
between 1995 and 1997 we built a physical hu-
manoid baby that could crawl, feel touch to arms
and legs, had omnidirectional auditory percep-
tion and stereovision, and could orient towards a
touch or sound, and “feed” (charge and download)
via a USB bottle/umbilical, but it was a brittle

heavy system that was not suitable for a child to
“mother” as originally envisaged (Powers, 2001),
so that I eventually transitioned to the model of an
Intelligent Room with half a dozen microphones
and cameras.

Luc Steels (1995; 1997; 2003; 2015) adopted
a simpler approach, transitioning from simple
graphical animations, to turtle-like robots to a pair
of cameras that viewed a “real world scene” that
was constrained to be very simple (manipulation
of cutout shapes on a board), and produced some
very interesting interactions and learning.

There’s another advantage to multimodal data,
that is that you can use supervised techniques
in a directed but unsupervised way. The 1980s
idea of (holographic) autocoding of the input to
self-organize features, can become a more effi-
cient and bioplausible system where intramodal
feature discovery and intermodal feature discov-
ery are distinguished - for example visemes can
be self-organized as facial/lip patterns that corre-
late to certain groups of phonemes. The use of
multimodal autosupervision allows more bioplau-
sible features to be self-organized, as well as fa-
cilitating a cognitive approach to learning phonol-
ogy, morphology, syntax and semantics (Powers,
1997). An additional advantage is that techniques
like eye-tracking and gaze-tracking can augment
our user interfaces and help identify context or dis-
tinguish alternatives, boosting the accuracy of our
NLL systems.

Today, Google Glass and Microsoft’s Hololens
(with Kinect-like 3D), are examples of the integra-
tion of multiple cameras and microphones, and a
heads-up augmented-reality type display, into an
efficient platform that can keep track of the 3D
world in a way that will naturally complement
speech capabilities as well as augment the capa-
bilities of language learning with its richer data.

Multimodal will open a door to a new CoNLL.

7 ±Bioplausibility

So we are now up to the final “modeling human
language acquisition” aim. In the end, language
is a product of human biology and ecology, but
Linguistics and Computational Linguistics have
largely been developing without any input from
Biology, Psychology or Neuroscience although
there are interesting crossovers, and CoNLL has
always strongly encouraged the modelling of hu-
man language acquisition theory and processes,
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and we do get a trickle of papers with a Psy-
cholinguistic flavour. But I would encourage
the CoNLL community to look beyond Computa-
tional Linguistics and Artificial Intelligence to the
evidence being amassed in Computational Neuro-
science and Cognitive Psychology, and to seek to
connect to people studying language and learning
from these different perspectives.

There is no compelling reason we have to make
our systems bioplausible, and just because we
use a neural network doesn’t necessarily make
it bioplausible model. But there are advantages
in taking on board this aim. Indeed the intro-
duction of neural and computational plausibility
revolutionized the behavioural and cognitive sci-
ences, with terms like neurons and agents re-
placing vague concepts from earlier theories of
Psychology and Philosophy as they talked about
demons (Selfridge, 1959) and zombies (Dennett,
1995), with the zombie argument turning up in AI
in the well known guise of Mary’s Room (Jack-
son, 1986) and the Chinese Room (Searle, 1980).
Philosophers tend to shift the focus from Tur-
ing’s (1950) behavioural test of indistinguishabil-
ity of language performance (as a surrogate for be-
haviour and cognition in general), to mind, con-
sciousness, awareness and feelings, while Compu-
tational Neuropsychology seeks to model what we
find in the brain and show how that can explain and
reproduce human-like language and behaviour.

Part of SIGNLL and CoNLL’s charter includes
the understanding and modeling of the behaviour
of another, the theory of mind, as a component that
is absolutely necessary for conversation, for effec-
tive communication and learning, for understand-
ing the affective, emotional and physical states of
the person we are talking to, and for understanding
the human factors of the interfaces we are build-
ing.

So beyond just looking at the latest work across
CoCoSci, we could be looking at our language
learning systems as scientific models in their own
right, or looking at interdisciplinary theories as
a basis for our systems, and presenting them in
a way that makes them into behaviourally, bio-
logically and computationally plausible hypothe-
ses and theories that are testable by their predic-
tions about human behaviour (Popper, 1934; Pop-
per, 1963; Lakatos, 1970).

We thus encourage collaborations with other
parts of Cognitive Science who can help us im-
prove and extend our language learning models,

as well as help others keep their theories com-
putationally realistic. CoNLL system may well
give insights to other disciplines, and certainly
our methodologies can and should be utilized in
cognitive programs, more over our tools can help
with their data collection and behavioural analysis
(Stevens et al., 2016).

CoNLL is key to unlocking the human psyche.

8 ±20 Years

SIGNLL and CoNLL were born into an environ-
ment where Cognitive Science had brought people
out of their silos and interdisciplinary research and
computational modeling were recognized as es-
sential to a proper understanding of language and
cognition. Indeed Cognitive Science was born out
of the controversies over language and learning:
what was innate, what was learned, and what was
biologically and computationally feasible.

This is a story for another time, and indeed one
of SIGNLL’s sponsored workshops, Cognitive As-
pects of Natural Language Learning (CACLL) is
continuing the debate as another stream during
CoNLL/ACL, and there are other relevant work-
shops on Morphology and Phonology, and Repre-
sentations and Evaluations, etc. Workshops have
driven advances in the application of unsupervised
and semisupervised learning, as well as covering
some of the more forward thinking application
areas like Companionable Dialog Systems. We
don’t regard them as in competition with CoNLL,
but we actively sponsor workshops as additional
streams that allow a focus that is not possible in
the main thread of CoNLL - our sponsored work-
shops are just as much a part of CoNLL as of ACL,
and often they capture elements that are emerging
in CoNLL and will be important in the future!

While our successes with taggers and parsers
and semantic models, and their applications in in-
formation retrieval and machine translation and in-
telligent assistants, will remain the bread and but-
ter for CoNLL, we actively encourage people to
be proactive and propose workshops and tutorials
that will broaden the background of CoNLL re-
searchers as Speech and Language become pivotal
in a mobile, wearable age of ubiquitious comput-
ing and communication. It is also impressive to
see how important the shared tasks have been in
setting directions, and becoming a focus for future
years - and we aim to improve the way in which
these are made available for future use, compari-
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son and evaluation. Your suggestions about shared
tasks will also be most welcome.

In the next 20 years, I expect ubiquitous longitu-
dinal multimodal multiangle multidirectional data,
wearable processing, and cloud connectivity, will
multiply both the opportunities and the challenges
for CoNLL, and of course lead to further successes
and new technologies to wow the world one year,
and be taken for granted the next.

I hope we will make similar progress in under-
standing the human that wears the tech, in explor-
ing the similarities and differences between Artifi-
cial Intelligences and Human Intelligence.

CoNLL has an exciting future ahead.
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Abstract

The standard recurrent neural network
language model (rnnlm) generates sen-
tences one word at a time and does not
work from an explicit global sentence rep-
resentation. In this work, we introduce
and study an rnn-based variational au-
toencoder generative model that incorpo-
rates distributed latent representations of
entire sentences. This factorization al-
lows it to explicitly model holistic prop-
erties of sentences such as style, topic,
and high-level syntactic features. Samples
from the prior over these sentence repre-
sentations remarkably produce diverse and
well-formed sentences through simple de-
terministic decoding. By examining paths
through this latent space, we are able to
generate coherent novel sentences that in-
terpolate between known sentences. We
present techniques for solving the difficult
learning problem presented by this model,
demonstrate its effectiveness in imputing
missing words, explore many interesting
properties of the model’s latent sentence
space, and present negative results on the
use of the model in language modeling.

1 Introduction

Recurrent neural network language models
(rnnlms, Mikolov et al., 2011) represent the state
of the art in unsupervised generative modeling
for natural language sentences. In supervised
settings, rnnlm decoders conditioned on task-
specific features are the state of the art in tasks
like machine translation (Sutskever et al., 2014;
Bahdanau et al., 2015) and image captioning
(Vinyals et al., 2015; Mao et al., 2015; Donahue
et al., 2015). The rnnlm generates sentences
word-by-word based on an evolving distributed
state representation, which makes it a proba-
bilistic model with no significant independence

∗First two authors contributed equally. Work was
done when all authors were at Google, Inc.

i went to the store to buy some groceries .
i store to buy some groceries .
i were to buy any groceries .
horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

Table 1: Sentences produced by greedily decoding
from points between two sentence encodings with
a conventional autoencoder. The intermediate sen-
tences are not plausible English.

assumptions, and makes it capable of modeling
complex distributions over sequences, including
those with long-term dependencies. However, by
breaking the model structure down into a series of
next-step predictions, the rnnlm does not expose
an interpretable representation of global features
like topic or of high-level syntactic properties.

We propose an extension of the rnnlm that is
designed to explicitly capture such global features
in a continuous latent variable. Naively, maxi-
mum likelihood learning in such a model presents
an intractable inference problem. Drawing inspi-
ration from recent successes in modeling images
(Gregor et al., 2015), handwriting, and natural
speech (Chung et al., 2015), our model circum-
vents these difficulties using the architecture of a
variational autoencoder and takes advantage of re-
cent advances in variational inference (Kingma and
Welling, 2015; Rezende et al., 2014) that introduce
a practical training technique for powerful neural
network generative models with latent variables.

Our contributions are as follows: We propose a
variational autoencoder architecture for text and
discuss some of the obstacles to training it as well
as our proposed solutions. We find that on a stan-
dard language modeling evaluation where a global
variable is not explicitly needed, this model yields
similar performance to existing rnnlms. We also
evaluate our model using a larger corpus on the
task of imputing missing words. For this task,
we introduce a novel evaluation strategy using an
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adversarial classifier, sidestepping the issue of in-
tractable likelihood computations by drawing in-
spiration from work on non-parametric two-sample
tests and adversarial training. In this setting,
our model’s global latent variable allows it to do
well where simpler models fail. We finally intro-
duce several qualitative techniques for analyzing
the ability of our model to learn high level fea-
tures of sentences. We find that they can produce
diverse, coherent sentences through purely deter-
ministic decoding and that they can interpolate
smoothly between sentences.

2 Background

2.1 Unsupervised sentence encoding

A standard rnn language model predicts each
word of a sentence conditioned on the previous
word and an evolving hidden state. While effec-
tive, it does not learn a vector representation of
the full sentence. In order to incorporate a contin-
uous latent sentence representation, we first need a
method to map between sentences and distributed
representations that can be trained in an unsuper-
vised setting. While no strong generative model
is available for this problem, three non-generative
techniques have shown promise: sequence autoen-
coders, skip-thought, and paragraph vector.

Sequence autoencoders have seen some success
in pre-training sequence models for supervised
downstream tasks (Dai and Le, 2015) and in gen-
erating complete documents (Li et al., 2015a).
An autoencoder consists of an encoder function
ϕenc and a probabilistic decoder model p(x|~z =
ϕenc(x)), and maximizes the likelihood of an ex-
ample x conditioned on ~z, the learned code for
x. In the case of a sequence autoencoder, both
encoder and decoder are rnns and examples are
token sequences.

Standard autoencoders are not effective at ex-
tracting for global semantic features. In Table
1, we present the results of computing a path
or homotopy between the encodings for two sen-
tences and decoding each intermediate code. The
intermediate sentences are generally ungrammat-
ical and do not transition smoothly from one to
the other. This suggests that these models do
not generally learn a smooth, interpretable fea-
ture system for sentence encoding. In addition,
since these models do not incorporate a prior over
~z, they cannot be used to assign probabilities to
sentences or to sample novel sentences. Similarly,
Iyyer et al. (2014) provide a method for generating
sentences with arbitrary syntactic structure using
tree-structured autoencoders, but that model only
transforms existing sentences and cannot generate
entirely new ones.

Two other models have shown promise in learn-
ing sentence encodings, but cannot be used in

a generative setting: Skip-thought models (Kiros
et al., 2015) are unsupervised learning models that
take the same model structure as a sequence au-
toencoder, but generate text conditioned on a
neighboring sentence from the target text, instead
of on the target sentence itself. Finally, para-
graph vector models (Le and Mikolov, 2014) are
non-recurrent sentence representation models. In a
paragraph vector model, the encoding of a sentence
is obtained by performing gradient-based inference
on a prospective encoding vector with the goal of
using it to predict the words in the sentence.

2.2 The variational autoencoder

The variational autoencoder (vae, Kingma and
Welling, 2015; Rezende et al., 2014) is a genera-
tive model that is based on a regularized version
of the standard autoencoder. This model imposes
a prior distribution on the hidden codes ~z which
enforces a regular geometry over codes and makes
it possible to draw proper samples from the model
using ancestral sampling.

The vae modifies the autoencoder architecture
by replacing the deterministic function ϕenc with
a learned posterior recognition model, q(~z|x). This
model parametrizes an approximate posterior dis-
tribution over ~z (usually a diagonal Gaussian) with
a neural network conditioned on x. Intuitively, the
vae learns codes not as single points, but as soft
ellipsoidal regions in latent space, forcing the codes
to fill the space rather than memorizing the train-
ing data as isolated codes.

If the vae were trained with a standard autoen-
coder’s reconstruction objective, it would learn to
encode its inputs deterministically by making the
variances in q(~z|x) vanishingly small (Raiko et al.,
2015). Instead, the vae uses an objective which
encourages the model to keep its posterior distri-
butions close to a prior p(~z), generally a standard
Gaussian (µ = ~0, σ = ~1). Additionally, this objec-
tive is a valid lower bound on the true log likelihood
of the data, making the vae a generative model.
This objective takes the following form:

L(θ;x) = −kl(qθ(~z|x)||p(~z))
+ Eqθ(~z|x)[log pθ(x|~z)]

≤ log p(x) .

(1)

This forces the model to be able to decode plausible
sentences from every point in the latent space that
has a reasonable probability under the prior.

In the experiments presented below using vae
models, we use diagonal Gaussians for the prior
and posterior distributions p(~z) and q(~z|x), using
the Gaussian reparameterization trick of Kingma
and Welling (2015). We train our models with
stochastic gradient descent, and at each gradient
step we estimate the reconstruction cost using a
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Figure 1: The core structure of our variational au-
toencoder language model. Words are represented
using a learned randomly-initialized dictionary of
embedding vectors. ~z is a vector-valued latent vari-
able with a Gaussian prior and an approximate
posterior parameterized by the encoder’s outputs
µ and σ. <EOS> marks the end of each sequence.

single sample from q(~z|x), but compute the kl di-
vergence term of the cost function in closed form,
again following Kingma and Welling (2015).

3 A VAE for sentences

We adapt the variational autoencoder to text
by using single-layer lstm rnns (Hochreiter and
Schmidhuber, 1997) for both the encoder and the
decoder, essentially forming a sequence autoen-
coder with the Gaussian prior acting as a regu-
larizer on the hidden code. The decoder serves as
a special rnn language model that is conditioned
on this hidden code, and in the degenerate setting
where the hidden code incorporates no useful in-
formation, this model is effectively equivalent to an
rnnlm. The model is depicted in Figure 1, and is
used in all of the experiments discussed below.

We explored several variations on this architec-
ture, including concatenating the sampled ~z to the
decoder input at every time step, using a soft-
plus parametrization for the variance, and using
deep feedforward networks between the encoder
and latent variable and the decoder and latent vari-
able. We noticed little difference in the model’s
performance when using any of these variations.
However, when including feedforward networks be-
tween the encoder and decoder we found that it
is necessary to use highway network layers (Sri-
vastava et al., 2015) for the model to learn. We
use a 4 layer highway network to parametrize the
Gaussian posterior conditioned on the RNN state,
and another identical network to map the Gaus-
sian samples back to feed into the decoder RNN.
We discuss hyperparameter tuning in Appendix II.

We also experimented with more sophisticated
recognition models q(~z|x), including a multistep
sampling model styled after draw (Gregor et al.,
2015), and a posterior approximation using nor-
malizing flows (Rezende and Mohamed, 2015).
However, we were unable to reap significant gains
over our plain vae.

While the strongest results with vaes to date
have been on continuous domains like images, there

has been some work on discrete sequences: a tech-
nique for doing this using rnn encoders and de-
coders, which shares the same high-level architec-
ture as our model, was proposed under the name
Variational Recurrent Autoencoder (vrae) for the
modeling of music in Fabius and van Amersfoort
(2014). While there has been other work on includ-
ing continuous latent variables in rnn-style mod-
els for modeling speech, handwriting, and music
(Bayer and Osendorfer, 2015; Chung et al., 2015),
these models include separate latent variables per
timestep and are unsuitable for our goal of model-
ing global features.

In a recent paper with goals similar to ours,
Miao et al. (2016) introduce an effective VAE-
based document-level language model that models
texts as bags of words, rather than as sequences.
They mention briefly that they have to train the
encoder and decoder portions of the network in al-
ternation rather than simultaneously, possibly as a
way of addressing some of the issues that we dis-
cuss in Section 3.1.

3.1 Optimization challenges

Our model aims to learn global latent represen-
tations of sentence content. We can quantify the
degree to which our model learns global features
by looking at the variational lower bound objec-
tive (1). The bound breaks into two terms: the
data likelihood under the posterior (expressed as
cross entropy), and the kl divergence of the pos-
terior from the prior. A model that encodes useful
information in the latent variable ~z will have a non-
zero kl divergence term and a relatively small cross
entropy term. Straightforward implementations of
our vae fail to learn this behavior: except in van-
ishingly rare cases, most training runs with most
hyperparameters yield models that consistently set
q(~z|x) equal to the prior p(~z), bringing the kl di-
vergence term of the cost function to zero.

When the model does this, it is essentially be-
having as an rnnlm. Because of this, it can ex-
press arbitrary distributions over the output sen-
tences (albeit with a potentially awkward left-to-
right factorization) and can thereby achieve like-
lihoods that are close to optimal. Previous work
on vaes for image modeling (Kingma and Welling,
2015) used a much weaker independent pixel de-
coder model p(x|~z), forcing the model to use the
global latent variable to achieve good likelihoods.
In a related result, recent approaches to image gen-
eration that use lstm decoders are able to do well
without vae-style global latent variables (Theis
and Bethge, 2015).

This problematic tendency in learning is com-
pounded by the lstm decoder’s sensitivity to sub-
tle variation in the hidden states, such as that in-
troduced by the posterior sampling process. This
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Figure 2: The weight of the kl divergence term
of variational lower bound according to a typical
sigmoid annealing schedule plotted alongside the
(unweighted) value of the kl divergence term for
our vae on the Penn Treebank.

causes the model to initially learn to ignore ~z and
go after low hanging fruit, explaining the data with
the more easily optimized decoder. Once this has
happened, the decoder ignores the encoder and lit-
tle to no gradient signal passes between the two,
yielding an undesirable stable equilibrium with the
kl cost term at zero. We propose two techniques
to mitigate this issue.

KL cost annealing In this simple approach to
this problem, we add a variable weight to the kl
term in the cost function at training time. At the
start of training, we set that weight to zero, so
that the model learns to encode as much informa-
tion in ~z as it can. Then, as training progresses, we
gradually increase this weight, forcing the model to
smooth out its encodings and pack them into the
region of the embedding space that is assigned a
reasonably high probability by the Gaussian prior.
We increase this weight until it reaches 1, at which
point the weighted cost function is equivalent to
the true variational lower bound. In this setting,
we do not optimize the proper lower bound on the
training data likelihood during the early stages of
training, but we nonetheless see improvements on
the value of that bound at convergence. This can
be thought of as annealing from a vanilla autoen-
coder to a vae. The rate of this increase is tuned
as a hyperparameter.

Figure 2 shows the behavior of the kl cost term
during the first 50k steps of training on Penn Tree-
bank (Marcus et al., 1993) language modeling with
kl cost annealing in place. This example reflects a
pattern that we observed often: kl spikes early in
training while the model can encode information in
~z cheaply, then drops substantially once it begins
paying the full kl divergence penalty, and finally
slowly rises again before converging as the model
learns to condense more information into ~z.

Word dropout and historyless decoding In
addition to weakening the penalty term on the en-
codings, we also experiment with weakening the

decoder. As in rnnlms and sequence autoen-
coders, during learning our decoder predicts each
word conditioned on the ground-truth previous
word. A natural way to weaken the decoder is
to remove some or all of this conditioning infor-
mation during learning. We do this by randomly
replacing some fraction of the conditioned-on word
tokens with the generic unknown word token unk.
This forces the model to rely on the latent variable
~z to make good predictions. This technique is a
variant of word dropout (Iyyer et al., 2015; Kumar
et al., 2016), applied not to a feature extractor but
to a decoder. We also experimented with standard
dropout (Srivastava et al., 2014) applied to the in-
put word embeddings in the decoder, but this did
not help the model learn to use the latent variable.

This technique is parameterized by a keep rate
k ∈ [0, 1]. We tune this parameter both for our
vae and for our baseline rnnlm. Taken to the
extreme of k = 0, the decoder sees no input, and is
thus able to condition only on the number of words
produced so far, yielding a model that is extremely
limited in the kinds of distributions it can model
without using ~z.

4 Results: Language modeling

In this section, we report on language modeling
experiments on the Penn Treebank in an effort to
discover whether the inclusion of a global latent
variable is helpful for this standard task. For this
reason, we restrict our vae hyperparameter search
to those models which encode a non-trivial amount
in the latent variable, as measured by the kl di-
vergence term of the variational lower bound.

Results We used the standard train–test split
for the corpus, and report test set results in Ta-
ble 2. The results shown reflect the training and
test set performance of each model at the training
step at which the model performs best on the de-
velopment set. Our reported figures for the vae
reflect the variational lower bound on the test like-
lihood, while for the rnnlms, which can be eval-
uated exactly, we report the true test likelihood.
This discrepancy puts the vae at a potential dis-
advantage.

In the standard setting, the vae performs
slightly worse than the rnnlm baseline, though
it does succeed in using the latent space to a lim-
ited extent: it has a reconstruction cost (99) better
than that of the baseline rnnlm, but makes up for
this with a kl divergence cost of 2. Training a vae
in the standard setting without both word dropout
and cost annealing reliably results in models with
equivalent performance to the baseline rnnlm, and
zero kl divergence.

To demonstrate the ability of the latent variable
to encode the full content of sentences in addition
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Model Standard Inputless Decoder
Train nll Train ppl Test nll Test ppl Train nll Train ppl Test nll Test ppl

RNNLM 100 – 95 100 – 116 135 – 600 135 – > 600
VAE 98 (2) 100 101 (2) 119 120 (15) 300 125 (15) 380

Table 2: Penn Treebank language modeling results, reported as negative log likelihoods (nll) and as
perplexities (ppl). Lower is better for both metrics. For the vae, the kl term of the likelihood is shown
in parentheses alongside the total likelihood.

to more abstract global features, we also provide
numbers for an inputless decoder that does not
condition on previous tokens, corresponding to a
word dropout keep rate of 0. If this decoder can-
not or does not take advantage of the encoder, then
it is essentially equivalent to a unigram language
model, with the hidden state providing information
about position but noting more. In this regime we
can see that the variational lower bound contains a
significantly larger kl term and shows a substantial
improvement over the weakened rnnlm. While
it is weaker than a standard decoder, the input-
less decoder has the interesting property that its
sentence generating process is fully differentiable.
Advances in generative models of this kind could
be promising as a means of generating text while
using adversarial training methods, which require
differentiable generators.

Even with the techniques described in the pre-
vious section, including the inputless decoder, we
were unable to train models for which the kl diver-
gence term of the cost function dominates the re-
construction term. This suggests that it is still sub-
stantially easier to learn to factor the data distribu-
tion using simple local statistics, as in the rnnlm,
such that an encoder will only learn to encode in-
formation in ~z when that information cannot be
effectively described by these local statistics.

5 Results: Imputing missing words

We claim that the our vae’s global sentence fea-
tures make it especially well suited to the task of
imputing missing words in otherwise known sen-
tences. In this section, we present a technique
for imputation and a novel evaluation strategy in-
spired by adversarial training. Qualitatively, we
find that the vae yields more diverse and plausible
imputations for the same amount of computation
(see the examples given in Table 3), but precise
quantitative evaluation requires intractable likeli-
hood computations. We sidestep this by introduc-
ing a novel evaluation strategy.

While the standard rnnlm is a powerful genera-
tive model, the sequential nature of likelihood com-
putation and decoding makes it unsuitable for per-
forming inference over unknown words given some
known words (the task of imputation). Except in
the special case where the unknown words all ap-

pear at the end of the decoding sequence, sampling
from the posterior over the missing variables is in-
tractable for all but the smallest vocabularies. For
a vocabulary of size V , it requires O(V ) runs of full
rnn inference per step of Gibbs sampling or iter-
ated conditional modes. Worse, because of the di-
rectional nature of the graphical model given by an
rnnlm, many steps of sampling could be required
to propagate information between unknown vari-
ables and the known downstream variables. The
vae, while it suffers from the same intractability
problems when sampling or computing map im-
putations, can more easily propagate information
between all variables, by virtue of having a global
latent variable and a tractable recognition model.

For this experiment and subsequent analysis, we
train our models on the Books Corpus introduced
in Kiros et al. (2015). This is a collection of text
from 12k e-books, mostly fiction. The dataset,
after pruning, contains approximately 80m sen-
tences. We find that this much larger amount of
data produces more subjectively interesting gener-
ative models than smaller standard language mod-
eling datasets. We use a fixed word dropout rate of
75% when training this model and all subsequent
models unless otherwise specified. Our models (the
vae and rnnlm) are trained as language models,
decoding right-to-left to shorten the dependencies
during learning for the vae. We use 512 hidden
units.

Inference method To generate imputations
from the two models, we use beam search with
beam size 15 for the rnnlm and approximate iter-
ated conditional modes (Besag, 1986) with 3 steps
of a beam size 5 search for the vae. This allows
us to compare the same amount of computation
for both models. We find that breaking decod-
ing for the vae into several sequential steps is nec-
essary to propagate information among the vari-
ables. Iterated conditional modes is a technique
for finding the maximum joint assignment of a set
of variables by alternately maximizing conditional
distributions, and is a generalization of “hard-em”
algorithms like k-means (Kearns et al., 1998). For
approximate iterated conditional modes, we first
initialize the unknown words to the unk token. We
then alternate assigning the latent variable to its
mode from the recognition model, and performing
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but now , as they parked out front and owen stepped out of the car , he could see
True: that the transition was complete . RNNLM: it , ” i said . VAE: through the driver ’s door .

you kill him and his
True: men . RNNLM: . ” VAE: brother .

not surprising , the mothers dont exactly see eye to eye with me
True: on this matter . RNNLM: , i said . VAE: , right now .

outside the cover , quiet
True: fell . RNNLM: . ” VAE: time .

she punched the cell
True: too . RNNLM: again . VAE: phone .

Table 3: Examples of using beam search to impute missing words within sentences. Since we decode from
right to left, note the stereotypical completions given by the rnnlm, compared to the vae completions
that often use topic data and more varied vocabulary.

constrained beam search to assign the unknown
words. Both of our generative models are trained
to decode sentences from right-to-left, which short-
ens the dependencies involved in learning for the
vae, and we impute the final 20% of each sen-
tence. This lets us demonstrate the advantages of
the global latent variable in the regime where the
rnnlm suffers the most from its inductive bias.

Adversarial evaluation Drawing inspiration
from adversarial training methods for generative
models as well as non-parametric two-sample tests
(Goodfellow et al., 2014; Li et al., 2015b; Denton
et al., 2015; Gretton et al., 2012), we evaluate the
imputed sentence completions by examining their
distinguishability from the true sentence endings.
While the non-differentiability of the discrete rnn
decoder prevents us from easily applying the ad-
versarial criterion at train time, we can define a
very flexible test time evaluation by training a dis-
criminant function to separate the generated and
true sentences, which defines an adversarial error.

We train two classifiers: a bag-of-unigrams lo-
gistic regression classifier and an lstm logistic re-
gression classifier that reads the input sentence and
produces a binary prediction after seeing the final
eos token. We train these classifiers using early
stopping on a 80/10/10 train/dev/test split of 320k
sentences, constructing a dataset of 50% complete
sentences from the corpus (positive examples) and
50% sentences with imputed completions (negative
examples). We define the adversarial error as the
gap between the ideal accuracy of the discrimina-
tor (50%, i.e. indistinguishable samples), and the
actual accuracy attained.

Results As a consequence of this experimental
setup, the rnnlm cannot choose anything outside
of the top 15 tokens given by the rnn’s initial un-
conditional distribution P (x1|Null) when produc-
ing the final token of the sentence, since it has not
yet generated anything to condition on, and has a
beam size of 15. Table 4 shows that this weakness

Model Adv. Err. (%) NLL
Unigram lstm rnnlm

RNNLM (15 bm.) 28.3 38.9 46.0
VAE (3x5 bm.) 22.4 35.6 46.1

Table 4: Results for adversarial evaluation of im-
putations. Unigram and lstm numbers are the
adversarial error (see text) and rnnlm numbers
are the negative log-likelihood given to entire gen-
erated sentence by the rnnlm, a measure of sen-
tence typicality. Lower is better on both metrics.
The vae is able to generate imputations that are
significantly more difficult to distinguish from the
true sentences.

makes the rnnlm produce far less diverse samples
than the vae and suffer accordingly versus the ad-
versarial classifier. Additionally, we include the
score given to the entire sentence with the imputed
completion given a separate independently trained
language model. The likelihood results are com-
parable, though the rnnlms favoring of generic
high-probability endings such as “he said,” gives
it a slightly lower negative log-likelihood. Mea-
suring the rnnlm likelihood of sentences them-
selves produced by an rnnlm is not a good mea-
sure of the power of the model, but demonstrates
that the rnnlm can produce what it sees as high-
quality imputations by favoring typical local statis-
tics, even though their repetitive nature produces
easy failure modes for the adversarial classifier.
Accordingly, under the adversarial evaluation our
model substantially outperforms the baseline since
it is able to efficiently propagate information bidi-
rectionally through the latent variable.

6 Analyzing variational models

We now turn to more qualitative analysis of the
model. Since our decoder model p(x|~z) is a sophis-
ticated rnnlm, simply sampling from the directed
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100% word keep 75% word keep

“ no , ” he said . why would i want you to look at me like this ?

“ no , ” he said . “ love you , too . ”

“ thank you , ” he said . she put her hand on his shoulder and followed him
to the door .

50% word keep 0% word keep

all this time , i could n’t stay in the room . not , did n’t be , for the time he was out in

“ maybe two or two . ” i i hear some of of of

she laughed again , once again , once again , and
thought about it for a moment in long silence .

i was noticed that she was holding the in in of the
the in

Table 5: Samples from a model trained with varying amounts of word dropout. We sample a vector from
the Gaussian prior and apply greedy decoding to the result. Note that diverse samples can be achieved
using a purely deterministic decoding procedure. Once we use reach a purely inputless decoder in the
0% setting, however, the samples cease to be plausible English sentences.

he had been unable to conceal the fact that there was a logical explanation for his inability to
alter the fact that they were supposed to be on the other side of the house .

with a variety of pots strewn scattered across the vast expanse of the high ceiling , a vase of
colorful flowers adorned the tops of the rose petals littered the floor and littered the floor .

atop the circular dais perched atop the gleaming marble columns began to emerge from atop the
stone dais, perched atop the dais .

Table 6: Greedily decoded sentences from a model with 75% word keep probability, sampling from
lower-likelihood areas of the latent space. Note the consistent topics and vocabulary usage.

keep rate Cross entropy KL divergence
100% 45.01017 0.010358

90% 40.897953 4.665799

75% 37.710022 8.751512

50% 33.433636 15.13052

0% 34.825763 20.906685

keep prob xent kl
100% 3.059872 0.000953 3.060825
90% 2.706509 0.388772 3.095281
75% 2.462569 0.695894 3.158463
50% 2.174506 1.109832 3.284338
0% 2.235086 1.478137 3.713223

0
10
20
30
40
50
60

100% 90% 75% 50% 0%
Keep rate

KL divergence Cross entropy

Figure 3: The values of the two terms of the cost
function as word dropout increases.

graphical model (first p(~z) then p(x|~z)) would not
tell us much about how much of the data is being
explained by each of the latent space and the de-
coder. Instead, for this part of the evaluation, we
sample from the Gaussian prior, but use a greedy
deterministic decoder for p(x|~z), the rnnlm con-
ditioned on ~z. This allows us to get a sense of how
much of the variance in the data distribution is be-
ing captured by the distributed vector ~z as opposed
to the decoder. Interestingly, these results qualita-
tively demonstrate that large amounts of variation
in generated language can be achieved by follow-
ing this procedure. In Appendix I, we provide some
results on small text classification tasks.

6.1 Analyzing the impact of word dropout

For this experiment, we train on the Books Cor-
pus and test on a held out 10k sentence test set
from that corpus. We find that train and test set
performance are very similar. In Figure 3, we ex-
amine the impact of word dropout on the varia-
tional lower bound, broken down into kl diver-
gence and cross entropy components. We drop out
words with the specified keep rate at training time,
but supply all words as inputs at test time except
in the 0% setting.

We do not re-tune the hyperparameters for each
run, which results in the model with no dropout
encoding very little information in ~z (i.e., the kl
component is small). We can see that as we lower
the keep rate for word dropout, the amount of in-
formation stored in the latent variable increases,
and the overall likelihood of the model degrades
somewhat. Results from the Section 4 indicate
that a model with no latent variable would degrade
in performance significantly more in the presence
of heavy word dropout.

We also qualitatively evaluate samples, to
demonstrate that the increased kl allows meaning-
ful sentences to be generated purely from contin-
uous sampling. Since our decoder model p(x|~z) is
a sophisticated rnnlm, simply sampling from the
directed graphical model (first p(~z) then p(x|~z))
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input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

would not tell us about how much of the data is
being explained by the learned vector vs. the lan-
guage model. Instead, for this part of the qual-
itative evaluation, we sample from the Gaussian
prior, but use a greedy deterministic decoder for x,
taking each token xt = argmaxxtp(xt|x0,...,t−1, ~z).
This allows us to get a sense of how much of the
variance in the data distribution is being captured
by the distributed vector ~z as opposed to by local
language model dependencies.

These results, shown in Table 5, qualitatively
demonstrate that large amounts of variation in
generated language can be achieved by following
this procedure. At the low end, where very lit-
tle of the variance is explained by ~z, we see that
greedy decoding applied to a Gaussian sample does
not produce diverse sentences. As we increase the
amount of word dropout and force ~z to encode
more information, we see the sentences become
more varied, but past a certain point they begin
to repeat words or show other signs of ungram-
maticality. Even in the case of a fully dropped-out
decoder, the model is able to capture higher-order
statistics not present in the unigram distribution.

Additionally, in Table 6 we examine the effect
of using lower-probability samples from the latent
Gaussian space for a model with a 75% word keep
rate. We find lower-probability samples by ap-
plying an approximately volume-preserving trans-
formation to the Gaussian samples that stretches
some eigenspaces by up to a factor of 4. This has
the effect of creating samples that are not too im-
probable under the prior, but still reach into the
tails of the distribution. We use a random linear
transformation, with matrix elements drawn from
a uniform distribution from [−c, c], with c chosen
to give the desired properties (0.1 in our experi-
ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(~z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does

not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1∗(1−t)+~z2∗t
for t ∈ [0, 1]. Similarly, the homotopy between two
sentences decoded (greedily) from codes ~z1 and ~z2
is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.

While a standard non-variational rnnlm does
not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.

In Table 8 (and in Table 12 in Appendix III,
which shows additional homotopies) we can see
that the codes mostly contain syntactic informa-
tion, such as the number of words and the parts
of speech of tokens, and that all intermediate sen-
tences are grammatical. Some topic information
also remains consistent in neighborhoods along the
path. Additionally, sentences with similar syn-
tax and topic but flipped sentiment valence, e.g.
“the pain was unbearable” vs. “the thought made
me smile”, can have similar embeddings, a phe-
nomenon which has been observed with single-
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“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

there is no one else in the world .
there is no one else in sight .
they were the only ones who mattered .
they were the only ones left .
he had to be with me .
she had to be with him .
i had to do this .
i wanted to kill him .
i started to cry .
i turned to him .

no .
he said .
“ no , ” he said .
“ no , ” i said .
“ i know , ” she said .
“ thank you , ” she said .
“ come with me , ” she said .
“ talk to me , ” she said .
“ do n’t worry about it , ” she said .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

word embeddings (for example the vectors for
“bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can effec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.

We hope in future work to investigate factoriza-
tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language
understanding tasks like textual entailment, and to
go beyond adversarial evaluation to a fully adver-
sarial training objective.

Method Accuracy F1

Feats 73.2 –
rae+dp 72.6 –
rae+feats 74.2 –
rae+dp+feats 76.8 83.6

st 73.0 81.9
Bi-st 71.2 81.2
Combine-st 73.0 82.0

vae 72.9 81.4
vae+feats 75.0 82.4
vae+combine-st 74.8 82.3
Feats+combine-st 75.8 83.0
vae+combine-st+feats 76.9 83.8

Table 9: Results for the msr Paraphrase Corpus.

Appendix I: Text classification

In order to further examine the the structure of the
representations discovered by the vae, we conduct
classification experiments on paraphrase detection
and question type classification. We train a vae
with a hidden state size of 1200 hidden units on
the Books Corpus, and use the posterior mean of
the model as the extracted sentence vector. We
train classifiers on these means using the same ex-
perimental protocol as Kiros et al. (2015).

Paraphrase detection For the task of para-
phrase detection, we use the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004). We com-
pute features from the sentence vectors of sentence
pairs in the same way as Kiros et al. (2015), con-
catenating the elementwise products and the abso-
lute value of the elementwise differences of the two
vectors. We train an `2-regularized logistic regres-
sion classifier and tune the regularization strength
using cross-validation.

We present results in Table 9 and compare to
several previous models for this task. Feats is the
lexicalized baseline from Socher et al. (2011). rae
uses the recursive autoencoder from that work, and
dp adds their dynamic pooling step to calculate
pairwise features. st uses features from the uni-
directional skip-thought model, bi-st uses bidirec-
tional skip-thought, and combine-st uses the con-
catenation of those features. We also experimented
with concatenating lexical features and the two
types of distributed features.

We found that our features performed slightly
worse than skip-thought features by themselves
and slightly better than recursive autoencoder fea-
tures, and were complementary and yielded strong
performance when simply concatenated with the
skip-thought features.

Question classification We also conduct ex-
periments on the TREC Question Classification
dataset of Li and Roth (2002). Following Kiros
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Method Accuracy

st 91.4
Bi-st 89.4
Combine-st 92.2
AE 84.2
vae 87.0
cbow 87.3
vae, combine-st 92.0

rnn 90.2
cnn 93.6

Table 10: Results for TREC Question Classifica-
tion.

Standard Inputless Decoder
rnnlm vae rnnlm vae

Dword 464 353 305 499
Dlstm 337 191 68 350
Dz – 13 – 111
kr 0.66 0.62 – –

Table 11: Automatically selected hyperparameter
values used for the models used in the Penn Tree-
bank language modeling experiments. kr is the
keep rate for word dropout.

et al. (2015), we train an `2-regularized softmax
classifier with 10-fold cross-validation to set the
regularization. Note that using a linear classifier
like this one may disadvantage our representations
here, since the Gaussian distribution over hidden
codes in a vae is likely to discourage linear sepa-
rability.

We present results in Table 10. Here, ae is
a plain sequence autoencoder. We compare with
results from a bag of word vectors (cbow, Zhao
et al., 2015) and skip-thought (st). We also com-
pare with an rnn classifier (Zhao et al., 2015) and
a cnn classifier (Kim, 2014) both of which, un-
like our model, are optimized end-to-end. We were
not able to make the vae codes perform better
than cbow in this case, but they did outperform
features from the sequence autoencoder. Skip-
thought performed quite well, possibly because the
skip-thought training objective of next sentence
prediction is well aligned to this task: it essen-
tially trains the model to generate sentences that
address implicit open questions from the narrative
of the book. Combining the two representations
did not give any additional performance gain over
the base skip-thought model.

Appendix II: Hyperparameter
tuning

We extensively tune the hyperparameters of each
model using an automatic Bayesian hyperparame-
ter tuning algorithm (based on Snoek et al., 2012)

amazing , is n’t it ?
so , what is it ?
it hurts , isnt it ?
why would you do that ?
“ you can do it .
“ i can do it .
i ca n’t do it .
“ i can do it .
“ do n’t do it .
“ i can do it .
i could n’t do it .

i dont like it , he said .
i waited for what had happened .
it was almost thirty years ago .
it was over thirty years ago .
that was six years ago .
he had died two years ago .
ten , thirty years ago .
“ it ’s all right here .
“ everything is all right here .
“ it ’s all right here .
it ’s all right here .
we are all right here .
come here in five minutes .

this was the only way .
it was the only way .
it was her turn to blink .
it was hard to tell .
it was time to move on .
he had to do it again .
they all looked at each other .
they all turned to look back .
they both turned to face him .
they both turned and walked away .

im fine .
youre right .
“ all right .
you ’re right .
okay , fine .
“ okay , fine .
yes , right here .
no , not right now .
“ no , not right now .
“ talk to me right now .
please talk to me right now .
i ’ll talk to you right now .
“ i ’ll talk to you right now .
“ you need to talk to me now .
“ but you need to talk to me now .

Table 12: Selected homotopies between pairs of
random points in the latent vae space.

over development set data. We run the model with
each set of hyperpameters for 10 hours, operating
12 experiments in parallel, and choose the best set
of hyperparameters after 200 runs. Results for our
language modeling experiments are reported in Ta-
ble 11 on the next page.

Appendix III: Additional homotopies

Table 12 shows additional homotopies from our
model. We observe that intermediate sentences
are almost always grammatical, and often contain
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consistent topic, vocabulary and syntactic informa-
tion in local neighborhoods as they interpolate be-
tween the endpoint sentences. Because the model
is trained on fiction, including romance novels, the
topics are often rather dramatic.
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Abstract

The ability to capture time information is
essential to many natural language pro-
cessing and information retrieval applica-
tions. Therefore, a lexical resource asso-
ciating word senses to their temporal ori-
entation might be crucial for the computa-
tional tasks aiming at the interpretation of
language of time in texts. In this paper,
we propose a semi-supervised minimum
cuts strategy that makes use of WordNet
glosses and semantic relations to supple-
ment WordNet entries with temporal infor-
mation. Intrinsic and extrinsic evaluations
show that our approach outperforms prior
semi-supervised non-graph classifiers.

1 Introduction

Recognizing temporal information can signifi-
cantly improve the functionality of information re-
trieval (Campos et al., 2014) and natural language
processing (Mani et al., 2005) applications.

Most text applications have been relying on
rule-based time taggers such as HeidelTime (Ströt-
gen and Gertz, 2015) or SUTime (Chang and Man-
ning, 2012) to identify and normalize time men-
tions in texts. Although interesting levels of per-
formance have been seen (UzZaman et al., 2013),
their coverage is limited to the finite number of
rules they implement. Let’s take the following
sentence: “Apple’s iPhone is currently one of the
most popular smartphone”. When labeled by SU-
Time1 or HeidelTime2, the adverb currently is cor-
rectly tagged with the PRESENT_REF value. How-
ever, if we change the sentence to “Apple’s iPhone

1http://nlp.stanford.edu:8080/sutime/
process

2http://heideltime.ifi.uni-heidelberg.
de/heideltime/

is one of the most popular smartphones at the
present day”, no temporal mention is found, al-
though one may expect that within this context
currently and present day share some equivalent
temporal dimension. Such systems would cer-
tainly benefit from the existence of a temporal re-
source enumerating a large set of possible time
variants (Kuzey et al., 2016).

In parallel, new trends have emerged in the con-
text of human temporal orientation (Schwartz et
al., 2015). The underlying idea is to understand
how past, present, and future emphasis in text
may affect people’s finances, health, and happi-
ness. For that purpose, temporal classifiers are
built to detect the overall temporal dimension of a
given sentence. For instance, the following Face-
book post “can’t wait to get a pint tonight” would
be tagged as FUTURE. Successful features include
timexes, specific temporal (past, present, future)
words from a commercial dictionary, but also n-
grams, thus indicating that temporality may be
embodied by multi-word terms, whose temporal
orientation is unknown.

As a consequence, discovering the temporal ori-
entation of words is a challenging issue that may
benefit many text applications. Whereas most
prior studies have focused on temporal expres-
sions and events, there has been a lack of work
looking at the temporal orientation of word senses.
In this paper, we focus on automatically time-
tagging word senses in WordNet (Miller, 1995)
as past, present, future, or atemporal based on
their glosses and relational semantic structures in
the line of Dias et al. (2014) and Hasanuzza-
man et al. (2014b). In particular, we propose
a semi-supervised graph-based strategy that relies
on the max-flow min-cut theorem (Papadimitriou
and Steiglitz, 1998; Blum and Chawla, 2001),
that finds successive minimum cuts in a connected
graph to time-tag each synset as one of the four
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dimensions. Compared to previous work based on
propagation strategies (Dias et al., 2014; Hasanuz-
zaman et al., 2014), the exploration of WordNet’s
graph structure with minimum cuts allows us to
independently model both temporal connotation
and semantic denotation. In order to evaluate
our proposal, both intrinsic (inter-annotator agree-
ment and temporal sense classification) and extrin-
sic (temporal sentence classification and tempo-
ral relation annotation) evaluations have been per-
formed. In both cases, the proposed methodology
outperformed state-of-the-art approaches.

2 Related Work

Dias et al. (2014) developed TempoWordNet
(TWnL), an extension of WordNet, where each
synset is augmented with its temporal connotation
(past, present, future, or atemporal). It mainly re-
lies on the quantitative analysis of the glosses as-
sociated to synsets, and on the use of the result-
ing vector space model representations for semi-
supervised synset classification. In particular,
temporal classifiers are learned over manually la-
beled synsets (seed list), and new learning synsets
are chosen based on their specific semantic rela-
tion (e.g. hyponymy) with synsets from the seed
list. Their class is given by the synset they have
been propagated from. This process is iterated un-
til cross-validation accuracy drops. The final clas-
sifier is used to time-tag all WordNet synsets.

While Hasanuzzaman et al. (2014) show that
TWnL can be useful to time-tag web queries, less
comprehensive results are shown in Filannino and
Nenadic (2014), where TWnL learning features
do not lead to any classification improvements.
Moreover, Dias et al. (2014) mention that exclu-
sive semantic propagation is error-prone as some
semantic relations do not preserve temporal con-
notation. As a consequence, Hasanuzzaman et al.
(2014b) defined two different propagation strate-
gies: probabilistic and hybrid, leading to TWnP
and TWnH, respectively. They follow the exact
same idea of Dias et al. (2014), but for probabilis-
tic propagation, new synsets are chosen from the
most confidently classified synsets over the whole
of WordNet at each iteration. In addition, for the
hybrid expansion, new learning instances are in-
cluded if they are highly representative of a given
class but at the same time demonstrate high av-
erage semantic similarity over the seed list. Al-
though some slight improvements were seen, no

conclusive position could be reached due to the
limited scope of the evaluation as well as discrep-
ancies between human judgment, and automatic
classification results.

One of the main weaknesses of the aforemen-
tioned approaches is that they mostly rely on the
ability of the methodology to provide new learning
instances by propagation within WordNet. How-
ever, in all cases, they do not take proper advan-
tage of the relational structure of WordNet. In-
deed, semantic coherence (for TWnL and TWnH)
is only calculated between new instances and
synsets from the seed list, but never between new
instances themselves.3 However, one may ex-
pect that highly correlated new instances should
be treated commonly. One solution to deal with
this problem is to define the classification problem
as an optimization process, where both semantic
coherence and temporal orientation are treated as
combined objectives. For that purpose, we pro-
pose to adapt the standard s-t mincut algorithm
(Blum and Chawla, 2001) to our particular semi-
supervised multi-class learning problem.

3 Learning with s-t mincut

The s-t mincut algorithm is based on finding min-
imum cuts in a graph, and uses pairwise relation-
ships among examples in order to learn from both
labeled and unlabeled data. In particular, it out-
puts a classification corresponding to partitioning
a graph in a way that minimizes the number of
similar pairs of examples that are given different
labels.

3.1 Main Principles

Let us consider n items x1, . . .xn to divide into two
classes C1 and C2 based on two different types of
information. The first information type – the in-
dividual score denoted as ind j(xi) – measures the
non-negative estimate of each xi belonging to class
C j based on the features of xi alone. The second
information type – the association score denoted
as assoc(xi,xk) – represents the non-negative esti-
mate of how important is that xi and xk be in the
same class.

This situation can be represented as an undi-
rected graph G with vertices {v1, . . . ,vn,s, t},
where s and t are respectively the source and sink
vertices, which represent each class label and one
vertex vi corresponds to a given item xi. If s

3This may occur only through a side-effect process.
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(resp. t) corresponds to class C1 (resp. C2), we
add n edges (s,vi), each with weight ind1(xi), and
n edges (vi, t), each with weight ind2(xi). Fi-
nally, we add

(n
2

)
edges (vi,vk), each with weight

assoc(xi,xk).
The learning process corresponds to finding the

minimum cut in G that minimizes some cost func-
tion, where (i) a cut (S,T ) of G is a partition of
its nodes into sets S = {s}∪ S′ and T = {t}∪ T ′

where s /∈ S′ and t /∈ T ′, and (ii) its cost cost(S,T )
is the sum of the weights of all edges crossing
from S to T , as defined in equation (1):

∑
x∈C1

ind2(x)+ ∑
x∈C2

ind1(x)+ ∑
xi∈C1,xk∈C2

assoc(xi,xk) (1)

3.2 Advantages and Disadvantages

Formulating the task of temporality detection on
word senses in terms of graphs allows us to model
item-specific and pair-wise information indepen-
dently. As a consequence, machine learning al-
gorithms representing temporal indicators can be
used to derive individual scores for a particular
sense in isolation. The edges weighted by the indi-
vidual scores of a vertex (sense) to the source/sink
can be interpreted as the probability of a sense be-
longing to a given temporal class without taking
into account similarity to other senses.

At the same time, we can use conceptual-
semantic relations from WordNet to derive the as-
sociation scores. The edges between two senses
weighted by the association scores can indicate
how similar two senses are. If two senses are
connected via a temporality-preserving relation,
they are likely to both belong to a temporal
class. For instance, hyponymy relation is usually
a temporality-preserving relation,4 where two hy-
ponyms such as present, nowadays — the period
of time that is happening now and now — the mo-
mentary present are both temporal.

To detect the temporal orientation of word
senses, Dias et al. (2014) and Hasanuzzaman et
al. (2014b) adopted a single view instead of two
views on the data. The ability to combine two
views on the data is precisely one of the strengths
of the s-t mincut strategy.

Second, the s-t mincut algorithm is a semi-
supervised framework. This is essential as the ex-
isting labeled datasets for our problem are small.

4Although Dias et al. (2014) show that this is not always
the case.

In addition, glosses are short, leading to sparse
high-dimensional vectors in standard feature rep-
resentations. Furthermore, WordNet connections
between different parts of the WordNet hierarchy
can be sparse, leading to relatively isolated senses
in a graph in a supervised framework. The min-
cut strategy allows us to import unlabeled data that
can serve as bridges to isolated components. More
importantly, the unlabeled data can be related to
the labeled data (by some WordNet relation) and
might help to pull unlabeled data to the right cuts.

It is also important to note that transductive
methods such as the s-t mincut algorithm partic-
ularly suit our case study as all learning exam-
ples are known. However, the addition of new
word senses would require the re-application of
the method to the entire graph. Indeed, the model
does not learn to predict unseen examples.

3.3 Methodology
The formulation of our mincut strategy for tempo-
ral classification of synsets involves the following
steps.

Step I. We define two vertices s (source) and
t (sink), which correspond to the temporal and
atemporal categories, respectively. Vertices s and
t are classification vertices, and all other vertices
(labeled, unlabeled, and test) are example vertices.

Step II. The labeled examples are connected to
the classification vertices they belong to via edges
with high constant non-negative weight. The un-
labeled examples are connected to the classifica-
tion vertices via edges weighted with non-negative
scores that indicate the degree of belonging to both
the temporal and atemporal categories. Weights
(i.e. individual scores) are calculated based on a
supervised classifier learned from labeled exam-
ples (cf. Section 3.4).

Step III. For all pairs of example vertices, for
which there exists a listed semantic relation in
WordNet, an edge is created. This one receives
a non-negative score that indicates the degree of
semantic relationship between both vertices and
corresponds to the association score (cf. Section
3.5).

Step IV. The max-flow theorem (Papadimitriou
and Steiglitz, 1998) is applied over the built graph
to find the minimum s-t cut.5

5Max-flow algorithms show polynomial asymptotic run-
ning times and near-linear running times in practice.
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Step V. The temporal partition is then divided
into three temporal sub-partitions (past, present,
and future) following a hierarchical strategy. First,
we define two new vertices s and t, which cor-
respond to past and not_past categories, respec-
tively, and follow steps II through IV . This divides
the subgraph into two disjoint subsets, i.e. past
synsets, and synsets belonging either to present
or future. Finally, we repeat steps II through IV ,
where vertices s and t correspond to future and
present, respectively (cf. Section 3.6).

3.4 Individual Scores
The non-negative edge weights to s and t denote
how an example vertex is related to a specific
class. For the unlabeled and test examples, a su-
pervised learning strategy is used to assign edge
weights. Each synset from a labeled dataset – we
use the dataset provided by Dias et al. (2014) –
which contains past, present, future and atempo-
ral senses is represented by its gloss encoded as
a vector of word unigrams weighted by their fre-
quency.6 Then, depending on the classification
task, a two-class SVM classifier is built from the
Weka platform.7 In particular, the SVM member-
ship scores are transformed into probability esti-
mates based on Platt calibration (Niculescu-Mizil
and Caruana, 2005), which are directly mapped to
edge weights. In Table 1, we present the 10-fold
cross-validation results for all classifiers tested in
the context of this work.

In order to ensure that the mincut procedure
does not reverse the labels of the labeled exam-
ples, a high non-negative constant weight of 3 is
assigned to any edge between a labeled vertex and
its corresponding classification vertex, and a low
non-negative constant weight of 0.001 to the edge
to the other classification vertex. This is a classi-
cal implementation of +∞ and 1/+ ∞ theoretical
weights.

3.5 Association Scores
While formulating the graph, we connect two ex-
ample vertices by an edge if they are linked by one
of the 10 WordNet relations presented in Table 2.
The main motivation towards using other relations
in addition to the most frequently encoded rela-
tions (e.g. hypernym/hyponym) among synsets in
WordNet is to achieve high graph connectivity.

6Other sentence representations could be tested but this is
out of the scope of this paper.

7http://www.cs.waikato.ac.nz/ml/weka/

Two class problem Accuracy F1
temporal vs. atemporal 92.3 94.2

past vs. not_past 90.4 90.2
present vs. not_present 85.3 85.2

future vs. not_future 90.1 89.9
present vs. future 87.3 86.4

Table 1: SVM results for individual scores.

Wordnet Relation #same #different Weight
Direct-Hyponym 73268 7246 0.91

Similar-to 6587 1914 0.77
Direct-Hypernym 61914 9600 0.76

Attribute 350 109 0.76
Also-see 1037 337 0.75

Troponym 6917 2651 0.72
Derived-from 3630 1947 0.65

Domain 2380 2895 0.45
Domain-member 2380 2895 0.45

Antonym 1905 3614 0.35

Table 2: Association scores with DiffWt Method.

Different weights can be assigned to differ-
ent relations to reflect the degree to which they
preserve temporality. Therefore, we adopt two
strategies to assign weights to different WordNet
relations. The first method (ScWt) assigns the
same constant weight of 1.0 to all WordNet re-
lations. The second method (DiffWt) considers
several degrees of preserving temporality. In or-
der to do this, we adopt a simple rule-based strat-
egy to produce a large noisy set of temporal and
atemporal synsets from WordNet. First, we take
the list of 30 hand-crafted temporal seed synsets
(equally distributed over past, present, and fu-
ture) proposed in Dias et al. (2014) along with
their direct hyponym synsets. This forms a tem-
poral list. Then, each WordNet synset that con-
tains a word sense from the temporal list in its
gloss is ‘roughly’ classified as temporal. Other-
wise, it is considered as atemporal. We then sim-
ply count how often two synsets connected by a
given relation have the same or different tempo-
ral dimension. Finally, the weight is calculated by
#same/(#same+#different) and corresponds to the
association score between two example vertices.
Results are reported in Table 2.

Note that the exact same strategy is used for the
two hierarchical steps, for which new association
scores are calculated.

3.6 Hierarchical Strategy

The order of the hierarchical process is driven by
classifier accuracy over the labeled dataset pro-
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vided by Dias et al. (2014) (cf. Section 4). In or-
der to give the maximum chance of good partition-
ing at the second level of the hierarchy, we choose
the classification problem to handle based on the
SVM classifier that demonstrates highest accuracy
over the following problems: past vs. not_past,
present vs. not_present, and future vs. not_future.
In so doing, we can rely on the best possible in-
dividual score function. As can be seen in Table
1, this is the case for past vs. not_past, which
happens to be the first sub-partitioning problem.
The third level is straightforward, i.e. present vs.
future. We are aware that this simple strategy is
prone to bias. However, as manual evaluation of
the final resource is involved, producing more re-
sults was logistically hard to handle. Nonetheless,
testing all combinations remains work that needs
to be conducted in the future.

4 Datasets

Labeled Dataset. We used a list that consists
of 632 temporal synsets and an equal number of
atemporal synsets provided by Dias et al. (2014)
as labeled data for our experiments. Temporal
synsets are distributed as follows: 210 synsets
marked as past, 291 as present, and 131 as future.

Test Dataset. As the labeled dataset is small,
we created an annotation task using the Crowd-
Flower platform8 in order to produce a testset.
For the annotation task, 398 synsets equally dis-
tributed over nouns, verbs, adjectives, and adverbs
along with their lemmas and glosses were ran-
domly selected from WordNet9 as representative
of the whole WordNet. Note that this number is
a statistically significant representative sample of
all WordNet synsets calculated as defined in Israel
(1992).

The annotators were expected to answer two
questions for a given synset (lemmas and gloss
were also provided). While the first question is
related to the decision as to whether a synset is
temporal or atemporal, the motivation behind the
second question is to collect a more fine-grained
(past, present, future) gold-standard.10 The re-
liability of the annotators was evaluated on 60
control synsets from the labeled dataset, and 10

8http://www.crowdflower.com/
9WordNet version 3.0 was used and all sysnsets were se-

lected outside the labeled dataset.
10Details of the annotation guidelines are out of the scope

of this paper.

ambiguous synsets associated to more than one
temporal dimension. Similary to Tekiroglu et al.
(2014), raters who scored at least 70% accuracy
on average on both sets were considered to be reli-
able. Finally, each synset was annotated by at least
10 reliable raters.

To have a concrete idea about the agreement be-
tween annotators, we calculated the majority class
for each synset in our dataset. A synset belongs
to a majority class k if the most frequent annota-
tion for the synset was selected by at least k an-
notators. As a consequence, a large percentage
of synsets belonging to high majority classes are
symptomatic of good inter-annotator agreement.
Table 3 shows the observed agreement. Similarly
to Özbal et al. (2011), we consider all annotations
with a majority class greater than 5 as reliable. In
this case, for the temporal vs. atemporal annota-
tion scheme, 84.83% of the synsets were annotated
identically by the majority of annotators, while for
past, present, and future, 72.36% of the annota-
tions fell into this case. As such, we can be con-
fident that the annotation process was successful
and the dataset is reliable.

5 Intrinsic and Extrinsic Evaluations

Different intrinsic and extrinsic evaluations have
been proposed in prior studies. We compare our
work to the same tasks as proposed by Dias et al.
(2014) and Hasanuzzaman et al. (2014b), and in-
troduce an extra experiment on temporal relation
annotation.

5.1 Inter-Annotator Agreement

In order to compare our approach to prior works,
we adopted a similar evaluation strategy as pro-
posed in Dias et al. (2014) and Hasanuzzaman et
al. (2014b). To assess human judgment regarding
the temporal parts, inter-rater agreement with mul-
tiple raters (i.e. 3 human annotators with the 4th
annotator being the classifier) was performed over
a set of 398 randomly selected synsets. The free-
marginal multirater kappa (Randolph, 2005) and
the fixed-marginal multirater kappa (Siegel and
Castellan, 1988) values are reported in Table 4 and
assess moderate agreement for previous versions
of TempoWordNet (TWnL, TWnP and TWnH),
while good agreement is obtained for the resources
constructed by mincuts with both ScWt (MC1)
and DiffWt (MC2) weighting schemes. Note that
slightly different results than the ones reported by
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Majority Class 3 4 5 6 7 8 9 10
Synset as temporal or atemporal 0.20 1.21 4.32 10.69 14.56 29.34 19.23 11.01

Temporal synset into past, present, or future 1.23 3.01 10.45 20.22 16.56 12.34 14.23 9.01

Table 3: Percentage of synsets in each majority class.

Hasanuzzaman et al. (2014b) are seen as the num-
ber of annotated synsets is much bigger in our ex-
periment (398 instead of 50). These agreement
values provide a first and promising estimate of the
improvement over the previous versions of Tem-
poWordNet. We plan to confirm that in the future
by comparing the systems to a true reference in-
stead of observing the agreement between the sys-
tems and a multi-reference as we currently do.

Metric TWnL TWnP TWnH MC1 MC2
Fixed-marginal κ 0.51 0.46 0.54 0.71 0.78
Free-marginal κ 0.52 0.55 0.59 0.85 0.86

Table 4: Inter-annotator agreement.

5.2 Word Sense Classification
In order to compare our semi-supervised min-
cut approach to a reasonable baseline, we use a
rule-based approach to classify test data into past,
present, future, or atemporal categories. First,
time expressions in glosses are identified and re-
solved via SUTime tagger (Chang and Manning,
2012). Then, for each synset, its time tags (e.g.
FUTURE_REF) are considered as the temporal
class for that particular synset. In cases where
more than one temporal expression was observed
(which occurred in less than 1% of the cases), the
majority class is selected. If no time expression is
identified by the time tagger, the list composed of
30 hand-crafted temporal seeds proposed in Dias
et al. (2014) along with their direct hyponyms and
a given list of standard temporal adverbials, prepo-
sitions and adjectives are used to classify synsets
with one temporal dimension or atemporal. The
performance of this simple rule-based approach is
measured for the test data and presented in Table
5 as the baseline configuration. Note that to fig-
ure out the contribution of word sense disambigua-
tion, the classical Lesk algorithm (Lesk, 1986) was
used to choose the right sense for a given word in-
stead of the most frequent sense. We found that
this contribution is negligible (< 0.4% improve-
ment in accuracy).

Comparative results are also presented against
prior works: TWnL, TWnP, and TWnH. Table 5

shows that our configurations (MC1, MC2) per-
form significantly better than previous approaches.
In particular, they achieve highest accuracies for
temporal vs. atemporal and past, present, future
classifications with improvements of 11.3% and
10.3%, respectively, over the second-best strat-
egy, namely TWnH. Note that this enhancement
is mainly due to higher precision overall.

Different training data sizes. In order to better
understand the importance of the size of labeled
data in the context of semi-supervised classifica-
tion strategies, we propose the following experi-
ments.

We randomly generate equally distributed sub-
sets of training data Li (from a set of 632 tem-
poral and 632 atemporal synsets) such that L1 ⊂
L2 ⊂ L3 . . .⊂ Ln. For each labeled dataset, we run
the mincut strategy with DiffWt (i.e. MC2) and
compare it to the hybrid propagation proposed by
Hasanuzzaman et al. (2014b) (i.e. TWnH). Ac-
curacies of both approaches over the test data are
presented in Table 6.

The s-t mincut approach performs consistently
better than the propagation strategy. In particular,
we show that with 400 labeled examples better re-
sults can be obtained than relying on 1264 training
items within a propagation paradigm.

Considering the above findings, we selected the
MC2 configuration obtained with maximum la-
beled data for the extrinsic experiments, which
includes 110,002 atemporal synsets, 1733 past
synsets, 4193 present synsets, and 1730 future
synsets.

5.3 Temporal Sentence Classification

Temporal sentence classification has traditionally
been used as the baseline extrinsic evaluation and
consists of labeling a given sentence as past,
present or future. In order to produce compara-
tive results with prior works, we test our methodol-
ogy on the balanced dataset produced in Dias et al.
(2014), which consists of 1038 sentences equally
distributed as past, present and future.

Moreover, we propose to extend these experi-
ments with a corpus of 300 temporal posts from
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Method Baseline TWnL TWnP TWnH MC1 MC2
Accuracy 48.8 65.6 62.0 68.4 74.4 79.7

temporal (p, r, f1) (52.0, 56.3, 54.0) (63.5, 82.1, 71.6) (55.8, 84.2, 67.1) (67.4, 81.9, 73.9) (84.5, 79.8, 82.0) (89.1, 79.3, 83.9)
atemporal (p, r, f1) (58.2, 54.2, 56.1) (68.3, 79.2, 73.3) (58.9, 75.6, 66.2) (69.3, 82.6, 75.3) (81.3, 86.6, 83.8 ) (87.4, 90.8, 89.1)

Accuracy 45.6 62.0 59.6 65.7 72.7 76.0
past (p, r, f1) (49.3, 46.7, 47.9) (61.2, 73.0, 66.5) (59.3, 79.1, 67.7) (63.1, 75.0, 68.0) (71.1, 79.5, 75.0) (81.2, 78.5, 79.8)

present (p, r, f1) (55.3, 48.2, 51.5) (63.0, 75.2, 68.5) (58.0, 78.2 66.0 ) (77.4, 69.2, 73.0) (73.0, 71.5, 72.2) (85.1, 74.7, 79.0)
future (p, r, f1) (48.5, 49.0, 48.7) (62.1, 71.9, 66.6) (57.0, 83.1, 67.6) (60.0, 75.6, 66.8) (79.4, 69.5, 74.0) (86.1, 70.0, 77.2)

Table 5: Accuracy for temporal vs. atemporal and past, present, future classifications using different
methods measured over test data. Results are broken down by precision (p), recall (r), and f1-measure
(f1) scores.

Twitter. This corpus contains 100 tweets for each
temporal class, which have been time-tagged us-
ing the CrowdFlower platformḟootnoteAnnotation
details are out of the scope of this paper. For both
experiments, each sentence/tweet is represented as
a semantic vector space model in the exact same
way as proposed in Dias et al. (2014). Thus, a
given learning example is a feature vector, where
each attribute is either a unigram or a synonym of
any temporal word contained in the sentence/tweet
and its value is the tf.idf. Note that word sense
disambiguation is performed using the Lesk algo-
rithm (Lesk, 1986).

Amount of labeled data TWnH MC2
100 59.8 64.3
200 62.6 67.5
400 65.5 73.7
600 67.4 77.6
800 67.9 79.2

1000 68.0 79.0
1264 (all) 68.4 79.7

Table 6: Accuracy results with different sizes of
labeled data for temporal vs. atemporal classifica-
tion.

Comparative classification results are reported
in Table 7 and show small improvements in the
mincut strategy, when compared to propagation
strategies. In particular, for tweet classification,
TWnP shows similar results mainly due to its
large coverage of temporal senses (counterbal-
anced by low precision as confirmed by Table 5).
Indeed, TWnP contains 53,001 temporal synsets
while MC2 only has 7656 temporal synsets. Note
that the semantic enhancement is limited only to
the synonymy relation, which drastically restricts
the benefit of the semantic vector space model
and due to the limited number of analyzed sen-
tences/tweets, huge improvements were not ex-
pected.

5.4 Temporal Relation Annotation

Finally, we focus on the problem of classify-
ing temporal relations as proposed in TempEval-
3, assuming that the identification of events and
timexes is already performed.

In order to produce comparative results with the
best-performing system at TempEval-3, namely
UTTime (Laokulrat et al., 2013) for the above
task, we follow the guidelines and use the same
datasets provided by the organizers (UzZaman et
al., 2013).

In particular, we restrict our experiment to a
subset of relations, namely BEFORE (past), AF-
TER (future), and INCLUDES (present), with all
other relations mapped to the NA−RELATION
for the following two subtasks: event to docu-
ment creation time and event to same sentence
event. This choice is motivated by the complexity
of mapping the 14 relations of TempEval-3 into
three temporal classes (past, present, future). As
such, we test a simpler configuration of the origi-
nal problem, but we do expect to draw conclusive
remarks as minimum bias is introduced.

Note that the underlying idea of this evaluation
is to measure the intuition expressed by (Kuzey
et al., 2016) that temporal information extraction
systems may benefit from the existence of tempo-
ral resources. If this is confirmed, deeper research
should be conducted to adequately use such a pro-
posed temporal resource for the whole task.

To solve this classification problem, we adopt
a simple supervised learning strategy based on
state-of-the-art characteristics, plus features from
a time-augmented version of WordNet. In partic-
ular, each pair of entities to be classified as BE-
FORE, AFTER, INCLUDES or NA-RELATION
is encoded with the following features:
- String features: the tokens and lemmas of each
entity pair;
- Grammatical features: the part-of-speech tags
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Method TWnL TWnP TWnH MC2
Sentence classification (p,r,f1) (69.7,66.1,66.7) (68.2,70.5,69.3) (69.8,67.6,68.6) (73.3,70.1 71.4)

Tweet classification (p,r,f1) (51.4,47.1,49.1) (50.4,52.8,51.5) (51.8,48.2,49.8) (52.8,50.6,51.6)

Table 7: Results for temporal sentence and tweet classification performed on 10-fold cross validation
with SVM with Weka default parameters.

of the entity pair (only for event-event pairs), and
a binary feature indicating whether the entity pair
has the same PoS tag;
- Entity attributes: the entity pair attributes as
provided in the dataset. These include class, tense,
aspect, and polarity for events, while the attributes
of time expressions are its type, value, and dct
(indicating whether a time expression is the doc-
ument creation time or not);
- Dependency relation: the type of dependency
and the dependency order between entities;
- Textual context: the textual order of the entity
pair;
- Temporal lexicon: the relative frequency of
each temporal category (past, present, future) ap-
pearing in the context of an entity pair; the context
is considered as (i) the text appearing between en-
tities, (ii) the text of all tokens in a time expres-
sion, and (iii) 5 tokens around time expressions or
events. The features are encoded as the frequency
with which a word from a temporal category ap-
peared in the text divided by the total number of
tokens in the text.

Approaches Precision Recall F1
UTTime 57.5 58.7 58.1
TRMC2 66.9 68.7 67.7

TRTWnH 61.2 62.5 61.8

Table 8: Temporal relation classification results.

Based on this feature representation, the two
best classifiers for event to document creation time
and event to same sentence event subtasks are se-
lected via a grid search over parameter settings.
The grid is evaluated with a 5-fold cross vali-
dation on the training data and SVM classifiers
are chosen with default parameters of the Weka
platform. This produces two systems, namely
TRMC2 and TRTWnH depending on the tempo-
ral lexicon used: MC2 or TWnH. Note that we
also measure the performance of UTTime for the
settings stated above.

Table 8 presents comparative evaluations. Re-

sults show that TRMC2 outperforms all other
approaches and achieves highest performance in
terms of precision, recall, and F1-measure. How-
ever, more important still is the fact that a sim-
ple learning strategy with some temporal lexicon
(MC2 or TWnH) leads to improved results, when
compared to some solution that does not take ad-
vantage of such a resource (UTTime, here).

Features F1 Features F1
mfc baseline 33.55 all features 67.7
string alone 45.06 w/o string 65.70

grammatical alone 46.96 w/o grammatical 64.85
entity alone 52.23 w/o entity 62.08

dependency alone 48.65 w/o dependency 65.06
textual alone 46.82 w/o textual 64.96

temporal alone 51.62 w/o temporal 62.76

Table 9: Feature ablation analysis. The most fre-
quent class baseline (mfc).

In order to measure the real impact of the tem-
poral lexicon features, we present feature ablation
analyses in Table 9. Results clearly show the im-
portance of the features based on the temporal lex-
icon, being the second best-performing feature set.
As a consequence, we may conclude that improve-
ments in temporal analysis may be obtained by the
correct use of some temporal lexical resource.

6 Conclusions

In this paper, we proposed a semi-supervised min-
cut strategy to address the relatively unexplored
problem of associating word senses with their un-
derlying temporal dimensions. We produce a re-
liable temporal lexical resource by automatically
time-tagging WordNet synsets into past, present,
future or atemporal categories. The underlying
idea is that instead of using a single view on the
data (as done in prior work), multiple views re-
sult in better temporal classification accuracy. In
particular, both intrinsic and extrinsic experimen-
tal results confirm the soundness of the proposed
approach and support our initial hypotheses. Note
that the all resources created within this work are
publicly available.
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Abstract

In this work, we propose a semi-
supervised method for short text clus-
tering, where we represent texts as dis-
tributed vectors with neural networks, and
use a small amount of labeled data to
specify our intention for clustering. We
design a novel objective to combine the
representation learning process and the k-
means clustering process together, and op-
timize the objective with both labeled data
and unlabeled data iteratively until conver-
gence through three steps: (1) assign each
short text to its nearest centroid based on
its representation from the current neural
networks; (2) re-estimate the cluster cen-
troids based on cluster assignments from
step (1); (3) update neural networks ac-
cording to the objective by keeping cen-
troids and cluster assignments fixed. Ex-
perimental results on four datasets show
that our method works significantly better
than several other text clustering methods.

1 Introduction

Text clustering is a fundamental problem in text
mining and information retrieval. Its task is to
group similar texts together such that texts within
a cluster are more similar to texts in other clus-
ters. Usually, a text is represented as a bag-of-
words or term frequency-inverse document fre-
quency (TF-IDF) vector, and then the k-means al-
gorithm (MacQueen, 1967) is performed to parti-
tion a set of texts into homogeneous groups.

However, when dealing with short texts, the
characteristics of short text and clustering task
raise several issues for the conventional unsuper-
vised clustering algorithms. First, the number of
uniqe words in each short text is small, as a re-

(a) What’s the color of apples?
(b) When will this apple be ripe?
(c) Do you like apples?
(d) What’s the color of oranges?
(e) When will this orange be ripe?
(f) Do you like oranges?

Table 1: Examples for short text clustering.

sult, the lexcical sparsity issue usually leads to
poor clustering quality (Dhillon and Guan, 2003).
Second, for a specific short text clustering task,
we have prior knowledge or particular intentions
before clustering, while fully unsupervised ap-
proaches may learn some classes the other way
around. Take the sentences in Table 1 for exam-
ple, those sentences can be clustered into different
partitions based on different intentions: apple {a,
b, c} and orange {d, e, f} with a fruit type inten-
tion, or what-question {a, d}, when-question {b,
e}, and yes/no-question cluster {c, f} with a ques-
tion type intension.

To address the lexical sparity issue, one direc-
tion is to enrich text representations by extracting
features and relations from Wikipedia (Banerjee et
al., 2007) or an ontology (Fodeh et al., 2011). But
this approach requires the annotated knowledge,
which is also language dependent. So the other
direction, which directly encode texts into dis-
tributed vectors with neural networks (Hinton and
Salakhutdinov, 2006; Xu et al., 2015), becomes
more interesting. To tackle the second problem,
semi-supervised approaches (e.g. (Bilenko et al.,
2004; Davidson and Basu, 2007; Bair, 2013)) have
gained significant popularity in the past decades.
Our question is can we have a unified model to in-
tegrate neural networks into the semi-supervised
framework?

In this paper, we propose a unified framework
for the short text clustering task. We employ a
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deep neural network model to represent short sen-
tences, and integrate it into a semi-supervised al-
gorithm. Concretely, we extend the objective in
the classical unsupervised k-means algorithm by
adding a penalty term from labeled data. Thus, the
new objective covers three key groups of parame-
ters: centroids of clusters, the cluster assignment
for each text, and the parameters within deep neu-
ral networks. In the training procedure, we start
from random initialization of centroids and neu-
ral networks, and then optimize the objective iter-
atively through three steps until converge:

(1) assign each short text to its nearest centroid
based on its representation from the current
neural networks;

(2) re-estimate cluster centroids based on cluster
assignments from step (1);

(3) update neural networks according to the ob-
jective by keeping centroids and cluster as-
signments fixed.

Experimental results on four different datasets
show that our method achieves significant im-
provements over several other text clustering
methods.

In following parts, we first describe our neu-
ral network models for text representation (Sec-
tion 2). Then we introduce our semi-supervised
clustering method and the learning algorithm
(Section 3). Finally, we evaluate our method on
four different datasets (Section 4).

2 Representation Learning for Short
Texts

We represent each word with a dense vector w, so
that a short text s is first represented as a matrix
S = [w1, ..., w|s|], which is a concatenation of all
vectors of w in s, |s| is the length of s. Then we
design two different types of neural networks to
ingest the word vector sequence S: the convolu-
tional neural networks (CNN) and the long short-
term memory (LSTM). More formally, we define
the presentation function as x = f(s), where x
represents the vector of the text s. We test two
encoding functions (CNN and LSTM) in our ex-
periments.

Inspired from Kim (2014), our CNN model
views the sequence of word vectors as a matrix,
and applies two sequential operations: convolution
and max-pooling. Then, a fully connected layer is

…	  …	  

…	  …	  

convolution operation 

max-pooling operation 

fully connected layer  

Figure 1: CNN for text representation learning.

LSTM LSTM LSTM ……	  

w1 w2 wn 

Mean 

Figure 2: LSTM for text representation learning.

employed to convert the final representation vector
into a fixed size. Figure 1 gives the diagram of the
CNN model. In the convolution operation, we de-
fine a list of filters {wo}, where the shape of each
filter is d × h, d is the dimension of word vectors
and h is the window size. Each filter is applied to a
patch (a window size h of vectors) of S, and gen-
erates a feature. We apply this filter to all possible
patches in S, and produce a series of features. The
number of features depends on the shape of the
filter wo and the length of the input short text. To
deal with variable feature size, we perform a max-
pooling operation over all the features to select the
maximum value. Therefore, after the two opera-
tions, each filter generates only one feature. We
define several filters by varying the window size
and the initial values. Thus, a vector of features is
captured after the max-pooling operation, and the
feature dimension is equal to the number of filters.

Figure 2 gives the diagram of our LSTM model.
We implement the standard LSTM block de-
scribed in Graves (2012). Each word vector is
fed into the LSTM model sequentially, and the
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mean of the hidden states over the entire sentence
is taken as the final representation vector.

3 Semi-supervised Clustering for Short
Texts

3.1 Revisiting K-means Clustering
Given a set of texts {s1, s2, ..., sN}, we repre-
sent them as a set of data points {x1, x2, ..., xN},
where xi can be a bag-of-words or TF-IDF vector
in traditional approaches, or a dense vector in Sec-
tion 2. The task of text clustering is to partition
the data set into some number K of clusters, such
that the sum of the squared distance of each data
point to its closest cluster centroid is minimized.
For each data point xn, we define a set of binary
variables rnk ∈ {0, 1}, where k ∈ {1, ...,K} de-
scribing which of the K clusters xn is assigned to.
So that if xn is assigned to cluster k, then rnk = 1,
and rnj = 0 for j 6= k. Let’s define µk as the cen-
troid of the k-th cluster. We can then formulate the
objective function as

Junsup =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2 (1)

Our goal is the find the values of {rnk} and {µk}
so as to minimize Junsup.

The k-means algorithm optimizes Junsup

through the gradient descent approach, and results
in an iterative procedure (Bishop, 2006). Each it-
eration involves two steps: E-step and M-step. In
the E-step, the algorithm minimizes Junsup with
respect to {rnk} by keeping {µk} fixed. Junsup is
a linear function for {rnk}, so we can optimize for
each data point separately by simply assigning the
n-th data point to the closest cluster centroid. In
the M-step, the algorithm minimizes Junsup with
respect to {µk} by keeping {rnk} fixed. Junsup is
a quadratic function of {µk}, and it can be mini-
mized by setting its derivative with respect to {µk}
to zero.

∂Junsup

∂µk
= 2

N∑
n=1

rnk(xn − µk) = 0 (2)

Then, we can easily solve {µk} as

µk =
∑N

n=1 rnkxn∑N
n=1 rnk

(3)

In other words, µk is equal to the mean of all the
data points assigned to cluster k.

3.2 Semi-supervised K-means with Neural
Networks

The classical k-means algorithm only uses unla-
beled data, and solves the clustering problem un-
der the unsupervised learning framework. As al-
ready mentioned, the clustering results may not be
consistent to our intention. In order to acquire use-
ful clustering results, some supervised information
should be introduced into the learning procedure.
To this end, we employ a small amount of labeled
data to guide the clustering process.

Following Section 2, we represent each text s as
a dense vector x via neural networks f(s). Instead
of training the text representation model sepa-
rately, we integrate the training process into the k-
means algorithm, so that both the labeled data and
the unlabeled data can be used for representation
learning and text clustering. Let us denote the la-
beled data set as {(s1, y1), (s2, y2), ..., (sL, yL)},
and the unlabeled data set as {sL+1, sL+2, ..., sN},
where yi is the given label for si. We then define
the objective function as:

Jsemi = α

N∑
n=1

K∑
k=1

rnk‖f(sn)− µk‖2

+ (1− α)
L∑

n=1

{‖f(sn)− µgn‖2+∑
j 6=gn

[l + ‖f(sn)− µgn‖2 − ‖f(sn)− µj‖2]+}

(4)

The objective function contains two terms. The
first term is adapted from the unsupervised k-
means algorithm in Eq. (1), and the second term is
defined to encourage labeled data being clustered
in correlation with the given labels. α ∈ [0, 1]
is used to tune the importance of unlabeled data.
The second term contains two parts. The first part
penalizes large distance between each labeled in-
stance and its correct cluster centroid, where gn =
G(yn) is the cluster ID mapped from the given la-
bel yn, and the mapping function G(·) is imple-
mented with the Hungarian algorithm (Munkres,
1957). The second part is denoted as a hinge loss
with a margin l, where [x]+ = max(x, 0). This
part incurs some loss if the distance to the correct
centroid is not shorter (by the margin l) than dis-
tances to any of incorrect cluster centroids.

There are three groups of parameters in Jsemi:
the cluster assignment of each text {rnk}, the clus-
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1. Initialize {µk} and f(·).
2. assign cluster: Assign each text to its nearest cluster centroid.
3. estimate centroid: Estimate the cluster centroids based on the cluster assignments from step 2.
4. update parameter: Update parameters in neural networks.
5. Repeat step 2 to 4 until convergence.

Table 2: Pseudocode for semi-supervised clustering

ter centroids {µk}, and the parameters within the
neural network model f(·). Our goal is to find
the values of {rnk}, {µk} and parameters in f(·),
so as to minimize Jsemi. Inspired from the k-
means algorithm, we design an algorithm to suc-
cessively minimize Jsemi with respect to {rnk},
{µk}, and parameters in f(·). Table 2 gives the
corresponding pseudocode. First, we initialize
the cluster centroids {µk} with the k-means++
strategy (Arthur and Vassilvitskii, 2007), and ran-
domly initialize all the parameters in the neural
network model. Then, the algorithm iteratively
goes through three steps (assign cluster, esti-
mate centroid, and update parameter) until Jsemi

converges.

The assign cluster step minimizes Jsemi with
respect to {rnk} by keeping f(·) and {µk} fixed.
Its goal is to assign a cluster ID for each data point.
We can see that the second term in Eq. (4) has no
relation with {rnk}. Thus, we only need to min-
imize the first term by assigning each text to its
nearest cluster centroid, which is identical to the
E-step in the k-means algorithm. In this step, we
also calculate the mappings between the given la-
bels {yi} and the cluster IDs (with the Hungarian
algorithm) based on cluster assignments of all la-
beled data.

The estimate centroid step minimizes Jsemi

with respect to {µk} by keeping {rnk} and f(·)
fixed, which corresponds to the M-step in the k-
means algorithm. It aims to estimate the cluster
centroids {µk} based on the cluster assignments
{rnk} from the assign cluster step. The second
term in Eq. (4) makes each labeled instance in-
volved in the estimating process of cluster cen-
troids. By solving ∂Jsemi/∂µk = 0, we get

µk =
∑N

n=1 αrnkf(sn) +
∑L

n=1wnkf(sn)∑N
n=1 αrnk +

∑L
n=1wnk

(5)

wnk = (1− α)(I
′
nk +

∑
j 6=gn

I
′′
nkj −

∑
j 6=gn

I
′′′
nkj)

I
′
nk = δ(k, gn)

I
′′
nkj = δ(k, j) · δ′

nj

I
′′′
nkj = (1− δ(k, j)) · δ′

nj

δ
′
nj = δ(l + ‖f(sn)− µgn‖2 − ‖f(sn)− µj‖2 > 0)

(6)

where δ(x1, x2)=1 if x1 is equal to x2, otherwise
δ(x1, x2)=0, and δ(x)=1 if x is true, otherwise
δ(x)=0. The first term in the numerator of Eq. (5)
is the contributions from all data points, and αrnk

is the weight of sn for µk. The second term is ac-
quired from labeled data, and wnk is the weight of
a labeled instance sn for µk.

The update parameter step minimizes Jsemi

with respect to f(·) by keeping {rnk} and {µk}
fixed, which has no counterpart in the k-means al-
gorithm. The main goal is to update parameters
for the text representation model. We take Jsemi

as the loss function, and train neural networks with
the Adam algorithm (Kingma and Ba, 2014).

4 Experiment

4.1 Experimental Setting
We evaluate our method on four short text
datasets. (1) question type is the TREC question
dataset (Li and Roth, 2002), where all the ques-
tions are classified into 6 categories: abbrevia-
tion, description, entity, human, location and nu-
meric. (2) ag news dataset contains short texts
extracted from the AG’s news corpus, where all
the texts are classified into 4 categories: World,
Sports, Business, and Sci/Tech (Zhang and Le-
Cun, 2015). (3) dbpedia is the DBpedia on-
tology dataset, which is constructed by picking
14 non-overlapping classes from DBpedia 2014
(Lehmann et al., 2014). (4) yahoo answer is the
10 topics classification dataset extracted from Ya-
hoo! Answers Comprehensive Questions and An-
swers version 1.0 dataset by Zhang and LeCun
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dataset class# total# labeled#

question type 6 5,953 595
ag news 4 4,000 400
dbpedia 14 14,000 1,400
yahoo answer 10 10,000 1,000

Table 3: Statistics for the short text datasets

(2015). We use all the 5,952 questions for the
question type dataset. But the other three datasets
contain too many instances (e.g. 1,400,000 in-
stances in yahoo answer). Running clustering ex-
periments on such a large dataset is quite inef-
ficient. Following the same solution in (Xu et
al., 2015), we randomly choose 1,000 samples
for each classes individually for the other three
datasets. Within each dataset, we randomly sam-
ple 10% of the instances as labeled data, and eval-
uate the performance on the remaining 90% in-
stances 1. Table 3 summarizes the statistics of
these datasets.

In all experiments, we set the size of word vec-
tor dimension as d=300 2, and pre-train the word
vectors with the word2vec toolkit (Mikolov et al.,
2013) on the English Gigaword (LDC2011T07).
The number of clusters is set to be the same num-
ber of labels in the dataset. The clustering per-
formance is evaluated with two metrics: Adjusted
Mutual Information (AMI) (Vinh et al., 2009) and
accuracy (ACC) (Amigó et al., 2009). In order to
show the statistical significance, the performance
of each experiment is the average of 10 trials.

4.2 Model Properties

There are several hyper-parameters in our model,
e.g., the output dimension of the text representa-
tion models, and the α in Eq. (4). The choice of
these hyper-parameters may affect the final perfor-
mance. In this subsection, we present some exper-
iments to demonstrate the properties of our model,
and find a good configuration that we use to eval-
uate our final model. All the experiments in this

1We didn’t split dataset into train/dev/test portions which
is commonly used for classification tasks, because it is not
the convention for clustering task. First, the goal of clustering
is to group given instances into clusters, instead of applying
the trained model to new instances. Second, the evaluation
process requires the clustering result of the whole set to map
the clustering labels to the annotated labels.

2We tuned different dimensions for word vectors. When
the size is small (50 or 100), performance drops significantly.
When the size is larger (300, 500 or 1000), the curve flattens
out. To make our model more efficient, we fixed it as 300.
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Figure 3: Influence of the short text representation
model, where the x-axis is the output dimension of
the text representation models.
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Figure 4: Influence of unlabeled data, where the
x-axis is α in Eq. (4).

subsection were performed on the question type
dataset.

First, we evaluated the effectiveness of the out-
put dimension in text representation models. We
switched the dimension size among {50, 100, 300,
500, 1000}, and fixed the other options as: α =
0.5, the filter types in the CNN model includ-
ing {unigram, bigram, trigram} and 500 filters for
each type. Figure 3 presents the AMIs from both
CNN and LSTM models. We found that 100 is the
best output dimension for both CNN and LSTM
models. Therefore, we set the output dimension
as 100 in the following experiments.

Second, we studied the effect of α in Eq. (4),
which tunes the importance of unlabeled data. We
varied α among {0.00001, 0.0001, 0.001, 0.01,
0.1}, and remain the other options as the last ex-
periment. Figure 4 shows the AMIs from both
CNN and LSTM models. We found that the clus-
tering performance is not good when using a very
small α. By increasing the value of α, we ac-
quired progressive improvements, and reached to
the peak point at α=0.01. After that, the perfor-
mance dropped. Therefore, we choose α=0.01 in
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Figure 5: Influence of labeled data, where the x-
axis is the ratio of data with given labels.ratio	  
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Figure 6: Influence of the pre-training strategy.

the following experiments. This results also indi-
cate that the unlabeled data are useful for the text
representation learning process.

Third, we tested the influence of the size of la-
beled data. We tuned the ratio of labeled instances
from the whole dataset among [1%, 10%], and
kept the other configurations as the previous ex-
periment. The AMIs are shown in Figure 5. We
can see that the more labeled data we use, the bet-
ter performance we get. Therefore, the labeled
data are quite useful for the clustering process.

Fourth, we checked the effect of the pre-training
strategy for our models. We added a softmax layer
on top of our CNN and LSTM models, where the
size of the output layer is equal to the number of
labels in the dataset. We then trained the model
through the classification task using all labeled
data. After this process, we removed the top layer,
and used the remaining parameters to initialize our
CNN and LSTM models. The performance for our
models with and without pre-training strategy are
given in Figure 6. We can see that the pre-training

strategy is quite effective for our models. There-
fore, we use the pre-training strategy in the follow-
ing experiments.

4.3 Comparing with other Models

In this subsection, we compared our method with
some representative systems. We implemented a
series of clustering systems. All of these systems
are based on the k-means algorithm, but they rep-
resent short texts differently:

bow represents each text as a bag-of-words vec-
tor.

tf-idf represents each text as a TF-IDF vector.

average-vec represents each text with the average
of all word vectors within the text.

metric-learn-bow employs the metric learning
method proposed by Weinberger et al.
(2005), and learns to project a bag-of-words
vector into a 300-dimensional vector based
on labeled data.

metric-learn-idf uses the same metric learning
method, and learns to map a TF-IDF vector
into a 300-dimensional vector based on la-
beled data.

metric-learn-ave-vec also uses the metric learn-
ing method, and learns to project an averaged
word vector into a 100-dimensional vector
based on labeled data.

We designed two classifiers (cnn-classifier and
lstm-classifier) by adding a softmax layer on top
of our CNN and LSTM models. We trained these
two classifiers with labeled data, and utilized them
to predict labels for unlabeled data. We also built
two text representation models (“cnn-represent.”
and “lstm-represent.”) by setting parameters of
our CNN and LSTM models with the correspond-
ing parameters in cnn-classifier and lstm-classifier.
Then, we used them to represent short texts into
vectors, and applied the k-means algorithm for
clustering.

Table 4 summarizes the results of all systems
on each dataset, where “semi-cnn” is our semi-
supervised clustering algorithm with the CNN
model, and “semi-lstm” is our semi-supervised
clustering algorithm with the LSTM model. We
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question type ag news dbpedia yahoo answer
AMI ACC AMI ACC AMI ACC AMI ACC

Unsup.
bow 0.028 0.257 0.029 0.311 0.578 0.546 0.019 0.140
tf-idf 0.031 0.259 0.168 0.449 0.558 0.527 0.023 0.145
average-vec 0.135 0.356 0.457 0.737 0.610 0.619 0.077 0.222

Sup.

metric-learn-bow 0.104 0.380 0.459 0.776 0.808 0.854 0.125 0.329
metric-learn-idf 0.114 0.379 0.443 0.765 0.821 0.876 0.150 0.368
metric-learn-ave-vec 0.304 0.553 0.606 0.851 0.829 0.879 0.221 0.400
cnn-classifier 0.511 0.771 0.554 0.771 0.879 0.938 0.285 0.501
cnn-represent. 0.442 0.618 0.604 0.833 0.864 0.899 0.210 0.334
lstm-classifier 0.482 0.741 0.524 0.763 0.862 0.928 0.283 0.512
lstm-represent. 0.421 0.618 0.535 0.771 0.667 0.706 0.152 0.272

Semisup.
semi-cnn 0.529 0.739 0.662 0.876 0.894 0.945 0.338 0.554
semi-lstm 0.492 0.712 0.599 0.830 0.788 0.802 0.187 0.337

Table 4: Performance of all systems on each dataset.
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Figure 7: t-SNE visualizations of clustering results.
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grouped all the systems into three categories: un-
supervised (Unsup.), supervised (Sup.), and semi-
supervised (Semisup.) 3. We found that the su-
pervised systems worked much better than the un-
supervised counterparts, which implies that the
small amount of labeled data is necessary for bet-
ter performance. We also noticed that within the
supervised systems, the systems using deep learn-
ing (CNN or LSTM) models worked better than
the systems using metric learning method, which
shows the power of deep learning models for short
text modeling. Our “semi-cnn” system got the best
performance on almost all the datasets.

Figure 7 visualizes clustering results on the
question type dataset from four representative sys-
tems. In Figure 7(a), clusters severely overlap with
each other. When using the CNN sentence repre-
sentation model, we can clearly identify all clus-
ters in Figure 7(b), but the boundaries between
clusters are still obscure. The clustering results
from our semi-supervised clustering algorithm are
given in Figure 7(c) and Figure 7(d). We can see
that the boundaries between clusters become much
clearer. Therefore, our algorithm is very effective
for short text clustering.

5 Related Work

Existing semi-supervised clustering methods
fall into two categories: constraint-based and
representation-based. In constraint-based meth-
ods (Davidson and Basu, 2007), some labeled
information is used to constrain the clustering
process. In representation-based methods (Bair,
2013), a representation model is first trained to
satisfy the labeled information, and all data points
are clustered based on representations from the
representation model. Bilenko et al. (2004) pro-
posed to integrate there two methods into a unified
framework, which shares the same idea of our
proposed method. However, they only employed
the metric learning model for representation
learning, which is a linear projection. Whereas,
our method utilized deep learning models to
learn representations in a more flexible non-linear
space. Xu et al. (2015) also employed deep learn-
ing models for short text clustering. However,
their method separated the representation learning

3All clustering systems are based on the same number of
instances (total# in Table 3). For the semi-supervised and su-
pervised systems, the labels for 1% of the instances are given
(labeled# in Table 3). And the evaluation was conducted only
on the unlabeled portion.

process from the clustering process, so it belongs
to the representation-based method. Whereas,
our method combined the representation learning
process and the clustering process together, and
utilized both labeled data and unlabeled data for
representation learning and clustering.

6 Conclusion

In this paper, we proposed a semi-supervised clus-
tering algorithm for short texts. We utilized deep
learning models to learn representations for short
texts, and employed a small amount of labeled
data to specify our intention for clustering. We
integrated the representation learning process and
the clustering process into a unified framework, so
that both of the two processes get some benefits
from labeled data and unlabeled data. Experimen-
tal results on four datasets show that our method is
more effective than other competitors.
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Abstract

Knowledge bases are useful resources for
many natural language processing tasks,
however, they are far from complete. In
this paper, we define a novel entity rep-
resentation as a mixture of its neighbor-
hood in the knowledge base and apply
this technique on TransE—a well-known
embedding model for knowledge base
completion. Experimental results show
that the neighborhood information signif-
icantly helps to improve the results of the
TransE, leading to better performance than
obtained by other state-of-the-art embed-
ding models on three benchmark datasets
for triple classification, entity prediction
and relation prediction tasks.

Keywords: Knowledge base completion,
embedding model, mixture model, link
prediction, triple classification, entity pre-
diction, relation prediction.

1 Introduction

Knowledge bases (KBs), such as WordNet (Miller,
1995), YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008) and DBpedia (Lehmann
et al., 2015), represent relationships between enti-
ties as triples (head entity, relation, tail entity).
Even very large knowledge bases are still far from
complete (Socher et al., 2013; West et al., 2014).
Knowledge base completion or link prediction sys-
tems (Nickel et al., 2015) predict which triples not
in a knowledge base are likely to be true (Taskar
et al., 2004; Bordes et al., 2011).

Embedding models for KB completion associate
entities and/or relations with dense feature vectors
or matrices. Such models obtain state-of-the-art
performance (Bordes et al., 2012; Bordes et al.,
2013; Socher et al., 2013; Wang et al., 2014; Guu

et al., 2015; Nguyen et al., 2016) and generalize to
large KBs (Krompa et al., 2015).

Most embedding models for KB completion
learn only from triples and by doing so, ignore lots
of information implicitly provided by the structure
of the knowledge graph. Recently, several authors
have addressed this issue by incorporating rela-
tion path information into model learning (Garcı́a-
Durán et al., 2015; Lin et al., 2015a; Guu et al.,
2015; Toutanova et al., 2016) and have shown that
the relation paths between entities in KBs provide
useful information and improve knowledge base
completion. For instance, a three-relation path

(head,born in hospital/r1, e1)
⇒(e1, hospital located in city/r2, e2)
⇒(e2, city in country/r3, tail)

is likely to indicate that the fact
(head, nationality, tail) could be true, so
the relation path here p = {r1, r2, r3} is useful for
predicting the relationship “nationality” between
the head and tail entities.

Besides the relation paths, there could be other
useful information implicitly presented in the
knowledge base that could be exploited for better
KB completion. For instance, the whole neigh-
borhood of entities could provide lots of useful in-
formation for predicting the relationship between
two entities. Consider for example a KB fragment
given in Figure 1. If we know that Ben Affleck has
won an Oscar award and Ben Affleck lives in Los
Angeles, then this can help us to predict that Ben
Affleck is an actor or a film maker, rather than a
lecturer or a doctor. If we additionally know that
Ben Affleck’s gender is male then there is a higher
chance for him to be a film maker. This intuition
can be formalized by representing an entity vector
as a relation-specific mixture of its neighborhood
as follows:
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Ben Affleck

male

gender

actor

occupation?

film maker

occupation?

Oscar award

won

Los Angeles

live in

lecturer

occupation?

Violet Anne

child of

Figure 1: An example fragment of a KB.

Ben Affleck = ωr,1(Violet Anne, child of)

+ ωr,2(male, gender−1)

+ ωr,3(Los Angeles, lives in−1)

+ ωr,4(Oscar award,won−1),

where ωr,i are the mixing weights that indicate
how important each neighboring relation is for
predicting the relation r. For example, for pre-
dicting the occupation relationship, the knowl-
edge about the child of relationship might not be
that informative and thus the corresponding mix-
ing coefficient can be close to zero, whereas it
could be relevant for predicting some other re-
lationship, such as parent or spouse, in which
case the relation-specific mixing coefficient for the
child of relationship could be high.

The primary contribution of this paper is intro-
ducing and formalizing the neighborhood mixture
model. We demonstrate its usefulness by apply-
ing it to the well-known TransE model (Bordes et
al., 2013). However, it could be applied to other
embedding models as well, such as Bilinear mod-
els (Bordes et al., 2012; Yang et al., 2015) and
STransE (Nguyen et al., 2016). While relation
path models exploit extra information using longer
paths existing in the KB, the neighborhood mix-
ture model effectively incorporates information
about many paths simultaneously. Our extensive

experiments on three benchmark datasets show
that it achieves superior performance over com-
petitive baselines in three KB completion tasks:
triple classification, entity prediction and relation
prediction.

2 Neighborhood mixture modeling

In this section, we start by explaining how to
formally construct the neighbor-based entity rep-
resentations in section 2.1, and then describe
the Neighborhood Mixture Model applied to the
TransE model (Bordes et al., 2013) in section 2.2.
Section 2.3 explains how we train our model.

2.1 Neighbor-based entity representation

Let E denote the set of entities and R the set of
relation types. Denote by R−1 the set of inverse
relations r−1. Denote by G the knowledge graph
consisting of a set of correct tiples (h, r, t), such
that h, t ∈ E and r ∈ R. Let K denote the sym-
metric closure of G, i.e. if a triple (h, r, t) ∈ G,
then both (h, r, t) and (t, r−1, h) ∈ K.

Define:

Ne,r = {e′|(e′, r, e) ∈ K}
as a set of neighboring entities connected to entity
e with relation r. Then

Ne = {(e′, r)|r ∈ R ∪R−1, e′ ∈ Ne,r}

is the set of all entity and relation pairs that are
neighbors for entity e.

Each entity e is associated with a k-dimensional
vector ve ∈ Rk and relation-dependent vectors
ue,r ∈ Rk, r ∈ R ∪R−1. Now we can define the
neighborhood-based entity representation ϑe,r for
an entity e ∈ E for predicting the relation r ∈ R
as follows:

ϑe,r = aeve +
∑

(e′,r′)∈Ne

br,r′ue′,r′ , (1)

ae and br,r′ are the mixture weights that are con-
strained to sum to 1 for each neighborhood:

ae ∝ δ + expαe (2)

br,r′ ∝ expβr,r′ (3)

where δ > 0 is a hyper-parameter that controls
the contribution of the entity vector ve to the
neighbor-based mixture, αe and βr,r′ are the learn-
able exponential mixture parameters.
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In real-world factual KBs, e.g. Freebase (Bol-
lacker et al., 2008), some entities, such as “male”,
can have thousands or millions neighboring enti-
ties sharing the same relation “gender.” For such
entities, computing the neighbor-based vectors can
be computationally very expensive. To overcome
this problem, we introduce in our implementa-
tion a filtering threshold τ and consider in the
neighbor-based entity representation construction
only those relation-specific neighboring entity sets
for which |Ne,r| ≤ τ .

2.2 TransE-NMM: applying neighborhood
mixtures to TransE

Embedding models define for each triple
(h, r, t) ∈ G, a score function f(h, r, t) that
measures its implausibility. The goal is to choose
f such that the score f(h, r, t) of a plausible triple
(h, r, t) is smaller than the score f(h′, r′, t′) of an
implausible triple (h′, r′, t′).

TransE (Bordes et al., 2013) is a simple em-
bedding model for knowledge base completion,
which, despite of its simplicity, obtains very com-
petitive results (Garcı́a-Durán et al., 2016; Nickel
et al., 2016). In TransE, both entities e and rela-
tions r are represented with k-dimensional vectors
ve ∈ Rk and vr ∈ Rk, respectively. These vectors
are chosen such that for each triple (h, r, t) ∈ G:

vh + vr ≈ vt (4)

The score function of the TransE model is the
norm of this translation:

f(h, r, t)TransE = ‖vh + vr − vt‖`1/2
(5)

We define the score function of our new model
TransE-NMM in terms of the neighbor-based en-
tity vectors as follows:

f(h, r, t) = ‖ϑh,r + vr − ϑt,r−1‖`1/2
, (6)

using either the `1 or the `2-norm, and ϑh,r and
ϑt,r−1 are defined following the Equation 1. The
relation-specific entity vectors ue,r used to con-
struct the neighbor-based entity vectors ϑe,r are
defined based on the TransE translation operator:

ue,r = ve + vr (7)

in which vr−1 = −vr. For each correct triple
(h, r, t), the sets of neighboring entities Nh,r and
Nt,r−1 exclude the entities t and h, respectively.

If we set the filtering threshold τ = 0 then
ϑh,r = vh and ϑt,r−1 = vt for all triples. In this
case, TransE-NMM reduces to the plain TransE
model. In all our experiments presented in section
4, the baseline TransE results are obtained with the
TransE-NMM with τ = 0.

2.3 Parameter optimization

The TransE-NMM model parameters include the
vectors ve,vr for entities and relation types, the
entity-specific weights α = {αe|e ∈ E} and
relation-specific weights β = {βr,r′ |r, r′ ∈ R ∪
R−1}. To learn these parameters, we minimize the
L2-regularized margin-based objective function:

L =
∑

(h,r,t)∈G
(h′,r,t′)∈G′

(h,r,t)

[γ + f(h, r, t)− f(h′, r, t′)]+

+
λ

2

(
‖α‖22 + ‖β‖22

)
, (8)

where [x]+ = max(0, x), γ is the margin hyper-
parameter, λ is the L2 regularization parameter
and

G′(h,r,t) = {(h′, r, t) | h′ ∈ E , (h′, r, t) /∈ G}
∪ {(h, r, t′) | t′ ∈ E , (h, r, t′) /∈ G}

is the set of incorrect triples generated by corrupt-
ing the correct triple (h, r, t) ∈ G. We applied
the “Bernoulli” trick to choose whether to gener-
ate the head or tail entity when sampling an incor-
rect triple (Wang et al., 2014; Lin et al., 2015b; He
et al., 2015; Ji et al., 2015; Ji et al., 2016).

We use Stochastic Gradient Descent (SGD)
with RMSProp adaptive learning rate to minimize
L, and impose the following hard constraints dur-
ing training: ‖ve‖2 6 1 and ‖vr‖2 6 1. We em-
ploy alternating optimization to minimize L. We
first initialize the entity and relation-specific mix-
ing parameters α and β to zero and only learn the
randomly initialized entity and relation vectors ve

and vr. Then we fix the learned vectors and only
optimize the mixing parameters. In the final step,
we fix again the mixing parameters and fine-tune
the vectors. In all experiments presented in sec-
tion 4, we train for 200 epochs during each three
optimization step.

3 Related work

Table 1 summarizes related embedding models for
link prediction and KB completion. The models
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Model Score function f(h, r, t) Opt.

STransE ‖Wr,1vh + vr −Wr,2vt‖`1/2
; Wr,1, Wr,2 ∈ Rk×k; vr ∈ Rk SGD

SE ‖Wr,1vh −Wr,2vt‖`1/2
; Wr,1, Wr,2 ∈ Rk×k SGD

Unstructured ‖vh − vt‖`1/2
SGD

TransE ‖vh + vr − vt‖`1/2
; vr ∈ Rk SGD

TransH
‖(I− rpr

>
p )vh + vr − (I− rpr

>
p )vt‖`1/2 SGD

rp, vr ∈ Rk ; I: Identity matrix size k × k

TransD
‖(I + rph

>
p )vh + vr − (I + rpt

>
p )vt‖`1/2 AdaDelta

rp, vr ∈ Rn ; hp, tp ∈ Rk ; I: Identity matrix size n× k
TransR ‖Wrvh + vr −Wrvt‖`1/2

; Wr ∈ Rn×k ; vr ∈ Rn SGD

TranSparse ‖Wh
r (θh

r )vh + vr −Wt
r(θt

r)vt‖`1/2
; Wh

r , Wt
r ∈ Rn×k; θh

r , θt
r ∈ R ; vr ∈ Rn SGD

SME
(W1,1vh + W1,2vr + b1)>(W2,1vt + W2,2vr + b2)

SGD
b1, b2 ∈ Rn; W1,1, W1,2,W2,1, W2,2 ∈ Rn×k

DISTMULT v>h Wrvt ; Wr is a diagonal matrix ∈ Rk×k AdaGrad

NTN
v>r tanh(v>h Mrvt + Wr,1vh + Wr,2vt + br)

L-BFGS
vr, br ∈ Rn; Mr ∈ Rk×k×n; Wr,1, Wr,2 ∈ Rn×k

Bilinear-COMP v>h Wr1Wr2 ...Wrmvt ; Wr1 ,Wr2 , ...,Wrm ∈ Rk×k AdaGrad

TransE-COMP ‖vh + vr1 + vr2 + ...+ vrm − vt‖`1/2
; vr1 ,vr2 , ...,vrm ∈ Rk AdaGrad

Table 1: The score functions f(h, r, t) and the optimization methods (Opt.) of several prominent embed-
ding models for KB completion. In all of these models, the entities h and t are represented by vectors vh

and vt ∈ Rk respectively.

differ in their score function f(h, r, t) and the al-
gorithm used to optimize their margin-based ob-
jective function, e.g., SGD, AdaGrad (Duchi et al.,
2011), AdaDelta (Zeiler, 2012) or L-BFGS (Liu
and Nocedal, 1989).

The Unstructured model (Bordes et al., 2012)
assumes that the head and tail entity vectors are
similar. As the Unstructured model does not take
the relationship into account, it cannot distinguish
different relation types. The Structured Embed-
ding (SE) model (Bordes et al., 2011) extends the
Unstructured model by assuming that the head and
tail entities are similar only in a relation-dependent
subspace, where each relation is represented by
two different matrices. Futhermore, the SME
model (Bordes et al., 2012) uses four different ma-
trices to project entity and relation vectors into a
subspace. The TransH model (Wang et al., 2014)
associates each relation with a relation-specific
hyperplane and uses a projection vector to project
entity vectors onto that hyperplane. TransD (Ji et
al., 2015) and TransR/CTransR (Lin et al., 2015b)
extend the TransH model by using two projection
vectors and a matrix to project entity vectors into
a relation-specific space, respectively. STransE

(Nguyen et al., 2016) and TranSparse (Ji et al.,
2016) are extensions of the TransR model, where
head and tail entities are associated with their own
projection matrices.

The DISTMULT model (Yang et al., 2015) is
based on the Bilinear model (Nickel et al., 2011;
Bordes et al., 2012; Jenatton et al., 2012) where
each relation is represented by a diagonal rather
than a full matrix. The neural tensor network
(NTN) model (Socher et al., 2013) uses a bilinear
tensor operator to represent each relation. Simi-
lar quadratic forms are used to model entities and
relations in KG2E (He et al., 2015) and TATEC
(Garcı́a-Durán et al., 2016).

Recently, Neelakantan et al. (2015), Gardner
and Mitchell (2015), Luo et al. (2015), Lin et al.
(2015a), Garcı́a-Durán et al. (2015), Guu et al.
(2015) and Toutanova et al. (2016) showed that re-
lation paths between entities in KBs provide richer
information and improve the relationship predic-
tion. In fact, our new TransE-NMM model can
be also viewed as a three-relation path model as it
takes into account the neighborhood entity and re-
lation information of both head and tail entities in
each triple.
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Luo et al. (2015) constructed relation paths be-
tween entities and viewing entities and relations
in the path as pseudo-words applied Word2Vec al-
gorithms (Mikolov et al., 2013) to produce pre-
trained vectors for these pseudo-words. Luo et al.
(2015) showed that using these pre-trained vectors
for initialization helps to improve the performance
of the TransE, SME and SE models. RTransE
(Garcı́a-Durán et al., 2015), PTransE (Lin et al.,
2015a) and TransE-COMP (Guu et al., 2015) are
extensions of the TransE model. These mod-
els similarly represent a relation path by a vec-
tor which is the sum of the vectors of all rela-
tions in the path, whereas in the Bilinear-COMP

model (Guu et al., 2015), each relation is a ma-
trix and so it represents the relation path by ma-
trix multiplication. Our neighborhood mixture
model can be adapted to both relation path mod-
els Bilinear-COMP and TransE-COMP, by replac-
ing head and tail entity vectors by the neighbor-
based vector representations, thus combining ad-
vantages of both path and neighborhood informa-
tion. Nickel et al. (2015) reviews other approaches
for learning from KBs and multi-relational data.

4 Experiments

To investigate the usefulness of the neighbor mix-
tures, we compare the performance of the TransE-
NMM against the results of the baseline TransE
and other state-of-the-art embedding models on
the triple classification, entity prediction and re-
lation prediction tasks.

4.1 Datasets

Dataset: WN11 FB13 NELL186
#R 11 13 186
#E 38,696 75,043 14,463
#Train 112,581 316,232 31,134
#Valid 2,609 5,908 5,000
#Test 10,544 23,733 5,000

Table 2: Statistics of the experimental datasets
used in this study (and previous works). #E is
the number of entities, #R is the number of rela-
tion types, and #Train, #Valid and #Test are the
numbers of correct triples in the training, valida-
tion and test sets, respectively. Each validation and
test set also contains the same number of incorrect
triples as the number of correct triples.

We conduct experiments using three publicly

available datasets WN11, FB13 and NELL186.
For all of them, the validation and test sets con-
taining both correct and incorrect triples have al-
ready been constructed. Statistical information
about these datasets is given in Table 2.

The two benchmark datasets1, WN11 and
FB13, were produced by Socher et al. (2013)
for triple classification. WN11 is derived from
the large lexical KB WordNet (Miller, 1995) in-
volving 11 relation types. FB13 is derived from
the large real-world fact KB FreeBase (Bollacker
et al., 2008) covering 13 relation types. The
NELL186 dataset2 was introduced by Guo et al.
(2015) for both triple classification and entity pre-
diction tasks, containing 186 most frequent rela-
tions in the KB of the CMU Never Ending Lan-
guage Learning project (Carlson et al., 2010).

4.2 Evaluation tasks
We evaluate our model on three commonly used
benchmark tasks: triple classification, entity pre-
diction and relation prediction. This subsection
describes those tasks in detail.

Triple classification: The triple classification
task was first introduced by Socher et al. (2013),
and since then it has been used to evaluate vari-
ous embedding models. The aim of the task is to
predict whether a triple (h, r, t) is correct or not.

For classification, we set a relation-specific
threshold θr for each relation type r. If the im-
plausibility score of an unseen test triple (h, r, t)
is smaller than θr then the triple will be classified
as correct, otherwise incorrect. Following Socher
et al. (2013), the relation-specific thresholds are
determined by maximizing the micro-averaged ac-
curacy, which is a per-triple average, on the vali-
dation set. We also report the macro-averaged ac-
curacy, which is a per-relation average.

Entity prediction: The entity prediction task
(Bordes et al., 2013) predicts the head or the tail
entity given the relation type and the other en-
tity, i.e. predicting h given (?, r, t) or predicting
t given (h, r, ?) where ? denotes the missing el-
ement. The results are evaluated using a ranking
induced by the function f(h, r, t) on test triples.
Note that the incorrect triples in the validation and
test sets are not used for evaluating the entity pre-
diction task nor the relation prediction task.

1http://cs.stanford.edu/people/danqi/data/nips13-dataset.tar.bz2
2http://aclweb.org/anthology/attachments/P/P15/

P15-1009.Datasets.zip
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Each correct test triple (h, r, t) is corrupted by
replacing either its head or tail entity by each of
the possible entities in turn, and then we rank these
candidates in ascending order of their implausi-
bility score. This is called as the “Raw” setting
protocol. For the “Filtered” setting protocol de-
scribed in Bordes et al. (2013), we also filter out
before ranking any corrupted triples that appear in
the KB. Ranking a corrupted triple appearing in
the KB (i.e. a correct triple) higher than the origi-
nal test triple is also correct, but is penalized by the
“Raw” score, thus the “Filtered” setting provides
a clearer view on the ranking performance.

In addition to the mean rank and the Hits@10
(i.e., the proportion of test triples for which the
target entity was ranked in the top 10 predictions),
which were originally used in the entity predic-
tion task (Bordes et al., 2013), we also report the
mean reciprocal rank (MRR), which is commonly
used in information retrieval. In both “Raw” and
“Filtered” settings, mean rank is always greater
or equal to 1 and lower mean rank indicates bet-
ter entity prediction performance. The MRR and
Hits@10 scores always range from 0.0 to 1.0, and
higher score reflects better prediction result.

Relation prediction: The relation prediction
task (Lin et al., 2015a) predicts the relation type
given the head and tail entities, i.e. predicting r
given (h, ?, t) where ? denotes the missing ele-
ment. We corrupt each correct test triple (h, r, t)
by replacing its relation r by each possible rela-
tion type in turn, and then rank these candidates in
ascending order of their implausibility score. Just
as in the entity prediction task, we use two setting
protocols, “Raw” and “Filtered”, and evaluate on
mean rank, MRR and Hits@10.

4.3 Hyper-parameter tuning

For all evaluation tasks, results for TransE are ob-
tained with TransE-NMM with the filtering thresh-
old τ = 0, while we set τ = 10 for TransE-NMM.

For triple classification, we first performed
a grid search to choose the optimal hyper-
parameters for TransE by monitoring the micro-
averaged triple classification accuracy after each
training epoch on the validation set. For all
datasets, we chose either the `1 or `2 norm in the
score function f and the initial RMSProp learning
rate η ∈ {0.001, 0.01}. Following the previous
work (Wang et al., 2014; Lin et al., 2015b; Ji et al.,
2015; He et al., 2015; Ji et al., 2016), we selected

the margin hyper-parameter γ ∈ {1, 2, 4} and the
number of vector dimensions k ∈ {20, 50, 100}
on WN11 and FB13. On NELL186, we set γ = 1
and k = 50 (Guo et al., 2015; Luo et al., 2015).
The highest accuracy on the validation set was ob-
tained when using η = 0.01 for all three datasets,
and when using `2 norm for NELL186, γ = 4,
k = 20 and `1 norm for WN11, and γ = 1,
k = 100 and `2 norm for FB13.

We set the hyper-parameters η, γ, k, and the
`1 or the `2-norm in our TransE-NMM model to
the same optimal hyper-parameters searched for
TransE. We then used a grid search to select the
hyper-parameter δ ∈ {0, 1, 5, 10} and L2 regu-
larizer λ ∈ {0.005, 0.01, 0.05} for TransE-NMM.
By monitoring the micro-averaged accuracy after
each training epoch, we obtained the highest ac-
curacy on validation set when using δ = 1 and
λ = 0.05 for both WN11 and FB13, and δ = 0
and λ = 0.01 for NELL186.

For both entity prediction and relation predic-
tion tasks, we set the hyper-parameters η, γ,
k, and the `1 or the `2-norm for both TransE
and TransE-NMM to be the same as the opti-
mal parameters found for the triple classifica-
tion task. We then monitored on TransE the fil-
tered MRR on validation set after each training
epoch. We chose the model with highest valida-
tion MRR, which was then used to evaluate the
test set. For TransE-NMM, we searched the hyper-
parameter δ ∈ {0, 1, 5, 10} and L2 regularizer
λ ∈ {0.005, 0.01, 0.05}. By monitoring the fil-
tered MRR after each training epoch, we selected
the best model with the highest filtered MRR on
the validation set. Specifically, for the entity pre-
diction task, we selected δ = 10 and λ = 0.005 for
WN11, δ = 5 and λ = 0.01 for FB13, and δ = 5
and λ = 0.005 for NELL186. For the relation pre-
diction task, we selected δ = 10 and λ = 0.005
for WN11, δ = 10 and λ = 0.05 for FB13, and
δ = 1 and λ = 0.05 for NELL186.

5 Results

5.1 Quantitative results

Table 3 presents the results of TransE and TransE-
NMM on triple classification, entity prediction
and relation prediction tasks on all experimental
datasets. The results show that TransE-NMM gen-
erally performs better than TransE in all three eval-
uation tasks.

Specifically, TransE-NMM obtains higher triple
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Data Method
Triple class. Entity prediction Relation prediction

Mic. Mac. MR MRR H@10 MR MRR H@10

WN11
R

TransE 85.21 82.53 4324 0.102 19.21 2.37 0.679 99.93
TransE-NMM 86.82 84.37 3687 0.094 17.98 2.14 0.687 99.92

F
TransE 4304 0.122 21.86 2.37 0.679 99.93
TransE-NMM 3668 0.109 20.12 2.14 0.687 99.92

FB13
R

TransE 87.57 86.66 9037 0.204 35.39 1.01 0.996 99.99
TransE-NMM 88.58 87.99 8289 0.258 35.53 1.01 0.996 100.0

F
TransE 5600 0.213 36.28 1.01 0.996 99.99
TransE-NMM 5018 0.267 36.36 1.01 0.996 100.0

NELL186
R

TransE 92.13 88.96 309 0.192 36.55 8.43 0.580 77.18
TransE-NMM 94.57 90.95 238 0.221 37.55 6.15 0.677 82.16

F
TransE 279 0.268 47.13 8.32 0.602 77.26
TransE-NMM 214 0.292 47.82 6.08 0.690 82.20

Table 3: Experimental results of TransE (i.e. TransE-NMM with τ = 0) and TransE-NMM with τ = 10.
Micro-averaged (labeled as Mic.) and Macro-averaged (labeled as Mac.) accuracy results are for the
triple classification task. MR, MRR and H@10 abbreviate the mean rank, the mean reciprocal rank and
Hits@10 (in %), respectively. “R” and “F” denote the “Raw” and “Filtered” settings used in the entity
prediction and relation prediction tasks, respectively.

Method W11 F13
TransR (Lin et al., 2015b) 85.9 82.5
CTransR (Lin et al., 2015b) 85.7 -
TransD (Ji et al., 2015) 86.4 89.1
TranSparse-S (Ji et al., 2016) 86.4 88.2
TranSparse-US (Ji et al., 2016) 86.8 87.5
NTN (Socher et al., 2013) 70.6 87.2
TransH (Wang et al., 2014) 78.8 83.3
SLogAn (Liang and Forbus, 2015) 75.3 85.3
KG2E (He et al., 2015) 85.4 85.3
Bilinear-COMP (Guu et al., 2015) 77.6 86.1
TransE-COMP (Guu et al., 2015) 80.3 87.6
TransE 85.2 87.6
TransE-NMM 86.8 88.6

Table 4: Micro-averaged accuracy results (in %)
for triple classification on WN11 (labeled as W11)
and FB13 (labeled as F13) test sets. Scores in bold
and underline are the best and second best scores,
respectively.

classification results than TransE in all three ex-
perimental datasets, for example, with 2.44% ab-
solute improvement in the micro-averaged accu-
racy on the NELL186 dataset (i.e. 31% reduc-
tion in error). In terms of entity prediction,
TransE-NMM obtains better mean rank, MRR and

Method
Triple class. Entity pred.

Mic. Mac. MR H@10
TransE-LLE 90.08 84.50 535 20.02
SME-LLE 93.64 89.39 253 37.14
SE-LLE 93.95 88.54 447 31.55
TransE-SkipG 85.33 80.06 385 30.52
SME-SkipG 92.86 89.65 293 39.70
SE-SkipG 93.07 87.98 412 31.12
TransE 92.13 88.96 309 36.55
TransE-NMM 94.57 90.95 238 37.55

Table 5: Results on on the NELL186 test set. Re-
sults for the entity prediction task are in the “Raw”
setting. “-SkipG” abbreviates “-Skip-gram”.

Hits@10 scores than TransE on both FB13 and
NELL186 datasets. Specifically, on NELL186
TransE-NMM gains a significant improvement of
279 − 214 = 65 in the filtered mean rank (which
is about 23% relative improvement), while on
the FB13 dataset, TransE-NMM improves with
0.267−0.213 = 0.054 in the filtered MRR (which
is about 25% relative improvement). On the
WN11 dataset, TransE-NMM only achieves bet-
ter mean rank for entity prediction. The relation
prediction results of TransE-NMM and TransE are
relatively similar on both WN11 and FB13 be-
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cause the number of relation types is small in these
two datasets. On NELL186, however, TransE-
NMM does significantly better than TransE.

In Table 4, we compare the micro-averaged
triple classification accuracy of our TransE-NMM
model with the previously reported results on the
WN11 and FB13 datasets. The first five rows re-
port the performance of models that use TransE
to initialize the entity and relation vectors. The
last eight rows present the accuracy of models with
randomly initialized parameters.

Table 4 shows that our TransE-NMM model ob-
tains the highest accuracy on WN11 and achieves
the second highest result on FB13. Note that
there are higher results reported for NTN (Socher
et al., 2013), Bilinear-COMP (Guu et al., 2015)
and TransE-COMP when entity vectors are initial-
ized by averaging the pre-trained word vectors
(Mikolov et al., 2013; Pennington et al., 2014). It
is not surprising as many entity names in Word-
Net and FreeBase are lexically meaningful. It is
possible for all other embedding models to utilize
the pre-trained word vectors as well. However, as
pointed out by Wang et al. (2014) and Guu et al.
(2015), averaging the pre-trained word vectors for
initializing entity vectors is an open problem and
it is not always useful since entity names in many
domain-specific KBs are not lexically meaningful.

Table 5 compares the accuracy for triple classifi-
cation, the raw mean rank and raw Hits@10 scores
for entity prediction on the NELL186 dataset. The
first three rows present the best results reported
in Guo et al. (2015), while the next three rows
present the best results reported in Luo et al.
(2015). TransE-NMM obtains the highest triple
classification accuracy, the best raw mean rank and
the second highest raw Hits@10 on the entity pre-
diction task in this comparison.

5.2 Qualitative results

Table 6 presents some examples to illustrate the
useful information modeled by the neighbors. We
took the relation-specific mixture weights from the
learned TransE-NMM model optimized on the en-
tity prediction task, and then extracted three neigh-
bor relations with the largest mixture weights
given a relation.

Table 6 shows that those relations are semanti-
cally coherent. For example, if we know the place
of birth and/or the place of death of a person and/or
the location where the person is living, it is likely

Relation Top 3-neighbor relations

has instance
type of
subordinate instance of

(WN11) domain topic

synset domain topic
domain region
member holonym

(WN11) member meronym

nationality
place of birth
place of death

(FB13) location
spouse

children, spouse, parents
(FB13)

CEOof
WorksFor
TopMemberOfOrganization

(NELL186) PersonLeadsOrganization

AnimalDevelopDisease
AnimalSuchAsInsect
AnimalThatFeedOnInsect

(NELL186) AnimalDevelopDisease

Table 6: Qualitative examples.

that we can predict the person’s nationality. On
the other hand, if we know that a person works
for an organization and that this person is also the
top member of that organization, then it is possible
that this person is the CEO of that organization.

5.3 Discussion

Despite of the lower triple classification scores of
TransE reported in Wang et al. (2014), Table 4
shows that TransE in fact obtains a very compet-
itive accuracy. Particularly, compared to the rela-
tion path model TransE-COMP (Guu et al., 2015),
when model parameters were randomly initial-
ized, TransE obtains 85.2− 80.3 = 4.9% absolute
accuracy improvement on the WN11 dataset while
achieving similar score on the FB13 dataset. Our
high results of the TransE model are probably due
to a careful grid search and using the “Bernoulli”
trick. Note that Lin et al. (2015b), Ji et al. (2015)
and Ji et al. (2016) did not report the TransE
results used for initializing TransR, TransD and
TranSparse, respectively. They directly copied the
TransE results previously reported in Wang et al.
(2014). So it is difficult to determine exactly how
much TransR, TransD and TranSparse gain over
TransE. These models might obtain better results
than previously reported when the TransE used for
initalization performs as well as reported in this
paper. Furthermore, Garcı́a-Durán et al. (2015),
Lin et al. (2015a), Garcı́a-Durán et al. (2016) and
Nickel et al. (2016) also showed that for entity
prediction TransE obtains very competitive results
which are much higher than the TransE results
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Figure 2: Relative improvement of TransE-NMM
against TransE for entity prediction task in WN11
when the filtering threshold τ = {10, 100, 500}
(with other hyper-parameters being the same as
selected in Section 4.3). Prefixes “R-” and “F-”
denote the “Raw” and “Filtered” settings, respec-
tively. Suffixes “-MR”, “-MRR” and “-H@10” ab-
breviate the mean rank, the mean reciprocal rank
and Hits@10, respectively.

originally published in Bordes et al. (2013).3

As presented in Table 3, for entity predic-
tion using WN11, TransE-NMM with the filter-
ing threshold τ = 10 only obtains better mean
rank than TransE (about 15% relative improve-
ment) but lower Hits@10 and mean reciprocal
rank. The reason might be that in semantic lexi-
cal KBs such as WordNet where relationships be-
tween words or word groups are manually con-
structed, whole neighborhood information might
be useful. So when using a small filtering thresh-
old, the model ignores a lot of potential informa-
tion that could help predicting relationships. Fig-
ure 2 presents relative improvements in entity pre-
diction of TransE-NMM over TransE on WN11
when varying the filtering threshold τ . Figure
2 shows that TransE-NMM gains better scores
with higher τ value. Specifically, when τ =
500 TransE-NMM does significantly better than
TransE in all entity prediction metrics.

6 Conclusion and future work

We introduced a neighborhood mixture model
for knowledge base completion by constructing

3They did not report the results on WN11 and FB13
datasets, which are used in this paper, though.

neighbor-based vector representations for entities.
We demonstrated its effect by extending TransE
(Bordes et al., 2013) with our neighborhood mix-
ture model. On three different datasets, experi-
mental results show that our model significantly
improves TransE and obtains better results than
the other state-of-the-art embedding models on
triple classification, entity prediction and relation
prediction tasks. In future work, we plan to ap-
ply the neighborhood mixture model to other em-
bedding models, especially to relation path mod-
els such as TransE-COMP, to combine the useful
information from both relation paths and entity
neighborhoods.
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Abstract

Context representations are central to vari-
ous NLP tasks, such as word sense disam-
biguation, named entity recognition, co-
reference resolution, and many more. In
this work we present a neural model for
efficiently learning a generic context em-
bedding function from large corpora, us-
ing bidirectional LSTM. With a very sim-
ple application of our context represen-
tations, we manage to surpass or nearly
reach state-of-the-art results on sentence
completion, lexical substitution and word
sense disambiguation tasks, while sub-
stantially outperforming the popular con-
text representation of averaged word em-
beddings. We release our code and pre-
trained models, suggesting they could be
useful in a wide variety of NLP tasks.

1 Introduction

Generic word embeddings capture semantic and
syntactic information about individual words in a
compact low-dimensional representation. While
they are trained to optimize a generic task-
independent objective function, word embeddings
were found useful in a broad range of NLP tasks,
making an overall huge impact in recent years.
A major advancement in this field was the in-
troduction of highly efficient models, such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), for learning generic word
embeddings from very large corpora. Capturing
information from such corpora substantially in-
creased the value of word embeddings to both un-
supervised and semi-supervised NLP tasks.

To make inferences regarding a concrete target
word instance, good representations of both the
target word type and the given context are help-
ful. For example, in the sentence “I can’t find
[April]”, we need to consider both the target word
April and its context “I can’t find [ ]” to infer that
April probably refers to a person. This principle
applies to various tasks, including word sense dis-
ambiguation, co-reference resolution and named
entity recognition (NER).

Like target words, contexts are commonly rep-
resented via word embeddings. In an unsupervised
setting, such representations were found useful
for measuring context-sensitive similarity (Huang
et al., 2012), word sense disambiguation (Chen
et al., 2014), word sense induction (Kågebäck et
al., 2015), lexical substitution (Melamud et al.,
2015b), sentence completion (Liu et al., 2015)
and more. The context representations used in
such tasks are commonly just a simple collection
of the individual embeddings of the neighboring
words in a window around the target word, or
a (sometimes weighted) average of these embed-
dings. We note that such approaches do not in-
clude any mechanism for optimizing the represen-
tation of the entire sentential context as a whole.

In supervised settings, various NLP systems use
labeled data to learn how to consider context word
representations in a more optimized task-specific
way. This was done in tasks, such as chunking,
NER, semantic role labeling, and co-reference res-
olution (Turian et al., 2010; Collobert et al., 2011;
Melamud et al., 2016), mostly by considering the
embeddings of words in a window around the tar-
get of interest. More recently, bidirectional re-
current neural networks, and specifically bidirec-
tional LSTMs, were used in such tasks to learn
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internal representations of wider sentential con-
texts (Zhou and Xu, 2015; Lample et al., 2016).
Since supervised data is usually limited in size,
it has been shown that training such systems, us-
ing word embeddings that were pre-trained on
large corpora, improves performance significantly.
Yet, pre-trained word embeddings carry limited
information regarding the inter-dependencies be-
tween target words and their sentential context as
a whole. To model this (and more), the supervised
systems still need to rely heavily on their albeit
limited supervised data.

In this work we present context2vec, an unsu-
pervised model and toolkit1 for efficiently learning
generic context embedding of wide sentential con-
texts, using bidirectional LSTM. Essentially, we
use large plain text corpora to learn a neural model
that embeds entire sentential contexts and target
words in the same low-dimensional space, which
is optimized to reflect inter-dependencies between
targets and their entire sentential context as a
whole. To demonstrate their high quality, we show
that with a very simple application of our context
representations, we are able to surpass or nearly
reach state-of-the-art results on sentence comple-
tion, lexical substitution and word sense disam-
biguation tasks, while substantially outperforming
the common average-of-word-embeddings repre-
sentation (denoted AWE). We further hypothesize
that both unsupervised and semi-supervised sys-
tems may benefit from using our pre-trained mod-
els, instead or in addition to individual pre-trained
word embeddings.

2 Context2vec’s Neural Model

2.1 Model Overview

The main goal of our model is to learn a
generic task-independent embedding function for
variable-length sentential contexts around target
words. To do this, we propose a neural network
architecture, which is based on word2vec’s CBOW
architecture (Mikolov et al., 2013a), but replaces
its naive context modeling of averaged word em-
beddings in a fixed window, with a much more
powerful neural model, using bidirectional LSTM.
Our proposed architecture is illustrated in Fig-
ure 1, together with the analogical word2vec ar-
chitecture. Both models learn context and target

1Source code and pre-trained models are available
at: http://www.cs.biu.ac.il/nlp/resources/
downloads/context2vec/

(a) word2vec CBOW

(b) context2vec

Figure 1: word2vec and context2vec architectures.

word representations at the same time, by embed-
ding them into the same low-dimensional space,
with the objective of having the context predict the
target word via a log linear model. However, we
utilize a much more powerful parametric model to
capture the essence of sentential context.

The left-hand side of Figure 1b illustrates how
context2vec represents sentential context. We use
a bidirectional LSTM recurrent neural network,
feeding one LSTM network with the sentence
words from left to right, and another from right
to left. The parameters of these two networks are
completely separate, including two separate sets of
left-to-right and right-to-left context word embed-
dings. To represent the context of a target word in
a sentence (e.g. for “John [submitted] a paper”),
we first concatenate the LSTM output vector rep-
resenting its left-to-right context (“John”) with the
one representing its right-to-left context (“a pa-
per”). With this, we aim to capture the relevant
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information in the sentential context, even when
it is remote from the target word. Next, we feed
this concatenated vector into a multi-layer per-
ceptron to be capable of representing non-trivial
dependencies between the two sides of the con-
text. We consider the output of this layer as the
embedding of the entire joint sentential context
around the target word. At the same time, the tar-
get word itself (right-hand side of Figure 1b) is
represented with its own embedding, equal in di-
mensionality to that of the sentential context. We
note that the only (yet crucial) difference between
our model and word2vec’s CBOW (Figure 1a) is
that CBOW represents the context around a target
word as a simple average of the embeddings of the
context words in a window around it, while con-
text2vec utilizes a full-sentence neural representa-
tion of context.

Finally, to learn the parameters of our network,
we use word2vec’s negative sampling objective
function, with a positive pair being a target word
and its entire sentential context, and respective k
negative pairs as random target words, sampled
from a (smoothed) unigram distribution over the
vocabulary, paired with the same context. With
this, we learn both the context embedding network
parameters and the target word embeddings.

In contrast to word2vec and similar word em-
bedding models that use context modeling mostly
internally and consider the target word embed-
dings as their main output, our primary focus is
the context representation. Our model achieves its
objective by assigning similar embeddings to sen-
tential contexts and their associated target words.
Further, similar to the case in word2vec models,
this indirectly results in assigning similar embed-
dings to target words that are associated with sim-
ilar sentential contexts, and conversely to senten-
tial contexts that are associated with similar tar-
get words. We will show in the following sections
how these properties make our model useful.

2.2 Formal Specification and Analysis

We use a bidirectional LSTM recurrent neural net-
work to obtain a sentence-level context represen-
tation. Let lLS be an LSTM reading the words of
a given sentence from left to right, and let rLS be
a reverse one reading the words from right to left.
Given a sentence w1:n, our ‘shallow’ bidirectional
LSTM context representation for the target wi is

defined as the following vector concatenation:

biLS(w1:n, i) = lLS(l1:i−1)⊕ rLS(rn:i+1)

where l/r represent distinct left-to-right/right-to-
left word embeddings of the sentence words.2

This definition is a bit different than standard bidi-
rectional LSTM, as we do not feed the LSTMs
with the target word itself (i.e. the word in po-
sition i). Next, we apply the following non-linear
function on the concatenation of the left and right
context representations:

MLP(x) = L2(ReLU(L1(x)))

where MLP stands for Multi Layer Percep-
tron, ReLU is the Rectified Linear Unit acti-
vation function, and Li(x) = Wix + bi is
a fully connected linear operation. Let c =
(w1, ..., wi−1,−, wi+1, ..., wn) be the sentential
context of the word in position i. We define con-
text2vec’s representation of c as:

~c = MLP(biLS(w1:n, i)).

Next, we denote the embedding of a target word
t as ~t. We use the same embedding dimensionality
for target and sentential context representations.
To learn target word and context representations,
we use the word2vec negative sampling objective
function (Mikolov et al., 2013b):

S =
∑
t,c

(
log σ(~t · ~c) +

k∑
i=1

log σ(−~ti · ~c)
)

(1)

where the summation goes over each word token
t in the training corpus and its corresponding (sin-
gle) sentential context c, and σ is the sigmoid func-
tion. t1, ..., tk are the negative samples, indepen-
dently sampled from a smoothed version of the tar-
get words unigram distribution: pα(t) ∝ (#t)α,
such that 0 ≤ α < 1 is a smoothing factor, which
increases the probability of rare words.

Levy and Goldberg (2014b) proved that when
the objective function in Equation (1) is applied to
single-word contexts, it is optimized when:

~t · ~c = PMIα(t, c)− log(k) (2)

where PMI(t, c) = log p(t,c)
pα(t)p(c) is the pointwise

mutual information between the target word t and
2We pad every input sentence with special BOS and EOS

words in positions 0 and n + 1, respectively.
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Figure 2: A 2D illustration of context2vec’s em-
bedded space and similarity metrics. Triangles and
circles denote sentential context embeddings and
target word embeddings, respectively.

the context word c. The analysis presented in
Levy and Goldberg (2014b) is valid for every co-
occurrence matrix that describes the joint distribu-
tion of two random variables. Specifically, it can
be applied to our case, where the context is not just
a single word but an entire sentential context of a
target word. Accordingly, we can view the target-
context embedding obtained by our algorithm as a
factorization of the PMI matrix between all possi-
ble target words and all possible different senten-
tial contexts. Unlike the case of single-word con-
texts, it is not feasible to explicitly compute here
this PMI matrix due to the exponential number of
possible sentential contexts. However, the objec-
tive function that we optimize still aims to best ap-
proximate it. Based on the above analysis, we can
expect the inner-product of our target and context
embeddings to approximate PMIα(c, t). We note
that accordingly, with larger values of α, there will
be more bias towards placing rare words closer to
their associated contexts in this space.

2.3 Model Illustration

To demonstrate the qualities of the embedded
space learned by context2vec, we illustrate three
types of similarity metrics in that space: target-to-
context (t2c), context-to-context (c2c) and target-
to-target (t2t). All these are measured by the vec-
tor cosine value between the respective embedding
representations. Only the latter target-to-target
metric is the one typically used when illustrating

and evaluating word embedding models, such as
word2vec. Figure 2 provides a 2D illustration of
such a space and respective metrics.

In Table 1 we show sentential contexts and
the target words that are closest to them, using
the target-to-context similarity metric with con-
text2vec embeddings. As can be seen, the bidi-
rectional LSTM modeling of context2vec is indeed
capable in this case to capture long range depen-
dencies, as well as to take both sides of the con-
text into account. In Table 2 we show the clos-
est target words to given contexts, using different
context2vec models, each learned with a different
negative sampling smoothing parameter α. This
illustrates the bias that high α values introduce to-
wards rare words, as predicted with the analysis in
section 2.2.

Next, to illustrate the context-to-context sim-
ilarity metric, we took the set of contexts for
the target lemma add from the training set of
Senseval-3 (Mihalcea et al., 2004). In Table 3
we show an example for a ‘query’ context from
that set and the other two most similar contexts
to it, based on context2vec and AWE (average of
Skip-gram word embeddings) context representa-
tions. Melamud et al. (2015a) argues that since
contexts induce meanings (or senses) for target
words, a good context similarity measure should
assign high similarity values to contexts that in-
duce similar senses for the same target word. As
can be seen in this example, AWE’s similarity mea-
sure seems to be influenced by the presence of
the location names in the contexts, even though
they have little effect on the perceived meaning
of add in the sentences. Indeed, the sense of add
in the closest contexts retrieved by AWE is differ-
ent than that in the ‘query’ context. In this case,
context2vec’s similarity measure was robust to this
problem.

Finally, in Table 4, we show the closest tar-
get words to a few given target words, based on
the target-to-target similarity metric. We compare
context2vec’s target word embeddings to Skip-
gram word2vec embeddings, trained with 2-word
and 10-word windows. As can be seen, our
model seems to better preserve the function of the
given target words including part-of-speech and
even tense, in comparison to the 2-word window
model, and even more so compared to the 10-word
window one. The intuition for this behavior is
that Skip-gram literally skips words in the context
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Sentential Context Closest target words
This [ ] is due item, fact-sheet, offer, pack, card
This [ ] is due not just to mere luck offer, suggestion, announcement, item, prize
This [ ] is due not just to mere luck, award, prize, turnabout, offer, gift
but to outstanding work and dedication
[ ] is due not just to mere luck, it, success, this, victory, prize-money
but to outstanding work and dedication

Table 1: Closest target words to various sentential contexts, illustrating context2vec’s sensitivity to long
range dependencies, and both sides of the target word.

α John was [ ] last year
0.25 born, late, married, out, back
0.50 born, back, married, released, elected
0.75 born, interviewed, re-elected
1.00 starstruck, goal-less, unwed

Table 2: Closest target words to a given sentential
context using different α values in context2vec.

around the target word and therefore may find, for
instance, the contexts of san and francisco to be
very similar. In contrast, our model considers only
entire sentential contexts, taking context word or-
der and position into consideration. Melamud et
al. (2016) showed that target word embeddings,
learned from context representations that are gen-
erated using n-gram language models, also exhibit
function-preserving similarities, which is consis-
tent with our observations.

2.4 Relation to Language Models

Our model is closely related to language models,
as can be seen in section 2.2 and tables 1 and 2.
In particular, it has a lot in common with LSTM-
based language models, as both train LSTM neu-
ral networks with the objective to predict target
words based on their (short and long range) con-
text, and both use techniques, such as negative
sampling, to address large vocabulary computa-
tional challenges during training (Jozefowicz et
al., 2016). The main difference is that LSTM lan-
guage models are mainly concerned with optimiz-
ing predictions of conditional probabilities for tar-
get words given their history, while our model is
focused on deriving generally useful representa-
tions to whole history-and-future contexts of target
words. We follow word2vec’s learning framework
as it is known to produce high-quality representa-
tions for single words. It does so by having ~t · ~c
approximate PMI(t, c) rather than log p(t|c).

3 Evaluation Settings

We intend context2vec’s generic context embed-
ding function to be integrated into various more
optimized task-specific systems. However, to
demonstrate its qualities independently, we ad-
dress three different types of tasks by the sim-
ple means of measuring cosine distances between
its embedded representations. Yet, we compare
our performance against the state-of-the-art results
of highly competitive task-optimized systems on
each task. In addition we use AWE as a base-
line representing a commonly used generic con-
text representation, which like ours, can represent
variable-length contexts with a fixed-size vector.
Our evaluation includes the following tasks: sen-
tence completion, lexical substitution and super-
vised word sense disambiguation (WSD).

3.1 Learning corpus

With the exception of the sentence completion task
(MSCC), which comes with its own learning cor-
pus, we used the two billion word ukWaC (Fer-
raresi et al., 2008) as our learning corpus. To
speed-up the training of context2vec, we discarded
all sentences that are longer than 64 words, reduc-
ing the size of the corpus by ∼10%. However, we
train the embeddings used in the AWE baseline on
the full corpus to not penalize it on account of our
model. We lower-cased all text and considered any
token with fewer than 100 occurrences as an un-
known word. This yielded a vocabulary of a lit-
tle over 180K words for the full corpus, and 160K
words for the trimmed version.

3.2 Compared Methods

context2vec We implemented our model using
the Chainer toolkit (Tokui et al., 2015), and Adam
(Kingma and Ba, 2014) for optimization. To
speed-up the learning time we used mini-batch
training, where only sentences of equal length are
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Query Furthermore our work in Uganda and Romania [ adds ] a wider perspective.
... themes in art have a fascination , since they [ add ] a subject interest

context2vec to a viewer’s enjoyment of artistic qualities.
closest Richard is joining us every month to pass on tips , ideas and news

from the world of horticulture , and [ add ] a touch of humour too
... the foreign ministers said political and economic reforms in Poland and Hungary

AWE had made considerable progress but [ added ] : the process remains fragile ...
closest ... Germany had announced the solution as a humanitarian act by the government,

[ adding ] that it hoped Bonn in future would run its embassies in normal manner...

Table 3: An example for a given ‘query’ context and the two closest contexts to it, as ‘retrieved’ by
context2vec similarity and AWE similarity.

context2vec word2vec-w2 word2vec-w10 context2vec word2vec-w2 word2vec-w10
flying syntactically

gliding flew flew semantically grammatically semantically
sailing fly fly lexically phonologically grammatically
diving aerobatics aeroplane grammatically semantically syntax
flown low-flying flown phonologically ungrammatical syntactic
travelling flown bi-plane topologically lexically lexically

san prize
agios francisco francisco prizes prizes prizes
aghios diego diego award prize-winner winner
los fransisco fransisco trophy prizewinner winners
tanjung los bernardino medal prize prizewinner
puerto obispo los prizewinner prizewinners prize.

Table 4: Top-5 closest target words to a few given target words.

assigned to the same batch. We discuss the hyper-
parameters tuning of our model in section 4.1.

AWE We learned word embeddings with the
popular word2vec Skip-gram model using stan-
dard hyperparameters: 600 dimensions, 10 nega-
tive samples, window-size 10 and 3/5 iterations for
the ukWaC/MSCC learning corpora, respectively.
Then we used a simple average of these embed-
dings as our AWE context representation.3 In ad-
dition, we experimented with the following vari-
ations: (1) ignoring stopwords (2) performing a
weighted average of the words in the context using
tf-idf weights (3) considering just the 5-word win-
dow around the target word instead of the whole
sentence. Specifically, in the WSD experiment the
context provided for the target words is a full para-
graph. Though it could be extended, context2vec
is currently not designed to take advantage of such
large context and therefore ignores all context out-

3We made some preliminary experiments using word em-
beddings learned with word2vec’s CBOW model, instead of
Skip-gram, but this yielded worse results.

side of the sentence of the target word. However,
for AWE we also experimented with the option of
generating the context representation based on the
entire paragraph. In all cases, the size (dimension-
ality) of the AWE context representation was equal
to that of context2vec, and the context-to-target
and context-to-context similarities were computed
using vector cosine between the respective embed-
ding representations, as with context2vec.

3.3 Sentence Completion Challenge

The Microsoft Sentence Completion Challenge
(MSCC) (Zweig and Burges, 2011) includes 1,040
items. Each item is a sentence with one word re-
placed by a gap, and the challenge is to identify the
word, out of five choices, that is most meaningful
and coherent as the gap-filler. While there is no
official dev/test split for this dataset, we followed
previous work (Mirowski and Vlachos, 2015) and
used the first 520 sentences for parameter tuning
and the rest as the test set.4

4Mikolov et al. (2013a) did not specify their dev/test split
and all other works reported results only on the entire dataset.
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The MSCC includes a learning corpus of 50
million words. To use this corpus for training
our models, we first discarded all sentences longer
than 128 words, which resulted in a negligible re-
duction of ∼ 1% in the size of the corpus. Then,
we converted all text to lowercase and considered
all words with frequency less than 3 as unknown,
yielding a vocabulary of about 100K word types.

Finally, as the gap-filler, we simply choose the
word whose target word embedding is the most
similar to the embedding of the given context us-
ing the target-to-context similarity metric. We re-
port the accuracy achieved in this task.

3.4 Lexical Substitution Task

The lexical substitution task requires finding a
substitute word for a given target word in sen-
tential context. The difference between this and
the sentence completion task is that the substi-
tute word needs not only to be coherent with the
sentential context, but also preserve the meaning
of the original word in that context. Most re-
cent works evaluated their performance on a rank-
ing variant of the lexical substitution task, which
uses predefined candidate lists provided with the
gold standard, and requires to rank them consid-
ering the sentential context. Performance in this
task is reported with generalized average precision
(GAP).5 As in MSCC, in this evaluation we rank
lexical substitutes according to the measured sim-
ilarity between their target word embeddings and
the embedding of the given sentential context.

We used two lexical substitution datasets in our
experiments. The first is the dataset introduced in
the lexical substitution task of SemEval 2007 (Mc-
Carthy and Navigli, 2007), denoted LST-07, split
into 300 dev sentences and 1,710 test sentences.
The second is a more recent ‘all-words ’ dataset
(Kremer et al., 2014), denoted LST-14, with over
15K target word instances. It comes with a prede-
fined 35%/65% split. We used the smaller set as
the dev set for parameter tuning and the larger one
as our test set.

3.5 Supervised WSD

In supervised WSD tasks, the goal is to determine
the correct sense of words in context, based on a
manually tagged training set. To classify a test
word instance in context, we consider all of the

5See Melamud et al. (2015a) for more of their setting de-
tails, which we followed here.

context word units 300
LSTM hidden/output units 600
MLP input units 1200
MLP hidden units 1200
sentential context units 600
target word units 600
negative samples 10

Table 5: context2vec hyperparameters

tagged instances of the same word lemma in the
training set, and find the instance whose context
embedding is the most similar to the context em-
bedding of the test instance using the context-to-
context similarity metric. Then, we use the tagged
senses6 of that instance. We note that this is es-
sentially the simplest form of a k-nearest-neighbor
algorithm, with k = 1.

As our supervised WSD dataset we used the
Senseval-3 lexical sample dataset (Mihalcea et al.,
2004), denoted SE-3, which includes 7,860 train
and 3,944 test instances. We used the training set
for parameter tuning and report accuracy results
on the test set.

4 Results

4.1 Development Experiments

The hyperparameters used in our reported exper-
iments with context2vec are summarized in Ta-
ble 5. In preliminary development experiments,
we used only 200 units for representing sentential
contexts, and then saw significant improvement in
results, when moving to 600 units. Increasing the
representation size to 1,000 units did not seem to
further improve results.

With mini-batches of 1,000 sentences at a time,
we started by training our models with a single
iteration over the 2-billion-word ukWaC corpus.
This took ∼30 hours, using a single Tesla K80
GPU. For the smaller 50-million-word MSCC
learning corpus, a full iteration with a batch size
of 100 took only about 3 hours. For this corpus,
we started with 5 training iterations.

To explore the rare-word bias effect of the vo-
cabulary smoothing factor α, we varied its value
in our development experiments. The results ap-
pear in Table 6 on the left hand side. Since we
preferred to keep our model as simple as possi-
ble, based on these results, we chose the single

6There’s one or more senses assigned to a each instance.
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context2vec AWE
neg sampling parameter α iters+ best best worst worst
0.25 0.50 0.75 1.00 0.75 config result config result

MSCC-dev 52.5 56.5 60.0 52.7 66.2 sent+stop 51.0 W5 36.5
LST-07-dev 50.1 52.9 53.6 54.3 55.4 W5+stop 45.8 sent 40.0
LST-14-dev 48.2 48.9 48.0 46.1 48.3 sent+stop 40.4 sent 39.2
SE-3-dev 72.1 72.4 71.6 72.5 72.6 W5+tf-idf 62.4 sent 57.3

Table 6: Development set results. iters+ denotes the best model found when running more training
iterations with α = 0.75. AWE config: W5/sent denotes using a 5-word-window/full-sentence, and
stop/tf-idf denotes ignoring stop words or using tf-idf weights, respectively.

value α = 0.75 for all of our test sets experiments.
With this choice, we also tried training our mod-
els with more iterations and found that with 3 it-
erations over the ukWaC corpus and 10 iterations
over the MSCC corpus we can obtain some further
improvement in results, see iters+ in Table 6.

The results of our experiments with all of the
AWE variants, described in section 3.2, appear
on the right hand side of Table 6. For brevity,
we report only the best and worst configuration
for each benchmark. As can be seen, in two
out of four benchmarks, a window of 5 words
yields better performance than a full sentential
context, suggesting that the AWE representation is
not very successful in leveraging effectively long
range information. Removing stop words or us-
ing tf-idf weights improves performance signifi-
cantly. However, the results are still much lower
than the ones achieved with context2vec. To raise
the bar, in each test-set experiment we used the
best AWE configuration found for the correspond-
ing development-set experiment.

4.2 Test Sets Results

The test set results are summarized in Table 7.
First, we see that context2vec substantially out-
performs AWE across all benchmarks. This sug-
gests that our context representations are much
better optimized for capturing sentential context
information than AWE, at least for these tasks.
Further, we see that with context2vec we either
surpass or almost reach the state-of-the-art on all
benchmarks. This is quite impressive, consider-
ing that all we did was measure cosine distances
between context2vec’s representations to compete
with more complex and task-optimized systems.

More specifically, in the sentence completion
task (MSCC) the prior state-of-the-art result is due
to Mikolov et al. (2013a) and was achieved by a

c2v c2v AWE S-1 S-2
iters+

MCSS
test 64.0 62.7 48.4 - -
all 65.1 61.3 49.7 58.9 56.2

LST-07
test 56.1 54.8 41.9 55.2 -
all 56.0 54.6 42.5 55.1 53.6

LST-14
test 47.7 47.3 38.1 50.0 -
all 47.9 47.5 38.9 50.2 48.3

SE-3
test 72.8 71.2 61.4 74.1 73.6

Table 7: Results on test sets. c2v is context2vec
and iters+ denotes the model that was trained with
more iterations. S-1/S-2 stand for the best/second-
best prior result reported for the benchmark.

weighted combination of scores from two differ-
ent models: a recurrent neural network language
model, and a Skip-gram model. The second-best
result is due to Liu et al. (2015) and is based
on word embeddings that are learned based on
both corpora and structured knowledge resources,
such as WordNet. context2vec outperforms both
of them. In the lexical substitution tasks, the best
prior results are due to Melamud et al. (2015a).7

They employ an exemplar-based approach that re-
quires keeping thousands of exemplar contexts for
every target word type. The second-best is due to
Melamud et al. (2015b). They propose a simple
approach, but it requires dependency-parsed text
as input. context2vec achieves comparable results
with these works, using the same learning corpus.
In the Senseval-3 supervised WSD task, the best
result is due to Ando (2006) and the second-best to

7Szarvas et al. (2013) achieved almost the same result, but
with a supervised model, not directly compared to ours.
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Rothe and Schütze (2015). context2vec is almost
on par with these results, which were achieved
with dedicated feature engineering and supervised
machine learning models.

5 Related Work

Substitute vectors (Yuret, 2012) represent contexts
as a probabilistic distribution over the potential
gap-filler words for the target slot, pruned to its
top-k most probable words. While using this rep-
resentation showed interesting potential (Yatbaz
et al., 2012; Melamud et al., 2015a), it can cur-
rently be generated efficiently only with n-gram
language models and hence is limited to fixed-size
context windows. It is also high dimensional and
sparse, in contrast to our proposed representations.

Syntactic dependency context embeddings have
been proposed recently (Levy and Goldberg,
2014a; Bansal et al., 2014). They depend on the
availability of a high-quality dependency parser,
and can be viewed as a ‘bag-of-dependencies’
rather than a single representation for the entire
sentential context. However, we believe that in-
corporating such dependency-based information
in our model is an interesting future direction.

A couple of recent works extended word2vec’s
CBOW by replacing its internal context represen-
tation. Ling et al. (2015b) proposed a continu-
ous window, which is a simple linear projection of
the context window embeddings into a low dimen-
sional vector. Ling et al. (2015a) proposed ‘CBOW
with attention’, which is used for finding the rel-
evant features in a context window. In contrast to
our model, both approaches confine the context to
a fixed-size window. Furthermore, they limit their
scope to using these context representations only
internally to improve the learning of target words
embeddings, rather than evaluate the benefit of us-
ing them directly in NLP tasks, as we do.

Kawakami and Dyer (2016) represent words in
context using bidirectional LSTMs and multilin-
gual supervision. In contrast, our model is fo-
cused on representing the context alone. Yet, as
shown in our lexical substitution and word sense
disambiguation evaluations, it can easily be used
for modeling the meaning of words in context as
well.

Finally, there is considerable work on using
recurrent neural networks to represent word se-
quences, such as phrases or sentences (Socher et
al., 2011; Kiros et al., 2015). We note that the

techniques used for learning sentence representa-
tions have much in common with those we use for
sentential context representations. Yet, sentential
context representations aim to reflect the informa-
tion in the sentence only inasmuch as it is relevant
to the target slot. Specifically, different target po-
sitions in the same sentence can yield completely
different context representations. In contrast, sen-
tence representations aim to reflect the entire con-
tents of the sentence.

6 Conclusions and Future Potential

We presented context2vec, a neural model that
learns a generic embedding function for variable-
length contexts of target words. We demonstrated
that it can be trained in a reasonable time over
billions of words and generate high quality con-
text representations, which substantially outper-
form the traditional average-of-word-embeddings
approach on three different tasks. As such, we hy-
pothesize that it could contribute to various NLP
systems that model context. Specifically, semi-
supervised systems may benefit from using our
model, as it may carry more useful information
learned from large corpora, than individual pre-
trained word embeddings do.
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Abstract

Domain-independent meaning representa-
tion of text has received a renewed in-
terest in the NLP community. Compar-
ison plays a crucial role in shaping ob-
jective and subjective opinion and mea-
surement in natural language, and is of-
ten expressed in complex constructions in-
cluding ellipsis. In this paper, we intro-
duce a novel framework for jointly captur-
ing the semantic structure of comparison
and ellipsis constructions. Our framework
models ellipsis and comparison as inter-
connected predicate-argument structures,
which enables automatic ellipsis resolu-
tion. We show that a structured prediction
model trained on our dataset of 2,800 gold
annotated review sentences yields promis-
ing results. Together with this paper we
release the dataset and an annotation tool
which enables two-stage expert annotation
on top of tree structures.

1 Introduction

Representing the underlying meaning of text has
been a long-standing topic of interest in com-
putational linguistics. Recently there has been
a renewed interest in representation of meaning
for various tasks such as semantic parsing, where
the task is to map a natural language sentence
into its corresponding formal meaning representa-
tion (Zelle and Mooney, 1996; Berant and Liang,
2014). Open-domain and broad-coverage seman-
tic representation of text (Banarescu et al., 2013;
Bos, 2008; Allen et al., 2008) is crucial for
many language understanding tasks such as read-
ing comprehension tests and question answering.

With the rise of continuous-space models there is
even more interest in capturing deeper generic se-
mantics of text as opposed to surface word repre-
sentations.

One of the most common ways for expressing
evaluative sentiment towards different entities is
using comparison. A simple natural language ex-
ample of comparison is Their pizza is the best.
Capturing the underlying meaning of comparison
structures, as opposed to their surface wording, is
required for accurate evaluation of qualities and
quantities. For instance, given a more complex
comparison example, The pizza was great, but it
was not as awesome as the sandwich, the state-of-
the-art sentiment analysis system (Manning et al.,
2014) assigns an overall ‘neutral’ sentiment value,
which clearly lacks deeper understanding of the
comparison happening in the sentence.

Consider the generic meaning representation
depicted in in Figure 1 according to frame seman-
tic parsing 1 (Das et al., 2014) for the following
sentence:

(1) My Mazda drove faster than his Hyundai.

It is evident that this meaning representation does
not fully capture how the semantics of the adjec-
tive fast relates to the driving event, and what it
actually means for a car to drive faster than an-
other car. More importantly, there is an ellipsis
in this sentence, the resolution of which results in
complete understood reading of My Mazda drove
faster than his Hyundai drove fast, which is in no
way captured in Figure 12. Having a comprehen-
sive meaning representation of comparison struc-

1We used Semafor tool: http://demo.ark.cs.cmu.edu/parse
2The same shortcomings are shared among other generic

meaning representations such as LinGO English Resource
Grammar (ERG) (Flickinger, 2011), Boxer (Bos, 2008), or
AMR (Banarescu et al., 2013), among others.
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My Mazda drove faster than his Hyundai
Self_mover Self_motion Manner

Figure 1: The frame-semantic parsing of the sen-
tence My Mazda drove faster than his Hyundai.

tures which can capture the mentioned phenomena
can enable the development of computational se-
mantic models which are suitable for various rea-
soning tasks.

In this paper we introduce a joint theoreti-
cal model for comprehensive semantic represen-
tation of the structure of comparison and ellip-
sis in natural language. We jointly model com-
parison and ellipsis as inter-connected predicate-
argument structures, which enables automatic el-
lipsis resolution. The main contributions of this
paper can be summarized as follows: (1) intro-
ducing a novel framework for jointly represent-
ing the semantics of comparison and ellipsis on
top of syntactic trees, (2) releasing a dataset of
2,800 expert annotated user review comparison in-
stances3, which significantly increases the size of
the available resources on comparison structures
in the community, (3) presenting a new structured
prediction model for automatic extraction of se-
mantic structures of comparison text together with
ellipsis resolution, (4) releasing an interactive tool
for tree-based human annotation of corpora, which
can be helpful for many other annotation tasks in
NLP.

To our knowledge, this paper presents the first
comprehensive computational framework of its
kind for ellipsis and comparison constructions.
Our semantic model can be incorporated as a part
of any broad-coverage semantic parser (Banarescu
et al., 2013; Allen et al., 2008; Bos, 2008) for aug-
menting their meaning representation.

2 Background and Related Work

Broadly, elliptical constructions involve the omis-
sion of one or more phrases from a clause (such
as ‘drove fast’ phrase at the end of example (1))
whose content can still be fully recovered from the
unelided words of the sentence (Kennedy, 2003;
Merchant, 2013). Resolving ellipsis is crucial for
deep language understanding. Although ellipsis
has been studied in great depth in linguistics, there
only have been a few computational studies of el-

3Throughout this paper we refer to any statement compar-
ing two or more entities as a comparison instance.

lipsis, most of which have focused on Verb Phrase
Ellipsis (VPE) (Nielsen, 2004; Schiehlen, 2002;
Hardt, 1997) such as Larry is not telling the truth,
neither is Jim ∆. where ∆ is a verb phrase ellipsis
site, which can be resolved to ‘telling the truth’.

In 2010, a SemEval task was organized with the
goals of (1) automatically detecting VPE in text,
and (2) resolving the antecedent of each VPE (Bos
and Spenader, 2011). For this task, they man-
ually annotated a portion of OntoNotes corpus,
consisting of Wall Street Journal (WSJ) articles.
Throughout all the 25 sections of WSJ, they found
487 instances of VPE (ranging from predicative
ellipsis, deletion, and comparative constructions,
to pseudo-gapping) in about 53,600 sentences.
Among 487 ellipsis items, there were 96 compara-
tive constructions. They show that simply search-
ing the parse trees for empty VPs achieves a high
precision (0.95) but low recall (0.58). Our work
presents the first attempt on comparison ellipsis
resolution of various types, within a semantically
rich framework of comparisons.

The syntax and semantics of comparison struc-
tures in natural language have been the subject
of extensive systematic research in linguistics for
a long time (Bresnan, 1973; Cresswell, 1976;
Von Stechow, 1984). Measurement in language
is mainly expressed by using comparative mor-
phemes such as more, less, -er, as, too, enough, -
est, etc4. The main component of the sentence car-
rying out the measurement can have either of ad-
jective (JJ), adverb (RB), noun (NN), or verb (VB)
parts of speech. The earliest efforts on the compu-
tational modeling of comparatives have been in the
context of sentiment analysis, ranging from works
on identifying sentences containing comparisons
(Jindal and Liu, 2006b) to identifying the com-
ponents of the comparisons in the form of triplets
or other templatic patterns (Jindal and Liu, 2006a;
Xu et al., 2011; Kessler and Kuhn, 2014). These
works provide a basis for computational analy-
sis of comparatives, however, they lack depth and
broader coverage as they are limited to only a few
comparison patterns.

The most recent work on the computational se-
mantics of comparison (Bakhshandeh and Allen,
2015) sets the stage for a deeper semantic repre-
sentation of comparisons. Bakshandeh and Allen
introduce the first computational semantic frame-

4These morphemes are often referred to as the comparison
operators.
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work for representing the meaning of compara-
tives in natural language. This framework mod-
els comparisons as predicate-argument pairs inter-
connected via semantic role links. Our framework
differs in the following crucial aspects:
− Joint Ellipsis and Comparison Modeling:
Effective modeling and reasoning on compari-
son structures requires addressing ellipsis as well.
While Bakhshandeh and Allen only model com-
parisons, we provide a novel semantic framework
for comprehensive annotation of ellipsis structures
within comparison structures (details in Section
3.2).
− Tree-based Structure Modeling: Bakhshan-
deh and Allen use span-based predicate-argument
treatment, which is often prone to errors and lower
inter-annotator agreement. We base our frame-
work on top of constituency syntactic parse trees,
which leads to more accurate5 capture of semantic
structures.
− Reviews Dataset: While Bakhshandeh and
Allen use newswire text, we shift our focus to the
actual user reviews, which contain more compari-
son structures (Section 4.2). Furthermore, while
their dataset included 531 sentences, we collect
gold annotations for 2,800 sentences, which sig-
nificantly increases the size of the available data
for the community.

3 A Comprehensive Semantic
Framework for Comparison

In this Section we introduce a novel semantic
framework of comparison structures which incor-
porates ellipsis. Our framework extends and im-
proves the state-of-the-art semantic framework for
comparison structures in various ways (outlined
in Section 2). We follow the model of inter-
connected predicate-argument structures. In this
model the predicates are either comparison or el-
lipsis operators, and each predicate takes a set of
arguments called its semantic frame. For instance,
in [Sam] is the tallest [student] [in the gym], the
morpheme -est expresses a comparison operator
and the brackets delimit its various arguments. In
this Section we provide details about our semantic
framework.

5This is crucial, given the fact that the syntactic structure
of many comparison instances are complex, e.g., The server
was the rudest ever and made me feel as I was wasting her
time.

3.1 Comparison Structures
Comparison structures are modeled as sets of
inter-connected predicate-arguments. We base
our comparison framework on Bakhshandeh and
Allen (Bakhshandeh and Allen, 2015), however,
we extend and improve on the set of predicate
types and arguments to capture more diverse struc-
tures which results in a different semantic frame-
work.

3.1.1 Predicates
We consider two main categories of comparison
predicates, each of which can grade any of the
four parts of speech including adjectives, adverbs,
nouns, and verbs.
1. Ordering: Indicates how two or more entities
are ordered along a scale. The subtypes of this
predicate are the following:

– Comparatives with ‘>’, ‘<’ indicate that one
degree is greater or lesser than another; expressed
by the morphemes more/-er and less.

(2) The steak is tastier than the potatoes.

(3) Tom ate more soup.

– Equatives involving ‘≥’ indicate that one de-
gree meets or exceeds another; expressed by as
in constructions such as as tall or as much.

(4) The Mazda drives as fast as the Nissan.

– Superlatives indicate an entity or event has the
‘highest’ or ‘lowest’ degree on a scale; expressed
by most/-est and least.

(5) That chef made the best soup.

2. Extreme: Indicates having too much or
enough of a quality or quantity. The subtypes of
this predicate are the following:

– Excessive indicate that an entity or event is
‘too high’ on a scale; expressed by too.
– Assetive indicate that an entity or event has
‘enough’ of a degree; expressed by enough.

3.1.2 Arguments
Each predicate takes a set of arguments that we re-
fer to as the predicate’s ‘semantic frame’. Follow-
ing are the arguments included in our framework:

– Figure (Fig) is the main role which is being
compared.
– Ground is the main role Figure is compared to.
– Scale (-/neutral/+) is the scale for the compari-
son, such as size, beauty, temperature. We assign
the generic sentiment values positive (+), neutral,
and negative (-) to the underlying scales.
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– Standard (Std) is the reason a degree is ‘too
much’ (excessive predicates) or ‘enough’ (asse-
tive predicates). An individual j may be ‘too tall
to reach the top shelf ’ but ‘tall enough to get on
this ride’.
– Differential (Diff) is an explicit phrase indi-
cating the ‘size’ of a difference between de-
grees. For instance, ‘2 inches taller’ or ‘6 degrees
warmer’.
– Domain (Dom) is an explicit expression of the
type of domain in which the comparison takes
place (superlatives). An individual m may be
‘the tallest girl’ but not ‘the tallest student’.
– Domain Specifier (D-Spec) is the specification
of the domain argument, further narrowing the
scope of the domain. An individual m may be
‘the tallest girl in the class’ but not ‘the tallest
girl in the country’.

The Case of Copulas: A copula is a form of the
verb to be that links the subject of a sentence with
a predicate, such as was in the sentence She was
a doctor. Comparison structures are often formed
on the basis of copular constructions, for exam-
ple (6a). Compare this with (6b), and their corre-
sponding comparison structures.

(6) a. This was the best pizza in town.
b. I ate the best pizza in town.

sup

This was the most delicious pizza .

Figure Scale/+
Domain

sup

I ate the most delicious pizza .

Figure
Scale/+

Domain

As you can see, in (6a) was links this to pizza.
In this sentence the argument Figure is this. On
the other hand, in (6b), the word pizza takes the
role of both Figure and Domain.

3.2 Ellipsis Structures

Perhaps the most common type of comparison
structure is the comparative construction, with
(13) as an example, where ∆ marks an ellipsis
site. Roughly, (13) is interpreted as a greater-
than relation between ‘how appetizingly the steak
sizzles’ and ‘how appetizingly the hamburger siz-
zles’, which might be formalized as in (14) with
e1 and e2 representing the two sizzling events.

(7) The steak sizzled more appetizingly than the ham-
burger ∆.

(8) appetizingness(e1) > appetizingness(e2)

On the surface, the sentence in (13) does not re-
late sizzle or appetizingly to the hamburger; these
must be filled in for ∆ by a process called ellip-
sis resolution—finding the antecedent of an ellip-
sis. Speakers of English are readily able to infer
from the surface material in (13) that the depen-
dent clause is interpreted as in (9), where the re-
solved ellipsis is written in subscript.

(9) than the hamburgersizzled appetizingly

It is clear that resolving ellipsis in comparison
structures is crucial for language understanding
and failure to do so would deliver an incorrect
meaning representation. Numerous subtypes of el-
liptical constructions are distinguished in linguis-
tics (Kennedy, 2003; Merchant, 2013; Yoshida
et al., 2016). In our framework we mainly in-
clude six types that can be detected in comparison
structures: ‘VP-deletion’, ‘Stripping’6, ‘Pseudo-
gapping’, ‘Gapping’, ‘Sluicing’, and ‘Subdele-
tion’. Ellipsis more often occurs in comparative
and equative constructions (applicable to any of
the four parts of speech) as follows.
• Comparatives: Ellipsis takes place in the de-
pendent clause headed by than. We indicate the
three ellipsis possibilities for these clauses re-
suming (10), a nominal comparative. The elided
materials are written in subscript.

(10) Mary ate more rice ...

– VP-deletion (aka ‘Comparative Deletion’):
... than John did eat rice.

– Stripping (aka ‘Phrasal Comparative’):
... than John ate rice.

– Gapping:
... than John, ate how-much soup.

– Pseudogapping:
... than John did eat soup.

– Sluicing:
... than someone, but I don’t remember than who

ate how-much rice.
– Subdeletion:

... than John ate how-much soup.

• Equatives: Ellipsis takes place in the depen-
dent clause headed by as. We indicate the possi-
bilities for these clauses resuming (11), a nomi-
nal equative.

(11) Mary ate as much rice ...

– VP-deletion:
... as John did eat how-much rice.

6VP-deletion and stripping are the more frequent types.
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O
rd

er
in

g Comparative (Comp)

Comparative>

Mary is a lot more intelligent than Larry.

Figure

Differential
Scale/+

Ground

Superlative (Sup)

Superlative-

Susan is the least trustworthy person I’ve ever known.

Figure Scale/+

Domain
Domain-specifier

Equative (Eq)

Equative

The cat ran as fast as the dog ran.

Figure Scale/+
Ground

E
xt

re
m

e Excessive (Exc)

Excessive

The food is too hot to be carried.

Figure Scale/+
Standard

Assetive (Ast)

Assetive

I studied enough to pass the exam.

Figure

Scale/+

Standard

Table 1: Predicates together with their semantic frames shown in example sentences.

– Stripping:
... as John eat how-much rice.

– Gapping:
... as John, ate how-much soup.

– Pseudogapping:
... as John did ate how-much soup.

– Sluicing:
... as someone, but I don’t remember as who

ate how-much rice.7

– Subdeletion:
... as John ate how-much soup.

Now that we have the ellipsis predicate types,
we want to empirically model ellipsis construc-
tions as predicate-argument structures with refer-
ence to an antecedent, where each ellipsis predi-
cate is associated with its corresponding compar-
ative predicate. The question is how to represent
the ellipsis construction in a sentence. Consider
the example of VP-deletion in the following ad-
verbial comparative:

(12) The steak was cooked more carefully than the
burger ∆.

where ∆ should be resolved to was cooked how-
carefully. How is called the null operator, which

7Whether this construction is grammatical is controver-
sial.

serves as the placeholder for the measurement of a
degree.

In order to represent the resolution of the elided
material such as ∆, we first annotate the predicate
of an ellipsis construction as an ‘attachment’ site
in the syntactic tree, right next to the node that the
elided material should follow. Hence, in (12), the
token the burger will be annotated as the ellipsis
predicate, which signifies the start of an ellipsis
construction.

Defining the arguments for ellipsis predicates
can be complicated. Here the goal is to thoroughly
construct the antecedent of the elided material by
annotating the existing words of the context sen-
tence. In order to address this, we define the fol-
lowing three argument types for ellipsis:

– Reference is the constituency node which is
the base of an antecedent.
– EXclude (Ex) is the constituency node which
should be excluded from the Reference.
– How-much (?) is the constituency node which
should be replaced by a null operator such as how
or how-much; this is always the argument match-
ing more/-er or as (much) in the context sentence.
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Figure 2: Full tree-based annotation of compar-
ison and ellipsis structures for the sentence pre-
sented in example 12. The tag ‘Es’ refers to the
Stripping predicate type.

Following the above annotation schema the el-
lipsis site in (12) will be annotated as shown in red
in Figure 2. This shows how to do automatic ellip-
sis resolution given our representation: one should
start after the node ‘the burger’, and perform the
following: [was cooked moreHow?

carefully than
the burger]Reference − [than the burger]EXclude

= was cooked how carefully. Another important
thing to note in Figure 2 is our treatment of the
comparison structure (in green) jointly with el-
lipsis: The argument F (Figure) of the compari-
son predicate more is cooked. The G argument
(Ground), is the second elided ‘cooked’ event,
which should come from the ellipsis construction.
We thus annotate the explicit node cooked as the
Ground-Ellipsis (G/E) which also links the com-
parison construction to the ellipsis predicate.

4 Data Collection Methodology

4.1 Comparison Instance Sampling

The sentences used for annotation play a sig-
nificant role in the diversity and comprehensive-
ness of the comparison structures represented in
our dataset. Earlier work (Bakhshandeh and
Allen, 2015) experimented with annotating se-
mantic structures on OntoNotes dataset. We shift
our focus to actual product and restaurant reviews,
which inherently include many natural compari-
son instances. For this purpose we mainly use
Google English Web Treebank8. This corpus con-
tains more than 250,000 words in about 10,000

8https://catalog.ldc.upenn.edu/
LDC2012T13

sentences of English weblogs, newsgroups, email,
reviews (product, restaurant, etc.) and question-
answers, annotated with gold syntactic trees. This
corpus is suitable for our task since it provides
a good coverage of web domain text, mainly re-
views.

In order to augment the volume of review con-
tent, we also use the Movie Reviews dataset
(Pang and Lee, 2005). This dataset consists of
11,855 sentences extracted from movie reviews.
Given that these Movie reviews do not come with
the syntactic trees, we used the Berkeley parser
(Petrov et al., 2006), which outperformed the
other off-the-shelf parsers on comparison syntac-
tic structure. Of course it is not efficient to include
any arbitrary sentence of a corpus for manual an-
notation. We employ various linguistic filters to
filter the sentences which potentially contain com-
parison. The details of this process can be found
in the supplementary material.

4.2 Tree-based Annotation

We trained six linguists to do the semantic anno-
tation for comparison and ellipsis structures for
the sampled comparison instances according to the
framework presented in Section 3. The annota-
tions were done via our interactive two-stage tree-
based annotation tool. In this tool, each annotator
can be assigned with a set of tree-based annota-
tion assignments, where pairing annotators to do
the same task for inter-annotator analysis is also
feasible. For this task, the annotations were done
on top of constituency parse trees, and the anno-
tators were instructed to choose the top-most con-
stituency node when choosing the predicate or ar-
guments.9 Annotating on gold-standard syntac-
tic trees helps with resolving ambiguous instances
which have multiple interpretations. Furthermore,
it gives annotators syntactic signals for choosing
the types of predicates (e.g., adverbial vs adjecti-
val comparatives), all of which increase the accu-
racy of our annotation.

Our annotation tool sets up the data collection
as a two-stage expert annotation process: (1) for
each sentence, one expert annotates and submits
the annotation, (2) another expert reviews the sub-
mission and either returns the submission with
feedback or marks it as a gold. This recursive

9This enables accurate capturing of arguments, e.g., in
I am the tallest [in our school], the constituency node cor-
responding to the entire phrase in brackets is annotated as
Domain-specifier.
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Figure 3: The number of various predicate types
across different resources.

Table 2: The percentage of each argument type.

Scale Fig Ground Dom D-Spec Diff Std
38.8 31.5 6.33 9.31 7.01 4.09 2.98

process ensures higher annotation quality. We it-
erate over the sentences until getting 100% inter-
annotator agreement. On average, annotating ev-
ery sentence takes about one minute and revising
controversial sentences (12% of the time) takes
about 4 minutes of expert annotation time.

This process yields a total of 2,800 annotated
sentences with 100% agreement. Figure 3 visu-
alizes the distribution of various predicate types
from the various resources. In order, these re-
sources each include 11,855, 3,813, 3,488, 4,900,
and 2,391 sentences. As this Figure depicts, re-
views are indeed the richest resource for com-
parisons, with more comparison instances than
any other resource of even a bigger size. There
are a total of 5,564 comparison arguments in our
dataset, with the distribution summarized in Ta-
ble 2. The total number of ellipsis predicates is
240, with 197 Stripping, 31 VP-deletion and 12
Pseudo-gapping.

5 Predicting Semantic Structures

In this Section we describe our methodology for
joint prediction of comparison and ellipsis struc-
ture for a given sentence.

5.1 Modeling

We model the problem as a joint predicate-
argument prediction of comparison and ellip-
sis structures. It is important to note that our
predicate-argument semantic structure itself looks
similar to a dependency parse tree, however, as ex-
plained earlier, we base this representation on top
of constituency parse trees. For each training sen-
tence, we denote the underlying constituency tree
as T . The set of all constituency nodes in T is
VT . Each v ∈ VT can be tagged as a compar-
ison predicate c ∈ C = {Comp, Sup, Eq, Exc,

Ast}10, a comparison argument ac ∈ AC = all-
comparison-arguments, an ellipsis predicate e =
‘Ellipsis’, an ellipsis argument ae ∈ AE =
{Reference, Ex, ‘?’}, or NONE.

In Equation 1, we define a globally normalized
model for the probability distribution of compari-
son labels over all v ∈ VT if CompFilter(T ) =
True. We define CompFilter to filter the follow-
ing:

– Any sentence containing a word with POS tag
equal to JJR, RBR, JJS, or RBS.
– Any sentence containing a comparison mor-
pheme such as more, most, less, enough, too.
The next step is to define the probability distri-

bution in Equation 2 for ellipsis labels, condition-
ing on the comparison label. This is motivated by
the fact that the Ellipsis predicate is dependent on
its corresponding comparison predicate. Given the
comparison and ellipsis predicate labels, for each
comparison and ellipsis argument type we define
a binomial probability distribution as defined in
Equations 3 and 4.

pC(c|v, T, θC) ∝ exp(fC(c, T )TθC) (1)

pE(e|c, v, T, θE) ∝ exp(fE(e, c, T )TθE) (2)

pAc(ac|c, e, v, T, θac) ∝ exp(fAC
(c, e, T )Tθac) (3)

pAe(ae|c, e, v, T, θae) ∝ exp(fAE
(e, c, T )Tθae) (4)

In each of the above equations, f is the cor-
responding feature function. For predicates the
main features are lexical features, bigram fea-
tures, node’s constituency position, node’s mini-
mum distance from leaves, and node’s parent con-
stituency label. For the arguments, we use the
same feature-set as for the predicates, but also in-
cluding the leftmost verb (for the case of copulas),
the constituency path between argument and the
predicate, and the predicate type. θC , θE , θac and
θae are the parameters of the log-linear model. We
calculate these parameters using Stochastic Gradi-
ent Descent algorithm.

5.2 Joint Inference of Ellipsis and
Comparison

For inference we model the problem as a struc-
tured prediction task. Given the syntactic tree of
a given sentence, for each node we first select the
predicate type with the highest pC . Then for each

10Each predicate should be further tagged with one of the
four possible POS tags (JJ, RB, NN, VB), resulting in a total
of 20 predicate types.
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selected comparison predicate, we find the corre-
sponding ellipsis predicate that has the highest pE

probability. Define 〈tc, te〉 ∈ R, where R is the
set of all tuples of corresponding comparison and
ellipsis predicates, tc is the index of the compar-
ison predicate and te is the index of the ellipsis
predicate.

We tackle the problem of argument assign-
ment by using Integer Linear Programming, where
one can pose domain-specific knowledge as con-
straints. We define a binary variable bij and b′ik
where i is the a node in tree, j is a comparison
argument label and k is a ellipsis argument label.
For each 〈tc, te〉, we maximize the linear Equation
5, subject to a few linguistically-motivated con-
straints.

max
bij ,b′

jk
∈{0,1}

∑
i∈VT ,j∈AC ,k∈AE

(
bijpAc(tc, te, i, j)+

b′ikpAe(tc, te, i, k)
) (5)

ILP Constraints: Any specific comparison label
calls for a unique set of constraints in the ILP
formulation, which ensures the validity of predic-
tions. For instance, the Superlative predicate
type never takes any Ground arguments, or the
argument Standard is only applicable to the ex-
cessive predicate type. We implement the seman-
tic frame (as listed in Table 1) of each predicate
type using hard ILP constraints. For example, in
order to encode the semantic frame for predicate
typeExcessive, we employ the ILP constraints in
Equation 6, which simply enforce this predicate to
have 0 Ground arguments and maximum 1 Figure
arguments.

∑
i∈VT ,j=Ground

bij = 0,
∑

i∈VT ,j=Figure

bij ≤ 1 (6)

We incorporate a few other ILP constraints for
encoding our knowledge regarding ellipsis struc-
tures as well as comparison. For more details of
these knowledge-driven constraints please refer to
the supplementary material.

6 Experimental Result

We divide our dataset into train and train-dev
(70%), and test (30%) sets. For evaluation of a
given system prediction against the reference gold
annotation, for each constituency node in the ref-
erence, we give the system a point in two ways:

ILP Model
P R F1

Excessive 0.68/0.68 1.00/1.00 0.81/0.81
Assetive 0.97/0.97 1.00/1.00 0.98/0.98
Comparative 0.95/0.95 0.99/0.99 0.97/0.97
Superlative 0.97/0.98 0.98/0.99 0.98/0.98
Equative 0.57/0.58 0.95/0.98 0.71/0.73
Stripping 0.75/0.96 0.75/0.96 0.75/0.96
Deletion 0.20/0.41 0.72/0.89 0.31/0.13
Average 0.72/0.78 0.91/0.97 0.76/0.80

Baseline
Excessive 0.65/0.65 1.00/1.00 0.79/0.79
Assetive 0.97/0.97 1.00/1.00 0.98/0.98
Comparative 0.95/0.97 0.96/0.97 0.95/0.97
Superlative 0.98/0.98 0.98/0.98 0.98/0.98
Equative 0.13/0.13 1.00/1.00 0.23/0.23
Stripping 0.05/0.14 0.31/0.91 0.08/0.25
Deletion 0.00/0.00 0.00/0.00 0.00/0.00
Average 0.62/0.64 0.87/0.97 0.66/0.69

Table 3: Predicate prediction results on test set.
Each cell contains scores according to Exact/Head
measurement.

(1) Exact: the label assigned to the node by the
system exactly matches the gold label; (2) Head:
the reference label matches the label of the head
word of the node in system’s prediction. We re-
port on Precision (P), Recall (R) and F1 score. We
test three models: our comprehensive ILP model
(detailed in Section 5), our model without the ILP
constraints, and a rule-based baseline. The base-
line encodes the same linguistically motivated ILP
constraints via rules. It further uses a few pat-
tern extraction functions for pinpointing compar-
ison morphemes which detect comparison and el-
lipsis predicates. More details about the baseline
can be found in the supplementary material.

The results on predicate prediction is shown in
Table 3. Given that our ILP constraints only en-
code argument structures, in this Table we only
compare the baseline with our full ILP model. As
the results show, overall, the scores are high for
predicting the predicates, with ellipsis predicates
being the most challenging. The baseline has a
near perfect prediction on Assetive and Superla-
tive types, which shows that the linguistic pat-
terns can capture these types well. Our model
performs the poorest on Equatives. If we look
at the specific cases it misses, it is often regard-
ing the morpheme ‘as’, which takes part in many
various linguistics constructions, many of which
are not comparatives. For example, for the test
sentence We will let them manage our other in-
vestment properties as well as us getting older.,
our system wrongly classifies ‘as’ as an equative
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ILP Model (Exact/Head) ILP No Constraints (Exact/Head) Baseline (Exact/Head)
P R F1 P R F1 P R F1

Standard 0.40/0.80 0.42/0.84 0.41/0.82 0.00/0.00 0.71/1.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Scale 0.58/0.64 0.89/0.99 0.70/0.78 0.02/0.02 0.94/1.00 0.04/0.04 0.47/0.69 0.67/0.98 0.55/0.81
Ground 0.27/0.48 0.46/0.84 0.34/0.61 0.00/0.00 0.98/1.00 0.01/0.01 0.06/0.18 0.24/0.71 0.10/0.29
Figure 0.38/0.81 0.44/0.94 0.41/0.87 0.02/0.02 0.94/1.00 0.03/0.03 0.09/0.43 0.17/0.80 0.12/0.56
D-Specifier 0.41/0.63 0.57/0.87 0.48/0.73 0.00/0.00 1.00/1.00 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00
Domain 0.56/0.76 0.66/0.91 0.61/0.83 0.01/0.01 0.99/1.00 0.01/0.01 0.00/0.39 0.00/0.55 0.00/0.46
Exclude 0.33/0.56 0.49/0.84 0.39/0.67 0.01/0.01 0.63/1.00 0.02/0.02 0.00/0.00 0.00/0.00 0.00/0.00
Ref 0.18/0.53 0.28/0.80 0.22/0.63 0.01/0.01 0.61/1.00 0.01/0.02 0.00/0.00 0.00/0.00 0.00/0.00
How-much 0.27/0.36 0.65/0.88 0.38/0.51 0.01/0.01 0.96/1.00 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00
Average 0.37/0.61 0.54/0.87 0.43/0.71 0.01/0.01 0.86/1.00 0.10/0.10 0.20/0.42 0.36/0.73 0.25/0.52

Table 4: Results of argument prediction on test set. The average for the models only takes into account
non-zero results.

predicate, which is clearly an ambiguous and chal-
lenging test sentence. Analysis shows that the er-
rors are often due to inaccuracies in automatically
generated parse trees, e.g., challenging long sen-
tences (average length > 12 tokens) with informal
language which are generally hard to parse.

The task of predicting arguments is a more de-
manding task. As you can see in Table 4, the base-
line model often fails at predicting the arguments.
Our comprehensive ILP model consistently out-
performs the No Constraints model, showing the
effectiveness of our linguistically motivated ILP
constraints. Our ILP model performs the best on
Scale and Domain argument types, which is partly
due to the frequency of these types in our dataset.
We are planning on annotating more data to im-
prove the argument prediction in future.

7 Conclusion

Systems that can understand comparison and
make inferences about how entities and events
compare in natural language are crucial for var-
ious NLP applications, ranging from question an-
swering to product review analysis. Having a com-
prehensive semantic framework which can repre-
sent the underlying meaning of comparison struc-
tures is the first step toward enabling such an in-
ference. In this paper we introduced a novel se-
mantic framework for jointly capturing the mean-
ing of comparison and ellipsis constructions. We
modeled the problem as inter-connected predicate-
argument prediction. Based on this framework,
we trained experts to annotate a dataset of ellipsis
and comparison structures, which we are making
publicly available11. Furthermore, we introduced

11In order to access the dataset and our interactive two-
stage tree-based annotation tool please refer to http://
cs.rochester.edu/~omidb.

a structured prediction model which can automat-
ically extract comparison structures and perform
ellipsis resolution for a given text, which performs
reasonably well for major predicate and argument
types.

In future, we are planning on improving our
joint prediction models for further improving the
performance. Moreover, we plan on using our se-
mantic framework for text comprehension appli-
cations.
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Supplementary Material

Background on Ellipsis
Elliptical constructions involve the omission of
one or more phrases from a clause, while the con-
tent can still be understood from the rest of the
sentence (Kennedy, 2003; Merchant, 2013). Re-
solving ellipsis in comparison structures is crucial
for language understanding. Failure to do so for
(13) as an example, would deliver an incorrect rep-
resentation, something like ‘how appetizingly the
steak sizzled is greater than the hamburger’. To
arrive at an interpretation equivalent to (14) in a
way that systematically relates to the syntax of
(13) requires a semantics for comparatives based
on ‘events’ and ‘degrees’.

(13) The steak sizzled more appetizingly than the ham-
burger ∆.

(14) appetizingness(e1) > appetizingness(e2)

In event semantics, sentences like (15) and
(16) are interpreted as existential statements about
events (Davidson, 1967). For example, (15) is in-
terpreted as ‘there is an event ewhose Theme (Th)
is the steak, and e is a sizzling event’ (Parsons,
1990).

(15) The steak sizzled.  
∃e1[Th(e1)(steak) & sizzle(e1)]

(16) The hamburger sizzled.  
∃e2[Th(e2)(hamburger) & sizzle(e2)]

A comparative like (13) is built on top of two
clauses much like (15) and (16) (Bresnan, 1973).
In concert with appetizingly in (13), more intro-
duces a greater-than relation between the degrees
to which the two events are appetizing (Wellwood,
2015). ‘Degrees’ represent points on a scale, said
to be the output of a ‘measure function’ like appe-
tizing (Cresswell, 1976; Kennedy, 1999). In what
follows, we first introduce this framework in the
simpler case where no dependent clause appears
in the sentence.

In the ‘implicit’ comparison (17), what is com-
pared to must be recovered from the use context;
this is indicated by the free variable δ, standing for
some degree. The interpretation of this sentence is
read, ‘there is an event e in which the steak sizzles,
and e is appetizing to a degree greater than δ’.

(17) The steak sizzled more appetizingly.  
∃e[Th(e)(s) & sizzle(e) & appetizing(e) > δ]

When the dependent clause is present, the com-
bination of ellipsis resolution and semantic com-
position delivers a degree that takes the place of δ

in a representation like that in (17). (18) is read as,
‘the maximal degree d to which there is an event
e of the hamburger sizzling, and e is appetizing to
at least degree d’. Semantically, the maximal de-
gree (max d) is introduced by a null operator that
we will call how (Kennedy, 2002) throughout this
paper.

(18) ...than the hamburger did.
resolve ellipsis 

(19) ...the hamburger didsizzle how-appetizingly  
max d.∃e[Th(e)(h) & sizzle(e) & appetiz(e) ≥
d]

Putting the pieces together, (13) in fact has the
richer and more accurate meaning representation
in (20).

(20) ∃e1[Th(e1)(s) & sizz(e1) & appetiz(e1) >
max d.]
∃e2[Th(e2)(h) & sizz(e2) & appetiz(e2) ≥ d]

In comparatives with more/-er, and equatives
with as, how the ‘scale’ is introduced in the depen-
dent clause differs according to the major part of
speech of the comparison structure. For adjectival
and adverbial comparisons (taller, as quickly), the
scale is provided by those categories (height, ap-
petizingness) and the null operator is simply how.
For nominal and verbal comparisons (more rice,
sizzle as much), much introduces a variable scale
(µ), and the null operator is called how-much.

Related Work

In addition to the major characteristics pointed out
in the paper, our framework improves on the fol-
lowing issues as compared with Bakhshandeh and
Allen (Bakhshandeh and Allen, 2015):

– While we also model comparison structures
as predicate-argument pairs, we do not use ad-
ditional semantic role links. We retain all seman-
tic information on predicate and argument types,
which results in better semantic generalization
across all predicates (Section 3).
– We categorize arguments into semantic frames
associated with each predicate type. This enables
addressing complex cases such as ‘copulas’ (Sec-
tion 3.1.2) which play a crucial role in asserting
properties about entities. Furthermore, we in-
troduce a more comprehensive set of argument
types which more accurately capture the syntac-
tic and semantic properties of various predicate
types.
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Figure 4: A screen-shot of our two-stage tree-based annotation tool.

Integer Linear Programming Constraints

Overall, our ILP constraints (which encode restric-
tions on the arguments of predicates) are either ap-
plied in general (to any predicate type) or are tai-
lored to encode the semantic frame of a specific
predicate. Following are our generic constraints:

1. The maximum number of arguments per node
is 3.

2. The maximum number of arguments in the
entire syntactic tree is 10.

We incorporate the following ILP constraints for
encoding knowledge regarding Ellipsis predicates:

1. The constituency span of comparison pred-
icate’s Figure and Ground should over-
lap with the Reference argument of ellipsis
predicate, if any.

2. The constituency node of Exclude argument
should be a child of the Reference.

3. One node can only have more than one com-
parison argument type if those types are
Figure and Ground.

The constraints for encoding the semantic frame
of the other comparison predicate types follows
straightforwardly from the semantic frames pre-
sented in the paper.

Data Collection Methodology

One approach for extracting sentences containing
comparisons is to mine the text for some (au-
tomatically or manually created) patterns, then
train a classifier for labeling comparison and non-
comparison sentences (Jindal and Liu, 2006b).

However, the variety of comparison structures is
so vast that being limited to some specific patterns
or syntactic structures will not result in good cov-
erage of comparisons. Instead, we use the follow-
ing filter (CompFilter) with a set of basic com-
parison structure linguistic markers for extracting
potential comparison instances:

– Any sentence containing a word with POS tag
equal to JJR, RBR, JJS, or RBS.
– Any sentence containing a comparison mor-
pheme such as more, most, less, enough, too.
This filter is guaranteed not to have any false

negatives since it is exhaustive enough to capture
any possible comparison sentence. We applied this
filter to the English Web Corpus and the Movie
Reviews dataset and extracted a pool of 2,800 sen-
tences for final annotation in the next step. It is
important to note that this filter will capture some
cases which look like comparison instances at the
surface level, but which are not so semantically
(e.g., (21)-(22), extracted from the Google Web
Treebank). Such negative examples help the qual-
ity of the final prediction models.

(21) Very nice ambiance and friendly staff too.

(22) We had sesame chicken and kung pao chicken as
well as cheese puffs.

Baseline Model

We implemented a rule-based baseline for
predicate-argument structure prediction. This
model mainly uses POS and lexical wording rules
for predicate prediction. For example, we have the

72



following rule for predicate prediction: Any JJS
POS tag can be tagged as a superlative predicate.

For argument prediction, we mainly implement
our knowledge-driven ILP constraints as rules.
Furthermore, this baseline uses rules such as the
following: in any than-clause, the first NP should
be tagged as Ground argument. Also, the subject
(if any) should be tagged as Figure argument, and
the closest adjective to the comparison morpheme
is the Scale indicator.

Two-stage Tree-based Annotation Tool

We are releasing our interactive two-stage tree-
based annotation tool with this paper. In this tool
each annotator can be assigned with a set of tree-
based annotation assignments, where pairing an-
notators to do the same task for inter-annotator
analysis is also feasible. This annotation tool sets
up the data collection as a two-stage expert anno-
tation process: (1) for each sentence, one expert
annotates and submits the annotation, (2) another
expert reviews the submission and either returns
the submission with feedback or marks it as a gold.
Figure 4 shows a screen-shot of this tool.
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Abstract

Semantic scripts is a conceptual represen-
tation which defines how events are orga-
nized into higher level activities. Practi-
cally all the previous approaches to induc-
ing script knowledge from text relied on
count-based techniques (e.g., generative
models) and have not attempted to compo-
sitionally model events. In this work, we
introduce a neural network model which
relies on distributed compositional repre-
sentations of events. The model captures
statistical dependencies between events in
a scenario, overcomes some of the short-
comings of previous approaches (e.g., by
more effectively dealing with data spar-
sity) and outperforms count-based coun-
terparts on the narrative cloze task.

1 Introduction

It is generally believed that the lack of knowl-
edge on how individual events are organized into
higher-level scenarios is one of the major obstacles
for natural language understanding. Texts often
do not provide a detailed specification of underly-
ing events as writers rely on the ability of humans
to read between the lines or, more specifically, on
their common sense knowledge of underlying sce-
narios. For example, going to a restaurant involves
entering the restaurant, getting seated, making an
order and so on. Consequently, when describing
a visit to a restaurant, a writer will not specify all
the events, as they are obvious to the reader. This
kind of knowledge is typically refereed to as se-
mantic scripts (Schank and Abelson, 1977), and,
in this work, will aim to capture some aspects of
this knowledge within our probabilistic model.

Early work on scripts focused on manual
construction of knowledge bases and rule-based

systems for inference using these knowledge
bases (Schank and Abelson, 1977). More re-
cent approaches relied on automatically learning
script knowledge either from crowd-sourced or
naturally-occurring texts (Chambers and Jurafsky,
2008; Regneri et al., 2010; Modi and Titov, 2014;
Frermann et al., 2014; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a).

Most of these methods represent events as ver-
bal predicates along with tuples of their immediate
arguments (i.e. syntactic dependents of the pred-
icate). These approaches model statistical depen-
dencies between events (or, more formally, men-
tions of events) in a document, often restricting
their model to capturing dependencies only be-
tween events sharing at least one entity (a common
protagonist). We generally follow this tradition in
our approach.

Much of this previous work has focused on
count-based techniques using, for example, either
the generative framework (Frermann et al., 2014)
or relying on information-theoretic measures such
as pointwise mutual information (PMI) (Chambers
and Jurafsky, 2008). Some of these techniques
treat predicate-argument structures as an atomic
whole (e.g., Pichotta and Mooney (2014)), in other
words their probability estimates are based on co-
occurrences of entire (predicate, arguments) tu-
ples. Clearly such methods fail to adequately take
into account compositional nature of expressions
used to refer to events and suffer from data spar-
sity.

In this work our goal is to overcome the short-
comings of the count-based methods described
above by representing events as real-valued vec-
tors (event embeddings), with the embeddings
computed in a compositional way relying on the
predicate and its arguments. These embeddings
capture semantic properties of events: events
which differ in surface forms of their constituents
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but are semantically similar will get similar em-
beddings. The event embeddings are used and es-
timated within our probabilistic model of seman-
tic scripts. We evaluate our model on predicting
left-out events (the narrative cloze task) where it
outperforms existing count-based methods.

2 Background

The general idea in the previous count based meth-
ods is to collect events sequences for an entity
from the corpus (referred as a script). An entity is
typically a noun/pronoun describing a person, lo-
cation or temporal construct mentioned in a docu-
ment. A document is parsed using a statistical de-
pendency parser. Then, the document is processed
with a coreference resolution system, linking all
the mentions of an entity in the document. Infor-
mation from the parser and the coreference system
is used to collect all the events corresponding to an
entity. Different systems differ on how they rep-
resent an event. We later explain in detail these
event representation differences. The process de-
scribed above is repeated for all the documents in
the corpus to collect event chains for each of the
entities. The collected event sequences are used
to build different statistical script models. These
script models are typically evaluated using a nar-
rative cloze test as explained in section 3. In the
cloze test, an event is removed from an event chain
and the task is to predict the missing event.

As described above different script models dif-
fer in, how they represent an event. Chambers and
Jurafsky (2008), Jans et al. (2012) and Rudinger
et al. (2015a) represent an event as verb depen-
dency type (for example subject, object etc) pair.
Using dependency parser and coreference system,
they collect verbs governing entity mentions, this
chain of verbs along with corresponding depen-
dency, forms the event chain. Recently, Pichotta
and Mooney (2014) extended the concept of an
event to include multiple arguments. In their
model, an event is a tuple v(es, eo, ep), where, en-
tities es, eo and ep are arguments with subject, ob-
ject and prepositional relation with the governing
verb v. A multi-argument event model encodes
a richer representation of events. They have em-
pirically show the advantages of having multiple
arguments in an event. In our work, we follow the
event definition of Pichotta and Mooney (2014)
and include multiple arguments in an event.

One of the disadvantage of the count based

models described above is poor event representa-
tions. Due to these impoverished representations,
these models fail to take into account composi-
tional nature of an event and suffer from sparsity
issues. These models treat verb-argument pair as
one unit and collect chains of verb-arguments pair
observed during training. Verb-arguments com-
binations never observed during training are as-
signed zero (or very small, if model is smoothed)
probability, even if these are semantically similar
to the ones in training. These models fail to ac-
count for semantic similarity between individual
components (verbs and arguments) of an event.
For example, events cook(John,spaghetti,dinner)
and prepared(Mary,pasta,dinner) are semantically
very similar but count based models would not
take this into account unless both events occur
in similar context. Due to sparsity issues, these
models can fail. This can be exemplified as fol-
lows. Suppose the following text is observed dur-
ing model training :

John cooked spaghetti for dinner. Later, John
ate dinner with his girlfriend. After dinner, John
took a dog for a walk. After 30 minutes, John came
home. After a while, John slept on the bed.

Event sequence (script) corresponding to the
above story is:
cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)→
take(john,dog,walk)→come(john,home)→sleep(john,bed)

Suppose during testing the following event
sequence is observed :
prepared(mary,pasta,dinner)→eat(mary,dinner,boyfriend)→
take(mary,cat,walk)→ ? →sleep(mary, couch)

The model is required to guess the missing
event marked with ‘?’. A count-based model
would fail if it never encountered the same events
during training. It would fail to take into account
the semantic similarity between words prepared
and cook, dog and cat.

A related disadvantage of a count based script
models is that they suffer from the curse of dimen-
sionality (Bengio et al., 2001). Since these meth-
ods are based on co-occurrence counts of events,
the number of instances required to model the joint
probability distribution of events grows exponen-
tially. For example, if event vocabulary size is 10
and number of events occurring in a chain are 5,
then number of instances required to model the
joint distribution of events is 510 − 1. This is so
because the number of instances required are di-
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rectly proportional to number of free parameters
in the model.

To counter the shortcomings of count based
script models, we propose a script model based
on distributed representations (Bengio et al., 2001;
Turian et al., 2010; Collobert et al., 2011). Our
model tries to overcome the curse of dimension-
ality and sparsity by representing events as vec-
tor of real values. Both verbs and arguments are
represented as a vector of real values (a.k.a em-
beddings). Verb and argument embeddings are
composed to get event vector (event embedding).
The model automatically learns these embeddings
from the data itself and in the process encodes se-
mantic properties in the event representations.

3 Tasks Definition

One of the standard tasks used for evaluating
script models is Narrative Cloze (Chambers
and Jurafsky, 2008; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a).
Origins of narrative cloze lie in psychology
where it was used to assess child’s ability to fill
in missing word in a sentence (Taylor, 1953).
In our setting the cloze task is described as
follows : given a sequence of events with an
event removed from the sequence, guess the
missing event. For example, given the sequence
cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)→
take(john,dog,walk)→?→sleep(john,bed) , predict the
event that should come at position marked by ?

Narrative cloze task evaluates models for exact
correctness of the prediction. It penalizes predic-
tions even if they are semantically plausible. It
would be more realistic to evaluate script models
on a task that gives credit for predicting seman-
tically plausible alternatives as well. We propose
adversarial narrative cloze task. In this task, the
model is shown two event sequences, one is the
correct event sequence and another is same se-
quence but with one event replaced by a random
event. The task is to guess which of the two, is the
correct event sequence. For example, given two
sequences below, the model should be able to dis-
tinguish the correct event sequence from the incor-
rect one. Interestingly, Manshadi et al. (2008) also
propose a similar task for evaluating event based
language model and they refer to it as event order-
ing task. As explained in section 5, we evaluate
our model on both the tasks: narrative cloze and
adversarial narrative cloze.

embarked batmobilesubj

predicate embedding 

event embedding

dep embedding

Ta1 Rp Ta2

e

a1 = Csubj a2 = Cbatmobilep = Cembark

arg embedding

hidden layerh
Ah

Figure 1: Computation of an event representa-
tion for a predicate with dependency and an ar-
gument (subj (batman) embarked batmobile), an
arbitrary number of arguments is supported by our
approach.

Correct:
cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)

→take(john,dog,walk)→come(john,home)→sleep(john,bed)

Incorrect:
cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)

→take(john,dog,walk)→play(john,tennis)→sleep(john,bed)

4 Script Model

We propose a probabilistic model for learning a
sequence of events corresponding to a script. The
proposed model predicts the event incrementally.
It first predicts a verbal predicate, followed by pro-
tagonist position (since the protagonist argument
is already known) and followed by remaining ar-
guments. We believe this is more natural way of
predicting the event as opposed to predicting the
complete event, treating it as an atomic unit. The
information about the predicate influences the pos-
sible arguments that could come next due to selec-
tional preferences of the verb.

As done in previous work, (Chambers and
Jurafsky, 2008; Jans et al., 2012; Pichotta and
Mooney, 2014; Rudinger et al., 2015a) each event
in a sequence of events has a common entity (pro-
tagonist) as one of the argument. We represent an
event as a tuple v(d, a(1), a(2)) where v is the ver-
bal predicate, d is the position (subj, obj or prep)
of the protagonist, a(1) and a(2) are the other de-
pendent arguments of the verb. We marked absent
argument as ‘NULL’.

77



ek�1 ek+1

hidden layers

embedding
context

softmax
predictions

future eventspast events
embeddings embeddings

Cp CfCp

We

W (in)
p

{Ws, Wo, Wpr} {Ws, Wo, Wpr} {Ws, Wo, Wpr}

u(pred)
p

e1 u(arg)
a1

Wp

u
(entity)
d

predicted predicate : p predicted dependency : d predicted argument : a1 predicted argument : a2

(predicate p embedding) (dependency d embedding) (argument a1 embedding)

WeWe We W (in)
p

{W (in)
s , W (in)

o , W (in)
pr }{W (in)

s , W (in)
o , W (in)

pr }

Figure 2: Model for learning event sequence. Here, we are given sequence of events
e1, e2, ....., ek−1, ek, ek+1. Event ek is removed from the sequence and it is predicted incrementally.

4.1 Event Representation

For event representation, one could use a sophis-
ticated compositional model based on recursive
neural networks (Socher et al., 2012) , we take a
simpler approach and choose a feedforward net-
work based compositional model as this is eas-
ier to train and more robust to choice of hyper-
parameters. Our event representations model is
inspired from the event ordering model of Modi
and Titov (2014). Their model uses distributed
word representations for representing verb and ar-
gument lemmas constituting the event. Distributed
word representations (also known as word embed-
dings) encode semantic and syntactic properties of
a word in a vector of real values (Bengio et al.,
2001; Turian et al., 2010; Collobert et al., 2011).
Word embeddings have been shown to be benefi-
cial in many NLP applications Turian et al. (2010);
Collobert et al. (2011).

The event model is a simple compositional
model representing an event. The model is shown
in Figure 1. Given an event, e = (v, d, a1, a2),
(here v is the predicate lemma, d the dependency
and a1, a2 are corresponding argument lemmas),
each lemma (and dependency) is mapped to a vec-
tor using a lookup matrix C. For example, a par-
ticular row number of C, corresponding to index
of a predicate in the vocabulary, gives the embed-
ding for the predicate. These constituent embed-
dings are projected into same space by multiplying
with respective projection matrices R (for predi-
cates) and T (for arguments). Hidden layer h is
obtained by applying a nonlinear activation func-
tion (tanh in our case). Final event representation

e is obtained by projecting the hidden layer using a
matrix A. Formally, event representation is given
by e = A∗tanh(T ∗Ca1,:+R∗Cv,:+T ∗Ca2,:)+b.
All the projection matrices (R, T,A) and lookup
matrix C are learned during training. We also ex-
perimented with different matrices T for subject
and object positions, in order to take into account
the positional information. Empirically, this had
negligible effect on the final results.

4.2 Event Sequence Model
A good script model should capture the mean-
ing as well as the statistical dependencies between
events in an event sequence. More importantly,
the model should be able to learn these represen-
tations from unlabeled script sequences available
in abundance.

We propose a neural network based probabilis-
tic model for event sequences, for learning event
sequence as well as the event representations. The
model is shown in Figure 2. The model is trained
by predicting a missing event in an event se-
quence. During training, a window (size = 5 =
3*2 + 1) is moved over all events in each event se-
quence corresponding to each entity. The event in
window’s center is the event to be predicted and
events on the left and right of the window are the
context events. As explained earlier, the missing
event is predicted incrementally, beginning with
a predicate, followed by the protagonist position,
followed by other participants in the event.

In order to get an intuition how our model pre-
dicts an event, consider the following event se-
quence in a script, with a missing event : (e1 →
e2 · · · → ek−1 → ? → ek+1 → . . . en ). We
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would like to predict the missing event, say ek.
The event model is used to obtain event repre-
sentations for each event in the context. These
event representations are then composed into con-
text representation by summing the representation
for each of the event in the context. We sum the
representations, as this formulation works well in
practice. The desired event ek is predicted incre-
mentally, beginning with the predicate p for ek.
The context embedding is used to predict the ver-
bal predicate via a hidden layer followed by a
multiclass logistic regression (softmax) classifica-
tion. Next, the protagonist position d (subject, ob-
ject etc) is predicted. For predicting d, the con-
text embedding and the predicate embedding (cor-
responding to the predicate predicted in previous
step) are linearly combined to be given as input
to a hidden layer. This is followed by regular
softmax prediction. Similarly, arguments are pre-
dicted. For each of the argument, predicate em-
bedding and the previous prediction (position or
argument) are linearly combined with the context
embedding. If at each prediction stage we used
gold predicate/position/argument embedding for
linearly combining with context embedding, our
model would not be robust to wrong predictions
during testing. Using the embeddings correspond-
ing to predicted unit would make the model robust
against noise and would help the model to partially
recover from wrong predictions during testing.

We train the model by minimizing the negative
likelihood function for the event prediction. For-
mally, we minimize the objective function −J(Θ)
as shown in equation 1 and 2. As shown in equa-
tion 3, we factorize the event distribution into con-
stituents, making appropriate independence as-
sumptions as explained earlier. Each of the factor
is a multiclass logistic regression (softmax) func-
tion. Equation 4 illustrates the probability distri-
bution for the predicate given the context. Here,
uvi is the word embedding for the predicate vi,
E is the context embedding and bvi is the bias.
Probability distributions for arguments has simi-
lar form and are not shown here due to space con-
straints.

Θ = {C, T,R,A,Cp, Cf ,We,Wp,Ws,Wo,

Wpr,W
(in)
p ,W

(in)
s ,W

(in)
o ,W

(in)
pr , B} is the pa-

rameter vector to be learned. Parameters are
learned using mini-batch (size=1000) stochastic
gradient descent with adagrad (Duchi et al., 2011)
learning schedule. During training, the error in-

curred during predictions at each stage are back-
propagated to update the parameters for the model
including the embeddings for predicates and argu-
ments (matrix C).

We regularize the parameters of the model us-
ing L2 regularization (regularization parameter =
0.01). All the hidden layers have a dropout fac-
tor of 0.5. We trained a word2vec model on train
set documents to learn word embeddings. Pred-
icate and arguments vectors are initialized using
the learned word embeddings. Predicate and argu-
ment embeddings have dimensionality of 50 and
hidden layers have dimensionality of 50. All the
hyper-parameters were tuned using a dev set.

Θ∗ = argminΘ − J(Θ) (1)

J(Θ) =

N∏
i=1

p(ei | e1, ..., ei−1, ei+1, ek, Θ)︸ ︷︷ ︸
prob. of an event given context

=

N∏
i=1

p(ei | e︸︷︷︸
context
events

, Θ) (2)

p(ei | e, Θ) = p(vi, di, a
(1)
i , a

(2)
i | e, Θ)

= p(vi | e, Θ)︸ ︷︷ ︸
verb prob.

∗ p(di | vi, e, Θ)︸ ︷︷ ︸
dependency prob.

∗

p(a
(1)
i | vi, di, e, Θ)︸ ︷︷ ︸
first arg prob.

∗

p(a
(2)
i | vi, a

(1)
i , e, Θ)︸ ︷︷ ︸

second arg prob.

(3)

p(vi | e, Θ) =
exp(uT

vi
(Wp tanh(WeE)) + bvi)∑

k exp(uT
k (Wp tanh(WeE)) + bk)

(4)

5 Experiments and Analysis

5.1 Data

There is no standard dataset for evaluating script
models. We experimented with movies summary
corpus1 (Bamman et al., 2014). The corpus is cre-
ated by extracting 42,306 movie summaries from
November, 2012 dump of Wikipedia2. Each doc-
ument in the corpus concisely describes a movie
plot along with descriptions of various characters
involved in the plot. Average length of a docu-
ment in the corpus is 176 words. But more pop-
ular movies have much more elaborate descrip-
tions going up to length of 1,000 words. The cor-
pus has been processed by the Stanford Corenlp
pipeline (Manning et al., 2014). The texts in the
corpus were tokenized and annotated with POS

1http://www.cs.cmu.edu/˜ark/personas/
2http://dumps.wikimedia.org/enwiki/
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Data Set No. of Scripts No. of Unique
Events

Train Set 104,041 856,823
Dev Set 15,169 119,302
Test Set 29,943 231,539

Table 1: Data statistics

tags, dependencies, NER and coreference (coref)
information. Since, each of the document in the
corpus is about a movie, the scripts in this corpus
involve interesting interactions between different
entities (actors/objects). In order to study and ex-
plore the above mentioned rich script structure, we
selected this corpus for our experiments. Never-
theless, our model is domain agnostic, the experi-
ments performed on this corpus are generalizable
to any other corpus as well.

As mentioned in section 2, we extract scripts
corresponding to each of the entities using the de-
pendency annotations and coref information. The
corpus documents are divided randomly into three
parts: train (~70%), development (~10%) and test
(~20%). Data statistics about the data set are given
in Table 1. As a preprocessing step, low frequency
(< 100) predicates and arguments are mapped to
a special UNK (unknown) symbol. Similarly, ar-
guments consisting of only digits are mapped to a
NUMB (number) symbol. There are 703 unique
predicate lemmas and 46, 644 unique argument
lemmas in the train set. Average length of a script
is 10 events. During testing, predicate and argu-
ments not observed during training are mapped to
the same UNK symbol.

5.2 Baselines Systems

We compare our model against two baseline
models: Unigram model and MultiProtagonist
model.

A unigram model is a simple but competitive
script model. This model predicts an event by
sampling from unigram event frequency distribu-
tion of the train set. The events are predicted inde-
pendent of the context.

MultiProtagonist (M-Pr) is the model proposed
by Pichotta and Mooney (2014) and described
as joint model in Pichotta and Mooney (2014).
The model calculates conditional probability of an
event given another context event (P (e2 | e1 ) by
counting the co-occurrence counts of the events in
the corpus. The model predicts the missing event

given the context events by maximizing the sum of
log conditional probabilities of an event w.r.t each
of the context events i.e.
e∗ = argmaxe

∑k−1
i=1 log P (e | ei)+

∑K
i=k+1 log P (ei | e)

For evaluation and comparison purposes, we
reimplemented both baselines on our dataset. In
the experiments described next, we refer our
model as NNSM (Neural Network based Script
Model).

5.3 Evaluation Metrics
We evaluated models for narrative cloze task
with three metrics Recall@50 and Accuracy and
Event Perplexity. Recall@50 is the standard met-
ric used for evaluating script models (Jans et al.,
2012; Pichotta and Mooney, 2014). The idea here
is to evaluate top 50 predictions of a script model
on a test script with a missing event. The metric is
calculated as fraction of the predictions containing
the gold held-out event. Its value lies in the range
0 (worst) and 1(best). Accuracy is a new metric
introduced by Pichotta and Mooney (2014). This
metric evaluates the event prediction, taking into
account prediction of each constituent. Specifi-
cally, it is defined as average of the accuracy of
the predicate, the dependency, the first argument
and the second argument predictions. This is a
more robust metric as it does not treat an event as
an atomic unit. This is in contrast to Recall@50
which penalizes semantically correct guesses and
awards only events which have exactly the same
surface form.

The baseline models and our model are prob-
abilistic by nature. Taking inspiration from lan-
guage modeling community, we propose a new
metric Event Perplexity. We define event perplex-
ity as 2−

1
N

∑
i log2 p(ei|e(context,i)). The perplexity

measure, like the accuracy takes into account the
constituents of an event and is a good indicator of
the model predictions.

5.4 Narrative Cloze Evaluation
Narrative Cloze task was tested on 29,943 test set
scripts. The results are shown in Table 2 and 3.
We evaluated with two versions of the cloze task.
In the first version, events are the predicate ar-
gument tuple as defined before. Second version,
evaluates on predicates only i.e. an event is not
a tuple but only a predicate. Our model, NNSM
outperforms both the unigram and M-Pr models
on both the versions of the task with all the met-
rics. This further strengthens our hypothesis of
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Model R@50 Accuracy Event
Perplexity

Unigram 0.32 34.26% 298.45
M-Pr 0.31 35.67% 276.54

NNSMfull 0.37 44.36% 256.41

Table 2: Model evaluation on test set for narrative
cloze task against the baselines

Model R@50 Accuracy Event
Perplexity

Unigrampred 0.27 23.79% 264.16
M-Prpred 0.27 24.04% 260.34

NNSMpred 0.49 33.40% 247.64

Table 3: Model evaluation on predicate only event
test set for narrative cloze task against the base-
lines

having distributed representation for events rather
than atomic representations. Unigram, although a
simple model, is competitive with the M-Pr model.

We performed an interesting experiment. We
evaluated another simplistic baseline model, most
frequent event. This baseline model predicts
by sampling from top-5 most frequent predi-
cate/argument in the full event narrative cloze task.
Surprisingly, the accuracy reported by this sim-
ple baseline is 45.04% which is slightly more than
our best performing NNSM model and much more
than the M-Pr baseline. This simple looking base-
line is hard to beat by both count-based methods
and NNSM. None of the previous methods have
been evaluated against this baseline. We propose
using this baseline for evaluation of script mod-
els. We think this outperformance is due to skewed
distribution of the predicate and arguments in the
corpus. As we found empirically, these distribu-
tions have a very long tail and this makes it hard
for the models to beat the most frequent baseline.

5.5 Adversarial Narrative Cloze Evaluation

Similar to narrative cloze, adversarial narrative
cloze task was evaluated on 29,943 test set scripts.
In each of the event sequence an event was re-
placed by a random event. The results for the ad-
versarial narrative cloze task are shown in Table 4
and 5. As evident from the results Unigram model
is as good as random. In this task as well, our
model outperforms the count based M-Pr model
by 2.3% and 2.9% for full and pred model respec-

Model Accuracy
Unigram 50.07%

M-Pr 53.04%
NNSM full 55.32%

Table 4: Model evaluation on test set for adversar-
ial narrative cloze task against the baselines

Model Accuracy
Unigrampred 49.97%

M-Prpred 55.09%
NNSMpred 57.94%

Table 5: Model evaluation on predicate only test
set for adversarial narrative cloze task against the
baselines

tively.

6 Related Work

Work on scripts dates back to 70’s beginning
with introduction of Frames by Minsky (1974),
schemas by Rumelhart (1975) and scripts by
Schank and Abelson (1977). These early formula-
tions were not statistical in nature and used hand-
crafted complex rules for modeling relations be-
tween events. These formulations were limited to
few scenarios and did not generalize well.

Miikkulainen (1990) proposed DISCERN sys-
tem for learning script knowledge. Their neu-
ral network based model read event sequences
and stored them in episodic memory. The model
was capable of generating expanded paraphrases
of narratives and was able to answer simple ques-
tions. Similarly, Lee et al. (1992) proposed DY-
NASTY (DYNAmic STory understanding sYs-
tem). This system was also based on distributed
representations. It predicted missing events in
event sequences and performed script based infor-
mation retrieval. Their system was limited to only
few scenarios and did not generalize well.

As mentioned previously, in past few years a
number of count based systems for script learning
have been proposed for learning script knowledge
in unsupervised fashion. (Chambers and Juraf-
sky, 2008; Jans et al., 2012; Pichotta and Mooney,
2014; Rudinger et al., 2015a). Recently, Regneri
et al. (2010), Modi et al. (2016) and Wanzare et al.
(2016) used crowd-sourcing methods for acquir-
ing script knowledge. They in the process created
script databases which are used to develop auto-
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matic script learning systems. McIntyre and Lap-
ata (2009) developed a system for generating sto-
ries, they learned an object based script model on
fairy tales.

Orr et al. (2014) proposed hidden markov model
(HMM) approach to learn scripts. The model clus-
ters event descriptions into different event types
and then learns an HMM over the sequence of
event types. Again this model treats an event as
an atomic unit and the inference algorithm may
not generalize well, as the number of event types
increases. Similarly, Frermann et al. (2014) pro-
posed non-parametric Bayesian model for learning
script ordering. The inference procedure may not
scale well, as number of event chains increases.

Manshadi et al. (2008) proposed language
model based approach to learning event se-
quences, in their approach as well, events are
treated as atomic units (a predicate-argument tu-
ple). Recently, Rudinger et al. (2015b) have pro-
posed a neural network approach to learn scripts
by learning a bilinear distributed representation
based language model over events. Their model
is non-compositional in nature and they also con-
sider events as an atomic unit and directly learn
distributed representation for events. Granroth-
Wilding and Clark (2015) also propose a compo-
sitional neural network based model for events.
Our model is more general than their model. They
learn event representations by modeling pair wise
event scores for calculating compatibility between
two events. This score is then used to predict
the missing event by selecting an event that maxi-
mizes the average score between the event and the
context events.

7 Conclusion and Future Work

In this paper we proposed a probabilistic composi-
tional model for scripts. As shown in experiments,
our model outperforms the existing co-occurrence
count based methods. This further reinforces our
hypothesis of having more richer compositional
representations for events. Current tasks to eval-
uate script models are crude, in the sense that they
penalize semantically plausible events. In the fu-
ture, we propose to create a standard data set of
event sequence pairs (correct sequence vs incor-
rect sequence). The replaced event in the incorrect
sequence should not be a random event but rather
a semantically close but incorrect event. Models
evaluated on this data set would give a better in-

dication of script learning capability of the model.
Another area which needs further investigation is
related to developing models which can learn long
tail event distributions. Current models do not cap-
ture this well and hence do not perform better than
most frequent event baseline on accuracy task.

In this paper, we proposed a very simple compo-
sitional feed forward neural network model. In the
future we plan to explore more sophisticated re-
current neural network (RNN) based models. Re-
cently, RNN based models have shown success in
variety of applications (Graves, 2012).
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Marie Francine Moens. 2012. Skip n-grams and
ranking functions for predicting script events.
In Proceedings of the 13th Conference of the
European Chapter of the Association for Com-
putational Linguistics. Association for Com-
putational Linguistics, Stroudsburg, PA, USA,
EACL ’12, pages 336–344.

Geunbae Lee, Margot Flowers, and Michael G
Dyer. 1992. Learning distributed representa-
tions of conceptual knowledge and their ap-
plication to script-based story processing. In
Connectionist Natural Language Processing,
Springer, pages 215–247.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. 2014. The stanford corenlp
natural language processing toolkit. In ACL
(System Demonstrations). pages 55–60.

Mehdi Manshadi, Reid Swanson, and Andrew S
Gordon. 2008. Learning a probabilistic model
of event sequences from internet weblog stories.
In FLAIRS Conference. pages 159–164.

Neil McIntyre and Mirella Lapata. 2009. Learn-
ing to tell tales: A data-driven approach to story
generation. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Vol-
ume 1-Volume 1. Association for Computational
Linguistics, pages 217–225.

Risto Miikkulainen. 1990. DISCERN: A Dis-
tributed Artificial Neural Network Model Of
Script Processing And Memory. Ph.D. thesis,
University of California.

Risto Miikkulainen. 1995. Script-based inference
and memory retrieval in subsymbolic story pro-
cessing. Applied Intelligence 5(2):137–163.

Marvin Minsky. 1974. A framework for represent-
ing knowledge .

Ashutosh Modi, Tatjana Anikina, and Manfred
Pinkal. 2016. Inscript: Narrative texts anno-
tated with script information. In Proceedings of
the 10th International Conference on Language
Resources and Evaluation (LREC 16), Portorož,
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Abstract

Most automatic text summarization sys-
tems proposed to date rely on centrality
and structural features as indicators for
information importance. In this paper,
we argue that these features cannot reli-
ably detect important information in het-
erogeneous document collections. Instead,
we propose CPSum, a summarizer that
learns the importance of information ob-
jects from a background source. Our hy-
pothesis is tested on a multi-document cor-
pus where we remove centrality and struc-
tural features. CPSum proves to be able to
perform well in this challenging scenario
whereas reference systems fail.

1 Introduction

The goal of text summarization is to take an in-
formation source, extract content from it, and
present the most important content to the user [...]
(Mani, 2001). Identifying important information
in source documents is therefore a major goal in
summarization. Most methods to date rely on
structural features such as sentence position, num-
ber of upper-case words, or title words, and a wide
range of measures of sentence centrality as signals
for what is important in source documents.

In particular in news articles, such as those used
for the DUC2002 single-document summarization
and the DUC2004 multi-document summarization
tasks,1 it is quite common that the most impor-
tant information is repeated most frequently. In-
deed, Nenkova et al. (2006) showed that informa-
tion which appears frequently in the input doc-
uments is likely to appear in a human-generated
summary. Similar conclusions can be drawn for

1http://duc.nist.gov/

single-document news corpora, where, for exam-
ple, important information is likely to be found at
the beginning of the document (for impatient read-
ers), and repeated and expanded later in the article.

Even though most research in text summa-
rization to date focused on newswire documents,
this special kind of text genre is not the only
one to be considered for summarization. Re-
cently, about 400 journalists organized by the In-
ternational Consortium of Investigative Journal-
ists (ICIJ) 2 spent more than a year to analyze 11.5
million documents in the Panama Papers reposi-
tory,3 which consists of emails, PDFs, and other
text documents not belonging to the newswire
genre. In such a heterogeneous collection of
raw and unprocessed source documents we can-
not assume that frequency information correlates
with importance, and therefore cannot rely on
(in)frequency as (un)importance signal.

Nevertheless, journalists are able to cope with
such situations because they bring along their
background knowledge about the world, which al-
lows them to estimate what information is impor-
tant and what is not. We therefore propose to in-
corporate world knowledge to handle more chal-
lenging summarization scenarios where centrality
cannot be used as a signal for importance. Our as-
sumption is that summarization systems which are
aware of the importance of information without
analyzing the structure of the source documents
are able to summarize heterogeneous documents
properly. The key question of the paper is whether
a knowledge-based summarization system is still
able to detect important information even when
structural and centrality-based features cannot be
used as signals for importance.

We first review well-known summarization sys-

2https://www.icij.org/
3https://panamapapers.icij.org/
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Figure 1: Differences between centrality-based summarization (black arrow) and importance-aware sum-
marization (white arrow) in single- (left) and multi-document summarization (right).

tems for single- and multi-document summariza-
tion in Section 2. Particular emphasis is put on
the methodologies used to identify important in-
formation and avoid redundancy since this is the
main innovation of our knowledge-based system
described in Section 3.

CPSum learns about importance by ana-
lyzing an independent background corpus of
document-summary pairs and applies this knowl-
edge in the summarization task. A major differ-
ence to previous systems is that we do not use sim-
ilarity measures to compute centrality, neither for
detecting importance nor for avoiding redundancy.

In order to verify our assumptions, we compare
our approach on a commonly used evaluation cor-
pus, both in its original version and in various ver-
sion in which we remove redundancy and sentence
order. We describe the corpus modification in Sec-
tion 4. Expectedly, our experiments described in
Section 5 and 6 show a substantial performance
decrease for all tested reference systems, whereas
the performance of CPSum remains essentially un-
changed. The conclusions we draw from this study
are summarized in Section 7.

2 Related Work

In this section, we review prior work in single-
and multi-document summarization. The essen-
tial differences between these approaches and our
approach are illustrated in Figure 1. On the
left, a centrality-based SDS system summarizes
a document D to a summary S1. The result
is a text with a similar topic distribution as in
the source document. A system with a differ-

ent notion of importance is able to produce a
summary S2 with a varied distribution of top-
ics. On the right, we observe a similar situation,
where a centrality-based MDS system summarizes
a document collection D1, . . . , D3 to a summary
S1 and a importance-aware summarization sys-
tem produces the summary S2 with a different
topic distribution. Centrality-bases methods pro-
duce a smaller version of the source document(s)
whereas an importance-aware summarization sys-
tem is able to emphasis on important parts even if
they are not frequent.

2.1 Single-Document Summarization

Early work in single-document summarization
(SDS) by Luhn (1958) and Edmundson (1969)
tries to identify salient information in documents.
Luhn (1958) identifies words which are frequent
in the source documents and infrequent in a back-
ground corpus. Edmundson (1969) extends this
approach by using cue words and structural fea-
tures such as title words and sentence position.

Several more recent methods are inspired by
algorithms such as HITS (Kleinberg, 1999) and
PageRank (Brin and Page, 1998) and model the
source documents as graphs. TextRank (Mihal-
cea and Tarau, 2004) models sentences as nodes
in a graph, where the strength of the connec-
tions between the nodes is determined by the sim-
ilarity of the sentences measured by means of
syntactic word overlap. Since Mihalcea and Ta-
rau (2004) assume the absence of redundancy in
single-document summarization there is no need
for a re-ranking after selecting sentences. They
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also rely on sentence order by always including
the first sentences in the summary.

Parveen and Strube (2015) use a bipartite graph
to represent a document. This so-called topic
graph has two sets of nodes, one containing sen-
tences and one containing topics. To rank the sen-
tences, they apply HITS . Since they deal with very
long texts which may contain repetitive informa-
tion they also apply a redundancy avoidance strat-
egy by maximizing topic coverage in the summary
and therefore minimizing redundancy.

All these approaches have in common that they
focus on selecting the most central information
from a document. However, in a noisy docu-
ment with a significant amount of unimportant
text, extracting the most central text may not be
a good strategy. Summaries produced by these ap-
proaches will rather contain noise than important
information, since the noise might be quite central
(c.f. Figure 1). Most of the approaches assume
that there is no redundancy in the source document
and do not apply a redundancy avoidance strategy.

2.2 Multi-Document Summarization

In comparison to SDS the task in extractive multi-
document summarization (MDS) is to summarize
not one but a set of documents. The additional
challenge in comparison to extractive SDS is that
the document set may contain the same informa-
tion redundantly in different documents. There-
fore, in addition to detect important information,
a second challenge is to avoid redundancy in the
generated summary.

McKeown and Radev (1995) introduce the
task of summarizing multiple news documents.
Their system, called SUMMONS (SUMMarizing
Online NewS articles), extends already existing
template-driven message understanding systems.

Carbonell and Goldstein (1998) introduce Max-
imal Marginal Relevance (MMR) to reward cen-
trality and penalize redundancy jointly with a lin-
ear combination of both attributes. In a query-
based setup, sentences are greedily selected ac-
cording to their similarity to the query and simi-
larity according to already selected sentences. The
similarity measure is based on the Cosine similar-
ity between sentences.

Radev et al. (2000) use a clustering method to
find a centroid. Clusters are built based on a topic
detection system. For redundancy avoidance, they
apply a redundancy penalty similar to the nega-

tive factor proposed by Carbonell and Goldstein
(1998) and re-rank the sentences iteratively until
re-ranking does not change the resulting summary.

LexRank (Erkan and Radev, 2004) is a graph-
based MDS method inspired by social networks
which uses intra-sentences cosine similarity to
compute an adjacency matrix to represent the sen-
tences as a graph similar to the graph-based meth-
ods in SDS. The most central sentence is consid-
ered to be the most important sentence. LexRank
itself does not apply redundancy avoidance but
only ranks sentences according to importance. As
redundancy avoidance strategy, cross-sentence in-
formational subsumption (CSIS) (Radev, 2000) is
applied as a re-ranking strategy.

The best performing system at the DUC 2004
shared task in MDS, CLASSY (Conroy et al.,
2004), uses TF-IDF scores to calculate the im-
portance of sentences. ICSI Summ (Gillick et al.,
2009), a well-performing system at TAC 2009, ap-
plies a global linear optimization to search for a
set of sentences that covers relevant concepts in
the source documents as well as possible. As con-
cepts they use word bi-grams weighted by their
frequency, thereby deriving importance from fre-
quency. Since they search for a set of sentences
which maximizes the sum of unique concept val-
ues, their system is able to avoid redundancy im-
plicitly.

Lin and Bilmes (2011) treat MDS as a submod-
ular maximization problem. By rewarding diver-
sity rather than penalizing redundancy they cre-
ated a monotone nondecreasing submodular utility
function (in comparison to Carbonell and Gold-
stein (1998)) which has a constant factor guaran-
tee of optimality. In contract to ICSI Summ, Yo-
gatama et al. (2015) seek to not maximize bi-gram
coverage but to maximize the semantic volume.
They use embeddings to represent sentences and
choose the subset of sentences that maximizes the
size of the convex hull in the generated embedding
space as summary.

We summarize that systems for MDS use (sim-
ilar to systems for SDS) various centrality mea-
sures to detect important information. Further-
more, they apply redundancy avoidance strate-
gies based on sentence similarity. CPSum, on the
other hand, does not apply any similarity measure
but learns from contextual preferences if some-
thing is important in the context of other informa-
tion/sentences.
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3 The CPSum Algorithm

In this section, we first define the summariza-
tion task formally. We then present the novel
preference-based summarization system CPSum
in detail. In particular, we explain our training pro-
cedure and (contextual) sentence ranking method-
ology.

3.1 Problem Definition

The task of a generic extractive summarization
system is to create sequences of sentences (the
summaries) from given sequences of sentences
(the source documents) for different topics. The
objective is that the selected sentences form a good
summary of the source documents.

To formalize the task, we define a sentence s of
length n as a sequence of n words (s1, . . . , sn).
For convenience we use the term word for all el-
ements of a sentence identified by a sentence seg-
mentation method. Therefore, numbers, punctu-
ation marks, and similar elements are all consid-
ered to be words. A document D of length m is a
sequence of m sentences (s1, . . . , sm), and conse-
quently also a sequence of words. |X| denotes the
length of the sequence X .

A topic is a pair (D = {D1, . . . , Do},R =
{R1, . . . , Rp}) of input documents D and refer-
ence summaries R. |D| = 1 in single-document
summarization and |D| > 1 in multi-document
summarization where |D| denotes the size of D.
Since we do not distinguish between different
source documents we introduce Ḋ = D1◦· · ·◦Do

as the concatenation of all sentences of all source
documents in D.

The task of extractive document summariza-
tion is to find a sequence of sentences Ŝ ∈
Plmax(Ḋ) that maximizes a utility function u
where Plmax(Ḋ) denotes the set of all sequences
of elements in Ḋ with

∑
s∈Ḋ|s| ≤ lmax. Formally,

the task is to search for Smax with

Smax = arg max
S∈Plmax (Ḋ)

u(S). (1)

A proper utility function u is supposed to mea-
sure the quality of the summary. Approaches are
usually evaluated by a comparison with given ref-
erence summaries. We refer to Section 5 where we
introduce ROUGE as the utility function which is
used to grade the produced summaries. The diffi-
culty when developing summarization systems is

to find an approximation of u without having ac-
cess to the reference summaries.

3.2 Object Importance

The key idea of our approach is to learn the im-
portance of objects from external sources. This as-
sessment of importance should then be used in or-
der to select the most relevant sentences indepen-
dently of features derived directly from the source
documents, such as structural information or re-
dundancy and centrality. Hence, we believe that
our system is more suitable for handling hetero-
geneous summarization scenarios where such fea-
tures may not helpful for detecting important in-
formation.

As a proof-of-concept, we study a simple ap-
proach which learns the importance of objects
from a large background corpus of document-
summary pairs. Note that this corpus does not
have to consist of document-summary pairs. The
system could also learn from very diverse sources
such as stock market prices to judge the impor-
tance of a company, the length of Wikipedia arti-
cles for learning about the importance of people,
or the number of inhabitants as a signal of im-
portance for cities. In a way this corresponds to
the way humans use fast and frugal heuristics for
problem solving (Gigerenzer and Todd, 1999).

We model object importance in the form of
pairwise preferences (Fürnkranz and Hüllermeier,
2011). A preference a � b models the situa-
tion that object a is preferred to object b. In this
paper, we take a simple approach and model ob-
ject importance in the form of pairwise prefer-
ences between bi-grams of stemmed words that
occur in the documents. Preferences may be prob-
abilistic, i.e., the probability that a � b rather
than b � a is Pr(a � b) ∈ [0, 1], and it holds
that Pr(a � b) + Pr(b � a) = 1. Due to the large
number of observed preferences, each preference
only provides a weak signal about the importance
of an object, and object importance will be de-
termined by aggregating probabilistic preferences
(cf. Section 3.4).

Furthermore, we model the situation that an ob-
ject a is preferred to object b in a context C with
contextual preferences a � b | C. The intuition
is that the preference relation between two objects
may depend on a context. In summarization, this
context models the information need of a reader,
which depends e.g. on personal interests and al-
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ready observed information. Since object prefer-
ences are context-aware they can be used to adapt
to difference users and summarization situations.
We use the context to model already observed in-
formation of a user. Since we select summary
sentences iteratively, we model with the context
knowledge which is already contained in a par-
tial summary. Since we measure importance in
a context and model the context with the partial
summary we do not need an additional redundancy
avoidance mechanism like most other approaches
for multi-document summarization.

The fact, that object importance is learned from
an external corpus, also increases the adaptiveness
of our system. Since all people may have a differ-
ent notion of importance, the system can be trained
easily on different sources which reflect these dif-
ferent notions. For example, a summary generated
for an engineer may look differently than a sum-
mary created for a business administration em-
ployee. Systems which do not have an adaptive
notion of importance are not able to create differ-
ent summaries for different information needs.

3.3 Learning of Object Importance

To learn the importance of an object we use a
background corpus denoted by B =

⋃
(Di, Ri)

which provides a set of document-summary pairs.
For the i-th topic in the corpus we observe the doc-
ument Di as well as the summary Ri. We use the
same notation for the occurrence of objects in sen-
tences and documents as for words, hence a ∈ s
or a ∈ Di denotes that object a can be observed in
s or Di, respectively.

For each object pair a, b, for which it holds that
a occurs in the summary as well as in the source
document, and b occurs in the source document
but not in the summary, we observe a preference
a � b, since a was selected to be included in the
summary whereas b was not. To formalize this,
we first define two sets Pi and Ni for topic i. Pi

contains all elements which were selected from
the source document to be included in the sum-
mary and Ni contains all elements which are not
included in the summary. To define the sets Pi

and Ni we introduce first the notation σ(Di) and
σ(Ri) to reduce the sequences Di and Ri to sets
which contain each element at most once. We then
define Pi = σ(Di)∩ σ(Ri) and Ni = σ(Di) \ Pi.
With Pi and Ni we define the number of observa-
tions for a > b in the background corpus B as

nB(a � b) =
∑

(Di,Ri)∈B

1Pi(a) · 1Ni(b) (2)

where 1X(x) is 1 if x ∈ X and 0 otherwise.
To define the number of observations a � b for

a context C we extend the definitions for σ(Pi)
and σ(Ni). First, we define A\\B for two se-
quences A and B similarly to the set difference,
i.e., the result is a sequence of elements where we
remove elements from the first sequence which ap-
pear in the second sequence. If an element x oc-
curs n-times in A and m-times in B, A\\B con-
tains the element x exactly max(0, n −m)-times
(e.g. (a, a, b, c)\\(a, b, d) = (a, c)). We then de-
fine the set Pi | C = σ(Di) ∩ σ(Ri\\C) and the
set Ni | C = σ(Di) \ σ(Ri\\C). Pi | C contains,
similarly to Pi, all elements which are contained
in the source document as well as in the reference
documents without the context elements. The in-
tuition is that these elements are important in the
context of C whereas the elements in Ni | C are
not important given C.

The number of contextual preferences for the
elements a and b and the sequence of context el-
ements C in the background corpus B is defined
as

nB(a � b | C) =∑
(Di,Ri)∈B

1Pi|C(a) · 1Ni|C(b). (3)

The context C models the objects which are al-
ready in a partial summary. Since our approach
selects sentences sequentially, we have to detect
the importance of objects according to already se-
lected objects.

We can estimate the prior probability of observ-
ing a � b as

Pr(a � b) =
n(a � b)

n(a � b) + n(b � a) (4)

and analogously for Pr(a � b | C).

3.4 Sentence Ranking
In this section, we propose a ranking methodology
for all available sentences Ḋ in a multi-document
summarization topic from a sentence-level utility
function u. To rank the sentences, we iteratively
search for the sentence ŝ with

ŝ = arg max
s∈Ḋ

u(s | C) (5)
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where u(s | C) is a utility function that encodes
the importance of sentence s in a context C. The
intuition is that the value of a sentence depends on
already selected sentences which are modeled by
the context C. Hence, we greedily set

Ŝ ← Ŝ ◦ arg max
s∈Ḋ

u(s | Ŝ) (6)

as long as Ŝ ∈ Plmax(Ḋ) and starting with Ŝ = ∅.
Since we do not have access to the reference

summaries when generating summaries, we use
the learned knowledge from the training phase to
estimate the utility of each sentence in order to find
the sentence with the highest utility value. To do
so, we propose a utility function u in the next sec-
tion, which assigns a utility score to each individ-
ual sentence.

It is important to note at this point that we nei-
ther use any form of similarity measure between
sentences nor any structural features such as sen-
tence positions to determine the importance of a
sentence, which is a crucial difference to previous
works.

3.5 Individual Sentence Scoring
We obtain individual sentence scores, which
means that each sentence is assigned a score inde-
pendently from the other available sentences. Re-
moving or adding sentences to the source docu-
ments will therefore not change the value of the
sentences. The intuition of the score is, that we
want to find the sentence which has the highest
average probability that the objects in the sentence
occur in the reference summary. The desired sen-
tence ŝ is therefore selected by the utility function

u(s | C) =
∑

x∈s v(x | C)
n

(7)

where v is an object-level utility function which
measures the importance of an object a in a con-
text C. We define v for element x and a corpus B
as

v(a | C) =
1
|V |

∑
x∈V

Pr(a � x | C) (8)

where V =
⋃

(Di,Ri)∈B{x : x ∈ Di} is the set of
all considered objects in the background corpus B
(i.e. the vocabulary) and Pr(a � b) if C = ∅ and
Pr(a � b | C) are estimated as in (4).

Note that it may happen that an object a or a
preference a � b | C might not have been ob-
served in the background corpus. These cases are
ignored in the computation.

4 Evaluation Corpora

The fundamental hypothesis of centrality-based
summarization systems is that frequency within
the source documents implies importance of infor-
mation. All information which is frequent in the
source documents is considered to be important
and therefore extracted for the summary. While
this may be a suitable assumption for some doc-
ument collections (such as newswire documents),
we do not believe that it is suitable for the task
of summarizing heterogeneous document collec-
tions.

Since most of the work in summarization has
been done for newswire data, there is a lack of
evaluation data where structural and centrality sig-
nals do not provide a strong indicator for im-
portance. We therefore modify the DUC2004
multi-document summarization corpus by shuf-
fling and oversampling to remove the commonly
used indicators for importance. By doing so,
we intend to demonstrate that centrality-based
document summarization algorithms break down,
whereas PLSum will maintain its performance.

Shuffling: In order to remove order-dependency,
we randomly shuffle the sentences to hide the very
strong sentence position signal, which is com-
monly used to detect importance in news docu-
ments.

Oversampling: With oversampling we aim for
hiding the important information in the corpus by
increasing the frequency of unimportant informa-
tion. In particular, we iteratively search for a sen-
tence ŝ with

ŝ = arg min
s∈Ḋ

∑
sx∈Ḋ

sim(s, sx), (9)

where sim is a similarity measure for two sen-
tences, and add ŝ to a random document in topic
D. Since we duplicate the sentences we make sure
that we do not introduce new, important informa-
tion to the corpus which is not reflected in the sum-
mary. For the similarity measure we use

sim(s1, s2) =
cos(s1, s2) + jacc(s1, s2)

2
(10)

in our experiments, where cos is a cosine similar-
ity implemented in the DKPro Similarity frame-
work (Bär et al., 2013) with TF-IDF values based
on English Wikipedia articles, and jacc denotes
to the well-known Jaccard measure. This simple

89



Dataset ∅ Similarity
DUC2004 0.0877
DUC2004 0.0880
DUC2004 200% 0.0692
DUC2004 500% 0.0620
DUC2004 1000% 0.0607

Table 1: Average similarities of the sentences con-
tained in the test corpora.

combination lead to reasonably good results on
the English subtask of the SemEval2014 Seman-
tic Textual Similarity dataset.4

With this methodology, we create four new cor-
pora with 100%, 200%, 500%, and 1000% of the
size of DUC2004. The bigger the corpora is, the
more unimportant information has been added to
it. In the 100% corpus sentences are only shuffled
without duplicating sentences. With increasing
size we hide the originally frequent information
better and make it therefore harder to detect impor-
tant information. An analysis of the result of the
oversampling is displayed in Table 1. The aver-
age similarity decreases which means that we hide
dense regions by adding sentences to less dense
regions.

5 Evaluation

Since the DUC data provides manually written
reference summaries, we can compare these gold
standard summaries to the newly generated sum-
maries of the automatic summarization systems.
We provide in the evaluation ROUGE-1 (R1) and
ROUGE-2 (R2) based recall scores according to
Owczarzak et al. (2012) who showed that R2
provides the best agreement with manual evalu-
ations when using stemming and without remov-
ing stopwords. As Rankel et al. (2013) showed
that there is no clear winner between R1 and R2,
we provide R1 as well, which is well suited to
identify the better summary in a pair of sum-
maries. Furthermore, all automatically gener-
ated summaries are truncated at a length of 100
words by the ROUGE system (Hong et al., 2014).
Summarized, we use ROUGE-1.5.5 with pa-
rameters -a -m -n 2 -x -c 95 -r 1000
-f A -p 0.5 -t 0 -l 100 -d.

5.1 Reference Systems
We will compare our algorithm, CPSum, to two
baselines and to two well-known summarization
algorithms.

4http://alt.qcri.org/semeval2014/

Baselines: The first baseline Optimal has access
to the reference summaries and is therefore no fair
competitor for the remaining systems. Neverthe-
less, it provides useful information about the max-
imal reachable score for each dataset. Since com-
puting the true optimal score is computational ex-
pensive, we only provide a pseudo-optimal value
computed by a greedy search. The second base-
line system, Random, selects sentences from the
source documents randomly. It does not have
access to the reference systems and is therefore
the first system which can be compared with the
other systems. Since most important information
in news are often contained in the first sentences,
just selecting the first few sentences as a summary
is a strong baseline. We use Lead to provide eval-
uation scores for a system, which selects the first
sentences of each document.

Summarization Systems: We use Centroid
(Radev et al., 2000) as a representative system
for centroid-based systems. To generate the
summaries for this approach we apply the widely
used MEAD system (Radev et al., 2004), in
which Centroid is implemented. For Centroid
we used the default linear feature combination,
length cutoff and re-ranker. As a competitive
state-of-the-art representative for graph-based
approaches (Hong and Nenkova, 2014) we apply
LexRank (Erkan and Radev, 2004), which is also
implemented in the MEAD system. For LexRank
we used the LexRank feature, standard length
cutoff and the default re-ranker.

5.2 CPSum

Since CPSum learns about importance of objects
from a background corpus, we need first a concrete
instantiation for the abstract objects and second a
background corpus to learn from. As instances for
the objects for which we learn contextual prefer-
ences of the form a � b | C we use bi-grams
of stemmed words, which means that CPSum will
learn about the importance of bi-grams. The con-
texts C is therefore a sequence of bi-grams. As
mentioned above, any other linguistic entity like
named-entities, opinions, or events would also be
possible choices. Furthermore, vector representa-
tions for sentences could be applied as well. We
decided to use bi-grams of stemmed words since
they do not need any sophisticated pre-processing.
Furthermore, showing that our approach is able to
handle difficult summarization scenarios without a
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ROUGE-1 Recall ROUGE-2 Recall
System / Dataset D04 D04-1 D04-2 D04-5 D04-10 D04 D04-1 D04-2 D04-5 D04-10
Optimal 0.4043 0.4043 0.4046 0.4043 0.4044 0.0940 0.0941 0.0943 0.0940 0.0942
Random 0.2955 0.3095 0.2863 0.2736 0.2633 0.0435 0.0463 0.0360 0.0313 0.0322
Lead 0.3424 0.3138 0.2786 0.2636 0.2548 0.0766 0.0524 0.0382 0.0313 0.0282
Centroid 0.3542 0.3158 0.3082 0.2690 0.2474 0.0867 0.0605 0.0576 0.0396 0.0331
LexRank 0.3231 0.3219 0.3186 0.3052 0.2990 0.0659 0.0645 0.0631 0.0542 0.0522
CPSum 0.3267 0.3247 0.3264 0.3264 0.3264 0.0603 0.0604 0.0617 0.0617 0.0617

Table 2: ROUGE-1 and ROUGE-2 scores on the original and the modified DUC 2004 corpora.
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Figure 2: Learning curve of CPSum on DUC2004
for different background corpus sizes. ROUGE-1
scores (left scale) are displayed in blue and
ROUGE-2 (right scale) in red.

sophisticated linguistic analysis of the data and re-
lying solely on simple elements is an even stronger
argument for the strength of CPSum.

For learning the importance of bi-grams we
use a background corpus originally created by
Hermann et al. (2015) for question answering
tasks. Although this corpus does not provide
well-written summaries for each article but only
sentence-length bullet points summarizing the
content of the article, we can use this informa-
tion to derive the necessary training signals for
learning object importance. The corpus con-
tains about 100k CNN document-summary pairs
crawled from CNN and about 197k pairs crawled
from DailyMail. For training, we use a subset of
100k randomly selected documents in total.

Since we will not observe most of the bi-grams
from the training corpus in the test data, we apply
a lazy learning strategy to only learn about ele-
ments which appear in the test data. Furthermore,
we only learn preferences for contexts which we
actually observe during summarization. This de-
creases the learning effort significantly.

6 Results

Table 2 shows the ROUGE evaluation scores of
the tested systems on the test datasets. First, we
see that the evaluation scores for both, ROUGE-1
and ROUGE-2 recall stays nearly constant for the
oracle system Optimal. From this result we con-
clude that our modifications did neither remove
from nor add important information to the corpus.
After the modifications, it is still possible to gen-
erate summaries with a ROUGE-1 value of at least
0.40 and a ROUGE-2 value of at least 0.09. The
performance of Random decreases when we add
more irrelevant information to the corpus. This
behavior is expected since the probability of pick-
ing an irrelevant sentences increases when more
irrelevant sentences are in the corpus. The base-
line Lead, which simply uses the first sentences of
each article, but is considered to be a strong base-
line in newswire documents, is able to summa-
rize the original DUC 2004 data reasonably well.
However, in the modified corpora with random-
ized sentence order, its performance is obviously
not better than Random.

As expected, the two state-of-the-art reference
systems work well on the original DUC 2004 cor-
pus, where Centroid achieves the best results. This
behavior is also expected, since it uses positional
and centrality features, which provide very good
signals for importance in the corpus. When these
signals are more and more removed in D04-1 –
D04-10, we observe a big performance decrease in
both, ROUGE-1 and ROUGE-2. LexRank behaves
similarly to Centroid but with a less fast decrease
of performance.

CPSum performs only moderately at the orig-
inal DUC 2004 dataset. This is again expected,
since it does not use the strong importance sig-
nals sentence position and sentence centrality. The
strength of CPSum can be observed in the modi-
fied corpora, where the performance stays compa-
rable to the performance at the original corpus and
does not decrease as it can be observed for all other
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Saudi exile Osama bin Laden , the alleged mastermind of a conspiracy to attack U.S. targets around
the world, and Muhammad Atef, the alleged military commander of bin Laden’s terrorist organi-
zation, Al-Qaeda, were charged in a separate 238-page indictment with murder and conspiracy in
the bombings.
Saudi exile Osama bin Laden , the alleged mastermind of a conspiracy to attack U.S. targets around
the world, and Muhammad Atef, the alleged military commander of bin Laden’s terrorist organi-
zation, Al-Qaeda, were charged in a separate 238-page indictment with murder and conspiracy in
the bombings.

Figure 3: Example of the importance of the elements in a sentence before (top) and after (bottom) adding
the sentence to the summary. The darker the font color the more important the element. Elements with
less than 100 gathered preferences are displayed in italics. The importance scores are estimated by v as
defined in Equation 8.

approaches. In terms of ROUGE-1 scores, CPSum
has the best performance on the four modified cor-
pora. In terms of ROUGE-2, its original perfor-
mance is similar to the performance of LexRank,
but lower that Centroid. The performance of Cen-
troid drops significantly after shuffling the sen-
tences. If we add more and more irrelevant sen-
tences, the performance of Centroid drops again
faster than the performance of LexRank. CPSum
outperforms all systems when we increase the
amount of noise in the corpora D04-5 and D04-10.

We show an example of the sentences scoring in
Figure 3. We display the same sentence twice. In
the top, we display the context-free scores of the
elements of the sentence by using a darker font for
more important information. In the bottom, we
show the contextual scores of the same sentence
after adding this particular sentence to the sum-
mary. We observe that the importance scores of
elements such as Osama bin Laden are estimated
properly. After adding the sentence to the sum-
mary we can see how PLSum discounts the scores
for different elements differently.

7 Conclusions

In this paper we introduced CPSum, a text summa-
rization system that learns the importance of en-
tities from an independent background corpus of
document-summary pairs. CPSum is able to cope
with summarization scenarios where neither cen-
trality nor structural features help to detect impor-
tant information. We showed that the performance
of conventional text summarization systems de-
creases in such a setting. Previous approaches can
be confused easily by adding more and more ir-
relevant information whereas the performance of
CPSum stays constant. We would argue that by

relying on learned prior knowledge about what in-
formation is important for a summary, CPSum is
able to detect important information similar to the
way human experts address a summarization task.

CPSum is also different in the way it copes with
redundancy. Instead of measuring the similarity
to already selected sentences such as the major-
ity of the previous systems, we estimate the score
of the elements with contextual preferences. This
enables CPSum not only to detect redundancy,
but also to use synergy effects between sentences.
Adding one sentence to the summary can therefore
also increase the utility of other sentences. Fur-
thermore, our system can be adapted easily to dif-
ferent user interest by learning from other source
documents.

We intend to investigate other basis elements for
the preferences as well as alternatives for mod-
eling world knowledge in future work. Simi-
larly, we are also working on a corpus with which
we can further investigate summarization scenar-
ios where centrality and structural features are no
good signals for importance. The results of this
first study make us confident that a knowledge-
based approach towards importance information is
necessary in order to enable summarization sys-
tems to handle difficult summarization scenarios
where signals for importance cannot be inferred
from the source documents.
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Abstract
Verb prediction is important in human sen-
tence processing and, practically, in simul-
taneous machine translation. In verb-final
languages, speakers select the final verb
before it is uttered, and listeners predict
it before it is uttered. Simultaneous in-
terpreters must do the same to translate
in real-time. Motivated by the problem
of SOV-SVO simultaneous machine trans-
lation, we provide a study of incremental
verb prediction in verb-final languages. As
a basis of comparison, we examine incre-
mental verb prediction with human par-
ticipants in a multiple choice setting us-
ing crowdsourcing to gain insight into in-
cremental human performance in a con-
strained setting. We then examine a compu-
tational approach to incremental verb pre-
diction using discriminative classification
with shallow features. Both humans and
machines predict verbs more accurately as
more of a sentence becomes available, and
case markers—when available—help hu-
mans and sometimes machines predict final
verbs.

1 The Importance of Verb Prediction

Humans predict future linguistic input before it is
observed (Kutas et al., 2011). This predictability
has been formalized in information theory (Shan-
non, 1948)—the more predictable a word is, the
lower the entropy—and has explained various lin-
guistic phenomena, such as garden path ambigu-
ity (Den and Inoue, 1997; Hale, 2001). Such in-
stances of linguistic prediction are fundamental to
statistical NLP. Auto-complete from search engines
has made next-word prediction one of best known
NLP applications.

Long-distance word prediction, such as verb pre-
diction in SOV languages (Levy and Keller, 2013;
Momma et al., 2015; Chow et al., 2015), is im-
portant in simultaneous machine translation from
subject-object-verb (SOV) languages to subject-
verb-object (SVO) languages. In SVO languages
such as English, for example, the main verb phrase
usually comes after the first noun phrase—the main
subject—in a sentence, while in verb-final lan-
guages such as Japanese or German, it comes very
last. Human simultaneous translators must make
predictions about the unspoken final verb to in-
crementally translate the sentence. Minimizing
interpretation delay thus requires making constant
predictions and deciding when to trust those pre-
dictions and commit to translating in real-time.

Such prediction can also aid machines. Mat-
subara et al. (2000) use pattern-matching rules;
Grissom II et al. (2014) use a statistical n-gram
approach; and Oda et al. (2015) extend the idea of
using prediction by predicting entire syntactic con-
stituents for English-Japanese translation. These
systems require fast, accurate verb prediction to
further improve simultaneous translation systems.
We focus on verb prediction in verb-final languages
such as Japanese with this motivation in mind.

In Section 2, we present what is, to our knowl-
edge, the first study of humans’ ability to incremen-
tally predict the verbs in Japanese. We use these
human data as a yardstick to which to compare
computational incremental verb prediction. Incor-
porating some of the key insights from our human
study into a discriminative model—namely, the im-
portance of case markers— Section 3 presents a
better incremental verb classifier than existing verb
prediction schemes. Having established both hu-
man and computer performance on this challenging
and interesting task, Section 4 reviews our work’s
relationship to other studies in NLP and linguistics.
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2 Human Verb Prediction

We first examine human verb selection in a con-
strained setting to better understand what perfor-
mance we should demand of computational ap-
proaches. While we know that humans make in-
cremental predictions across sentences, we do not
know how skilled they are in doing so. While it’s
possible that machines—with unbounded memory
and access to Internet-sized data—could do better
than humans, this study allows us to appropriately
gauge our expectations for computational systems.

We use crowdsourcing to measure how well
novice humans can predict the final verb phrase
of incomplete Japanese sentences in a multiple
choice setting. We use Japanese text of the Ky-
oto Free Translation Task corpus (Neubig, 2011,
KFT), a collection of Wikipedia articles in English
and Japanese, representing standard, grammatical
text and readily usable for future SOV-SVO machine
translation experiments.

2.1 Extracting Verbs and Sentences

This section describes the data sources, preparation,
and methodology for crowdsourced verb prediction.
Given an incomplete sentence, participants select a
sentence-final verb phrase containing a verb from
a list of four choices to complete the sentence, one
of which is the original completion.

We randomly select 200 sentences from the de-
velopment set of the KFT corpus (Neubig, 2011).
We use these data because the sentences are from
Wikipedia articles and thus represent widely-read,
grammatical sentences. These data are directly
comparable to our computational experiments and
readily usable for future SOV-SVO machine transla-
tion experiments.

We ask participants to predict a “verb chunk”
that would be natural for humans. More technically,
this is a sentence-final bunsetsu.1 We identify verb
bunsetsu with a dependency parser (Kurohashi and
Nagao, 1994). Of interest are bunsetsu at the end of
a sentence that contain a verb. We also use bunsetsu
for segmenting the incomplete sentences we show
to humans, only segmenting between bunsetsu to
ensure each segment is a meaningful unit.

1A bunsetsu is a commonly used linguistic unit in Japanese,
roughly equivalent to an English phrase: a collection of con-
tent words and zero or more functional words. Japanese verb
bunsetsu often encompass complex conjugation. For example,
a verb phrase 読みたくなかった (read-DESI-NEG-PAST),
meaning ‘didn’t want to read’, has multiple tokens capturing
tense, negation, etc. necessary for translation.

Answer Choice Selection We display the cor-
rect verb bunsetsu and three incorrect bunsetsu
completions as choices that occur in the data with
frequency close to the correct answer in the overall
corpus. We manually inspect the incorrect answers
to ensure that these choices are semantically distant,
i.e., excluding synonyms or troponyms.

Sentence Presentation We create two test sets
of truncated sentences from the KFT corpus: The
first, the full context set, includes all but the final
bunsetsu—i.e., the verb phrase—to guess. The
second set, the random length set, contains the
same sentences truncated at predetermined, random
bunsetsu boundaries. The average sentence length
is nine bunsetsu, with a maximum of fourteen and
minimum of three. We display sentences in the
original Japanese script.

Participants view the task as a game of guessing
the final verb. Each fragment has four concurrently
displayed completion options, as in the prompt (2)
and answers (3). Users receive no feedback from
the interface.

We use CrowdFlower2 to collect participants’
answers, at a total cost of approximately USD$300.
From an initial pool of fifty-six participants, we re-
move twenty via a Japanese fluency screening. We
verify the efficacy of this test with non-native but
highly proficient Japanese learners; none passed.
We collect five judgments per sentence from each
participant.

(2) 谷崎潤一郎は
Junichiro Tanizaki-TOP

数寄屋を
tea-ceremony house-OBJ

(3) (a) 好んだ
like-PAST

(b) 変えられた
change-PASS CAP-PAST

(c) 始まったとされている
begin-PAST-COMP-suppose-AUX.PRES

(d) 増やしていた
increase-AUX.PAST

2.2 Presenting Partial and Complete
Sentences

The first task, on the full context set, shows how
humans predict the sentence-final verb chunk with
all context available. The second task, on the

2http://www.crowdflower.com/
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Figure 1: Full context set: Accuracy is generally
high, but slightly decreases on longer, more com-
plicated sentences, averaging 81.1%.

random length set, shows how the amount of re-
vealed data affects the predictability of the final
verb chunk. We examine a correlation between
the length of the pre-verb sentence fragment and
participants’ accuracy (Figure 1).

Psycholinguistic experiments using lexical deci-
sion tasks suggest Japanese speakers start syntactic
processing by using case—the type and number of
case-marked arguments—before the verb’s avail-
ability (Yamashita, 2000). We also examine the
correlation between the number of case markers3

and accuracy. It is likely that the number of case
markers and the length of the sentence fragment are
confounded; so, we create a measure, the propor-
tion of case markers to the overall sentence infor-
mation (the number of case markers in the fragment
divided by the number of bunsetsu chunks). We
call this case density.

2.3 Results of Human Experiments

In the full context set, average accuracy over 200
sentences is 81.1%, significantly better than chance
(p < 2.2 · 10−16). Figure 1 shows the accu-
racy per sentence length as defined by the bun-
setsu unit. A one-way ANOVA reveals a signifi-
cant effect of the sentence length (F (1, 998) =
7.512, p < 0.00624), but not the case density
(F (1, 998) = 1.2, p = 0.274).

In the random length set, average accuracy over
200 sentences is 54.2%, significantly better than
chance (t(199) = 11.8205, p < 2.2 · 10−16). Fig-
ure 2 shows the accuracy per percentage of length

3In this study, we counted case markers that mark nom-
inative (-ga), accusative (-wo), ablative (-kara), and dative
(-ni).
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Figure 2: Random length set: The accuracy of
human verb predictions reliably increases as more
of the sentence is revealed.

of the presented sentence fragment. A one-way
ANOVA reveals a significant effect of the sentence
length (F (1, 998) = 57.44, p < 7.94 · 10−14). We
also find a significant effect of the case density
(F (1, 998) = 5.884, p = 0.0155).

2.4 Discussion
Predictability increases with the percent of the sen-
tence available in all of our experiments. By the
end of the sentence, the verb chunks are highly pre-
dictable by humans in the multiple choice setting.
Participants choose the final verb more accurately
as they gain access to more case markers in the
random length set but not in the full context set.

Case density is a significant factor in predictive
accuracy on the random length set for humans,
suggesting that case is more helpful in predicting a
sentence-final verb when the preceding contextual
information is insufficient. The following exam-
ple illustrates how case helps in prediction. The
nominative and accusative markers greatly narrow
the choices, as shown in (4).4 Our results further
support the proposition case markers modulate pre-
dictability in SOV verb-final processing.
(4) 江戸幕府区-ががが

Edo shogunate-NOM
成立すると
establish-do-CONJ

寺院法度-ににに-より
temple-prohibition-etc.-ACC-for

—

4A recent psycholinguistics study on incremental Japanese
verb-final processing (Momma et al., 2015) argues that native
Japanese speakers plan verbs in advance, before the articula-
tion of object nouns, but not subject nouns. Since case markers
assign the roles of subject and object in Japanese, we expect
that a high ratio of case markers to words will increase pre-
dictability of verbs. In addition, Yamashita (1997) argues that
the variety of case markers increases predictability just before
the verb.
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Figure 3: Distribution of the top 100 content verbs
in the Kyoto corpus and the Reuters Japanese news
corpus. Both are Zipfian, but the Reuters corpus is
even more skewed, even with the common special
cases excluded.

‘After Edo shogunate has established, due to
the temple prohibition etc. —’

In other cases, there exist choices, which, while
incorrect, could naturally complete the sentence.
These questions are frequently missed. For in-
stance, in one 90% revealed sentence, the partici-
pant has the choices: (i)収める (put-PRES), (ii)
厳しくなる (strict-become), (iii)収録されてい
る (record-do.PASS-AUX.PRES), and (iv)務める
(work-PRES). Choice (i) is the correct answer, but
choice (iii) is a reasonable choice for a Japanese
speaker. All participants missed this question, and
all chose the same wrong answer (iii). We leave a
cloze task where participants can freely fill in the
sentence-final to future work.

These results provide a basis of comparison for
automatic prediction. In the next section, we ex-
amine whether computational models can predict
final verbs and compare the models’ performance
to that of humans.

3 Machine Verb Prediction

Now that we have the results of the previous sec-
tion, we have baselines against which we can com-
pare computational verb prediction approaches. In
this section, we introduce incremental verb classifi-
cation with a linear classifier.5 For our investigation
of computational verb classification, we use two

5While we use logistic regression, using hinge loss
achieves similar accuracy.

very different languages that both have verb-final
syntax—Japanese, which is agglutinative, and Ger-
man, which is not—and show that discriminative
classifiers can predict final verbs with increasing
accuracy as more context of sentences is revealed.

A simple verb prediction scheme applied to Ger-
man (Grissom II et al., 2014) achieves poor accu-
racy. Their approach creates a Kneser-Ney n-gram
language model for the prior context associated
with each verb in the corpus; i.e., 50 n-gram mod-
els for 50 verbs. Given pre-verb n-gram context c
in a sentence St, and verb prediction v(t) ∈ V , the
verb selection is defined by the following equation:

v(t) ≡ arg max
v

∏
c∈St

p(c | v)p(v). (1)

It chooses the verb that maximizes the proba-
bility of the observed context, scaled by the prior
probability of the verb in the overall corpus. Un-
surprisingly, given the distribution of verbs in real
data (Figure 3), this n-gram-based approach has
low accuracy and tends to predict the most common
verb. For a translation system, this often degener-
ates into the less interesting problem of whether to
trust whether the final verb is indeed a common one.
While this improves translation delay, better predic-
tions will lead to more significant improvements.
We instead opt for a one-vs-all discriminative clas-
sification approach.6

3.1 Classification on Human Data
We first incrementally classify verbs on the same
200 sentences from Section 2. Since the answer
choices are often complex verb bunsetsu and since
many of these verb phrase answer choices do not
appear among the most common verbs, lemmatiz-
ing the verbs and performing one-vs-all classifica-
tion yields extremely low accuracy. Thus, we use
binary classification with a single linear classifier
to produce a probability for each candidate answer,
encoding the verb phrase itself into the feature vec-
tor.

3.1.1 Training a Morphological Model
The processing is as follows: We train on 463,716
verb-final sentences extracted from the training
data. We use both context features and final verb
features. Our context features, i.e., those preced-
ing the final verb, are represented as follows: the
context unigrams and bigrams take a value of 1

6One-vs-all classification builds a classifier for each class
versus the aggregate all other classes.
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Figure 4: Verb classification results on crowd-
sourced sentences. Despite many out-of-
vocabulary items and significant noise, the aver-
age accuracy, shown in the non-monotonic line in
the plot, increases over the course of the sentence.
Larger, darker circles indicate more examples for a
given position. Accuracy was calculated by aggre-
gating the guesses at 5% intervals.

if they are present and 0 otherwise; case markers
observed in the sentence context are represented
as unigrams and bigrams in the order that they ap-
pear; and we reserve a distinct feature for the last
observed case marker in the sentence. Our verb
features consist of the final verb’s tokens given
by the morphological analyzer, which, in addition
to the verb stem itself, typically include tense and
aspect information. These are represented as uni-
grams and bigrams in the feature vector.

To allow the classifier to learn, we must encode
the interactions between the verb features and the
context features. Thus, we use the Cartesian prod-
uct of sentence and verb features to encode inter-
actions between them: for each training sentence
we generate both a positive and a negative exam-
ple. The example with the correct verb phrase is
labeled as a positive example (+1), and we uni-
formly select a random verb phrase from one of
the 500 most common verb phrases and label it
as negative (−1) example for the same sentence
context,7 yielding 927,432 training examples and
267,037,571 features.

For clarity, we describe this feature representa-
tion more formally. Given sentence St with a pre-

7We experimented with several numbers of weighted neg-
ative examples and found that one negative example with
of equal weight to the positive gave the best results of the
configurations we tried.

verb context consisting of unigrams, bigrams, and
case marker tokens,C = {c0, ..., cn}, and bunsetsu
verb phrase tokens A = {a0, ..., ak}, the feature
vector consists ofC×A = {c0∧a0, c0∧a1, ..., cn∧
ak}, where ∧ concatenates the two context and an-
swer strings. During learning, the weights learned
for the concatenated tokens are thus based on the re-
lationship between a context token and a bunsetsu
token and mapped to {+1,−1}. More concretely,
individual morphemes of the Japanese verb phrase
are combined with the pre-verb unigrams, bigrams,
and uniquely identified case marker tokens. Ac-
curacy improves when the morphemes used in the
negative examples and positive examples are dis-
joint; so, we enforce this constraint when selecting
negative examples. For example, if the positive
example includes the past tense morpheme, た,
the negative example is altogether disallowed from
having this morpheme as a verb feature.

3.1.2 Choosing an Answer
At test time, we test progressively longer fragments
of each sentence, extracting the aforementioned
features online until the entire pre-verb context is
available. For every sentence fragment, the classi-
fier determines the probability of each of the four
possible verbs by adding their verb features to the
feature vector of the example. The answer choice
with the highest probability of +1 (or the lowest
probability of −1) is chosen as the answer. By
taking this approach, we can model complex verbs
and their context jointly. Intuitively, the probability
of a (+1) is the model’s prediction of how well the
bunsetsu verb phrase fits with the sentence context
(represented by the feature vector).

Some verbs are absent from the training data,
forcing the classifier to rely on morphemes to dis-
tinguish between them. The alternative—e.g., in a
typical one-vs-all classification approach—is that
the classifier could reason from nothing whatsoever
when a fully-inflected verb is absent from the train-
ing data. Given the complexity of bunsetsu, this
happens often even in large corpora for a language
such as Japanese.

3.1.3 Multiple Choice Results
Despite only choosing among four choices, this
task is in many ways more difficult than the 50-
label classification problem described in the next
section because of the added complexity inherent
modeling the effect of morphemes and missing
examples. These limitations notwithstanding, the
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Figure 5: Classification accuracy as a function of
sentence length on the full context set. While there
is a clear correlation between sentence length and
accuracy, there are several outliers. Compare to
Figure 1.

accuracy does improve as more of the sentence is
revealed (Figure 4), indicating that the algorithm
learns to use these features to rank verbs, though
the performance significantly lags that of both the
human participants and our later experiments. Ad-
ditionally, on the full context set, sentence length
is negatively correlated with accuracy (Figure 5),
as in the much more convincing results of our hu-
man experiments (Figure 1), though the trend is not
entirely consistent, making it difficult to draw firm
conclusions. Case density is again positively corre-
lated with accuracy on both the random (Figure 6)
and full context sets.

An Illustrative Example To gain some insight
into how features can influence the classifier, we
here examine an example of the classifier’s behav-
ior on the multiple choice data.

(5) 少年時代-は
childhood days-TOP

熊本藩-の
Kumamoto domain-GEN

藩校-で
clan school-LOC

儒学-を
Confucianism-ACC

学び、
study:MED

後-に
subsequently-LOC

西本願寺-において
Nishihongan Temple-LOC

修行-に
discipline-ALL

(6) (a) 励ん-だ
strive-PAST

(b) 創刊-さ-れ-る
issue-do-PASS-NPST
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Figure 6: Classification accuracy as a function
of case density on the incremental sentences. The
accuracy is correlated with case density, but the
data are extremely noisy. Full-context accuracy has
a similar trend (not shown).

(c) 加え-られ-てい-る
add-PASS-CONT-NPST

(d) 勤め-る
serve-NPST

In Example (5), the classifier incorrectly chooses
“issue” as the verb until observing the accusative
case marker attached to “Confucianism”. At this
point, the classifier’s confidence in the correct an-
swer rises to 0.74—and correctly chooses “strive”.
This answer goes unchanged for the remainder of
the sentence, though “study” attaches to “Confu-
cianism”, not the final verb. The combined evi-
dence, however, is enough for the classifier to select
correctly, and indeed, most of the following tokens
only increase the classifier’s confidence. Adding
“subsequently” increases confidence to 0.84, an in-
tuitive increase given the likely tense information
contained in such a word. The somewhat redun-
dant case marker here only increases confidence
to 0.86. Adding the reference to the temple de-
creases confidence again to 0.79. But adding the
final case marker, which also forms a new bigram
with the previous word, results in a huge increase
in confidence, to 0.90.

3.2 Multiclass Verb Prediction
While the multiple choice experiment was more
open-ended (predicting random verbs), we now fo-
cus on a more constrained task: how well can we
predict the most frequent verbs. This is the cen-
tral conceit of Grissom II et al. (2014): if you can
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do a good job of this, you can improve simultane-
ous translation. They show a slight improvement
in simultaneous translation by using n-gram lan-
guage model-based verb prediction. We show a
large improvement over their approach to verb pre-
diction using a discriminative multiclass logistic
classifier (Langford et al., 2007).

Data Preparation Our classes for multiclass
classification are the fifty most common verbs in
the KFT (Japanese, as in the human study) and
Wortschatz corpora (Biemann et al., 2007, Ger-
man).

We use data from the training and test sets of the
KFT Japanese corpus of Wikipedia articles and a
random split of the German Wortschatz web cor-
pus, from which we extract the verb-final sentences.
Grissom II et al. (2014) use an n-gram model to dis-
tinguish between the fifty most common German
verbs for SOV-SVO simultaneous machine transla-
tion, which we replicate as our baseline. Following
this study, we train a model on the fifty most com-
mon verbs in the training set.

In Japanese, due to the small size of the standard
test set, we split the data randomly, training on
60,926 verb-final sentences ending in the top fifty
verbs and testing on 1,932. Our total feature count
is 4,649,055. We use the MeCab (Kudo, 2005)
morphological analyzer for segmentation and verb
identification. We consider only verb-final sen-
tences. We skip semantically vacuous post-verbal
copulas when identifying final verbs.

Finding Verbs We identify verbs in the German
text with a part-of-speech tagger (Toutanova et al.,
2003) and select from the top fifty verbs. We con-
sider the sentence-ending set of verbs to be the final
verbs. We train on 76,209 verb-final sentences end-
ing in the top fifty verbs and test on 9,386. In
German, to approximate the case information that
we extract in Japanese, we test the inclusion of
equivalent unigram and bigram features for Ger-
man articles, the surface forms of which determine
the case of the next noun phrase.

In Japanese, we omit some special cases of light
verbs that combine with other verbs, as well as
ambiguous surface forms and copulas.8

8In Japanese, we omit some ambiguous cases and variants
of “is” and “do”: excluded are variants of suru (“to do”),
which combines with nouns to form new verbs, aru (“is”,
inanimate case), and iru (“is”, animate case). The tokens aru
and iru also combine with other verbs to change tense and
aspect, in which case they are not verbs, and can form the

Features All features are encoded as binary fea-
tures indicating their presence or absence. For
Japanese, we again include case unigrams, and
case bigrams, which encode as distinct features
the for case markers observed thus far.9 We also in-
clude a feature for the last observed case marker.
For both Japanese and German, we normalize the
verbs to the non-past, plain form, both providing
more training data for each verb and simplifying
the job of our classifier.

German case is conveyed primarily through ar-
ticles and pronouns, so we include special fea-
tures for articles. For example, for the sen-
tence “Es wurde ihnen von einem alten Freund
geholfen”, we add the features ART es ihnen and
ART ihnen einem to convey case information be-
yond individual words and bigrams.

Individual tokens are also used as binary features,
as well as token bigrams.

An Example for Every Word In a simultaneous
interpretation, a person or algorithm receives a con-
stant stream of words, and each new word provides
new information that can aid in prediction. Previ-
ous predictive approaches to simultaneous machine
interpretation have taken this approach, and we also
use it here: as each new word is observed, we make
a prediction. This is a generalization of random
presentation of prefixes in the human study.

3.3 Classification Results and Discussion

Better at the End A discriminative classifier
does better than an n-gram classifier, which has
a tendency to over-predict frequent verbs. By the
end of the sentence, accuracy reaches 39.9% for
German (Figure 7) and 29.9% Japanese (Figure 8),
greatly exceeding choosing the most frequent class
baseline of 3.7% (German) and 6.05% (Japanese).
The n-gram language model also outperforms this
baseline, but not by much. It also improves over
the course of the sentence, but the model cannot
reliably predict more than a handful of verbs in
either language.

copula de aru. Distinguishing between all of these cases is
beyond the scope of this study; so, they are excluded. We also
omit duplicates that are spelled differently (i.e., the same word
but spelled without Chinese (kanji) characters and slightly
different forms of the same root).

We also omit the light verb naru (“to become” or “to make
up”) for similar reasons to suru. The increasing trend shown
in the results does not change with their inclusion.

9For instance, given a sentence fragment X-に Y-を, rep-
resenting X-DAT Y-ACC, the case bigram would beに∧を.
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Figure 7: German average prediction accuracy over
the course of sentences. Bigrams help slightly in
the second half of the sentence. Adding special fea-
tures for case-assigning articles to unigrams nearly
matches the performance of adding all bigrams in
the final 10%. All handily outperform the trigram
language model.

Richer Features Help (Mostly at the End) Bi-
gram features help both languages, but Japanese
more than German; beyond bigrams, however, tri-
grams and longer features overfit the training data
and hurt performance. The better performance for
Japanese bigrams is likely because word bound-
aries are not well-defined in Japanese, and individ-
ual morphemes can combine in ways that signifi-
cantly add information. German word boundaries
are more precise and words (particularly nouns)
can carry substantial information themselves.

Richer features matter more toward the end of
the sentence. In Japanese, adding bigrams con-
sistently outperforms unigrams alone, but in both
languages, adding special features for tokens with
case information helps almost as much as adding
the full set of bigrams. In Japanese, case mark-
ings always immediately follow the words marked,
and in German the articles precede the nouns to
which they assign case; thus, rather than relying
on isolated unigrams, using bigrams provides op-
portunities to encode case-marked words that more
narrowly select for verbs. In Japanese, the differ-
ences are more pronounced toward the very end of
the sentences (and less so in German).

Richer features help more at the end, but not
merely because the last words of the sentence rep-
resent the densest feature vectors. In Japanese, the
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Figure 8: Japanese average prediction accuracy
over the course of sentences. Adding bigrams con-
sistently outperforms unigrams alone in Japanese,
possibly due to the agglutinative nature of the lan-
guage. The accuracies diverge the most toward the
end of the sentences: Adding only explicit case
markers to unigrams nearly matches performance
of adding all bigrams toward the end. All outper-
form the trigram language model.

last word is usually a case-marked noun phrase or
adverb that matches the main predicate. The final
word is therefore immune to subclause interfer-
ence and must modify the final verb, boosting the
classifier performance in these final positions and
amplifying the predictive discrepancies between
the various feature sets. Accuracy spikes at the
end of Japanese sentences, where case informa-
tion helps nearly as much as adding the entire set
of bigrams, further supporting case information’s
importance. Deeper processing—e.g., separating
case-marked words in subclauses from those in the
main clause—would likely be more useful. Fea-
tures and feature-selection strategies that we tried
which did not help included the following: adding
only case marker unigrams (instead of bigrams);
filtering the features by using only case-marked
words; only allowing one word per case marker in
the feature vector (the most recent); using decay-
ing weights on features further in the past; adding
part-of-speech tag n-grams; and adding the word
nearest to the centroid of the observed context in
a word embedding space. While these features
may have potential, they did not lead to meaningful
increases in accuracy in our experiments.
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4 Related Work

While to our knowledge our work is the first in-
depth study of incremental verb prediction, it is
not the first study of verb prediction in humans or
machines. This section reviews that related work.

Human Verb Prediction Prediction is easier
with more context and explicit case markings. Ter-
amura (1987) shows that next word prediction in
Japanese improves as more words are incremen-
tally revealed. While only looking at verb pre-
diction given the complete preceding context, Ya-
mashita (1997) finds that scrambling word order
in Japanese—a case rich language that allows such
scrambling—does not harm final verb prediction,
but that explicit case marking helps final verb pre-
diction. Our results show that this is true even
for incremental verb prediction. Levy and Keller
(2013) also find that dative markers aid German
verb prediction.

Neurolinguistic measurements by Friederici and
Frisch (2000) suggest processing verb-final clauses
in German use both semantic and syntactic infor-
mation, but that they are processed differently. In
Japanese, Koso et al. (2011) measure the effect
of case markings on predicting verbs with strong
case preferences. This is consistent with our use
of case-based features and suggests that further
gains are possible using richer syntactic representa-
tions. Chow et al. (2015) use N400 measurements
to investigate two competing hypotheses for the
initial prediction of an upcoming verb: whether
predictions are dependent on all words equally (the
Bag-of-words hypothesis), or alternatively, whether
prediction is selectively modulated by the final
verb’s arguments (the Bag-of-arguments hypoth-
esis). They argue for the latter.

The literature on incremental verb prediction is
sparse. A key finding of Matsubara et al. (2002)
is that Japanese-English simultaneous interpreters,
when given access to lecture slides, would refer to
them to predict the next phrase.

Prediction for Simultaneous Machine Transla-
tion The Verbmobil simultaneous translation sys-
tem (Kay et al., 1992) uses deleted interpolation (Je-
linek, 1990) to create a weighted n-gram mod-
els to predict dialogue acts—almost identical to
predicting the next word (Reithinger et al., 1996).
Konieczny and Döring (2003) predict verbs with
a recurrent neural network, but Matsubara et al.
(2000) was the first to use verb predictions as

part of a simultaneous interpretation system. They
use pattern matching-based predictions of English
verbs. In contrast, Grissom II et al. (2014) use a
statistical approach, using n-gram models to pre-
dict German verbs and particles (in Section 3 we
show that this model predicts verbs poorly). How-
ever, their simultaneous translation system is able
to learn when to trust these predictions. Oda et
al. (2015) extend the idea of using prediction by
predicting entire syntactic constituents for English-
Japanese simultaneous machine translation. Both
systems will likely benefit from our improved verb
prediction presented here.

5 Conclusion

Verb prediction is hard for both machines and hu-
mans but impossible for neither. Verbs become
more predictable in discriminative settings as more
of the sentence is revealed, and when all of the prior
context is available, the verbs are highly predictable
by humans when a limited number of choices is
available, though even then not perfectly so. While
we make no claims concerning upper or lower
bounds of predictability in different settings, our
dataset provides benchmarks for future verb pre-
diction research on publicly available corpora: cog-
nitive scientists can validate prediction, confusion,
and anticipation; engineers have a human bench-
mark for their systems; and linguists can conduct
future experiments on predictability. Shallow fea-
tures can be used to predict verbs more accurately
with more context. Improving verb prediction can
benefit simultaneous translations systems that have
already shown to benefit from verb predictions, as
well as enable new applications that involve pre-
dicting future linguistic input.
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Abstract

We investigate implicit corrections in the
form of contrastive discourse in child-
adult interaction, which have been argued
to contribute to language learning. In con-
trast to previous work in psycholinguis-
tics, we adopt a data-driven methodol-
ogy, using comparably large amounts of
data and leveraging computational meth-
ods. We conduct a corpus study on the use
of parental corrective feedback and show
that its presence in child directed speech
is associated with a reduction of child sub-
ject omission errors in English.

1 Introduction

It is widely agreed that children learn how to use
language through interaction with their caregivers
and peers. There is, however, a long-standing dis-
cussion concerning the exact nature of the learn-
ing mechanism enabling this. For example, while
there is no doubt that children are exposed to posi-
tive input (i.e., grammatically correct utterances in
context), it is an open question whether they also
receive negative input—evidence about the inade-
quacy of their erroneous utterances.

What seems clear is that explicit disapprovals
are very rarely used to correct grammatical mis-
takes, as already shown by Brown and Hanlon
(1970). However, certain contrastive constructions
may provide negative input in an implicit way.
For instance, in the following exchange between
2-year-old Lara and her father, from the corpus
by Rowland and Fletcher (2006), the father picks
up the child’s erroneous utterance in the follow-
ing turn and presents a form with the appropriate
preposition:
(1) CHI: I climb up daddy .

DAD: you did climb over daddy .

The contrast between the two forms is particularly
noticeable and could potentially lead the child to
recognise and correct their own error. It has thus
been argued that this type of construction presents
children with negative evidence and, unlike ex-
plicit corrections, it does so in the course of con-
versation, without disrupting the dialogue flow.

Researchers have used different terms to refer to
this phenomenon, including recast (Brown, 1973),
reformulation (Chouinard and Clark, 2003), em-
bedded correction (Clark, 2003), and corrective
input (Saxton, 2000). In this paper, we adopt the
term corrective feedback (CF), which we will de-
fine precisely in Section 3, and analyse its effect on
first language learning—in particular on retreating
from subject omission errors in English. In con-
trast to previous work in psycholinguistics, we in-
vestigate these questions in a data-driven manner,
using comparably large amounts of data from the
CHILDES Database (MacWhinney, 2000a) and
developing computational methods to support lin-
guistically motivated studies. More concretely, we
make the following contributions:

• We present a taxonomy of child error types that
can receive CF and an annotation scheme for
coding instances of CF.

• We report the results of a corpus study showing
that subject omission errors make up the largest
proportion of errors met with CF.

• We develop classifiers to automatically detect
subject omission errors and CF on those errors,
training on the manually annotated data.

• Using automatically processed data, we investi-
gate the impact of CF on learning subject inclu-
sion in English with a series of linear regression
models, showing that CF has predictive power
over a variety of control factors. Our results in-
dicate that the effects of CF are most noticeable
after a period of about 9 months.
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2 Related Work

Adult repetitions of child speech with different de-
grees of variation are a hallmark of child-adult di-
alogue. As mentioned before, this kind of phe-
nomenon is often referred to as recast, and was
first studied by Brown and Bellugi (1964). Brown
and Hanlon (1970) were the first to suggest that
recasts had corrective potential and thus “could
be instructive”. Since then, several studies have
pointed out that contrastive discourse of this kind
is very common (e.g., Demetras et al. (1986),
Strapp (1999), Chouinard and Clark (2003), Sax-
ton et al. (2005)). There is however no full agree-
ment regarding what motivates the production of
corrective feedback. According to Chouinard and
Clark (2003), reformulations follow from general
cooperative principles: Since children’s contribu-
tions are often difficult to comprehend due to their
limited linguistic abilities, adults explicitly check
up on their intended meaning by rephrasing the
child’s utterance. In contrast, for Saxton et al.
(2005), most often corrective feedback does not
arise from semantic uncertainty but rather “it is
only the linguistic form that the adult might take
issue with”. In any case, researchers generally
agree that it is unlikely that adults consciously re-
cast child speech, despite doing it very frequently.

The fact that negative input is available, how-
ever, does not immediately mean that it contributes
to language development. Some small-scale stud-
ies have indeed found an association between cor-
rective feedback and language growth (e.g., New-
port et al. (1977), Nelson et al. (1984), Eadie et al.
(2002), i.a.). Chouinard and Clark (2003) inves-
tigated children’s immediate responses to parental
reformulations for 5 children and found that ac-
knowledgements and repeats by the child were
very frequent. This indicates that children attend
to their parent’s corrective input and can immedi-
ately revert to the correct form. However, it is less
clear whether this has a long-term effect. In this
respect, Saxton et al. (2005) recorded interactions
between 12 mother-child pairs at two time periods
with a lag of 12 weeks and found that reformula-
tions had a positive effect on the correct use of 3
out of 13 investigated grammatical structures after
this time lag.

Despite the existing evidence, teasing apart the
effect of corrective feedback from all other sources
of input available to the child is not an easy mat-
ter empirically, which explains why the influence

of corrective feedback on learning remains con-
troversial (Tomasello, 2009). Here we aim to shed
some light on this debate by investigating this phe-
nomenon using much more data than ever before,
taking advantage of NLP techniques.

3 Corrective Feedback

We start by defining what we mean by corrective
feedback (CF) and by providing a taxonomy of er-
rors in child language that CF can target.

3.1 Definition of corrective feedback
An utterance by the child followed by an utterance
by an adult constitutes an instance of corrective
feedback if all the following constraints are met:
(C1) The child’s utterance contains a grammatical

anomaly.
(C2) There is some degree of overlap between

the adult and child utterances: the adult’s
response is anchored to the child utterance
through at least one exactly matching word.

(C3) The adult utterance is not a mere repetition
of the child’s, i.e., there is some contrast.

(C4) This contrast offers a correct counterpart of
the child’s erroneous form.

While this definition does not make any claims re-
garding the intentions of the adult nor the possible
uptake by the child, which may be considered a
simplification, arguably it can be operationalised
in a corpus study, which is our main goal here.

3.2 Taxonomy of errors
Now that we have a general definition of the phe-
nomenon, we can proceed towards a more fine-
grained classification of types of CF. Mainly, the
exchanges can be discriminated via the kind of
error in the child utterance and via the kind of
correction employed by the adult. Here we focus
on the type of error observable in the child utter-
ance, restricting ourselves to grammatical errors,
i.e., syntactic and morphological.1 We differenti-
ate between the linguistic level at which the error
occurs and the type of error observed. For level,
we follow Saxton et al. (2005) in distinguishing
four main classes sub-divided into a total of 13
categories. Regarding type, inspired by Sokolov
(1993) we distinguish between omissions, addi-
tions, and substitutions:2

1We do not consider phonological and lexical errors as
they are not easily identifiable in a transcribed corpus.

2Note that Sokolov (1993) uses these terms to characterise
the way in which parental utterances diverge from child utter-
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• Error Level:
– Syntactic: subject, object, verb3

– Noun morphology: possessive, regular plu-
ral, irregular plural

– Verb morphology: 3rd person singular, regu-
lar past, irregular past

– Unbound morphology: determiner, preposi-
tion, auxiliary, present progressive

• Error Type:
– Omission, Addition, Substitution

The following examples illustrate some of the cat-
egories above:
(2) a. synt: subject, omission

CHI: don’t want to .
MOT: you don’t want to ?

b. v. morph: irregular past, substitution
CHI: he falled out and bumped his head .
MOT: he fell out and bumped his head .

c. u. morph: auxiliary, addition
CHI: I’m read it .
DAD: you read it to mummy .

4 Dataset
Selection. Our dataset consists of a selection of
files from the English language section of the
CHILDES Database (MacWhinney, 2000a) in-
cluding all transcripts of conversations between
adults and unimpaired, naturally developing chil-
dren that contain a minimum of 50 utterances by
the child and 100 utterances in total, and where
the mean length of utterance (MLU; in words) of
the child is at least 2. This ensures that the child
is already at a stage where grammatical construc-
tions are starting to be used. Finally, since we are
conducting a longitudinal study, in order to make
sure there is enough data per child we consider
only transcripts of children for which there is data
over at least one year, with a file density of at least
5 transcripts per year and a minimum of 10 tran-
scripts overall per child.

The resulting dataset contains a total number of
1,683 transcripts from 25 different children, with
1,598,838 utterances overall. The average child
age at the time of the first transcribed conversation
lays around 2 years, with very little variation. The
mean difference between the child’s age in the first
and the last gathered transcript varies considerably

ances, while we use them to characterise the type of error in
a child utterance.

3We deviate from Saxton et al. (2005) slightly here by
considering any main verb including copulas, rather than only
copulative verbs as they do.

Total Avg. per child
transcripts 1,683 67.32
utterances 1,598,838 63,953.52

candidate CF pairs 136,152 5,446.08

Table 1: Overview of our dataset containing lon-
gitudinal data from 25 different children.

more across children, but overall also lies around
2 years.4

Preprocessing. Most of the transcripts in the
dataset already include part-of-speech tagging,
morphological analysis, and dependency pars-
ing. We used the CLAN toolbox (MacWhinney,
2000b) and the MEGRASP dependency parser
(Sagae et al., 2007) to add POS tags and to mor-
phologically and syntactically parse the transcripts
where this information was not available. We
also automatically coded each adult response to
a child utterance with information on overlap us-
ing the CHIP programme (Sokolov and MacWhin-
ney, 1990), also part of the CLAN toolbox.
CHIP provides information on added ($ADD),
deleted ($DEL), and exactly matching ($EXA)
morphemes in the source and response utterances,
as well as the proportion of morphemes in the re-
sponse utterance which match exactly morphemes
in the source ($REP). Figure 1 shows a sample
child-adult exchange with all the layers of infor-
mation computed during the preprocessing stage.5

Selection of candidate CF utterance pairs. In
order to investigate the effect of CF on language
learning, we need to quantify the CF exchanges
present in the corpus. That is, we need to find
mechanisms for automatically detecting these. We
use the overlap information to extract candidate in-
stances of CF. In line with constraints (C2) and
(C3) in our definition, we consider candidate in-
stances all child-adult utterance pairs with a per-
centage of repetition 0 < $REP < 1, where the
overlap is not exclusively due to stopwords.6 We
also require that the child’s utterance contains a
minimum of two distinct words so that there is
scope for a grammatical anomaly (C1).

An overview of the dataset in shown in Table 1.
4Further details are given in the supplementary material

available at http://tinyurl.com/cf-conll2016.
5The manual annotation layer in Figure 1 is discussed in

the next section.
6The list of stopwords was empirically derived by taking

the function words amongst the 100 most frequent words in
the dataset. See the supplementary material for the full list.
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CHI: I climb up daddy .
– POS & morph %mor : pro.sub|I v|climb prep|up n|daddy

– dependency %gra : 1|2|SUBJ 2|0|ROOT 3|2|JCT 4|3|POBJ
DAD: you did climb over daddy .

– POS & morph %mor : pro|you v|do.PAST v|climb prep|over n|daddy
– dependency %gra : 1|2|SUBJ 2|0|ROOT 3|2|OBJ 4|3|JCT 5|4|POBJ

– overlap %adu : $EXA :climb $EXA :daddy $ADD :you did $ADD :over $DEL :i $DEL :up $REP=0.40

manual annotation %cof : $CF $ERR=umorph :prep; $TYP=subst

Figure 1: Sample child-adult utterance pair with information layers automatically added during prepro-
cessing, plus a Corrective Feedback layer manually annotated with the decision tree in Figure 2.

5 Corpus Study

The simple heuristic used to extract candidate in-
stances of CF fares very well on recall, but it is of
course not very precise: a large quantity of candi-
date utterance pairs are not instances of CF since
(C1) and (C4) in our definition (Section 3.1) are
not fully accounted for. We therefore manually
annotated a subset of the data to have a reliable
basis for analysis and to use as training data for an
automatic classifier. For this annotation task, we
selected a subset of data that was representative of
the entire dataset. We randomly picked four chil-
dren in the dataset and selected between four and
six files per child that covered a minimum period
of one year and did not diverge by more than 20 ut-
terances from the average transcript length in the
overall dataset. This makes up 25,191 utterances
in total (of which 9,783 are child utterances).7

We run our heuristic for extracting candidate
CF utterance pairs, which resulted in a total of
2,627 pairs of child-adult utterances to be anno-
tated. Of these, 350 instances were annotated by
two coders to test the reliability of the annota-
tion. The annotation scheme used distinguishes
between CF and non-CF pairs. It subsequently
uses the taxonomy of corrective feedback pre-
sented in Section 3.2 to indicate the kind of er-
ror picked up by the parent in those pairs coded
as CF. If several child errors are implicitly cor-
rected in a single CF response, all of them are in-
cluded in the annotation. Figure 2 shows a sim-
plified version of the decision tree used by the an-
notators. Inter-annotator agreement was measured
with Cohen’s kappa and was reasonably high (κ =
0.77). The annotators discussed cases of disagree-
ment and arrived at a consensus label for the fi-

7See the supplementary material for more details on the
selected files.

Corrective Feedback

$CF $NOT

$ERR
[level of error]

$TYP
[type of error]

yes no

[repeat if necessary]

Figure 2: Decision tree for the annotation task.

nal annotation. The annotated dataset as well as
the complete annotation guidelines are available at
http://tinyurl.com/cf-conll2016.

Table 2 shows the results of the corpus study.
Out of 2,627 candidate utterance pairs, 580 where
coded as instances of CF. Most of the errors that
receive corrective feedback are omissions. This
should not necessarily be interpreted as omissions
receiving a higher proportion of CF over other er-
ror types, but rather as a consequence of omission
errors being predominant at this stage of develop-
ment (Saxton et al., 2005). In particular, most in-
stances of CF (30.8%) occur as a response to sub-
ject omission errors (SOEs); an example can be
found in excerpt (2a), Section 3.2. In the remain-
der of the paper we thus focus on this type of error.

Figure 3 shows how the amount of CF received
by the children (averaging over all types of er-
rors) changes over time. Not surprisingly, correc-
tive feedback has a clear tendency to decrease as
children develop and make fewer errors. An ex-
ception amongst the four children targeted for the
corpus study is the case of Emily, who has consid-
erably higher MLU than the other three children
at 2.5 years of age (MLU of 5 words vs. 4 for
Lara and Trevor and 3 for Thomas) and is there-
fore more proficient, thus offering fewer opportu-
nities for corrections.
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Om Add Sub Total
Syntax

subject 171 – 1 172
verb 90 1 – 91

object 13 – – 13
N morph

poss -’s 4 1 – 5
regular pl – 3 – 3

irregular pl – – 3 3
V morph

3rd person 4 – – 4
regular past 10 1 – 11

irregular past 1 – 4 5
Unb. morph

det 79 – 6 85
prep 21 1 12 34

aux verb 114 5 1 120
progressive 9 0 0 9

Other 4 2 19 25
Total 520 14 46 580

Table 2: Types of errors in exchanges coded as CF.

Figure 3: Amount of CF exchanges against child’s
age. Pearson’s r=–0.90 (Lara), r=–0.88 (Thomas),
r=–0.97 (Trevor), and r= +0.32 (Emily).

6 Automatic Detection

Our corpus study has provided insight on the types
of errors that are met with CF, showing that sub-
ject omission errors (SOEs) make up the largest
proportion. Our aim is to investigate the extent
to which CF on SOEs plays a part in overcoming
such errors during language acquisition. A large-
scale data-driven investigation, however, requires
the development of methods for the automatic ex-
traction of these phenomena. We therefore use
the manually annotated data to develop automatic
extraction procedures to detect SOEs and CF on
SOEs in order to extend our analysis to the entire
dataset, beyond the manually annotated data.

For extracting SOEs, a rule-based algorithm
was used, while for the more complex task of de-

tecting CF on SOEs we trained a Support Vec-
tor Machine. Overall, we are interested in high-
precision classifiers: Given our aims, it is prefer-
able to have a conservative but reasonably accu-
rate estimate of amount of error and of presence
of corrective feedback in order to avoid unreliable
boosting of the possible effect of CF on learning.

6.1 Subject omission errors

To construct a base set for developing a SOE clas-
sifier, we coded part of the annotated subset for the
presence or absence of subject omission errors (re-
call that the original annotation only indicated the
error type when this was present and received cor-
rective feedback). The resulting base set contains
453 utterances, of which 206 are positive instances
and 247 are negative instances of SOEs. This data
was randomly split into a training set and a test
set, roughly corresponding to 90% and 10% of the
data, respectively.

We used the training set to derive a set of
simple features that were combined in a non-
probabilistic rule-based algorithm classifying ut-
terances as SOE or non-SOE. Feature tuning was
done by qualitative analysis of classification errors
in a 5-fold cross-validation setting. Our baseline
consisted in classifying all child utterances with
no SUBJ node in the dependency parse tree as pos-
itive instances of SOE. This already achieves an
F1-score of 0.82, with 0.74 precision and 0.93 re-
call. To improve precision while not lowering re-
call too dramatically, we experimented with ad-
ditional features aimed at accounting for parsing
errors. The algorithm that produced the high-
est precision results first considers utterances with
no SUBJ node (baseline feature) or erroneously
parsed utterances where the SUBJ tag is assigned
to an implausible word such as a negation parti-
cle. It assigns them the positive class (SOE) if ad-
ditionally the first word in the utterance is not a
noun and the subject is not overlooked in the de-
pendency parse due to a missing verb (captured by
checking whether the ROOT node is assigned to a
proper name). All instances that do not meet these
constraints are classified as non-SOE.8

This classifier resulted in a precision of 0.83 on
both training and test sets, and a recall of 0.86 on
the training set and of 0.8 on the test set.

8The algorithm is spelled out in pseudocode in the sup-
plementary material.
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6.2 CF on subject omission errors

Given a child utterance with a SOE, the CF-SOE
classifier is intended to detect whether or not the
parental response contains corrective feedback for
this type of error. Using the SOE detector de-
scribed above, we extracted 514 utterance pairs
where the child utterance exhibits a SOE. Man-
ual inspection showed that this base set contains
250 positive instances and 264 negative instances
of CF on SOEs. Again, we randomly split off the
data into a training and a test set, corresponding to
approx. 90% and 10% of the data, respectively.

To capture the interaction between the child
and adult utterance needed for this classification
proved to be harder than extracting the simple
features representative of a SOE. For this task,
we used the SVM implementation provided with
the Python scikit-learn module (Pedregosa et al.,
2011). Again, features were selected via quali-
tative analysis of wrongly classified instances in
a 5-fold cross-validation setting over the training
set. The final set of features used includes the
presence of a SUBJ node in the dependency parse
of the adult utterance, and exact matches in ROOT
nodes (typically verbs) or OBJ nodes in the child
and adult utterances.9 In order to boost precision,
we tuned the parameters of the SVM by giving a
higher error-score to misclassifications of non-CF
instances, while making sure the F-score did not
fall below 0.5. The final class weights were 3:1
for the non-CF vs. CF class.

Overall, precision of the selected classifier
reached 0.89 and recall 0.36 on the test set, com-
pared to a majority class baseline of 0.49 for both
values. Given the importance of precision for our
aims, this classifier was preferred over a more bal-
anced one.

7 CF and Language Learning

In this section, we investigate whether the pres-
ence of corrective feedback on subject omission
errors contributes to the reduction of such errors
in children’s speech and thus has an impact on lan-
guage acquisition.

7.1 Overview of the experimental design

Our experiments are designed as follows: We es-
timate the amount of SOEs at a particular period

9The complete list of features passed to the SVM, together
with an explanation of what they represent, can be found in
the supplementary material.

of time (defined in terms of child age in months)
as the proportion of child utterances that contain a
SOE. We compute the amount of SOEs at two dif-
ferent time periods, t0 and a later time t1. We then
calculate the relative error reduction (rer) as the
proportion of SOEs at t0 that has been overcome
at t1:

rer(t0, t1) =
SOE t0 − SOE t1

SOE t0

[1]

Our aim is to investigate the relationship between
relative error reduction (rer) of SOEs at t1 and
the presence of corrective feedback on SOEs at t0.
The latter is calculated as the number of instances
of CF on SOE at t0 divided by the total number of
child SOEs at t0. We consider all possible instan-
tiations of t0 and t1 per child in the corpus, with a
minimum time distance of one month between the
two. This allows us to investigate at what age CF
seems more effective (different t0 values) and how
much time is needed for its effect to be noticeable
on learning (distance between t0 and t1).

We construct several linear regression models,
where rer(t0, t1) is always the dependent vari-
able we are interested in predicting and CF at t0 is
the independent variable whose predictive power
we are investigating, while controlling for several
other factors characterising child directed speech
and children’s own speech.

7.2 Setup details

Data. We apply the SOE and the CF-SOE high-
precision detectors presented in Section 5 and
trained on manually annotated data to the entire
dataset (summarised in Table 1). This allows us
to quantify the amount of SOE and CF on SOE a
child receives at a given age. Overall, we detected
287,309 cases of child SOEs and 31,080 cases of
CF on a SOE.

Control variables. To study the effects of CF
we control for other features that may also con-
tribute to predicting relative error reduction. We
consider factors representative of the general lan-
guage development exhibited by the child as well
as of the quality and quantity of the input. To be
precise, we consider the following factors:

(a) child age in months (age);

(b) mean length of utterance of child speech and
of child directed speech (chi.mlu/cds.mlu);

(c) vocabulary size of child speech and of child
directed speech (chi.vocab/cds.vocab);
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Figure 4: Development of child MLU, proportion of SOE and CF frequency (in standardised z scores)
for Adam in the Brown corpus, when measured by month (left) and after smoothing (right).

(d) proportion of child SOEs (chi.soe);

(e) proportion of child directed utterances with
subject omissions (cds.so);

(f) proportion of words uttered by the child over
all words uttered in the child-adult interac-
tions (chi.speech).10

All factors are computed at t0, except for vocabu-
lary size, which corresponds to the vocabulary of
all transcripts available for a given child up to t0.
Note that we also encode how often adults produce
utterances without an explicit subject (e), which
does of course happen relatively often in spon-
taneous conversation (Fernández and Ginzburg,
2002). All of these features are expected to in-
fluence the degree to which a child learns subject
inclusion in English. Our goal is to test to what ex-
tent (if at all) CF on SOEs has a positive influence
on learning independently of these factors.

Feature computation. There is substantial vari-
ation amongst children in the corpus regarding the
density and the length of transcripts. Therefore, to
estimate the values of the variables above as well
as amount of CF and rer at a given age, in months,
ti, we employ an averaging procedure over pos-
sibly several transcripts. This procedure consists
first of all in averaging over all available tran-
scripts in the same month. The resulting estimate
for relatively steady measures such as MLU still
shows a considerable fluctuation. We thus employ

10Given the nature of the CHILDES corpus (with unequal
frequency and length of transcripts per child), it is not possi-
ble to properly estimate the amount of input received; we can
only quantify the proportion of child speech vs. child directed
speech.

a smoothing procedure by averaging again over
three consecutive available months ti−1, ti, ti+1.
Figure 4 illustrates the effect of such smoothing
procedure for some of the variables.

7.3 Analysis and results
We first consider the entire dataset as a whole,
taking all possible pairs (t0, t1) for the 25 chil-
dren in the corpus (N= 2613). We observe that
CF correlates positively with rer(t0, t1) (Pear-
son’s r=0.29, p<0.001); that is, the more correc-
tive feedback at any given time t0, the more er-
ror reduction at later times in development. A lin-
ear regression model controlling for the additional
factors listed above shows that CF explains a sig-
nificant proportion of the variance in relative error
reduction of SOEs independently from all other
factors.

Table 3 shows the standardised regression coef-
ficients for the predictors considered, representing
the change in rer(t0, t1) associated with a change
of 1 in the given predictor when all other factors
are held constant. Note that since in this setting
neither t0 nor t1 are fixed, we can include age at
these two time periods as independent predictors
in the model.

While this analysis shows that CF on SOEs con-
tributes to predicting error reduction, it does not
provide any information regarding the develop-
mental period at which corrective feedback may
be more effective or the time lapse required for
learning to take place. The following analyses aim
at offering insight on these aspects.

To investigate the time lag required for CF to
have an impact on rer, we fix the distance be-
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Figure 5: Impact of CF on SOE reduction after different time lags (left) and after different time lags for
a fixed age at t0 (right).

age.t0 -0.586 *** age.t1 0.474 ***
chi.soe 0.843 *** cds.so 0.101 **
chi.mlu 0.365 *** cds.mlu 0.217 ***
chi.vocab 0.479 *** cds.vocab -0.450 ***
chi.speech 0.853 *** cf.soe 0.123 ***

Table 3: Beta coefficients for linear regression
model; *** p<0.001, ** p<0.01. Overall variance
in rer captured by the model (adjusted R2): 0.53.

tween t0 and t1 and construct two different linear
regression models for each distance value, a model
with all control factors without CF (and without
age at t1 as it is dependent on age at t0 in this
setting) and a model where CF is included. This
allows us to test whether CF makes a significant
contribution in accounting for the variance in rer,
independently of the control factors. We should
note that for each distance value (and thus for each
pair of models) there are fewer datapoints than in
the previous analysis, as not all distance values are
available for all children in the corpus. The aver-
age number of datapoints per model is N=186.6
(sd=57.3). Figure 5 (left) shows the adjusted R2

values for the pairs of models for a range of time
spans between t0 and t1. As can be seen, CF has
a significant effect after a time lapse of 7 to 12
months.

Finally, to investigate not only the time lapse
but also the age at which CF may be more effec-
tive, we construct linear regression models with fix
values for both (i) the difference between t0 and t1

and (ii) age at t0. Again, the number of available
datapoints drops substantially with this additional
constraint; we consider only settings for which
there are at least 10 datapoints (t0 from 28 to 35
months). The results are shown in Figure 5 (right),
where the larger dots indicate that the model that
incorporates CF on top of the control factors has
significantly more predictive power to explain the
variance in rer.11 We can see that the effect of
CF is noticeable after a time lapse of 9 months
(consistently with the previous analysis) and that
this holds for any starting age t0 for which there is
available data. This is consistent with the results of
Saxton et al. (2005), who did not find an effect of
CF on this error type after a lag of only 3 months
(the only time lag studied by these authors). Our
results show that indeed, for SOEs, the learning
effects are cumulative and can only be statistically
appreciated at a later stage.

The results plotted in Figure 5 (left) may seem
to indicate that after a lag of over 12 months
this learning effect disappears, since we observe
no significant difference between the two models
(with and without CF). However, we believe that
this is an artefact of the dataset. In our dataset a
larger time lag between t0 and t1 coincides with
a relatively advanced age at t1: on average, chil-
dren are 47 to 49 months old at t1 for differences
of 13 to 15 months between t0 and t1. The fre-

11Since the experiments reported in Figure 5 involve mul-
tiple statistical comparisons (thus increasing the chance of
Type I errors), we use a stricter significance threshold (0.01)
than the standard 0.05.
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quency of subject omissions observed in the child
speech converges towards a non-zero limit with in-
creasing child age (a limit akin to the amount of
subject omissions in child directed speech). Thus,
predicting the relative error reduction when given
the frequency of SOE at t0 becomes easy at ad-
vanced child ages, with or without including CF
as a predictor. The observed increase of adjusted
R2 scores as age distance becomes larger seems to
support this hypothesis.

8 Conclusions

We have investigated the impact of corrective
feedback on first language acquisition, in partic-
ular on the reduction of subject omission errors in
English—a type of error which we found to be
the most commonly met with CF in our corpus
study. In contrast to previous small-scale stud-
ies in psycholinguistics, we have addressed this
problem using a comparatively large data-driven
setting. We have used machine learning methods
trained on manually annotated data and then ap-
plied statistical modelling to the automatically ex-
tracted instances of CF on SOEs. The annotated
dataset is publicly available at http://tinyurl.
com/cf-conll2016.

Our results have shown that CF contributes to
predict learning independently of other factors
characterising the input received by the child and
the child level of development. In our dataset, this
is noticeable after a time lag of approximately 9
months. This suggests that CF does have an im-
pact on long-term learning and not only on imme-
diate responses by the child, as observed in other
analyses with a few children (e.g., Chouinard and
Clark (2003)). Of course, our results need to be in-
terpreted with prudence, since the automatic clas-
sifiers for detecting SOEs and CF on SOEs in the
whole dataset are far from perfect. Nevertheless,
since we opted for high-precision classifiers, the
results may in fact be a low estimate of the effect
of CF on learning grammar.
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Abstract

This paper studies how word embeddings
trained on the British National Corpus in-
teract with part of speech boundaries. Our
work targets the Universal PoS tag set,
which is currently actively being used for
annotation of a range of languages. We ex-
periment with training classifiers for pre-
dicting PoS tags for words based on their
embeddings. The results show that the in-
formation about PoS affiliation contained
in the distributional vectors allows us to
discover groups of words with distribu-
tional patterns that differ from other words
of the same part of speech.

This data often reveals hidden inconsisten-
cies of the annotation process or guide-
lines. At the same time, it supports the
notion of ‘soft’ or ‘graded’ part of speech
affiliations. Finally, we show that infor-
mation about PoS is distributed among
dozens of vector components, not limited
to only one or two features.

1 Introduction

Parts of speech (PoS) are useful abstractions, but
still abstractions. Boundaries between them in nat-
ural languages are flexible. Sometimes, large open
classes of words are situated on the verge between
several parts of speech: for example, participles in
English are in many respects both verbs and ad-
jectives. In other cases, closed word classes ‘inter-
sect’, e.g., it is often difficult to tell a determiner
from a possessive pronoun. As Houston (1985)
puts it, ‘Grammatical categories exist along a con-
tinuum which does not exhibit sharp boundaries
between the categories’.

When annotating natural language texts for
parts of speech, the choice of a PoS tag in many

ways depends on the human annotators them-
selves, but also on the quality of linguistic con-
ventions behind the division into different word
classes. That is why there have been several at-
tempts to refine the definitions of parts of speech
and to make them more empirically grounded,
based on corpora of real texts: see, among others,
the seminal work of Biber et al. (1999). The aim
of such attempts is to identify clusters of words
occurring naturally and corresponding to what we
usually call ‘parts of speech’. One of the main
distance metrics that can be used in detecting such
clusters is a distance between distributional fea-
tures of words (their contexts in a reference train-
ing corpus).

In this paper, we test this approach using pre-
dictive models developed in the field of distribu-
tional semantics. Recent achievements in training
distributional models of language using machine
learning allow for robust representations of nat-
ural language semantics created in a completely
unsupervised way, using only large corpora of raw
text. Relations between dense word vectors (em-
beddings) in the resulting vector space are as a
rule used for semantic purposes. But can they be
employed to discover something new about gram-
mar and syntax, particularly parts of speech? Do
learned embeddings help here? Below we show
that such models do contain a lot of interesting
data related to PoS classes.

The rest of the paper is organized as follows.
In Section 2 we briefly cover the previous work
on the subject of parts of speech and distributional
models. Section 3 describes data processing and
the training of a PoS predictor based on word em-
beddings. In Section 4 errors of this predictor are
analyzed and insights gained from them described.
Section 5 introduces an attempt to build a full-
fledged PoS tagger within the same approach. It
also analyzes the correspondence between partic-
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ular word embedding components and PoS affilia-
tion, before we conclude in Section 6.

2 Related work

Traditionally, 3 types of criteria are used to distin-
guish different parts of speech: formal (or mor-
phological), syntactic (or distributional) and se-
mantic (Aarts and McMahon, 2008). Arguably,
syntactic and semantic criteria are not very differ-
ent from each other, if one follows the famous dis-
tributional hypothesis stating that meaning is de-
termined by context (Firth, 1957). Below we show
that unsupervised distributional semantic models
contain data related to parts of speech.

For several years already it has been known
that some information about morphological word
classes is indeed stored in distributional models.
Words belonging to different parts of speech pos-
sess different contexts: in English, articles are typ-
ically followed by nouns, verbs are typically ac-
companied by adverbs and so on. It means that
during the training stage, words of one PoS should
theoretically cluster together or at least their em-
beddings should retain some similarity allowing
for their separation from words belonging to other
parts of speech. Recently, among others, Tsuboi
(2014) and Plank et al. (2016) have demonstrated
how word embeddings can improve supervised
PoS-tagging.

Mikolov et al. (2013b) showed that there also
exist regular relations between words from dif-
ferent classes: the vector of ‘Brazil’is related to
‘Brazilian’ in the same way as ‘England’ is re-
lated to ‘English’ and so on. Later, Liu et al.
(2016) demonstrated how words of the same part
of speech cluster into distinct groups in a distri-
butional model, and Tsvetkov et al. (2015) proved
that dimensions of distributional models are cor-
related with different linguistic features, releasing
an evaluation dataset based on this.

Various types of distributional information has
also played an important role in previous work
done on the related problem of unsupervised PoS
acquisition. As discussed in Christodoulopou-
los et al. (2010), we can separate at least three
main directions within this line of work: Disam-
biguation approaches (Merialdo, 1994; Toutanova
and Johnson, 2007; Ravi and Knight, 2009) that
start out from a dictionary providing possible tags
for different words; prototype-driven approaches
(Haghighi and Klein, 2006; Christodoulopoulos

et al., 2010) based on a small number of pro-
totypical examples for each PoS; induction ap-
proaches that are completely unsupervised and
make no use of prior knowledge. This is also the
main focus of the comparative survey provided by
(Christodoulopoulos et al., 2010).

Work on PoS induction has a long history – in-
cluding the use of distributional methods – going
back at least to Schütze (1995), and recent work
has demonstrated that word embeddings can be
useful for this task as well (Yatbaz et al., 2012;
Lin et al., 2015; Ling et al., 2015a).

In terms of positioning this study relative to pre-
vious work, it falls somewhere in between the dis-
tinctions made above. It is perhaps closest to dis-
ambiguation approaches, but it is not unsupervised
given that we make use of existing tag annotations
when training our embeddings and predictors. The
goal is also different; rather than performing PoS
acquisition or tagging for its own sake, the main
focus here is on analyzing the boundaries of dif-
ferent PoS classes. In Section 5, this analysis is
complemented by experiments with using word
embeddings for PoS prediction on unlabeled data,
and here our approach can perhaps be seen as re-
lated to previous so-called prototype-driven ap-
proaches, but in these experiments we also make
use of labeled data when defining our prototypes.

It seems clear that one can infer data about
PoS classes of words from distributional models in
general, including embedding models. As a next
step then, these models could also prove useful
for deeper analysis of part of speech boundaries,
leading to discovery of separate words or whole
classes that tend to behave in non-typical ways.
Discovering such cases is one possible way to im-
prove the performance of existing automatic PoS
taggers (Manning, 2011). These ‘outliers’ may
signal the necessity to revise the annotation strat-
egy or classification system in general. Section 3
describes the process of constructing typical PoS
clusters and detecting words that belong to a clus-
ter different from their traditional annotation.

3 PoS clusters in distributional models

Our hypothesis is that for the majority of words
their parts of speech can be inferred from their em-
beddings in a distributional model. This inference
can be considered a classification problem: we are
to train an algorithm that takes a word vector as in-
put and outputs its part of speech. If the word em-
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beddings do contain PoS-related data, the properly
trained classifier will correctly predict PoS tags for
the majority of words: it means that these lexical
entities conform to a dominant distributional pat-
tern of their part of speech class. At the same time,
the words for which the classifier outputs incor-
rect predictions, are expected to be ‘outliers’, with
distributional patterns different from other words
in the same class. These cases are the points of
linguistic interest, and in the rest of the paper we
mostly concentrate on them.

To test the initial hypothesis, we used the XML
Edition of British National Corpus (BNC), a bal-
anced and representative corpus of English lan-
guage of about 98 million word tokens in size. As
stated in the corpus documentation, ‘it was [PoS-
]tagged automatically, using the CLAWS4 auto-
matic tagger developed by Roger Garside at Lan-
caster, and a second program, known as Template
Tagger, developed by Mike Pacey and Steve Fligel-
stone’ (Burnard, 2007). The corpus authors re-
port a precision of 0.96 and recall of 0.99 for their
tools, based on a manually checked sample. For
this research, it is important that BNC is an es-
tablished and well-studied corpus of English with
PoS-tags and lemmas assigned to all words.

We produced a version of BNC where all the
words were replaced with their lemmas and PoS-
tags converted into the Universal Part-of-Speech
Tagset (Petrov et al., 2012)1. Thus, each to-
ken was represented as a concatenation of its
lemma and PoS tag (for example, ‘love_VERB’
and ‘love_NOUN’ yield different word types).
The mappings between BNC tags and Universal
tags were created by us and released online2.

The main motivation for the use of the Univer-
sal PoS tag set was that this is a newly emerg-
ing standard which is actively being used for an-
notation of a range of different languages through
the community-driven Universal Dependencies ef-
fort (Nivre et al., 2016). Additionally, this tag set
is coarser than the original BNC one: it simpli-
fies the workflow and eliminates the necessity to
merge ‘inflectional’ tags into one (e.g., singular
and plural nouns into one ‘noun’ class). This con-
forms with our interest in parts of speech proper,
not inflectional forms within one PoS. We worked
with the following 16 Universal tags: ADJ, ADP,
ADV, AUX, CONJ, DET, INTJ, NOUN, NUM,

1We used the latest version of the tagset available at
http://universaldependencies.org

2http://bit.ly/291BlpZ

PART, PRON, PROPN, SCONJ, SYM, VERB,
X (punctuation tokens marked with the PUNCT
tag were excluded).

Then, a Continuous Skipgram embedding
model (Mikolov et al., 2013a) was trained on this
corpus, using a vector size of 300, 10 negative
samples, a symmetric window of 2 words, no
down-sampling, and 5 iterations over the training
data. Words with corpus frequency less than 5
were ignored. This model represents the seman-
tics of the words it contains. But at the same time,
for each word, a PoS tag is known (from the BNC
annotation). It means that is is possible to test how
good the word embeddings are in grouping words
according to their parts of speech.

To this end, we extracted vectors for the 10 000
most frequent words from the resulting model
(roughly, these are the words with corpus fre-
quency more than 500). Then, these vectors were
used to train a simple logistic regression multino-
mial classifier aimed to predict the word’s part of
speech.

It is important that we applied classification, not
clustering here. Naive K-Means clustering of word
embeddings in our model into 16 groups showed
very poor performance (adjusted Rand index of
0.52 and adjusted Mutual Information score of
0.61 in comparison to the original BNC tags). This
is because PoS-related features form only a part
of embeddings, and in the fully unsupervised set-
ting, the words tend to cluster into semantic groups
rather than ‘syntactic’ ones. But when we train a
classifier, it locates exactly the features (or com-
binations of features) that correspond to parts of
speech, and uses them subsequently.

Note that during training (and subsequent test-
ing), each word’s vector was used several times,
proportional to frequency of the word in the cor-
pus, so the classifier was trained on 177 343
(sometimes repeating) instances, instead of the
original 10 000. This was done to alleviate clas-
sification bias due to class imbalance: There are
much fewer word types in the closed PoS classes
(pronouns, conjunctions, etc.) than in the open
ones (nouns, verbs, etc.), so without considering
word frequency, the model does not have a chance
to learn good predictors for ‘small’ classes and
ends up never predicting them. At the same time,
words from closed classes occur very frequently
in the running text, so after ‘weighting’ training
instances by corpus frequency, the balance is re-
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stored and the classifier model has enough train-
ing instances to learn to predict closed PoS classes
as well. As an additional benefit, by this modi-
fication we make frequent words from all classes
more ‘influential’ in training the classifier.

The resulting classifier showed a weighted
macro-averaged F-score (over all PoS classes)
and accuracy equal to 0.98, with 10-fold cross-
validation on the training set.

This is a significant improvement over the one-
feature baseline classifier (classify using only one
vector dimension with maximum F-value in re-
lation to class tags), with F-score equal to only
0.22. Thus, the results support the hypothesis that
word embeddings contain information that allows
us to group words together based on their parts of
speech. At the same time, we see that this infor-
mation is not restricted to some particular vector
component: rather, it is distributed among sev-
eral axis of the vector space. After training the
classifier, we were able to use it to detect ‘out-
lying’ words in the BNC (judging by the distri-
butional model). So as not to experiment on the
same data we had trained our classifier on, we
compiled another test set of 17 000 vectors for
words with the BNC frequencies between 100 and
500. They were weighted by word frequencies in
the same way as the training set, and the resulting
test set contained 30 710 instances. Compared to
the training error reported above we naturally ob-
serve a drop in performance when predicting PoS
for this unseen data, but the classifier still appears
quite robust, yielding an F-score of 0.91. How-
ever, some of the drop is also due to the fact that
we are applying the classifier to words with lower
frequency, and hence we have somewhat less train-
ing data for the input embeddings.

Furthermore, to make sure that the results can
potentially be extended to other texts, we ap-
plied the trained classifier to all lemmas from
the human-annotated Universal Dependencies En-
glish Treebank (Silveira et al., 2014). The words
not present in the distributional model were omit-
ted (they sum to 27% of word types and 10% of
word tokens). The classifier showed an F-Score
equal to 0.99, further demonstrating the robustness
of the classifier. Note, however, that part of this
performance is because the UD Treebank contains
many words from the classifier training set. Es-
sentially, it means that the decisions of the UD hu-
man annotators are highly consistent with the dis-

Figure 1. Centroid embedding for coordinating
conjunctions

Figure 2. Centroid embedding for subordinating
conjunctions

tributional patterns of words in the BNC. In sum,
the vast majority of words are classified correctly,
which means that their embeddings enable the de-
tection of their parts of speech. In fact, one can
visualize ‘centroid’ vectors for each PoS by sim-
ply averaging vectors of words belonging to this
part of speech. We did this for 10 000 words from
our training set.

Plots for centroid vectors of coordinating and
subordinating conjunctions are shown in Figures
1 and 2 respectively. Even visually one can notice
a very strongly expressed feature near the ‘100’
mark in the horizontal axis (component number
94). In fact, this is indeed an idiosyncratic feature
of conjunctions: none of the other parts of speech
shows such a property. More details about what
vector components are relevant to part of speech
affiliation are given in Section 5.

Additionally, with centroid PoS vectors we can
find out how similar different parts of speech are to
each other, by simply measuring cosine similarity
between them. If we rank PoS pairs according to
their similarity (Table 1), what we see is that nom-
inative parts of speech are close to each other, de-
terminers and pronouns are also similar, as well as
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Table 1. Distributional similarity between parts of
speech (fragment)

Cosine similarity PoS pair

0.81 NOUN ADJ
0.77 ADV PRON
0.73 DET PRON
0.73 ADV ADJ
... ...
... ...

0.37 INTJ NUM
0.36 AUX NUM

prepositions and subordinating conjunctions; quite
in accordance with linguistic intuition. Proper
nouns are not very similar to common nouns, with
cosine similarity between them only 0.67 (even
adverbs are closer). Arguably, this is explained
by co-occurrences together with the definite arti-
cle, and as we show below, this helps the model to
successfully separate the former from the latter.

Despite generally good performance of the clas-
sifier, if we look at our BNC test set, 1741 word
types (about 10% of the whole test set vocabu-
lary) were still classified incorrectly. Thus, they
are somehow dissimilar to ‘prototypical’ words of
their parts of speech. These are the ‘outliers’ we
were after. We analyze the patterns found among
them in the next section.

4 Not from this crowd: analyzing outliers

First, we filtered out misclassified word types
with ‘X’ BNC annotation (they are mostly foreign
words or typos). This leaves us with 1558 words
for which the classifier assigned part of speech
tags different from the ones in the BNC. It proba-
bly means that these words’ distributional patterns
differ somehow from what is more typically ob-
served, and that they tend to exhibit behavior sim-
ilar to another part of speech. Table 2 shows the
most frequent misclassification cases, together ac-
counting for more than 85% of errors.

Additionally, we ranked misclassification cases
by ‘part of speech coverage’, that is by the ratio of
the words belonging to a particular PoS for which
our classifier outputs this particular type of mis-
classification. For example, proper nouns misclas-
sified as common nouns constitute the most nu-
merous error type in Table 2, but in fact only 9%
of all proper nouns in the test set were misclassi-

Table 2. Most frequent PoS misclassifications of
the distributional predictor. The # column lists the
number of word types.

# Actual PoS Predicted PoS

347 PROPN NOUN
313 ADJ NOUN
190 NOUN ADJ
91 NOUN PROPN
87 PROPN ADJ
57 VERB ADJ
55 NOUN NUM
52 NUM NOUN
45 NUM PROPN
28 ADV PROPN
25 ADV NOUN
25 ADJ PROPN
20 ADV ADJ

fied in this way. There are parts of speech with
a much larger portion of word-types predicted er-
roneously: e.g., 22% of subordinate conjunctions
were classified as adverbs. Table 3 lists error types
with the highest coverage (we excluded error types
with absolute frequency equal to 1, as it is impos-
sible to speculate on solitary cases).

We now describe some of the interesting cases.
Almost 30% of error types (judging by absolute
amount of misclassified words) consist of proper
nouns predicted to be common ones and vice
versa. These cases do not tell us anything new, as
it is obvious that distributionally these two classes
of words are very similar, take the same syntac-
tic contexts and hardly can be considered differ-
ent parts of speech at all. At the same time, it
is interesting that the majority of proper nouns
in the test set (88%) was correctly predicted as
such. It means that in spite of contextual sim-
ilarity, the distributional model has managed to
extract features typical for proper names. Errors
mostly cover comparatively rare names, such as
‘luftwaffe’, ‘stasi’, ‘stonehenge’, or ‘himalayas’.
Our guess is that the model was just not pre-
sented with enough contexts for these words to
learn meaningful representations. Also, they are
mostly not personal names but toponyms or orga-
nization names, probably occurring together with
the definite article the, unlike personal names.

Another 30% of errors are due to vague bound-
aries between nominal and adjectival distribution
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patterns in English: nouns can be modified by both
(it seems that cases where a proper noun is mis-
taken for an adjective are often caused by the same
factor). Words like ‘materialist_NOUN’, ‘star-
board_NOUN’ or ‘hypertext_NOUN’ are tagged
as nouns in the BNC, but they often modify other
nouns, and their contexts are so ‘adjectival’ that
the distributional model actually assigned them se-
mantic features highly similar to those of adjec-
tives. Vice versa, ‘white-collar_ADJ’ (an adjec-
tive in BNC) is regarded as a noun from the point
of view of our model. Indeed, there can be con-
tradicting views on the correct part of speech for
this word in phrases like ‘and all the other white-
collar workers’. Thus, in this case the distribu-
tional model highlights the already known simi-
larity between two word classes.

The cases of verbs mistaken for adjectives seem
to be caused mostly by passive participles (‘was
overgrown’, ‘is indented’, ‘’), which intuitively
are indeed very adjective-like. So, this gives us
a set of verbs dominantly (or almost exclusively,
like ‘to intertwine’ or ‘to disillusion’) used in pas-
sive. Of course, we will hardly announce such
verbs to be adjectives based on that evidence, but
at least we can be sure that this sub-class of verbs
is clearly semantically and distributionally differ-
ent from other verbs.

The next numerous type of errors consists of
common nouns predicted to be numerals. A
quick glance at the data reveals that 90% of these
‘nouns’ are in fact currency amounts and percent-
ages (‘£70’, ‘33%’, ‘$1’, etc). It seems reasonable
to classify these as numerals, even though they
contain some kind of nominative entities inside.
Judging by the decisions of the classifier, their
contexts do not differ much from those of sim-
ple numbers, and their semantics is similar. The
Universal Dependencies Treebank is more consis-
tent in this respect: it separates entities like ‘1$’
into two tokens: a numeral (NUM) and a sym-
bol (SYM). Consequently, when our classifier was
tested on the words from the UD Treebank, there
was only one occurrence of this type of error.

Related to this is the inverse case of numer-
als predicted to be common or proper nouns. It
is interesting that this error type also ranks quite
high in terms of coverage: If we combine numer-
als predicted to be common and proper nouns, we
will see that 17% of all numerals in the test set
were subject to this error. The majority of these

Table 3. Coverage of misclassifications with dis-
tributional predictor, i.e., ratio of errors over all
word types of a given PoS. The absolute type
count is given by #.

Coverage Actual PoS Predicted PoS #

0.22 SCONJ ADV 2
0.17 INTJ PROPN 8
0.11 ADP ADJ 3
0.09 ADJ NOUN 313
0.09 PROPN NOUN 347
0.09 NUM NOUN 52
0.08 NUM PROPN 45

‘numerals’ are years (‘1804’, ‘1776’, ‘1822’) and
decades (‘1820s’, ‘60s’ and even ‘twelfths’). Intu-
itively, such entities do indeed function as nouns
(‘I’d like to return to the sixties’). Anyway, it is
difficult to invent a persuasive reason for why ‘fifty
pounds’ should be tagged as a noun, but ‘the year
1776’ as a numeral. So, this points to possible (mi-
nor) inconsistencies in the annotation strategy of
the BNC. Note that a similar problem exists in the
Penn Treebank as well (Manning, 2011).

Adverbs classified as nouns (53 words in total
for both common and proper nouns) are possibly
the ones often followed by verbs or appearing in
company of adjectives (examples are ‘ultra’ and
‘kinda’). This made the model treat them as close
to the nominative classes. Interestingly, most ‘ad-
verbs’ predicted to be proper nouns are time indi-
cators (‘7pm’, ‘11am’); this also raises questions
about what adverbial features are really present in
these entities. Once again, unlike the BNC, the
UD Treebank does not tag them as adverbs.

The cases we described above revealed some in-
consistencies in the BNC annotation. However, it
seems that with adverbs mistaken for adjectives,
we actually found a systematic error in the BNC
tagging: these cases are mostly connected to ad-
jectives like ‘plain’, ‘clear’ or ‘sharp’ (including
comparative and superlative forms) erroneously
tagged in the corpus as adverbs. These cases
are not rare: just the three adjectives we men-
tioned alone appear in the BNC about 600 times
with an adverb tag, mostly in clauses of the kind
‘the author makes it plain that. . . ’, so-called small
clauses (Aarts, 2012). Sometimes these tokens are
tagged as ambiguous, and the adjective tag is there
as a second variant; however, the corpus documen-
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tation states that in such cases the first variant is al-
ways more likely. Thus, distributional models can
actually detect outright errors in PoS-tagged cor-
pora, when incorrectly tagged words strongly tend
to cluster with another part of speech. In the UD
treebank such examples can also be observed, but
they are much fewer and more ‘adverbial’, like ‘it
goes clear through’.

Turning to Table 3, most of the entries were
already covered above, except the first 3 cases.
These relate to closed word classes (functional
words), which is why the absolute number of in-
fluenced word types is low, but the coverage (ratio
of all words of this PoS) is quite high.

First, out of 9 distinct subordinate conjunctions
in the test set, 2 were predicted to be adverbs. This
is not surprising, as these words are ‘seeing’ and
‘immediately’. For ‘seeing’ the prediction seems
to be just a random guess (the prediction confi-
dence was as low as 0.3), but with ‘immediately’
the classifier was actually more correct than the
BNC tagger (the prediction confidence was about
0.5). In BNC, these words are mostly tagged as
subordinate conjunctions in cases when they oc-
cur sentence-initially (‘Immediately, she lowered
the gun’). The other words marked as SCONJ in
the test set are really such, and the classifier made
correct predictions matching the BNC tags.

Interjections mistaken for proper names do not
seem very interpretable (examples are ‘gee’, ‘oy’
and ‘farewell’). At the same time, 3 prepositions
predicted to be adjectives clearly form a separate
group: they are ‘cross’, ‘pre’ and ‘pro’. They are
not often used as separate words, but when they
are (‘Did anyone encounter any trouble from Hibs
fans in Edinburgh pre season?’), they are very
close to adjectives or adverbs, so the predictions
of the distributional classifier once again suggest
shifting parts of speech boundaries a bit.

Error analysis on the vocabulary from the
Universal Dependencies Treebank showed pretty
much the same results, except for some differences
already mentioned above.

There exists another way to retrieve this kind
of data: to process tagged data with a conven-
tional PoS tagger and analyze the resulting confu-
sion matrix. We tested this approach by process-
ing the whole BNC with the Stanford PoS Tagger
(Toutanova et al., 2003). Note that as an input to
the tagger we used not the whole sentences from
the corpora, but separate tokens, to mimic our

Table 4. Most frequent PoS misclassifications
with the Stanford tagger (counting word types).

# Actual Predicted

172675 NNP NN
47202 VB NN
40218 JJ NN
24075 NN JJ
9723 JJ VB

workflow with the distributional predictor. Prior
to this, BNC tags were converted to the Penn Tree-
bank tagset3 to match the output of the tagger. As
we are interested in coarse, ‘overarching’ word
classes, inflectional forms were merged into one
tag. That was easy to accomplish by dropping all
characters of the tags after the first two (exclud-
ing proper noun tags, which were all converted to
NNP).

Analysis of the confusion matrix (cases where
the tag predicted by the Stanford tagger was dif-
ferent from the BNC tag) revealed the most fre-
quent error types shown in Table 4. Despite simi-
lar top positions of errors types ‘proper noun pre-
dicted as common noun’ and ‘nouns and adjec-
tives mistaken for each other’, there are also very
frequent errors of types ‘verb to noun’ and ‘ad-
jective to verb’, not observed in the distributional
confusion matrix (Table 2). We would not be able
to draw the same insights that we did from the dis-
tributional confusion matrix: the case with verbs
mistaken for adjective is ranked only 12th, adverbs
mistaken for nouns - 13th, etc.

Table 5 shows top misclassification types by
their word type coverage. Once again, interest-
ing cases we discovered with the distributional
confusion matrix (like subordinating conjunctions
mistaken for adverbs and prepositions mistaken
for adjectives) did not show up. Obviously, a lot
of other insights can be extracted from the Stan-
ford Tagger errors (as has been shown in previous
work), but it seems that employing a distributional
predictor reveals different error cases and thus is
useful in evaluating the sanity of tag sets.

To sum up, the analysis of ‘boundary cases’ de-
tected by a classifier trained on distributional vec-
tors, indeed reveals sub-classes of words lying on
the verge between different parts of speech. It also
allows for quickly discovering systematic errors or

3https://www.cis.upenn.edu/~treebank/
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Table 5. Coverage of misclassifications (from all
word types of this PoS) with the Stanford tagger.

Coverage Actual Predicted #

0.91 NNP NN 172675
0.8 UH NN 576
0.79 DT NN 217
0.78 EX JJ 11
0.78 PR NN 517

inconsistencies in PoS annotations, whether they
be automatic or manual. Thus, discussions about
PoS boundaries would benefit from taking this
kind of data into consideration.

5 Embeddings as PoS predictors

In the experiment described in the previous sec-
tion, we used a model trained on words concate-
nated with their PoS tags. Thus, our ‘classifier’
was a bit artificial in that it required a word plus a
tag as an input, and then its output is a judgment
about what tag is most applicable to this combina-
tion from the point of view of the BNC distribu-
tional patterns. This was not a problem for us, as
our aim was exactly to discover lexical outliers.

But is it possible to construct a proper predictor
in the same way, which is able to predict a PoS tag
for a word without any pre-existing tags as hints?
Preliminary experiments seem to indicate that it is.

We trained a Continuous Skipgram distribu-
tional model on the BNC lemmas without PoS
tags. After that, we constructed a vocabulary
of all unambiguous lemmas from the UD Tree-
bank training set. ‘Unambiguous’ here means
that the lemma either was always tagged with one
and the same PoS tag in the Treebank, or has
one ‘dominant’ tag, with frequencies of other PoS
assignments not exceeding 1/2 of the dominant
assignment frequency. Our hypothesis was that
these words are prototypical examples of their PoS
classes, with corresponding prototypical features
most pronounced; this approach is conceptually
similar to (Haghighi and Klein, 2006). We also
removed words with frequency less than 10 in the
Treebank. This left us with 1564 words from all
Universal Tag classes (excluding PUNCT, X and
SYM, as we hardly want to predict punctuation or
symbol tag).

Then the same simple logistic regression classi-
fier was trained on the distributional vectors from

the model for these 1564 words only, using UD
Treebank tags as class labels (the training in-
stances were again weighted proportionally to the
words’ frequencies in the Treebank). The result-
ing classifier showed an accuracy of 0.938 after
10-fold cross-validation on the training set.

We then evaluated the classifier on tokens from
the UD Treebank test set. Now the input to the
classifier consisted of these tokens’ lemmas only.
Lemmas which were missing from the model’s vo-
cabulary were omitted (860 of a total of 21759 to-
kens in the test set). The model reached an ac-
curacy of 0.84 (weighted precision 0.85, weighted
recall 0.84).

These numbers may not seem very impres-
sive in comparison with the performance of cur-
rent state-of-the-art PoS taggers. However, one
should remember that this classifier knows abso-
lutely nothing about a word’s context in the current
sentence. It assigns PoS tags based solely on the
proximity of the word’s distributional vector in an
unsupervised model to those of prototypical PoS
examples. The classifier was in fact based only
on knowledge of what words occurred in the BNC
near other words within a symmetric window of 2
words to the left and to the right. It did not even
have access to the information about exact word
order within this sliding window, which makes its
performance even more impressive.

It is also interesting that one needs as few as
a thousand example words to train a decent classi-
fier. Thus, it seems that PoS affiliation is expressed
quite strongly and robustly in word embeddings. It
can be employed, for example, in preliminary tag-
ging of large corpora of resource-poor languages.
Only a handful of non-ambiguous words need to
be manually PoS-tagged, and the rest is done by a
distributional model trained on the corpus.

Note that applying a K-neighbors classifier in-
stead of logistic regression returned somewhat
lower results, with 0.913 accuracy on 10-fold
cross-validation with the training set, and 0.81 ac-
curacy on the test set. This seems to support our
hypothesis that several particular embedding com-
ponents correspond to part of speech affiliation,
but not all of them. As a result, K-neighbors
classifier fails to separate these important features
from all the others and predicts word class based
on its nearest neighbors with all dimensions of the
semantic space equally important. At the same
time, logistic regression learns to pay more atten-
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Figure 3. Classifier accuracy depending on the
number of used vector components (k)

tion to the relevant features, neglecting unimpor-
tant ones.

To find out how many features are important for
the classifier, we used the same training and test
set, and ranked all embedding components (fea-
tures, vector dimensions) by their ANOVA F-value
related to PoS class. Then we successively trained
the classifier on increasing amounts of top-ranked
features (top k best) and measured the training set
accuracy.

The results are shown in Figure 3. One can see
that the accuracy smoothly grows with the number
of used features, eventually reaching almost ideal
performance on the training set. It is difficult to
define the point where the influence of adding fea-
tures reaches a plateau; it may lie somewhere near
k = 100. It means that the knowledge about PoS
affiliation is distributed among at least one hun-
dred components of the word embeddings, quite
consistent with the underlying idea of embedding
models.

One might argue that the largest gap in perfor-
mance is between k = 2 and k = 3 (from 0.38
to 0.51) and thus most PoS-related information is
contained in the 3 components with the largest F-
value (in our case, these 3 features were compo-
nents 31, 51 and 11). But an accuracy of 0.51
is certainly not an adequate result, so even if im-
portant, these components are not sufficient to ro-
bustly predict part of speech affiliation for a word.
Further research is needed to study the effects of
adding features to the classifier training.

Regardless, an interesting finding is that part of
speech affiliation is distributed among many com-
ponents of the word embeddings, not concentrated

in one or two specific features. Thus, the strongly
expressed component 94 in the average vector of
conjunctions (Figures 1 and 2) seems to be a soli-
tary case.

6 Conclusion

Distributional semantic vectors trained on word
contexts from large text corpora can learn knowl-
edge about part of speech clusters. Arguably,
they are good at this precisely because part of
speech boundaries are not strict, and even some-
times considered to be a non-categorical linguistic
phenomenon (Manning, 2015).

In this paper we have demonstrated that seman-
tic features derived in the process of training a
PoS prediction model on word embeddings can be
employed both in supporting linguistic hypotheses
about part of speech class changes and in detect-
ing and fixing possible annotation errors in cor-
pora. The prediction model is based on simple
logistic regression and the word embeddings are
trained using Continuous Skip-Gram model over
PoS-tagged lemmas. We show that the word em-
beddings contain robust data about the PoS classes
of the corresponding words, and that this knowl-
edge seems to be distributed among several com-
ponents (at least a hundred in our case of 300-
dimensional model). We also report preliminary
results for predicting PoS tags using a classifier
trained on a small number of prototypical mem-
bers (words with a dominant PoS class) and ap-
plying it to embeddings estimated from unlabeled
data. A detailed error analysis and experimental
results are reported for both the BNC and the UD
Treebank.

The reported experiment form part of ongoing
research, and we plan to extend it, particularly
conducting similar experiments with other lan-
guages typologically different from English. We
also plan to continue studying the issue of corre-
spondence between particular embedding compo-
nents and part of speech affiliation. Another di-
rection of future work is finding out how different
hyperparameters for training distributional models
(including training corpus pre-processing) influ-
ence their performance in PoS discrimination, and
also comparing the results to using structured em-
bedding models like those of Ling et al. (2015b).
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Abstract

In this work, we explore how learners can
infer second-language noun meanings in
the context of their native language. Mo-
tivated by an interest in building interac-
tive tools for language learning, we collect
data on three word-guessing tasks, analyze
their difficulty, and explore the types of er-
rors that novice learners make. We train
a log-linear model for predicting our sub-
jects’ guesses of word meanings in varying
kinds of contexts. The model’s predictions
correlate well with subject performance,
and we provide quantitative and qualita-
tive analyses of both human and model
performance.

1 Introduction

Second language (L2) instruction includes an em-
phasis on vocabulary, as reflected in curricular ma-
terials and educational technology. Learners ac-
quire new vocabulary in several ways, including
direct instruction, memorization, and incidental
acquisition. In this work, we seek a predictive
model of the circumstances in which incidental ac-
quisition is possible. That is, when can a learner
guess the meaning of a novel word?

We present novice learners with new L2 words
inserted in sentences otherwise written in their na-
tive language (L1). This experimental design al-
lows us to assume that all subjects understand the
full context, rather than needing to assess how
much of an L2 context each subject understood.

We also present novice learners with the same
novel words out of context. This allows us to study
how cognateness and context interact, in a well-
controlled setting. Cognates and very common
words may be easy to translate without context,

while contextual clues may be needed to make
other words guessable.

In the initial experiments we present here, we
focus on the language pair of English L1 and Ger-
man L2, selecting subjects who self-identify as
fluent English speakers with minimal exposure to
German. We confine ourselves to novel nouns, as
we expect that their relative lack of morphologi-
cal inflection in both languages1 will produce less
noisy results than verbs, for example. (For verbs,
naive learners would be required to attend to tense
and mood in addition to the lemma.)

The goal of this work is to develop intuitions
that may transfer to less artificial learning set-
tings. Even experienced L2 readers will encounter
novel words when reading L2 text. Their ability
to decipher a novel word is known to depend on
both their understanding of the surrounding con-
text words (to understand a text, a reader needs to
understand at least 95% of its words (Huckin and
Coady, 1999)) and the cognateness of the novel
word. We seek to evaluate this quantitatively and
qualitatively in “extreme” cases where the con-
text is either completely comprehensible or absent,
and where the cognateness information is either
present or absent. In doing so, we are able to see
how learners react differently to novel words in
different contexts. Our controlled experiments can
serve as a proxy for incidental learning in other
settings: encountering novel words in isolation
(e.g. vocabulary lists), while reading in a famil-
iar language, or while using a language-learning
interface such as our own mixed-language reading
system (Renduchintala et al., 2016a).

We train a log-linear model to predict the trans-
lations that our novice learners will guess, given
what we show them and their L1 knowledge.
Within this setup, we evaluate the usefulness of a

1Both languages mark for number and German occasion-
ally marks for case.
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variety of features—that is, we try to identify cues
that our learners might plausibly use.

2 Motivation and Related Work

In Renduchintala et al. (2016a) we presented a
user interface that allows learners to read “mac-
aronic” (mixed L1/L2) texts, and thus to pick up
L2 words and constructions by experiencing them
in context. Our interface allows users to click on
tokens to translate or reorder words (to make the
text more L1-like when they find it too difficult
to understand). In the future, we hope to adapt
the L1/L2 mix to the individual learner’s compe-
tence. That is, we wish to present learners with in-
teresting macaronic text that they are able to read
with minimal assistance, but which still challenges
them: text within the learner’s “zone of proximal
development” (Vygotsky, 1978).

In order to do this, we must be able to pre-
dict when learners will be able to understand a
novel L2 vocabulary item. In a previous study
(Renduchintala et al., 2016b), we used a small set
of simple features to build user-specific models
of lexical understanding in macaronic sentences.
The present paper evaluates a larger set of fea-
tures under a more tightly controlled experimen-
tal setup. In particular, in the present paper, our
model does not have to predict which context
words the learner understands, because there is
only one L2 word per trial: any context words are
always in L1.

A similar project by Labutov and Lipson (2014)
likewise considers the effect of context on guess-
ing the L2 word. However, it does not consider the
effect of the L2 word’s spelling, which we show is
also important.

Our experimental setup, particularly the cloze
task, is closely related to research in the L2 ed-
ucation and computer-assisted language learning
(CALL) domains. Educators often use cloze tasks
to evaluate learner vocabulary (though these gen-
erally use L2 context). Beinborn et al. (2014a)
look at automatically predicting the difficulty of
C-tests (a cloze-like task where blanks are intro-
duced at the character level, rather than at the
whole-word level). They find features similar
to ours to be useful even at the character level,
including cognateness, n-gram probabilities, and
word length and frequency.

In this work, we focus on predicting the un-
derstanding of single words, but this must be ex-

tended into larger models of sentence understand-
ing. Vajjala and Meurers (2012) classify the dif-
ficulty level of longer L2 texts. Beinborn et al.
(2014b) provide an overview of ways that read-
ability measures and user background may be
modeled specifically in the context of L2 learn-
ers, including through the use of cognateness fea-
tures. They include a 17-word pilot study of Ger-
man L1 speakers’ ability to guess the meanings of
Czech cognates with no context, and hypothesize
that observing the words in an understandable con-
text would improve guessability (which we con-
firm in the English-German case in this work).

3 Data and Methodology

3.1 Textual Data
We use data from NachrichtenLeicht.de
(Deutschlandfunk, 2016), a source of news arti-
cles in Simple German (Leichte Sprache, “easy
language”). Simple German is intended for read-
ers with cognitive impairments and/or less than
native fluency in German. It follows several
guidelines, such as short sentences, simple sen-
tence structure, active voice, hyphenation of com-
pound nouns (which are common in German), and
use of prepositions instead of the genitive case
(Wikipedia, 2016).

We chose 188 German sentences and manually
translated them into English. In each sentence,
we selected a single German noun whose trans-
lation is a single English noun. This yields a triple
of (German noun, English noun, English transla-
tion of the context). Each German noun/English
noun pair appears only once,2 for a total of 188
triples. Sentences ranged in length from 5 tokens
to 28 tokens, with a mean of 11.47 tokens (me-
dian 11). Due to the short length of the sentences,
there was often only one possible pair of aligned
German and English nouns. In the cases where
there were multiple, the translator chose one that
had not yet been chosen, and attempted to ensure
a wide range of clear cognates to non-cognates, as
well as a range of how easy the word was to guess
from context.

3.2 Collecting Learner Guesses
Our main goal is to examine learners’ ability to
understand novel L2 words. To better separate the

2The English word may appear in other sentences, but
never in the sentence in which its German counterpart ap-
pears. In one case, two tuples with different German nouns
share the same English noun translation.
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Task Text Presented to Learner Correct Answer
cloze The next important conference is in December. climate
word Klima climate
combined The next important Klima conference is in December. climate

Table 1: Three tasks derived from the same German sentence.

effects of context and cognate cues (and general
familiarity with the nouns), we assess subjects on
the three tasks illustrated in Table 1:

cloze A single noun is deleted from an English
sentence, and subjects are asked to fill in the
blank.

word Subjects are presented with a single Ger-
man word out of context, and are asked to
provide their best guess for the translation.

combined Subjects are asked to provide their
best-guess translation for a single German
noun in the context of an English sentence.
This is identical to the cloze task, except that
the German noun replaces the blank.

We used Amazon Mechanical Turk (henceforth
MTurk), a crowdsourcing platform, to recruit sub-
jects and collect their responses to our tasks. Tasks
on MTurk are referred to as HITs (Human Intelli-
gence Tasks). In order to qualify for our tasks,
subjects completed short surveys on their language
skills. They were asked to rate their language pro-
ficiency in four languages (English, Spanish, Ger-
man, and French) on a scale from “None” to “Flu-
ent.” The intermediate options were “Up to 1 year
of study (or equivalent)” and “More than 1 year of
study (or equivalent)”.3 Only subjects who indi-
cated that they were fluent in English but indicated
“None” for German experience were permitted to
complete the tasks.

Additional stratification of subjects into groups
is described in the subsection below. The HITs
were presented to subjects in a somewhat random-
ized order (as per MTurk standard setup).

3.3 Data Collection Protocol
Each triple gives rise to one cloze, one word, and
one combined task. For each of those tasks, 9 sub-
jects make guesses, for a total of 27 guesses per
triple.

3Subjects were instructed to list themselves as having ex-
perience equivalent to language instruction if they had been
exposed to the language by living in a place that it was spo-
ken, playing online language-learning games, or other such
experiences, even if they had not studied it in a classroom.

In this setup, each subject may be asked to com-
plete instances of all three tasks. However, the
subject is shown at most one task instance derived
from a given data triple (for example, at most one
line from Table 1). Subjects were paid between
$0.05 and $0.08 per HIT, where a HIT consists of
5 instances of the same task. Each HIT was com-
pleted by 9 unique subjects. Subjects voluntarily
completed from 5 to 90 task instances (1–18 hits),
with a median of 25 instances (5 HITs). HITs took
subjects a median of 80.5 seconds according to the
MTurk output timing.

Data was preprocessed to lowercase all guesses
and to correct obvious typos.4 The 188 × 27 =
5076 guesses included 1863 unique strings. Of
these, 142 were determined to be errors of some
sort: 79 were correctable spelling errors, 54 were
multiple-word phrases rather than single words,
8 were German words, and 1 was an ambiguous
spelling error. In our experiments, we correct ob-
vious typos and then treat all of the other errors as
uncorrectable, replacing them with a special out-
of-vocabulary token.

3.4 Data Splits
After collecting data on all triples from our sub-
jects, we split the dataset for purposes of predic-
tive modeling. We randomly partitioned the triples
into a training set (112 triples), a development set
(38 triples), and a test set (38 triples).

Note that the same partition by triples was
used across all tasks. As a result, a German
noun/English noun pair that appears in test data is
genuinely unseen—it did not appear in the training
data for any task.

4 Modeling Subject Guesses

When developing educational technology, such as
a tool for learning vocabulary, we would like a way
to compute the difficulty of examples automati-
cally, in order to present learners with an appropri-

4All guesses that were flagged by spell-check were man-
ually checked to see if they constituted typos (e.g., “lan-
gauges” for “languages”) or spelling errors (e.g., “speach”
for “speech”) with clear corrections.
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ate balance of challenge and guessability. For such
an application, it would be useful to know not only
whether the learner is likely to correctly guess the
vocabulary item, but also whether their incorrect
guesses are “close enough” to allow the subject to
understand the sentence and proceed with reading.
We seek to build models that can predict a sub-
ject’s likely guesses and their probabilities, given
the context with which they have been presented.

We use various features (described below) to
characterize and predict subjects’ guesses. Feature
functions can jointly evaluate a subject’s guess
with the task instance seen by the subject.

4.1 Guessability and Guess Quality
We train a log-linear model to predict the words
that our subjects guess on training data, and we
will check its success at this on test data. How-
ever, from an engineering perspective, we do not
actually need to predict the user’s specific good or
bad answers, but only whether they are good or
bad. A language-learning interface should display
an L2 word only when the user has a good chance
of guessing its L1 translation.

Thus we also assess our features and model on
the easier task of predicting the guessability of a
task instance x—that is, the average empirical ac-
curacy of our subjects on this instance, meaning
the fraction of the 9 subjects whose guess ŷ exactly
matched the reference English translation y∗.

Finally, relaxing the exact-match criterion,
we evaluate our model’s ability to predict the
guess quality—the average value over subjects of
sim(ŷ, y∗) ∈ [0, 1]. Here “sim” denotes Wu-
Palmer similarity (Fellbaum, 1998),5 which is 1
for exact matches, morphological variants (plu-
ral/singular), and synonyms; ≈ 0 for antonyms
and unrelated words; and intermediate values for
words in the same WordNet lexical neighborhood.

4.2 Features
The subject observes a task instance x (consisting
of a German word and/or an English context), and
guesses an English word ŷ. We use features of a
“candidate” English word y to evaluate whether it
is likely to be that guess (ŷ = y). Our features
are functions whose arguments are x and y, and
sometimes the true English word y∗. Note that x
and y∗ are both derived from the triple.

5This modifies the definition of guess quality in our previ-
ous study (Renduchintala et al., 2016b), where we took “sim”
to be the cosine similarity of GloVe embeddings.

The features are divided into three categories
according to which properties of x they consider.
When a particular feature had several reasonable
definitions (e.g., which phonetic representation to
use, or whether or not to normalize), we chose—
and describe below—the version that correlated
most strongly with guessability on training data.

As an outside resource for training language
models and other resources consulted by our fea-
tures, we used Simple English Wikipedia (Wiki-
media Foundation, 2016). It contains 767,826
sentences, covers a similar set of topics to the
NachrichtenLeicht.de data, and uses sim-
ple sentence structure. The sentence lengths are
also comparable, with a mean of 17.6 tokens and a
median of 16 tokens. This makes it well-matched
for our task. We also use pre-trained vector repre-
sentations of words; for these we chose to use the
300-dimensional GloVe vectors trained on a 6B-
token dataset by Pennington et al. (2014).

4.2.1 Generic Features
These features ignore x, and hence can be com-
puted in all three tasks.

Log Unigram Frequency of candidate y in the
Simple English Wikipedia corpus. A posi-
tive weight means that subjects tend to guess
more frequent words.

Candidate=Correct Answer This binary feature
fires when y = y∗. A positive weight on this
feature means that subjects are able to guess
the correct answer more often than our other
features would predict. This may occur be-
cause subjects use better features than we do
(e.g., their language model analyzes the se-
mantics of the context more deeply than ours)
or because they have some outside knowl-
edge of some of the German words, despite
not having formally studied German.

Candidate=OOV This binary feature fires when
y is not a valid English word (for example,
multiple words or an incomprehensible typo),
in which case all other features (generic or
otherwise) are set to 0.

The following features are “soft” versions of the
“Candidate=Correct Answer” feature:

Embedding 1 − e(y)·e(y∗)
‖e(y)‖2‖e(y∗)‖2 between GloVe

embedding of the candidate e(y) and of the
correct answer e(y∗).
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Levenshtein Distance Unweighted edit distance
between y and y∗.

Sound Edit Distance Unweighted edit distance
between phonetic representations of y and y∗,
as given by Metaphone (Philips, 1990).

LCS Length of longest common substring be-
tween y and y∗, normalized by the length of
the shorter of the two strings.

Normalized Trigram Overlap count of charac-
ter trigram types that match between the can-
didate and correct answer, normalized by the
number of trigram types in either the can-
didate or the correct answer (whichever is
smaller).

4.2.2 Word Features
We measure cognateness between the candidate
guess y and the German word (which is part of x)
using the same 4 string similarity measures used
in the final 4 features of the previous section. Note
that sound edit distance obtains a pronunciation of
the German word using Metaphone, which is de-
signed for English words; this corresponds to the
hypothesis that our novice learners may be apply-
ing English pronunciation rules to German.

These features depend on the German word, so
when used in our models we set them to 0 in
the cloze task (where the German word is unob-
served).6

4.2.3 Cloze Features
The following features depend on the surrounding
English context, so they are set 0 in the word task
(where the context is unobserved) when used in
our models.

Language Model Scores of candidate in context,
using a 5-gram language model (LM) built
using KenLM (Heafield et al., 2013) and a
neural RNN-LM (Mikolov et al., 2011).7 We
compute three different features for each lan-
guage model: a raw LM score, a sentence-
length-normalized LM score, and the differ-
ence between the LM score with the correct
answer in the sentence and the LM score with
the candidate in its place.

6In theory, any unavailable features could be indirectly
correlated with guessability, but in fact their correlation with
guessability is low (absolute value < 0.15) and not statisti-
cally significant even at the p < 0.05 level.

7We use the Faster-RNNLM toolkit available at https:
//github.com/yandex/faster-rnnlm.

PMI Maximum pointwise mutual information be-
tween any word in the context and the can-
didate. This is estimated within a sentence
using Simple English Wikipedia and is un-
smoothed.

Left Bigram Collocations These are the bigram
association measures defined in Church and
Hanks (1990) between the candidate’s neigh-
bor(s) to the left and the candidate. We train
a version that just examines the neighbor di-
rectly to the left (which we’d expect to do
well in collocations like “San Francisco”) as
well as one that returns the maximum score
over a window of the five previous words.

Context Embeddings The minimum embedding
score (defined in 4.2.1) between the candi-
date and any word in the context.

4.3 Which English Words are Guessable?
Intuitively, we expect it to be hardest to guess
the correct English word from the German word
alone, followed by guessing it in context, followed
by guessing from both cues.8 As shown in Figure
1, this is borne out in our data.
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Figure 1: Average guessability (section 4.1) of the 112 train-
ing triples, according to which parts of the triple were shown.
Error bars show 95%-confidence intervals for the mean, un-
der bootstrap resampling of the 112 triples (we use BCa inter-
vals). Mean accuracy increases significantly from each task
to the next (same test on difference of means, p < 0.01).

In Table 2 we show Spearman correlations be-
tween several features and the guessability of the
word (given a word, cloze, or combined context).
The first feature in Table 2 (log unigram proba-
bility) belongs to the generic category of features.
We expect that learners may have an easier time
guessing short or common words (for instance, it

8All plots/values in the remainder of this section are com-
puted only over the training data unless otherwise noted.
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Feature Correlation w/ Guessability
Word Cloze Combined All

Log Unigram Frequency 0.310* 0.262* 0.279* 0.255*
Sound Edit Distance (German + Answer) -0.633* n/a -0.575* -0.409*
Levenshtein Distance (German + Answer) -0.606* n/a -0.560* -0.395*

Max PMI (Answer + Context) n/a 0.480* 0.376* 0.306*
Max Left Bigram Collocations (Answer + Window=5) n/a 0.474* 0.186 0.238*

Max Right Bigram Collocations (Answer + Window=5) n/a 0.119 0.064 0.038

Table 2: Spearman’s rho correlations between selected feature values and answer guessability, computed on training data
(starred correlations significant at p < 0.01). Unavailable features are represented by “n/a” (for example, since the German
word is not observed in the cloze task, its edit distance to the correct solution is unavailable to the subject).

may be easier to guess cat than trilobite) and we
do observe such correlations.

The middle section focuses on cognateness,
which in cases like Gitarrist (guitarist) can enable
all or nearly all subjects to succeed at the chal-
lenging word-only task. The correlation between
guessability and Sound Edit Distance as well Lev-
enshtein Distance demonstrate their usefulness as
proxies for cognateness. The other word features
described earlier also show strong correlation with
guessability in the word and combined tasks.

Similarly, in some cloze tasks, strong colloca-
tions or context clues, as in the case of “His plane
landed at the .” make it easy to guess the
correct solution (airport). We would expect, for
instance, a high PMI between plane and airport,
and we see this reflected in the correlation be-
tween high PMI and guessability. The final two
lines of the table examine an interesting quirk of
bigram association measures. We see that Left Bi-
gram Collocations with a window of 5 (that is,
where the feature returns the maximum colloca-
tion score between a word in the window to the left
of the word to be guessed) shows reasonable cor-
relation with guessability. The reverse, Right Bi-
gram Collocations, however, do not appear to cor-
relate. This suggests that the subjects focus more
on the words preceding the blank when formulat-
ing their guess (which makes sense as they read
left-to-right). Due to its poor performance, we do
not include Right Bigram Collocations in our later
experiments.

4.4 What English Words are Guessed?

We now move from modeling guessability (via
features of the correct answer y∗) to modeling sub-
jects’ actual guesses (via features of the guess ŷ).

We expect that learners who see only the word

will make guesses that lean heavily on cognate-
ness (for example, incorrectly guessing Austria for
Ausland), while learners who see the cloze task
will choose words that make sense semantically
(e.g. incorrectly guessing tornado in the sentence
“The destroyed many houses and uprooted
many trees.”).

In Figure 2, we see this holds true; incorrect
guesses in the word task have higher average Nor-
malized Character Trigram Overlap than guesses
in the cloze task, with the combined task in be-
tween. This pattern of the combined task falling
between the word and combined task is consis-
tent across most features examined. For exam-
ple, the difference between the language model
scores with the guesses and correct answer is low
for the cloze and combined tasks (meaning that
users are making guesses that the language model
finds about equally plausible to the correct an-
swer), while it is high for the word task (meaning
that the users are guessing words that are nonsen-
sical in the context, which they didn’t observe).
This reinforces that the subjects are making plau-
sible guesses given the cues they observe.

Word Cloze Combined
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Figure 2: Average Normalized Character Trigram Overlap
between incorrect guesses and the German word.
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5 Model

The correlations in the previous section support
our intuitions about how to model subject behavior
in terms of cognateness and context. Section 4.4
suggests that subjects are performing cue combi-
nation, balancing cognate and context clues when
both are available.

We now build a simple model of cue combi-
nation, namely a log-linear model of subjects’
guesses:

p(y | x) =
exp(~w · ~f(x, y))∑

y′∈V exp(~w · ~f(x, y′))
(1)

where ~w is a weight vector and ~f(x, y) is a feature
vector.

In practice we set V in the denominator to be
a 5000-word vocabulary. It contains the com-
plete English vocabulary from the triples (refer-
ence translations and their context words) as well
as all subject guesses. These account for 2238
types (including the special out-of-vocabulary to-
ken). To reach 5000 words, we then pad the vo-
cabulary with the most frequent words from the
Simple English Wikipedia dataset.

Given the context x that the subject was shown
(word, cloze, or combined), p(y | x) represents
the probability that a subject would guess the
vocabulary item y ∈ V . We train the model
to maximize the total conditional log-likelihood∑

i log p(ŷi | xi) of all subject guesses ŷi on all
training instances xi of all three tasks, plus an L2
regularization term.9

In order to best leverage the cloze features
(shared across the cloze and combined tasks), the
word features (shared across the word and com-
bined task) and the generic features (shared across
all tasks), we take the domain adaptation approach
used in (Daumé III, 2007). In this approach, in-
stead of a single feature for Levenshtein distance
between a German word and a candidate guess,
we have three copies of this feature, one that fires
only when the subject is presented with the word
task, one that fires when the subject is presented
with the combined task, and a “shared” version
that fires in either of those situations. (Note that
since a subject who sees the cloze task does not see
the German word, we omit such a version of the
feature.) This allows us to learn different weights

9We used MegaM (Daumé III, 2004) via the NLTK inter-
face, with default settings.

for different tasks. For example, the model can
learn that Levenshtein distance is weighted highly
in general but especially highly in the word task.
The “shared” features mean that the training ex-
amples from one task help to set some weights that
are used on other tasks (i.e., generalization from
limited data), while the task-specific features al-
low task-specific weights when motivated by the
evidence.

5.1 Evaluating the Model
We evaluate the model in several ways: using con-
ditional cross-entropy, by computing mean recip-
rocal rank, and by examining its ability to predict
guessability and guess quality as defined in sec-
tion 4.1.

The conditional cross-entropy is defined to be
the mean negative log probability over all test task
instances (pairs of subject guesses ŷ and contexts
x), 1

N

∑N
i=0− log2 p(ŷi | xi).

The mean reciprocal rank is computed after
ranking all vocabulary words (in each context) by
the probability assigned to them by the model, cal-
culating the reciprocal rank of the each subject
guess ŷi, and then averaging this across all con-
texts x in the set X of all contexts, as shown in
Equation 2.

MRR =
1
N

N∑
i=1

1
rank(ŷi|xi)

(2)

The model predicts the guessability of xi to
be p(y∗i | xi), the predicted probability that a
user will guess the truth. It predicts the guess
quality of xi, in expectation, to be

∑
y∈V p(y |

xi) sim(y, y∗i ). We measure how well the pre-
dicted guessability and guess quality correlate
with their actual empirical values, using Spear-
man’s rho.10

6 Results and Analysis

In Table 3 we show the performance of our full
model (last line), as well as several ablated mod-
els that use only a subset of the features. The full
model performs best. Indeed, an ablated model
that uses only generic features, word features, or
cloze features cannot reasonably be expected to
perform well on the full test set, which contains
instances of all three tasks. Using domain adapta-
tion improves performance.

10In our previous study (Renduchintala et al., 2016b), we
measured similar correlations using Pearson’s r.
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Features Cross-Entropy MRR Guessability Correlation
LCS (Candidate + Answer) 10.72 0.067 0.346*

All Generic Features 8.643 0.309 0.168
Sound Edit Dist. (Cand. + German Word) 10.847 0.081 0.494*

All Word Features 10.018 0.187 0.570*
LM Difference 11.214 0.051 0.398*

All Cloze Features 10.008 0.105 0.351*
Generic + Word 7.651 0.369 0.585*
Generic + Cloze 8.075 0.320 0.264*
Word + Cloze 8.369 0.227 0.706*

All Features (No Domain Adapt.) 7.344 0.338 0.702*
All Features + Domain Adapt. 7.134 0.382 0.725*

Table 3: Feature ablation. The single highest-correlating feature (on dev set) from each feature group is shown, followed by the
entire feature group. All versions with more than one feature include a feature for the OOV guess. In the correlation column,
p-values < 0.01 are marked with an asterisk.
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Figure 3: Correlation between actual guessability and the
model’s prediction of it, across all tasks in the test set. Each
point is a task instance, with actual guessability being aver-
age equal(ŷ, y∗) ∈ {0, 1} over 9 subjects. Spearman’s rank
correlation of 0.725.

Figure 3 visualizes the correlation shown in our
full model (last row of Table 3). This figure illus-
trates that a single model works well for all three
tasks. As the empirical guessability increases, so
does the median model probability assigned to
the correct answer. However, in our applications,
we are less interested in only the 1-best predic-
tion; we’d like to know whether users can under-
stand the novel vocabulary, so we’d prefer to allow
WordNet synonyms to also be counted as correct.
In Figure 4 we show that the model’s prediction of
guess quality (see section 4.1) correlates strongly
with the actual empirical guess quality.

This means that our model makes predictions
that look plausibly like those made by the hu-
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Figure 4: Correlation between actual guess quality and the
model’s prediction of it. Each point is a task instance, with
actual guess quality being average sim(ŷ, y∗) ∈ [0, 1] over 9
subjects. Spearman’s rank correlation of 0.769.

man subjects. For example, given the context “In
, the AKP now has the most representa-

tives.” the model ranks the correct answer (parlia-
ment) first, followed by undersecretary, elections,
and congress, all of which are thematically appro-
priate, and most of which fit contextually into the
sentence. For the German word Spieler, the top
ranking predictions made by the model are spi-
der, smaller, and spill, while one of the actual sub-
ject guesses, speaker, is ranked as 10th most likely
(out of a vocabulary of 5000 items).

6.1 Annotated Guesses

To take a fine-grained look at guesses, we broke
down subject guesses into several categories.

We had 4 annotators (fluent English speakers,
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Context Observed Guess Truth Hypothesized Explanation
Helfer cow helpers False Friend: Helfer→Heifer→Cow
Journalisten reporter journalists Synonym and incorrect number.
The Lage is too dangerous. lake location Influenced by spelling and context.

Table 4: Examples of incorrect guesses and potential sources of confusion.

Figure 5: Percent of examples labeled with each label by a
majority of annotators (may sum to more than 100%, as mul-
tiple labels were allowed).

but non-experts) label 50 incorrect subject guesses
from each task, sampled randomly from the spell-
corrected incorrect guesses in the training data,
with the following labels indicating why the an-
notator thought the subject made the (incorrect)
guess they did, given the context that the subject
saw: false friend/cognate/spelling bias (learner
appears to have been influenced by the spelling of
the German word), synonym (learner guess is a
synonym or near-synonym to the correct answer),
incorrect number/POS (correct noun with incor-
rect number or incorrect POS), and context influ-
ence (a word that makes sense in the cloze/combo
context but is not correct). Examples of the range
of ways in which errors can manifest are shown
in Table 4. Annotators made a binary judgment
for each of these labels. Inter-annotator agree-
ment was substantial, with Fleiss’s kappa of 0.654.
Guesses were given a label only if the majority of
annotators agreed.

In Figure 5, we can make several observations
about subject behavior. First, the labels for the
combined and cloze tasks tend to be more sim-
ilar to one another, and quite different from the
word task labels. In particular, in the majority of
cases, subjects completing cloze and combo tasks
choose words that fit the context they’ve observed,

while spelling influence in the word task doesn’t
appear to be quite as strong. Even if the subjects
in the cloze and combined tasks make errors, they
choose words that still make sense in context more
than 50% of the time, while spelling doesn’t exert
an equally strong influence in the word task.

7 Conclusions

We have shown that by cue combination of various
cognate and context features, we can model the be-
havior of subjects guessing the meanings of novel
L2 vocabulary items. Not only does our model
correlate well with the guessability of novel words
in a variety of contexts, it also produces reasonable
predictions for the range of incorrect guesses that
subjects make. Such predictions can be used in
downstream tasks, such as personalized language
learning software, or evaluating the difficulty level
of texts.
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Abstract

We present methods for investigating pro-
cesses of evolution in a language fam-
ily by modeling relationships among the
observed languages. The models aim
to find regularities—regular correspon-
dences in lexical data. We present an al-
gorithm which codes the data using pho-
netic features of sounds, and learns long-
range contextual rules that condition re-
current sound correspondences between
languages. This gives us a measure of
model quality: better models find more
regularity in the data. We also present a
procedure for imputing unseen data, which
provides another method of model com-
parison. Our experiments demonstrate im-
provements in performance compared to
prior work.

1 Introduction

We present work on modeling evolution within
language families, by discovering regularity in
data from observed languages.

The study of evolution of language families
covers several problems, including: a. discovering
cognates—“genetically related” words, i.e., words
that derive from a common ancestor word in an
ancestral proto-language; b. determining genetic
relationships among languages in the given lan-
guage family based on observed data; c. discover-
ing patterns of sound correspondence across lan-
guages; and d. reconstruction of forms in proto-
languages. In this paper, we treat a. (sets of cog-
nates) as given, and focus on problems b. and c.1

Given a corpus of cognate sets,2 we first aim to
1Extending the methods to problem d. is future work.
2The members of a cognate set are posited (by linguists)

to derive from a common, shared origin: a word-form in the
(typically unobserved) ancestral proto-language.

find as much regularity as possible in the data at
the sound (or symbol) level.3 An important goal is
that our methods be data-driven—we aim to use all
data available, and to learn the patterns of regular
correspondence directly from the data. We allow
only the data to determine which rules underlie
it—correspondences that are inherently encoded
in the corpus itself—rather than relying on exter-
nally supplied (and possibly biased) rules or “pri-
ors.” We try to refrain from a priori assumptions
or “universal” principles—e.g., no preference to
align consonants with consonants, to align a sym-
bol with itself, etc.

We claim that alignment may not be the best
way to address the problem of regularity. Finding
alignments is indeed finding a kind of regularity,
but not all regularity is expressed as alignment.

The paper is organized as follows. In section 2
we review the data used in our experiments and re-
cent approaches to modeling language evolution.
We formalize the problem and present our mod-
els in section 3. The models treat sounds as vec-
tors of phonetic features, and utilize the context of
the sounds to discover patterns of regular corre-
spondence. Once we have obtained the regularity,
the question arises how we can evaluate it effec-
tively. In section 4, we present a procedure for
imputation—prediction of unseen data—to evalu-
ate the strength of the learned rules of correspon-
dence, by how well they predict words in one lan-
guage given corresponding words in another lan-
guage. We further evaluate the models by using
them for building phylogenies—family trees, and
comparing them to gold standards, in section 4.2.
We conclude with a discussion in section 5.

We have experimented with several language
families: Uralic, Turkic and Indo-European; the
paper focuses on results from the Uralic family.

3NB: we use sounds and symbols interchangeably, as we
assume that input data is rendered in a phonetic transcription.
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We use large-scale digital etymological re-
sources/dictionaries. For Uralic, the StarLing
database, (Starostin, 2005), contains 2586 Uralic
cognate sets, based on (Rédei, 1991). The et-
ymological dictionary Suomen Sanojen Alkuperä
(SSA), “The Origin of Finnish Words,” (Itkonen
and Kulonen, 2000), has over 5000 cognate sets.

2 Related work and motivation

One traditional arrangement of the Uralic lan-
guages is shown in Figure 1; several alternative
arrangements appear in the literature.

The last 15 years have seen a surge in computa-
tional modeling of language relationships, change
and evolution. We provide a detailed discussion of
related prior work in (Nouri et al., 2016).

In earlier work, e.g., (Wettig et al., 2011), we
presented two perspectives on the problem of find-
ing regularity. It can be seen as a problem of align-
ing the data. From an information-theoretic per-
spective, finding regularity is a problem of com-
pression: the more regularity we find in data,
the more we can compress it. In (Wettig et al.,
2011), we presented baseline models, which fo-
cus on alignment of symbols, in a 1-1 fashion.
We showed that aligning more than one symbol
at a time—e.g., 2-2—gives better performance.
Alignment is a natural way to think of comparing
languages. E.g., in Figure 2, obtained by the 1-
1 model, we can observe4 that most of the time
Finnish k corresponds to Estonian k (we write
Fin. k ∼ Est. k). However, models that focus
on alignments have certain shortcomings. For ex-
ample, substantial probability mass is assigned to
Fin. k ∼ Est. g, yet the model cannot explain why.
Fin. k ∼ Est. g in certain environments—in non-
first syllables, between vowels or after a voiced
consonant—but the model cannot capture this reg-
ularity, because it has no notion of context. In fact,
the regularity is much deeper: not only Fin. k, but
all Finnish voiceless stops become voiced in Esto-
nian in this environment: p ∼ b, t ∼ d. This type
of regularity cannot be captured by the baseline
model because it treats symbols as atoms, and does
not know about their shared phonetic features.

We claim that alignment may always not be the
best way to think about the problem of finding reg-
ularity. Figure 2 shows a prominent “diagonal,”

4The size of the circle is proportional to the probability
of aligning the corresponding symbols on the X and Y axes.
The dot coordinates “.” correspond to deletions/insertions.
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Figure 2: 1-1 alignment for Finnish and Estonian

many sounds correspond—they “align with them-
selves.” However, as languages diverge further,
this correspondence becomes blurry; e.g., when
we try to align Finnish and Hungarian, the prob-
ability distribution of aligned symbols has much
higher entropy, Figure 3. The reason is that the
regularity lies on a much deeper level: predict-
ing which sound occurs in a given position in a
word requires knowledge of a wider context, in
both Finnish and Hungarian. Hence we will prefer
to think in terms of coding, rather than alignment.

Methods in (Kondrak, 2002), learn one-to-
one sound correspondences between words in
pairs of languages. Kondrak (2003), Wettig et
al. (2011) find more complex—many-to-many—
correspondences. These methods focus on align-
ment, and model context of the sound changes in
a limited way, while it is known that most evolu-
tionary changes are conditioned on the context of
the evolving sound. Bouchard-Côté et al. (2007)
use MCMC-based methods to model context, and
operate on more than a pair of languages.5

Our models, similarly to other work, operate at
the phonetic level only, leaving semantic judge-
ments to the creators of the database. Some prior
work attempts to approach semantics by com-
putational means as well, e.g., (Kondrak, 2004;
Kessler, 2001). We begin with a set of etymo-
logical data for a language family as given, and
treat each cognate set as a fundamental unit of in-

5The running time did not scale well when the number of
languages was above three.
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  Uralic  

  Samoyedic  

  South Samoyedic  

  Sayan  
  Samoyedic  

  Kamas  
  Karagas  
  Koibal  
  Motor  
  Soyot  
  Taigi  

  Selkup  

  North Samoyedic  

  Nganasan    Enets    Nenets  

  Finno-Ugric  

  Ugric  

  Hungarian    Ob-Ugric  

  Khanty    Mansi  

  Finnic  

  Permic  

  Komi    Udmurt  

  Mari    West Finnic  

  Mordvin    North Finnic  

  Sami    Baltic Finnic  

  Finnish  
  Estonian  Figure 1: Uralic language family (adapted from Encyclopedia Britannica)
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Figure 3: 1-1 alignment for Finnish and Hungarian

put. We use the principle of recurrent sound cor-
respondence, as in much of the literature.

Alignment can be evaluated by measuring rela-
tionships among entire languages within the fam-
ily. Construction of phylogenies is studied, e.g.,
in (Nakhleh et al., 2005; Ringe et al., 2002;
Barbançon et al., 2009).

Our work is related to the generative “Berkeley”
models, (Bouchard-Côté et al., 2007), (Hall and
Klein, 2011), in the following respects.

Context: in (Wettig et al., 2011) we capture
some context by coding pairs of symbols, as
in (Kondrak, 2003). Berkeley models handle con-
text by conditioning the symbol being generated
upon the immediately preceding and following
symbols. Our method uses broader context by

building decision trees, so that non-relevant con-
text information does not grow model complexity.

Phonetic features: in (Wettig et al., 2011) we
treated sounds/symbols as atomic—not analyzed
in terms of their phonetic makeup. Berkeley mod-
els use “natural classes” to define the context of
a sound change, but not to generate the symbols
themselves; (Bouchard-Côté et al., 2009) encode
as a prior which sounds are “similar” to each
other. We code symbols in terms of phonetic
features. Our models are based on information-
theoretic Minimum Description Length principle
(MDL), e.g., (Grünwald, 2007)—unlike Berkeley.
MDL brings some theoretical benefits, since mod-
els chosen in this way are guided by data with no
free parameters or hand-picked “priors.” The data
analyst chooses the model class and structure, and
the coding scheme, i.e., a decodable way to en-
code model and data. This determines the learning
strategy—we optimize the cost function, which is
the code length determined by these choices.

Objective function: we use NML—the normal-
ized maximum likelihood, not reported previously
in this setting. It is preferable for theoretical and
practical reasons, e.g., to prequential coding used
in (Wettig et al., 2011), as explained in section 3.1.

Models that utilize more than the immediate ad-
jacent environment of a sound to build a complete
alignment of a language family have not been re-
ported previously, to the best of our knowledge.

3 Coding pairs of words

We begin with baseline algorithms for pairwise
coding: in (Wettig et al., 2011; Wettig et al., 2012)
we code pairs of words, from two related lan-
guages in our corpus of cognates. For each word
pair, the task of alignment is finding which sym-
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bols correspond best; the task of coding is achiev-
ing more compression. The simplest form of sym-
bol alignment is a pair (σ : τ) ∈ Σ × T , a single
symbol σ from the source alphabet Σ with a sym-
bol τ from the target alphabet T .

To model insertions and deletions, we augment
both alphabets with a special “empty” symbol—
denoted by a dot—and write the augmented
alphabets as Σ. and T .. We can then align word
pairs, such as hiiri—löNk@r (meaning “mouse”
in Finnish and Khanty) in many different ways;
putting Finnish (source level, above) and Khanty
(target level, below), for example:

h i . . i r i
| | | | | | |
l ö N k @ r .

. h . . i i r i
| | | | | | | |
l ö N k @ r . .

...

A final note about alignments: we find no satis-
factory way to evaluate alignments. Which of the
above alignments is “better”? It may be satisfying
to prefer the left one, observing that Fin. h corre-
sponds well to Khn. l (since they both go back to
Proto-Uralic š); Fin. r ∼ Khn. r, etc. However,
if a model achieves better compression by prefer-
ring the alignment on the right, then it is difficult
to argue that that alignment is “not correct.”

3.1 Context model with phonetic features
Our coding method is based on MDL. The most
refined form of MDL, NML—Normalized Maxi-
mum Likelihood, (Rissanen, 1996)—cannot be ef-
ficiently computed for our model. Therefore, we
resort to a classic two-part coding scheme. The
first part of the two-part code is responsible for
splitting the data into subsets corresponding to cer-
tain contexts. However, given the contexts, we can
use NML to encode these subsets.6

We begin with a raw set of observed data—
word pairs in two languages. We search for a way
to code the data, by capturing regular correspon-
dences. The goodness of the code is defined for-
mally below. MDL says that the more regularity
we can find in the data, the fewer bits we will need
to encode (or compress) it. More regularity means
lower entropy in the distribution that describes the
data, and lower entropy lets us construct a more
economical code.

Features: Rather than coding symbols (sounds)
as atomic, we code them in terms of their pho-

6Theoretical benefits of NML over other coding
schemes include freedom from priors, invariance to re-
parametrization, and other optimality properties, which are
outside the scope of this paper, (Rissanen, 1996).

  

Context model

   j       a      l       k       a

j       a      l       g

[  ζ    χ   φ   ψ ][ α   β   γ   δ ]

[  ξ    π   μ   ω ]

Figure 4: Fin. jalka (source) ∼ Est. jalg (target)

netic features. For example, figure 4 shows how a
model might code Finnish jalka and Estonian jalg
(meaning “leg”). We code the symbols in a fixed
order: top to bottom, left to right. Each symbol
is coded as a vector of its phonetic features, e.g.,
k = [ξ χ φ ψ].

For each symbol, first we code a special Type
feature, with values: K (consonant), V (vowel),
dot (insertion / deletion), or # (word boundary).7

Consonants and vowels have different sets of fea-
tures; each feature has 2–8 values, listed in Fig-
ure 5A. Features are coded in a fixed order.

Contexts: While coding each feature of the
symbol, the model is allowed to query a fixed and
finite a set of candidate contexts. The idea is that
the model can query its “history”—information
that has already been coded previously. When
coding k, e.g., the model may query features of
blue a (β, γ, etc.), as well as features of red a, etc.
When coding g the model may query those, and in
addition also the features of k (χ, φ, etc.)

Formally, a context is a triplet (L,P, F ): L is
the level—source (σ) or target (τ ); P is one of
the positions that the model may query—relative
to the position currently being coded; for example,
we may query positions shown in Figure 5B. F is
one of the possible features found at that position.
Thus, we have in total about 2 levels× 8 positions
× 5 features ≈ 80 candidate contexts that can be
queried, as explained in detail below.

3.2 Two-part code

We code the complete (i.e., aligned) data using
a two-part code, following MDL. We first code
which model instance we select from our model
class, and then code the data given the model. Our
model class is defined as follows: a set of decision
trees (forest)—one tree per feature per level (sepa-
rately for source and for target). A model instance

7Type feature and word end (#) not shown in figure.
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Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar, uvular
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high—mid—low
H Horizontal front—center—back
R Rounding – , +
L Length 1—5

Contexts
I itself, possibly dot

–P previous position, possibly dot
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

... (other contexts possible)

Figure 5: (A: left) Phonetic features and (B: right) phonetic contexts / environments.

will define a particular structure for each tree.
Cost of coding the structure: Thus, the forest

consists of 18 decision trees—one for each feature
on the source and the target level: the type feature,
4 vowel and 4 consonant features, times 2 levels.
Each node in a tree will either be a leaf, or will
be split—by querying one of the candidate con-
texts defined above. The cost of a tree is one bit
for every node ni—to encode whether ni is inter-
nal (was split) or a leaf—plus the number of inter-
nal nodes× ≈ log 80—to encode which particular
context was chosen to split each ni. We explain
how the model chooses the best candidate context
on which to split a node in section 3.3.

Each feature and level define a tree, e.g., the
“voiced” (X) feature of the source symbols—
corresponds to the σ-X tree. A node N in this
tree holds a distribution over the values of fea-
ture X of only those symbol instances in the com-
plete data that have reached node N , by follow-
ing the context queries from the root downward.
The tree structure tells us precisely which path
to follow—completely determined by the context.
When coding a symbol α based on another sym-
bol found in the context C of α—for example,
C = (τ,−K,M): at level τ , position –K, and one
of the features M—the next edge down the tree
is determined by that feature’s value; and so on,
down to a leaf.8

Cost of the data given the model: is computed
by taking into account only the distributions at the
leaves. The code will assign a cost (code-length)
to every possible alignment of the data. The total
code-length is the objective function that the learn-
ing algorithm will optimize.

Coding scheme: we use Normalized Maximum
Likelihood (NML), and prequential coding as in
(Wettig et al., 2011). We code the distribution at

8Model code to construct trees from data, and examples of
decision trees learned by the model are made publicly avail-
able on the Project Web site: etymon.cs.helsinki.fi/.

each leaf node separately; the sum of the costs
of all leaves gives the total cost of the complete
data—the value of the objective function.

Suppose n instances reach a leaf node N , of the
tree for feature F on level λ, and F has k val-
ues: e.g., n consonants satisfyingN ’s context con-
straints in the σ-X tree, with k = 2 values:{−,+}.
Suppose also that the values are distributed so that
ni instances have value i, with i ∈ {1, . . . , k}.
Then this requires an NML code-length of:

LNML(λ;F ;N) = − logPNML(λ;F ;N)

= − log
∏

i

(
ni
n

)ni

C(n, k)
(1)

Here
∏

i

(
ni
n

)ni is the maximum likelihood of the
multinomial data at node N , and the term

C(n, k) =
∑

n′
1+...+n′

k=n

∏
i

(
n′i
n

)n′
i

(2)

is a normalizing constant to make PNML a proba-
bility distribution. In MDL literature, (Grünwald,
2007), the term − logC(n, k) is called the para-
metric complexity or the (minimax) regret of the
model—in this case, the multinomial model.

The NML distribution is the unique solution to
the mini-max problem posed in (Shtarkov, 1987),

min
P̂

max
xn

log
P (xn|Θ̂(xn))

P̂ (xn)
(3)

where Θ̂(xn) = arg maxΘ P(xn) are the maxi-
mum likelihood parameters for the data xn. Thus,
PNML minimizes the worst-case regret, i.e., the
number of excess bits in the code as compared to
the best model in the model class, with hind-sight.
Details on the computation of this code length are
given in (Kontkanen and Myllymäki, 2007).

Learning the model from the observed data now
means aligning word pairs and building decision
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trees so as to minimize the two-part code length:
the sum of the model’s code length—encoding the
structure of the trees,—and the code length of the
data given the model—encoding the aligned word
pairs using these trees.

Summary of the algorithm: We start with an
initial random alignment for each pair of words in
the corpus. We then alternate between two steps:
A. re-build the decision trees for all features on
source and target levels, and B. re-align all word
pairs in the corpus, using dynamic programming.
Both of these operations monotonically decrease
the two-part cost function and thus compress the
data. We continue until we reach convergence.

Simulated annealing with a slow cooling sched-
ule is used to avoid getting trapped in local optima.

3.3 Building decision trees

Given a complete alignment of the data, we need
to build a decision tree, for each feature on both
levels, yielding the lowest two-part cost.The term
“decision tree” is meant in a probabilistic sense:
at each node we store a distribution over the re-
spective feature values, for all instances that reach
this node. The distribution at a given leaf is then
used to code an instance when it reaches the leaf.
We code the features in a fixed, pre-set order, and
source level (σ-level) before target (τ -level).

We now describe in detail the process of build-
ing the tree—using as example a tree for the σ-
level feature X. (We will need do the same for
all other features, on both levels, as well.) First,
we collect all instances of consonants on σ-level,
gather the the counts for feature X, and build an
initial count vector; suppose it is:

value of X→ + –
1001 1002

This vector is stored at the root of the tree; the
cost of this node is computed using NML, eq. 1.
Note that this vector / distribution has rather high
entropy.

Next, we try to split this node, by finding such
a context that if we query the values of the feature
in that context, it will help us reduce the entropy
in this count vector. We check in turn all possi-
ble candidate contexts (L,P, F ), and choose the
best one. Each candidate refers to some symbol
found on σ-level or τ -level, at some relative posi-
tion P , and to one of that symbol’s features F . We
will condition the split on the possible values of F .
For each candidate, we try to split on its feature’s

values, and collect the resulting alignment counts.
Suppose one such candidate is (σ, –V, H), i.e.,

(σ-level, previous vowel, Horizontal feature), and
suppose that the H-feature has two values: front /
back. Suppose also that the vector at the root node
(recall, this tree is for the X-feature) would then
split into two vectors, for example:

value of X→ + –
X | H=front 1000 1
X | H=back 1 1001

This would likely be a very good split, since it
reduces the entropy of the distribution in each row
to near zero. The criterion that guides the choice
of the best candidate context to use for splitting a
node is the sum of the code lengths of the resulting
split vectors, and the code length is proportional to
the entropy.

We go through all candidates exhaustively,9 and
greedily choose the one that yields the greatest re-
duction in entropy, and drop in cost. We proceed
recursively down the tree, trying to split nodes,
and stop when the total tree cost stops decreasing.

This completes the tree for feature X on level σ.
We build all remaining trees—for all features and
all levels similarly—based on the current align-
ment of the complete data.

3.4 Variations of context-based models

The context models enable us to discover more
regularities in the data by querying the context of
sounds. However building decision trees repeat-
edly in the process of searching for the optimal
alignments is very time consuming. We have ex-
plored several variations of context-based models
in an attempt to make the search converge more
quickly, without sacrificing quality.

3.4.1 Zero-depth context model
In this variant of the model, during the simulated
annealing phase (i.e., when there is some random-
ness in the search algorithm), the trees are not ex-
panded to their full depth. Instead, for source-level
trees, only the root node is calculated and the tar-
get level trees are allowed to query only the itself
position on the source level. Once the simulated
annealing reaches the greedy phase, the trees are

9We augment the set of possible feature values at every
node with two additional special branches: 6= means that the
symbol at the queried position is of the wrong type and hence
does not have the queried feature; # means the query ran past
the beginning of the word.
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grown in the same way as they would have been
normally, without any restrictions.

This model results in reasonable alignments and
relatively low costs and lower running time.

3.4.2 Infinite-depth context model
This is another restrictive variation of the context
model, which is more permissive than the zero-
depth model. In this variation during the simulated
annealing phase of the algorithm, the candidates
that can be queried to expand the root nodes of the
trees are limited to already encoded features of the
itself position.

4 Evaluation

We discuss two views on evaluation—strict evalu-
ations vs. intuitive evaluations.

4.1 Comparing context models to each other
From a strictly information-theoretic point of
view, a sufficient condition to claim that modelM1

is better thanM2, is thatM1 assigns a higher prob-
ability (equivalently—lower cost) to the observed
data. Figure 7A shows the absolute costs, in bits,
for all language pairs—for the baseline 1-1 model
and six context models. The six context models
are: the “normal” model, zero-depth and infinite-
depth—and for each, the objective function uses
either NML or prequential coding.

Here is how we interpret the points in these scat-
ter plots. Each box in the triangular plot com-
pares one model, Mx—whose scores are plotted
on the X-axis—against another model, My (on the
Y-axis). For example, the leftmost column com-
pares the baseline 1-1 model as Mx against each
of the six context models in turn; etc. In every plot
box, each of the 10 × 9 points is a comparison of
the two models Mx and My on one language pair
(L1, L2). Therefore, for each point (L1, L2), the
X-coordinate gives the score of modelMx, and the
Y-coordinate gives the score of the other model,
My. If the point (L1, L2) is below the diagonal,
Mx has higher cost on (L1, L2) than My. The fur-
ther away the point is from the “break-even” diag-
onal line x = y, the greater the advantage of one
model over the other.

The left column of figure 7A shows that all con-
text models always produce much lower cost com-
pared to the basic context-free 1-1 model defined
in (Wettig et al., 2011).

The remaining five columns compare the con-
text models among themselves. Here we see that
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Figure 6: Comparison of compression power

no model variant is a clear winner. Since the vari-
ants do not show a clear preference for the “best”
context model among this set, we will use all of
them, to vote as an ensemble.

In figure 6, we compare the context model
against standard data compressors, Gzip and Bzip,
as well as the baseline models in (Wettig et
al., 2011), tested on 3200 Finnish–Estonian data
from SSA. Gzip/Bzip compress data by finding
regularities—which are frequent sub-strings.

These comparisons confirm that the context
model finds more regularity in the data than the
off-the-shelf data compressors—which have no
knowledge that the words in the data are geneti-
cally related—as well as the 1-1 and 2-2 models.

4.2 Imputation

Strictly, the improvement in the compression cost
is adequate proof that the presented model outper-
forms the baselines. For a more intuitive eval-
uation of improvement in model quality, we can
compare models by using them to impute unseen
data. This is done as follows.

For a given model M , and a language pair
(L1, L2)—e.g., (Finnish, Estonian)—we hold out
one word pair, and train the model on all remain-
ing word pairs. Then we show the model the held
out Finnish word and let it impute—i.e., guess—
the corresponding Estonian word. Imputation can
be done for all models with a dynamic program-
ming algorithm, similar to the Viterbi-like search
used during model training. Formally, given the
held-out Finnish string, the imputation procedure
selects—from all possible Estonian strings—the
most probable Estonian string, given the model.
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Figure 7: (A: left) Comparison of costs of context models and the baseline 1-1;
(B: upper right) Finno-Ugric tree induced by imputation and normalized edit distances, via NeighborJoin

We then compute an edit distance (e.g., the Lev-
enshtein edit distance) between the imputed Esto-
nian string and the correct withheld word.

We repeat this procedure for all word pairs
in the (L1, L2) data set, sum the edit distances,
and normalize by the total size of the correct
L2 data—giving the Normalized Edit Distance:
NED(L2|L1,M) from L1 to L2, under M .

NED indicates how much regularity the model
has learned about the language pair (L1, L2). Fi-
nally, we used NED to compare models across all
language pairs. The context models always have
lower cost than the baseline, and lower NED in
≈88% of the language pairs. This is encourag-
ing indication that optimizing the code length is a
good approach: the models do not optimize NED
directly, and yet the cost correlates with NED—a
simple and intuitive measure of model quality.

A similar kind of imputation was used in
(Bouchard-Côté et al., 2007) for cross-validation.

4.3 Voting for phylogenies

Each context model assigns its own MDL cost to
every language pair. These raw MDL costs are not
directly comparable, since different language pairs
have different amounts of data—different number
of shared cognate words. We can make these costs
comparable by normalizing them, using NCD—

Normalized Compression Distance, (Cilibrasi and
Vitanyi, 2005), as in (Wettig et al., 2011). Then,
each model produces its own pairwise distance
matrix for all language pairs—where the distance
is NCD. A pairwise distance matrix can be used to
construct a phylogeny for the language family.

NED, introduced above, provides yet another
distance measure between any pair of languages,
similarly to NCD. Thus, the NED scores can also
be used to make inferences about how far the lan-
guages are from each other, and used as in put
to algorithms for creating phylogenetic trees. For
example, applying the NeighborJoin algorithm,
(Saitou and Nei, 1987), to the pairwise NED ma-
trix produced by the normal context model, yields
the phylogeny in Figure 7B.

To compute how far a given phylogeny is from a
gold-standard tree, we can use a distance measure
for unrooted, leaf-labeled (URLL) trees. One such
URLL distance measure is given in (Robinson and
Foulds, 1981). The URLL distance between this
tree and the gold standard in Figure 1 is 0.12.10

However, the MDL costs do not allow us to pre-
fer any one of the context models over the others.

10This URLL distance of 0.12 is also quite small. We
computed the expected URLL distance from a random tree
with this leaf set over a sample of 1000 randomly generated
trees—which is over 0.8. The number of leaf-labeled trees
with n nodes is (2n− 3)!! (see, e.g., (Ford, 2010)).
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Model Brit. Ant. Volga
normal-nml-avg.NCD 0.14 0 0.14
normal-nml-avg.NED 0.14 0 0.14
normal-nml-min.NCD 0.14 0 0.14
normal-nml-min.NED 0.28 0.14 0.28
normal-prequential-avg.NCD 0.14 0 0.14
normal-prequential-avg.NED 0.14 0.28 0.42
normal-prequential-min.NCD 0.14 0 0.14
normal-prequential-min.NED 0.14 0.28 0.42
∞-nml-avg.NCD 0.28 0.14 0.28
∞-nml-avg.NED 0.42 0.28 0.42
∞-nml-min.NCD 0.28 0.14 0.28
∞-nml-min.NED 0.28 0.14 0.28
∞-prequential-avg.NCD 0.14 0 0.14
∞-prequential-avg.NED 0.28 0.14 0.28
∞-prequential-min.NCD 0.14 0.28 0.42
∞-prequential-min.NED 0.28 0.14 0.28
zero-nml-avg.NCD 0.42 0.42 0.57
zero-nml-avg.NED 0 0.14 0.28
zero-nml-min.NCD 0.14 0 0.14
zero-nml-min.NED 0.28 0.28 0.42
zero-prequential-avg.NCD 0.14 0 0.14
zero-prequential-avg.NED 0.28 0.14 0.28
zero-prequential-min.NCD 0.14 0 0.14
zero-prequential-min.NED 0.28 0.28 0.42
Total vote 5.14 3.28 6.71

Table 1: Context models voting for Britannica,
Anttila and Volga gold standards

Therefore, we use all models as an ensemble.
Gold-standard trees: Different linguists advo-

cate different, conflicting theories about the struc-
ture of the Uralic family tree, and Finno-Ugric in
particular. Figure 1 shows one such phylogeny, we
call “Britannica.” Another phylogeny, isomorphic
to the tree in Figure 7B, we call “Anttila.” A third
tree in the literature pairs Mari and Mordvin to-
gether into a “Volgaic” branch of Finno-Ugric.

In Table 1, we compare trees generated by the
context models to these three gold-standard trees,
using the URLL distance defined above.

The context models induce phylogenetic trees
as follows. Each model can use prequential coding
or NML. Each model yields one NCD matrix and
one NED matrix. Finally, for any pair of languages
L1 and L2, the model in general produces differ-
ent distances for (L1, L2) vs. (L2, L1), depending
on which language is the source and which is the
target (since some languages preserve more infor-
mation than others). Therefore, each of the three
context models produces 8 trees, 24 in total. The
distance from each tree to the three gold-standard
phylogenies is in Table 1.

The measures show which gold-standard tree is

favored by all models taken together. The mod-
els strongly prefer “Anttila”—which happens to
be the phylogeny favored by a majority of Uralic
scholars at present, (Anttila, 1989).

5 Discussion and future work

We have presented an approach to modeling evo-
lutionary processes within a language family by
coding data from all languages pair-wise. To our
knowledge, these models represent the first at-
tempt to capture longer-range context in evolu-
tionary modeling, where prior work allowed small
neighboring context to condition the correspon-
dences. We present a feature-based context-aware
MDL coding scheme, and compare it against our
earlier models, in terms of compression cost and
imputation power. Language distances induced by
compression cost and by imputation for all pairs
of languages, enable us to build complete phyloge-
nies. The model takes a set of lexical data as input,
and makes no further assumptions. In this regard,
it is as objective as possible given the data.11

Finally, we note that our experiments with the
context models confirm that the notion of align-
ment is secondary in modeling evolution. In the
old approach, we aligned symbols jointly, and
hoped to find symbol pairs that align to each other
frequently. In the new approach, we code sym-
bols separately one by one on the source and target
level, and A. we code the symbols one feature at a
time, and B. while coding each feature, we allow
the model to use information from any feature of
any symbol that has been coded previously.

These models do better, with no alignment.
The objectivity of models given the data

opens new possibilities for comparing entire data
sets. For example, we can begin to compare
the Finnish/Estonian data in StarLing vs. other
datasets—and the comparison will be impartial,
relying solely on the given data. The models also
enable us to quantify the uncertainty of individual
entries in the corpus of etymological data. For ex-
ample, for a given entry x in language L1, we can
compute the probability that x would be imputed
by any of the models, trained on all the remaining
data from L1 plus any other set of languages in the
family. This can be applied in particular to entries
marked as dubious by the database creators.

11The data set itself, of course, may be highly subjective.
Refining the data set is in itself an important challenge, as
presented in problem a. in the Introduction, to be addressed
in future work.
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François G. Barbançon, Tandy Warnow, Don Ringe,
Steven N. Evans, and Luay Nakhleh. 2009. An ex-
perimental study comparing linguistic phylogenetic re-
construction methods. In Proceedings of the Conference
on Languages and Genes, UC Santa Barbara. Cambridge
University Press.
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Abstract
This paper is a novel study that views sarcasm
detection in dialogue as a sequence labeling
task, where a dialogue is made up of a se-
quence of utterances. We create a manually-
labeled dataset of dialogue from TV series
‘Friends’ annotated with sarcasm. Our goal
is to predict sarcasm in each utterance, using
sequential nature of a scene. We show perfor-
mance gain using sequence labeling as com-
pared to classification-based approaches.

Our experiments are based on three sets of
features, one is derived from information in
our dataset, the other two are from past
works. Two sequence labeling algorithms
(SVM-HMM and SEARN) outperform three
classification algorithms (SVM, Naive Bayes)
for all these feature sets, with an increase in
F-score of around 4%. Our observations high-
light the viability of sequence labeling tech-
niques for sarcasm detection of dialogue.

1 Introduction
Sarcasm is defined as ‘the use of irony to mock or con-
vey contempt’1. An example of a sarcastic sentence is
‘Being stranded in traffic is the best way to start the
week’. In this case, the positive word ‘best’ together
with the undesirable situation ‘being stranded in traf-
fic’ conveys the sarcasm. Because sarcasm has an im-
plied sentiment (negative) that is different from surface
sentiment (positive due to presence of ‘best’), it poses
a challenge to sentiment analysis systems that aim to
determine polarity in text (Pang and Lee, 2008).

Some sarcastic expressions may be more difficult to
detect. Consider the possibly sarcastic statement ‘I ab-
solutely love this restaurant’. Unlike in the traffic ex-
ample above, sarcasm in this sentence, if any, can be
understood using context which is ‘external’ to the sen-
tence i.e., beyond common world knowledge. 2. This
external context may be available in the conversation

1As defined by the Oxford Dictionary.
2Common world knowledge here refers to a general sen-

timent map of situations to sentiment. For example, being
stranded in traffic is a negative situation to most.

that this sentence is a part of. For example, the con-
versational context may be situational: the speaker dis-
covers a fly in her soup, then looks at her date and says,
‘I absolutely love this restaurant’. The conversational
context may also be verbal: her date says, ‘They’ve
taken 40 minutes to bring our appetizers’ to which
the speaker responds ‘I absolutely love this restaurant’.
Both these examples point to the intuition that for di-
alogue (i.e., data where more than one speaker partici-
pates in a discourse), conversational context is often a
clue for sarcasm.

For such dialogue, prior work in sarcasm detection
(determining whether a text is sarcastic or not) captures
context in the form of classifier features such as the
topic’s probability of evoking sarcasm, or the author’s
tendency to use sarcasm (Rajadesingan et al., 2015;
Wallace, 2015). In this paper, we present an alternative
hypothesis: sarcasm detection of dialogue is better
formulated as a sequence labeling task, instead of
classification task.

The central message of our work is the efficacy
of using sequence labeling as a learning mechanism
for sarcasm detection in dialogue, and not in the set
of features that we propose for sarcasm detection -
although we experiment with three feature sets. For
our experiments, we create a manually labeled dataset
of dialogues from TV series ‘Friends’. Each dialogue
is considered to be a sequence of utterances, and ev-
ery utterance is annotated as sarcastic or non-sarcastic
(Details in Section 3). It may be argued that a TV series
episode is dramatized and hence does not reflect real-
world conversations. However, although the script of
‘Friends’ is dramatized to suit the situational comedy
genre, it takes away nothing from its relevance to real-
life conversations except for the volume of sarcastic
sentences. Therefore, our findings from this work can,
in theory, be reliably extended to work for any real-life
utterances. Also, such datasets that are not based on
real-world conversations have been used in prior work:
emotion detection of children stories in Zhang et al.
(2014) and speech transcripts of a MTV show in Rakov
and Rosenberg (2013). As a first step in the direction
of using sequence labeling, our dataset is a good ‘con-
trolled experiment’ environment (The details are dis-
cussed in Section 2). In fact, use of a dataset in a new
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Figure 1: Illustration of our hypothesis for sarcasm detection of conversational text (such as dialogue); A, B, C, D
indicate four utterances

genre (TV series transcripts, specifically) has potential
for future work in sarcasm detection. Our dataset with-
out the actual dialogues from the show (owing to copy-
right restrictions) may be available on request.

Based on information available in our dataset (names
of speakers, etc.), we present new features. We then
compare two sequence labelers (SEARN and SVM-
HMM) with three classifiers (SVM with oversampled
and undersampled data, and Naı̈ve Bayes), for this set
of features and also for features from two prior works.
In case of our novel features as well as features reported
in prior work, sequence labeling algorithms outperform
classification algorithms. There is an improvement of
3-4% in F-score when sequence labelers are used, as
compared to classifiers, for sarcasm detection in our di-
alogue dataset. Since many datasets such as tweet con-
versations, chat transcripts, etc. are currently available,
our findings will be useful to obtain additional contexts
in future work.

The rest of the paper is organized as follows. Sec-
tion 2 motivates the approach and presents our hypoth-
esis. Section 3 describes our dataset, while Section 4
presents the features we use (this includes three con-
figurations: novel features based on our dataset, and
features from past work). Experiment setup is in Sec-
tion 5 and results are given in Section 6. We present a
discussion on which types of sarcasm are handled bet-
ter by sequence labeling and an error analysis in Sec-
tion 7, and describe related work in Section 8. Finally,
we conclude in Section 9.

2 Motivation & Hypothesis

In dialogue, multiple participants take turns to speak.
Consider the following snippet from ‘Friends’ involv-
ing two of the lead characters, Ross and Chandler.

[Chandler is at the table. Ross walks in, looking
very tanned.]
Chandler: Hold on! There is something different.
Ross: I went to that tanning place your wife suggested.
Chandler: Was that place... The Sun?

Chandler’s statement ‘Was that place... The Sun?’
is sarcastic. The sarcasm can be understood based
on two kinds of contextual information: (a) general
knowledge (that sun is indeed hot) (b) Conversational
context (In the previous utterance, Ross states that he
went to a tanning place). Without information (b), the
sarcasm cannot be understood. Thus, dialogue presents
a peculiar opportunity: using sequential nature of text
for the task at hand.

We hypothesize that ‘for sarcasm detection of dia-
logue, sequence labeling performs better than classifi-
cation’. To validate our hypothesis, we consider two
feature configurations: (a) novel features designed for
our dataset, (b) features as given in two prior works.
To further understand where exactly sequence labeling
techniques do better, we also present a discussion on
which linguistic types of sarcasm benefit the most from
sequence labeling in place of classification.

Figure 1 summarizes the scope of this paper. We
consider two formulations for sarcasm detection of
conversational text. In the first option (i.e. classifi-
cation), a sequence is broken down into individual in-
stances. One instance as an input to a classification al-
gorithm returns an output for that instance. In the sec-
ond option (i.e. sequence labeling), a sequence as input
to a sequence labeling algorithm returns a sequence of
labels as an output. In rest of the paper, we use the
following terms:
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# Utterances 17338
# Scenes 913

Vocabulary 9345 unigrams
Average Length of Utterance 15.08 words

Average Length of Scene 18.6 utterances

Table 1: Dataset Statistics

1. Utterance: An utterance is a contiguous set of
sentences spoken by an individual without inter-
ruption (from another individual). Every utterance
has a speaker, and may be characterized by addi-
tional information (such as speaker’s expressions
and intonation) in the transcript.

2. Scene/Sequence: A scene is a sequence of utter-
ances, in which different speakers take turns to
speak. We use the terms ‘scene’ and ‘sequence’
interchangeably.

3 ‘Friends’ Dataset
Datasets based on literary/creative works have been ex-
plored in the past. One such example is emotion classi-
fication of children’s stories by Zhang Z (2014). Sim-
ilarly, we create a sarcasm-labeled dataset that con-
sists of transcripts of a comedy TV show, ‘Friends3’
(by Bright/Kauffman/Crane Productions, and Warner
Bros. Entertainment Inc.). We download these
transcripts from OpenSubtitles4 as given by Lison
and Tiedemann (2016), with additional pre-processing
from a fan-contributed website called http://www.
friendstranscripts.tk. Each scene begins
with a description of the location/situation followed by
a series of utterances spoken by characters. Figure 2
shows an illustration of our dataset. This is (obviously)
a dummy example that has been anonymized.

The reason behind choosing a TV show transcript as
our dataset was to restrict to a small set of characters
(so as to leverage on speaker-specific features) that use
a lot of humor. These characters are often sarcastic
towards each other because of their inter-personal
relationships. In fact, past linguistic studies also
show how sarcasm is more common between familiar
speakers, and often friends (Gibbs, 2000). A typical
snippet is:
[Scene: Chandler and Monica’s room. Chandler is
packing when Ross knocks on the door and enters...]
Ross: Hey!
Chandler: Hey!
Ross: You guys ready to go?
Chandler: Not quite. Monica’s still at the salon, and
I’m just finishing packing.

Our annotators are linguists with an experience of
more than 8k hours of annotation, and are not authors

3http://www.imdb.com/title/tt0108778/
4http://www.opensubtitles.org

Figure 2: Example from our Dataset: Part of a Scene

of this paper. A complete scene is visible to the annota-
tors at a time, so that they understand complete context
of the scene. They perform the task of annotating every
utterance in this scene with two labels: sarcastic and
non-sarcastic. The two annotators separately perform
this annotation over multiple sessions. To minimize
bias beyond the scope of this annotation, we selected
annotators who had never watched Friends before this
annotation task.

The annotations 5 may be available on request, sub-
ject to copyright restrictions. Every utterance is anno-
tated with a label while description of a scene is not
annotated.

The inter-annotator agreement for a subset of 105
scenes6 (around 1600 utterances) is 0.44. This is com-
parable with other manually annotated datasets in sar-
casm detection (Tsur et al., 2010). Table 1 shows the
relevant statistics of the complete dataset (in addition
to 105 scenes as mentioned above). There are 17338
utterances in 913 scenes. Out of these, 1888 utterances
are labeled as sarcastic. Average length of a scene is
18.6 utterances.

Table 2 shows additional statistics. Table 2(a) shows
that Chandler is the character with highest proportion
of sarcastic utterances (22.24%). Table 2(b) shows that
sarcastic utterances have higher surface positive word
score7 (1.55) than non-sarcastic (0.97) or overall ut-
terances (1.03). This validates the past observation
that sarcasm is often expressed through positive words
(and sometimes contrasted with negation)(Joshi et al.,
2015). Finally, Table 2(c) shows that sarcastic utter-
ances also have higher proportion of non-verbal indi-
cators (action words) (28.23%) than non-sarcastic or
overall utterances.

5without textual content, keeping in view copyright re-
strictions.

6For these scenes, the annotators later discussed and ar-
rived at a consensus- they were then added to the dataset. The
remaining scenes are done by either of the two annotators.

7This is computed using a simple lexicon lookup, as in
case of conversational context features below.

148



Character % sarcastic

Phoebe 9.70
Joey 11.05
Rachel 9.74
Monica 8.87
Chandler 22.24
Ross 8.42

Surface
Positive
Sentiment
Score

Surface
Negative
Sentiment
Score

Sarcastic 1.55 1.20
Non-sarcastic 0.97 0.75
All 1.03 0.79

Actions
(%)

Sarcastic 28.23
Non-sarcastic 23.95
All 24.43

Table 2: Dataset statistics related to: (a) percentage of sarcastic utterances for six lead characters, (b) average
surface positive and negative scores for the two classes, (c) percentage of sarcastic and non-sarcastic utterances
with actions

Feature Description

Lexical Features

Spoken
words

Unigrams of spoken words

Conversational Context Features

Actions Unigrams of action words
Sentiment
Score

Positive & Negative score of utter-
ance

Previous
Sentiment
Score

Positive & Negative score of previ-
ous utterance in the sequence

Speaker Context Features

Speaker Speaker of this utterance
Speaker-
Listener

Pair of speaker of this utterance
and speaker of the previous utter-
ance

Table 3: Our Dataset-Derived Features

4 Features

To ensure that our hypothesis is not dependent on
choice of features, we show our results on two config-
urations: (a) when dataset-derived features (i.e., novel
features designed based on our dataset) are used, and
(b) when features reported in prior work are used. We
describe these in forthcoming subsections.

4.1 Dataset-derived Features

We design our dataset-derived features based on infor-
mation available in our dataset. An utterance consists
of three parts:

1. Speaker: The name of the speaker is the first word
of an utterance, and is followed by a colon. In case
of the second utterance in Figure 2, the speaker is
‘Ross’ while in the third, the speaker is ‘Chan-
dler’.

2. Spoken words: This is the textual portion of what
the speaker says. In the second utterance in Fig-
ure 2, the spoken words are ‘Chandler’s utterance,
sentence 1..’.

3. Action words: Actions that a speaker performs
while speaking the utterance are indicated in
parentheses. These are useful clues that form
additional context. Unlike speaker and spoken
words, action words may or may not be present.
In the second utterance in Figure 2, there are no
action words while in the third utterance, ‘ac-
tion Chandler does while reading this’ are action
words.

Based on this information, we design three cate-
gories of features (listed in Table 3). These are:

1. Lexical Features: These are unigrams in the spo-
ken words. We experimented with both count and
boolean representations, and the results are com-
parable. We report values for boolean representa-
tion.

2. Conversational Context Features: In order to
capture conversational context, we use three kinds
of features. Action words are unigrams indi-
cated within parentheses. The intuition is that a
character ‘raising her eyebrows’ (action) is differ-
ent from saying “raising her eyebrows”. As the
next feature, we use sentiment score of this utter-
ance. These are two values: positive and negative
scores. These scores are the positive and nega-
tive words present in an utterance. The third kind
of conversational context features is the sentiment
score of the previous utterance. This captures phe-
nomena such as a negative remark from one char-
acter eliciting sarcasm from another. This is simi-
lar to the situation described in Joshi et al. (2015).
Thus, for the third utterance in Figure 2, the senti-
ment score of Chandler’s utterance forms the Sen-
timent score feature, while that of Ross’s utterance
forms Sentiment score of previous utterance.

3. Speaker Context Features: We use name of
the speaker and name of the speaker-listener pair
as features. The listener is assumed to be the
speaker of the previous utterance in the sequence8.
The speaker feature aims to capture the sar-
castic nature of each of these characters, while

8The first utterance in a sequence has a null value for pre-
vious speaker.
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the speaker-listener feature aims to capture inter-
personal interactions between different characters.
In the context of third utterance in Figure 2, the
speaker is ‘Chandler’ while speaker-listener pair
is ‘Chandler-Ross’.

4.2 Features from Prior Work

We also compare our results with features presented in
two prior works9:

1. Features given in González-Ibánez et al.
(2011): These features are: (a) Interjections,
(b) Punctuations, (c) Pragmatic features (where
we include action words as well), (d) Sentiment
lexicon-based features from LIWC (Pennebaker et
al., 2001) (where they include counts of linguistic
process words, positive/negative emotion words,
etc.).

2. Features given in Buschmeier et al. (2014): In
addition to unigrams, the features used by them
are: (a) Hyperbole (captured by three positive or
negative words in a row), (b) Quotation marks and
ellipsis, (c) Positive/Negative Sentiment Scores
followed by punctuation (this includes more than
one positive or negative words with an exclama-
tion mark or question mark at the end), (d) Posi-
tive/Negative Sentiment Scores followed by ellip-
sis (this includes more than one positive or neg-
ative words with a ‘...’ at the end, (e) Punctu-
ation, (f) Interjections, and (g) Laughter expres-
sions (such as ‘haha’).

5 Experiment Setup

We experiment with three classification techniques and
two sequence labeling techniques:

1. Classification Techniques: We use Naı̈ve Bayes
and SVM as classification techniques. Naı̈ve
Bayes implementation provided in Scikit (Pe-
dregosa et al., 2011) is used. For SVM, we use
SVM-Light (Joachims, 1999). Since SVM does
not do well for datasets with a large class imbal-
ance (Akbani et al., 2004)10, we use sampling to
deal with this skew as done in Kotsiantis et al.
(2006). We experiment with two configurations:

• SVM (Oversampled) i.e., SVM (O): Sarcas-
tic utterances are duplicated to match the
count of non-sarcastic utterances.

• SVM (Undersampled) i.e., SVM (U): Ran-
dom non-sarcastic utterances are dropped to
match the count of sarcastic utterances.

9The two prior works are chosen based on what infor-
mation was available in our dataset for the purpose of re-
implementation. For example, approaches that use the Twit-
ter profile information or the follower/friends structure in the
Twitter, cannot be computed for our dataset.

10We also observe the same.

2. Sequence Labeling Techniques: We use SVM-
HMM by Altun et al. (2003) and SEARN by
Daumé III et al. (2009). SVM-HMM is a sequence
labeling algorithm that combines Support Vector
Machines and Hidden Markov Models. SEARN
is a sequence labeling algorithm that integrates
search and learning to solve prediction problems.
The implementation of SEARN that we use relies
on perceptron as the base classifier. Daumé III et
al. (2009) show that SEARN outperforms other
sequence labeling techniques (such as CRF) for
tasks like character recognition and named entity
class identification.

Thus, we wish to validate our hypothesis in case of:

1. Our data-derived features as given in Section 4.1.

2. Past features from González-Ibánez et al. (2011)
and Buschmeier et al. (2014) as given in Section
4.2.

Algorithm Precision
(%)

Recall
(%)

F-Score
(%)

Formulation as Classification

SVM (U) 83.6 48.6 57.2
SVM (O) 84.4 76.8 79.8
Naı̈ve Bayes 77.2 33.8 42

Formulation as Sequence Labeling

SVM-HMM 83.8 88.2 84.2
SEARN 82.6 83.4 82.8

Table 4: Comparison of sequence labeling techniques
with classification techniques, for features reported in
dataset-derived features

We report weighted average values of precision,
recall and F-score computed using five-fold cross-
validation for all experiments, and class-wise precision,
recall, F-score wherever necessary. The folds are cre-
ated on the basis of sequences and not utterances. This
means that a sequence does not get split across different
folds.

6 Results
Section 6.1 describes performance of traditional mod-
els that use dataset-derived features (as given in Section
4.1), while Section 6.2 does so for features from prior
work (as given in Section 4.2).

6.1 Performance on Dataset-derived Features
Table 4 compares the performance of the two for-
mulations: classification and sequence labeling, for
our dataset-derived features. When classification tech-
niques are used, we obtain the best F-score of 79.8%
with SVM (O). However, when sequence labeling tech-
niques are used, the best F-score is 84.2%. In terms of
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Sarcastic Non-Sarcastic

Precision Recall F-Score Precision Recall F-Score

SVM (U) 14 68.8 23 92.2 46.2 61.6
SVM (O) 22.4 44 29 91.8 81 86
Naive Bayes 9.8 59.8 16.8 85.8 30.6 45

SVM-HMM 35.8 7.6 12.6 89.4 98.2 93.6
SEARN 22.2 19.4 20 90 91.6 90.4

Table 5: Class-wise precision/recall values for all techniques using our dataset-derived features

F-score, our two sequence labeling techniques per-
form better than all three classification techniques.
The increase in recall is high - the best value for classi-
fication techniques is (SVM (O)) 76.8%, while that for
sequence labeling techniques (SVM-HMM) is 88.2%.
It must be noted that sentiment of previous utterance
is one of the features of both the classification and se-
quence labeling techniques. Despite that, sequence la-
beling techniques perform better.

Alg. Feature (Best) P
(%)

R
(%)

F
(%)

Formulation as Classification

SVM
(U)

Unigram+ Spkr-
Listnr+ Action+
Senti. Score

84.8 49.4 57.4

SVM
(O)

Unigram+
Speaker+ Spkr-
Listnr+Senti. Score

84 79 81.2

Naı̈ve
Bayes

All features 77.2 33.8 42

Formulation as Sequence Labeling

SVM-
HMM

Unigram+
Speaker+ Spkr-
Listnr+ Prev. Senti.
Score + Action

83.2 87.8 84.4

SEARN All features 82.6 83.4 82.8

Table 6: Feature Combinations for which different
techniques exhibit their best performance for dataset-
derived features

Table 5 shows class-wise precision/recall values for
these techniques. The best value of precision for sar-
castic class is obtained in case of SVM-HMM, i.e.,
35.8%. The best F-score for the sarcastic class is in
the case of SVM (O) (29%) whereas that for the non-
sarcastic class is in the case of SVM-HMM (93.6%).
Tables 4 and 5 show that it is due to a high recall,
sequence labeling techniques perform better than clas-
sification techniques.

It may be argued that the benefit in case of sequence
labeling is due to our features, and is not a benefit of
the sequence labeling formulation itself. Hence, we ran
these five techniques with all possible combinations of

features. Table 6 shows the best performance obtained
by each of the classifiers, and the corresponding (best)
feature combinations. The table can be read as: SVM
(O) obtains a F-score of 81.2% when spoken words,
speaker, speaker-listener and sentiment score are used
as features. The table shows that even if we con-
sider the best performance of each of the techniques
(with different feature sets), classifiers are not able
to perform as well as sequence labeling. The best
sequence labeling algorithm (SVM-HMM) gives a F-
score of 84.4% while the best classifier (SVM(O)) has
an F-score of 81.2%. We emphasize that both SVM-
HMM and SEARN have higher recall values than the
three classification techniques.

These findings show that for our novel set of
dataset-derived features, sequence labeling works
better than classification.

6.2 Performance on Features Reported in Prior
Work

We now show our evaluation on two sets of features re-
ported in prior work. These sets of features as given
in two prior works by Buschmeier et al. (2014) and
González-Ibánez et al. (2011).

Table 7 compares classification techniques with
sequence labeling techniques for features given in
González-Ibánez et al. (2011)11. Table 8 shows cor-
responding values for features given in Buschmeier et
al. (2014)12. For features by González-Ibánez et al.
(2011), SVM (O) gives the best F-score for classifica-
tion techniques (79%), whereas SVM-HMM shows an
improvement of 4% over that value. Recall increases
by 11.8% when sequence labeling techniques are used
instead of classification.

In case of features by Buschmeier et al. (2014), the
improvement in performance achieved by using se-
quence labeling as against classification is 2.8%. The
best recall for classification techniques is 77.8% (for
SVM (O)). In this case as well, the recall increases by
10% for sequence labeling.

These findings show that for two feature sets re-
ported in prior work, sequence labeling works bet-

11The paper reports best accuracy of 65.44% for their
dataset. This shows that our implementation is competent.

12The paper reports best F-score of 67.8% for their dataset.
This shows that our implementation is competent.
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ter than classification.

Algorithm P (%) R (%) F (%)

Features from Gonzalez-Ibanez et al. (2011)

Formulation as Classification

SVM (U) 86.4 26 27
SVM (O) 84.6 75.6 79
Naive Bayes 77.2 43.8 48.4

Formulation as Sequence Labeling

SVM-HMM 83.4 87.4 83
SEARN 82 82.4 81.8

Table 7: Comparison of sequence labeling techniques
with classification techniques, for features reported in
Gonzalez-Ibanez et al. (2011)

Algorithm P (%) R (%) F (%)

Features from Buschmeier et al. (2014)

Formulation as Classification

SVM (U) 85.4 40.6 46.8
SVM (O) 84.6 77.8 80.4
Naı̈ve Bayes 76.6 27.2 32.8

Formulation as Sequence Labeling

SVM-HMM 84.2 87.8 83.2
SEARN 82.4 83.8 82.4

Table 8: Comparison of sequence labeling techniques
with classification techniques, for features reported in
Buschmeier et al. (2014)

7 Discussion
In previous sections, we show that quantitatively, se-
quence labeling techniques perform better than classi-
fication techniques. In this section, we delve into the
question: ‘What does this improved performance mean,
in terms of forms of sarcasm that sequence labeling
techniques are able to handle better than classifica-
tion?’ To understand the implication of using sequence
labeling, we randomly select 100 examples that were
correctly labeled by sequence labeling techniques but
incorrectly labeled by classification techniques. Our
annotators manually annotated them into one among
four categories of sarcasm as given in Camp (2012).
Table 9 shows the proportion of these utterances. Like-
prefixed and illocutionary sarcasm types are the ones
that require context for understanding sarcasm. We
observe that around 71% of our examples belong to
these two types of sarcasm. This means that our intu-
ition that sequence labeling will better capture con-
versational context reflects in the forms of sarcasm
for which sequence labeling improves over classifi-
cation.

On the other hand, examples where our system
makes errors can be grouped as:

• Topic Drift: Eisterhold et al. (2006) state that
topic change/drift is a peculiarity of sarcasm. For
example, when Phoebe gets irritated with another
character talking for a long time, she says,“See?
Vegetarianism benefits everyone”. This was mis-
classified by our system.

• Short expressions: Short expressions occurring
in the context of a conversation may express
sarcasm. Expressions such as “Oh God, is it”
and “Me too” were misclassified as non-sarcastic.
However, in the context of the scene, these were
sarcastic utterances.

• Dry humor: In the context of a conversation, sar-
casm may be expressed in response to a long seri-
ous description. Our system was unable to capture
such sarcasm in some cases. When a character
gives long description of advantages of a particu-
lar piece of clothing, Chandler asks sarcastically,
“Are you aware that you’re still talking?”.

• Implications in popular culture: The utterance
“Ok, I smell smoke. Maybe that’s cause someone’s
pants are on fire” was misclassified by our system.
The popular saying ‘Liar, liar, pants on fire13’ was
the context that was missing in our case.

• Background knowledge: When a petite girl
walks in, Rachel says “She is so cute! You could
fit her right in your little pocket”.

• Long-range connection: In comedy shows like
Friends, humor is often created by introducing a
concept in the initial part and then repeating it as
an impactful, sarcastic remark. For example, in
beginning of an episode, Ross says that he has
never grabbed a spoon before - and at the end
of the episode, he says with a sarcastic tone “I
grabbed a spoon”.

• Incongruity with situation in the scenes: Utter-
ances that were incongruent with non-verbal situ-
ations could not be adequately identified. For ex-
ample, Ross enters an office wearing a piece of
steel bandaged to his nose. In response, the recep-
tionist says, “Oh, that’s attractive”.

• Sarcasm as a part of a longer sentence: In sev-
eral utterances, sarcasm is a subset of a longer sen-
tence, and hence, the non-sarcastic portion may
dominate the rest of the sentence.

These errors point to future directions in which se-
quence labeling algorithms may be optimized to im-
prove their impact on sarcasm detection.

13http://www.urbandictionary.com/define.php?term=Liar
%20Liar%20Pants%20On%20Fire
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Type Examples (%)

Propositional 14.28
Embedded 4.08
Illocutionary 40.81
Like-prefixed 31.63
Other 9.18

Table 9: Proportion of utterances of different types of
sarcasm that were correctly labeled by sequence label-
ing but incorrectly labeled by classification techniques

8 Related Work

Sarcasm detection approaches using different features
have been reported (Tepperman et al., 2006; Kreuz and
Caucci, 2007; Tsur et al., 2010; Davidov et al., 2010;
Veale and Hao, 2010; González-Ibánez et al., 2011;
Reyes et al., 2012; Joshi et al., 2015; Buschmeier et al.,
2014). However, Wallace et al. (2014) show how con-
text beyond the target text (i.e., extra-textual context)
is necessary for humans as well as machines, in order
to identify sarcasm. Following this, the new trend in
sarcasm detection is to explore the use of such extra-
textual context (Khattri et al., 2015; Rajadesingan et
al., 2015; Bamman and Smith, 2015; Wallace, 2015).
(Wallace, 2015) uses meta-data about reddits to predict
sarcasm in a reddit14 comment. (Rajadesingan et al.,
2015) present a suite of classifier features that capture
different kinds of context: context related to the author,
conversation, etc. The new trend in sarcasm detection
is, thus, to look at additional context beyond the text
where sarcasm is to be predicted.

The work closest to ours is by Wang et al. (2015).
They use a labeled dataset of 1500 tweets, the labels
for which are obtained automatically. Due to their au-
tomatically labeled gold dataset and their lack of fo-
cus on labeling utterances in a sequence, our analysis
seems to be more rigorous. Our work substantially dif-
fers from theirs: (a) They do not deal with dialogue, (b)
Their goal is to predict sarcasm of a tweet, using series
of past tweets as the context i.e., only the last tweet
in the sequence. Our goal is to predict sarcasm in ev-
ery element of the sequence: a lot more rigorous task.
Note that the two differ in the way precision/recall
values will be computed. (c) Their ‘gold’ standard
dataset is annotated by an automatic classifier. On
the other hand, every textual unit (utterance) in our
gold standard dataset is manually labeled - making
our dataset and hence, findings lot more reliable.
(c) They consider three types of sequences: conversa-
tional, historical and topic-based. Historical context is
series of tweets by this author, while topic-based con-
text is series of tweets containing a hashtag in the tweet
to be classified. We do not use the two because they
do not seem suitable for our dataset. They show that a
sequence labeling algorithm works well to detect sar-

14www.reddit.com

casm of a tweet with a pseudo-sequence generated us-
ing such additional context. They attempt to obtain cor-
rect prediction only for a single target tweet with no
consideration to other elements in the context, which is
completely different from our goal. They do not bother
about other elements in the sequence but only use an
algorithm to perform sarcasm detection of a tweet.

Several approaches for sequence labeling in senti-
ment classification have been studied. Zhao et al.
(2008) perform sentiment classification using condi-
tional random fields. Zhang et al. (2014) deal with
emotion classification. Using a dataset of children’s
stories manually annotated at the sentence level, they
employ HMM to identify sequential structure and a
classifier to predict emotion in a particular sentence.
Mao and Lebanon (2006) present a isotonic CRF that
predicts global and local sentiment of documents, with
additional mechanism for author-specific distributions
and smoothing sentiment curves. Yessenalina et al.
(2010) present a joint learning algorithm for sentence-
level subjectivity labeling and document-level senti-
ment labeling. Choi and Cardie (2010) deal with se-
quence learning to jointly identify scope of opinion po-
larity expressions, and polarity labels. Taking inspira-
tion from use of sequence labeling for sarcasm detec-
tion, our work takes the first step to show if sequence
labeling techniques are helpful at all. They experiment
with MPQA corpus that is labeled at the sentence level
for polarity as well as intensity. Specialized sequence
labeling techniques like these are the next step to our
first step: showing if sequence labeling techniques are
helpful at all, for sarcasm detection of dialogue.

9 Conclusion & Future Work

We explored how sequence labeling can be used for sar-
casm detection of dialogue. We formulated sarcasm de-
tection of dialogue as a task of labeling each utterance
in a sequence, with one among two labels: sarcastic
and non-sarcastic. For our experiments, we created a
manually annotated dataset of transcripts from a pop-
ular TV show ‘Friends’. Our dataset consisted of 913
scenes where every utterance was annotated as sarcas-
tic or not.

We experiment with: (a) a novel set of features de-
rived from our dataset, (b) sets of features from two
prior works. Our dataset-derived features are: (a) lex-
ical features, (b) conversational context features, and
(c) author context features. Using these features, we
compared two classes of learning techniques: classi-
fiers (SVM (undersampled), SVM (oversampled) and
Naı̈ve Bayes) and sequence labeling techniques (SVM-
HMM and SEARN). For our classifiers, the best F-
score was obtained with SVM (O) (i.e. 79.8%) while
the best F-score for sequence labeling techniques was
obtained using SVM-HMM (i.e. 84.2%). Even in case
of the best combinations of our features for each algo-
rithm, both sequence labeling techniques outperformed
the classifiers. In addition, we also experimented with
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features introduced in two prior works. We observed an
improvement of 2.8% for features in Buschmeier et al.
(2014) and 4% for features in González-Ibánez et al.
(2011) when sequence labeling techniques were used
as against classifiers. In all cases, sequence labeling
techniques had a substantially high recall as com-
pared to classification techniques (10% in case of
Buschmeier et al. (2014), 12% in case of González-
Ibánez et al. (2011)). To understand which forms of
sarcasm get correctly labeled by sequence labeling (and
not by classification), we manually evaluated 100 ex-
amples. 71% of these examples consisted of sarcasm
that could be understood only with conversational con-
text. Our error analysis points to interesting future
work for sarcasm detection of dialogue such as long-
range connection, lack of conversational clues, and sar-
casm a part of long utterances.

Thus, we observe that for sarcasm detection of our
dataset, in case of different feature configurations,
sequence labeling performs better than classification.
Our observations establish the efficacy of sequence
labeling techniques for sarcasm detection of dia-
logue.

Future work on repeating these experiments for other
forms of dialogue (such as twitter conversations, chat
transcripts, etc.) is imperative. Also, a combination of
unified sarcasm and emotion detection using sequence
labeling is another promising line of work. It would
be interesting to see if deep learning-based models that
perform sequence labeling perform better than those
that perform classification.
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Abstract

Sentiments expressed in user-generated
short text and sentences are nuanced by
subtleties at lexical, syntactic, semantic
and pragmatic levels. To address this,
we propose to augment traditional features
used for sentiment analysis and sarcasm
detection, with cognitive features derived
from the eye-movement patterns of read-
ers. Statistical classification using our en-
hanced feature set improves the perfor-
mance (F-score) of polarity detection by
a maximum of 3.7% and 9.3% on two
datasets, over the systems that use only
traditional features. We perform feature
significance analysis, and experiment on
a held-out dataset, showing that cognitive
features indeed empower sentiment ana-
lyzers to handle complex constructs.

1 Introduction

This paper addresses the task of Sentiment Anal-
ysis (SA) - automatic detection of the sentiment
polarity as positive versus negative - of user-
generated short texts and sentences. Several sen-
timent analyzers exist in literature today (Liu and
Zhang, 2012). Recent works, such as Kouloumpis
et al. (2011), Agarwal et al. (2011) and Barbosa
and Feng (2010), attempt to conduct such analy-
ses on user-generated content. Sentiment analysis
remains a hard problem, due to the challenges it
poses at the various levels, as summarized below.

1.1 Lexical Challenges
Sentiment analyzers face the following three chal-
lenges at the lexical level: (1) Data Sparsity, i.e.,
handling the presence of unseen words/phrases.
(e.g., The movie is messy, uncouth, incomprehen-
sible, vicious and absurd) (2) Lexical Ambiguity,

e.g., finding appropriate senses of a word given the
context (e.g., His face fell when he was dropped
from the team vs The boy fell from the bicycle,
where the verb “fell” has to be disambiguated) (3)
Domain Dependency, tackling words that change
polarity across domains. (e.g., the word unpre-
dictable being positive in case of unpredictable
movie in movie domain and negative in case of un-
predictable steering in car domain). Several meth-
ods have been proposed to address the different
lexical level difficulties by - (a) using WordNet
synsets and word cluster information to tackle lex-
ical ambiguity and data sparsity (Akkaya et al.,
2009; Balamurali et al., 2011; Go et al., 2009;
Maas et al., 2011; Popat et al., 2013; Saif et al.,
2012) and (b) mining domain dependent words
(Sharma and Bhattacharyya, 2013; Wiebe and Mi-
halcea, 2006).

1.2 Syntactic Challenges

Difficulty at the syntax level arises when the
given text follows a complex phrasal structure and,
phrase attachments are expected to be resolved be-
fore performing SA. For instance, the sentence A
somewhat crudely constructed but gripping, quest-
ing look at a person so racked with self-loathing,
he becomes an enemy to his own race. requires
processing at the syntactic level, before analyzing
the sentiment. Approaches leveraging syntactic
properties of text include generating dependency
based rules for SA (Poria et al., 2014) and lever-
aging local dependency (Li et al., 2010).

1.3 Semantic and Pragmatic Challenges

This corresponds to the difficulties arising in the
higher layers of NLP, i.e., semantic and prag-
matic layers. Challenges in these layers in-
clude handling: (a) Sentiment expressed implic-
itly (e.g., Guy gets girl, guy loses girl, audience
falls asleep.) (b) Presence of sarcasm and other
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forms of irony (e.g., This is the kind of movie you
go because the theater has air-conditioning.) and
(c) Thwarted expectations (e.g., The acting is fine.
Action sequences are top-notch. Still, I consider
it as a below average movie due to its poor story-
line.).

Such challenges are extremely hard to tackle
with traditional NLP tools, as these need both
linguistic and pragmatic knowledge. Most at-
tempts towards handling thwarting (Ramteke et
al., 2013) and sarcasm and irony (Carvalho et
al., 2009; Riloff et al., 2013; Liebrecht et al.,
2013; Maynard and Greenwood, 2014; Barbieri et
al., 2014; Joshi et al., 2015), rely on distant su-
pervision based techniques (e.g., leveraging hash-
tags) and/or stylistic/pragmatic features (emoti-
cons, laughter expressions such as “lol” etc). Ad-
dressing difficulties for linguistically well-formed
texts, in absence of explicit cues (like emoticons),
proves to be difficult using textual/stylistic fea-
tures alone.

1.4 Introducing Cognitive Features

We empower our systems by augmenting cogni-
tive features along with traditional linguistic fea-
tures used for general sentiment analysis, thwart-
ing and sarcasm detection. Cognitive features
are derived from the eye-movement patterns of
human annotators recorded while they annotate
short-text with sentiment labels. Our hypothe-
sis is that cognitive processes in the brain are
related to eye-movement activities (Parasuraman
and Rizzo, 2006). Hence, considering readers’
eye-movement patterns while they read sentiment
bearing texts may help tackle linguistic nuances
better. We perform statistical classification using
various classifiers and different feature combina-
tions. With our augmented feature-set, we observe
a significant improvement of accuracy across all
classifiers for two different datasets. Experiments
on a carefully curated held-out dataset indicate a
significant improvement in sentiment polarity de-
tection over the state of the art, specifically text
with complex constructs like irony and sarcasm.
Through feature significance analysis, we show
that cognitive features indeed empower sentiment
analyzers to handle complex constructs like irony
and sarcasm. Our approach is the first of its kind
to the best of our knowledge. We share various
resources and data related to this work at http:
//www.cfilt.iitb.ac.in/cognitive-nlp

The rest of the paper is organized as follows.
Section 2 presents a summary of past work done
in traditional SA and SA from a psycholinguis-
tic point of view. Section 3 describes the avail-
able datasets we have taken for our analysis. Sec-
tion 4 presents our features that comprise both tra-
ditional textual features, used for sentiment anal-
ysis and cognitive features derived from annota-
tors’ eye-movement patterns. In section 5, we dis-
cuss the results for various sentiment classification
techniques under different combinations of textual
and cognitive features, showing the effectiveness
of cognitive features. In section 6, we discuss on
the feasibility of our approach before concluding
the paper in section 7.

2 Related Work

Sentiment classification has been a long standing
NLP problem with both supervised (Pang et al.,
2002; Benamara et al., 2007; Martineau and Finin,
2009) and unsupervised (Mei et al., 2007; Lin and
He, 2009) machine learning based approaches ex-
isting for the task.

Supervised approaches are popular because of
their superior classification accuracy (Mullen and
Collier, 2004; Pang and Lee, 2008) and in such
approaches, feature engineering plays an impor-
tant role. Apart from the commonly used bag-
of-words features based on unigrams, bigrams etc.
(Dave et al., 2003; Ng et al., 2006), syntactic prop-
erties (Martineau and Finin, 2009; Nakagawa et
al., 2010), semantic properties (Balamurali et al.,
2011) and effect of negators. Ikeda et al. (2008)
are also used as features for the task of sentiment
classification. The fact that sentiment expression
may be complex to be handled by traditional fea-
tures is evident from a study of comparative sen-
tences by Ganapathibhotla and Liu (2008). This,
however has not been addressed by feature based
approaches.

Eye-tracking technology has been used recently
for sentiment analysis and annotation related re-
search (apart from the huge amount of work in
psycholinguistics that we find hard to enlist here
due to space limitations). Joshi et al. (2014) de-
velop a method to measure the sentiment anno-
tation complexity using cognitive evidence from
eye-tracking. Mishra et al. (2014) study sentiment
detection, and subjectivity extraction through an-
ticipation and homing, with the use of eye track-
ing. Regarding other NLP tasks, Joshi et al.
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NB SVM RB
P R F P R F P R F

D1 66.15 66 66.15 64.5 65.3 64.9 56.8 60.9 53.5
D2 74.5 74.2 74.3 77.1 76.5 76.8 75.9 53.9 63.02

Table 1: Classification results for different SA systems for dataset 1 (D1) and dataset 2 (D2). P→
Precision, R→ Recall, F→ F˙score

(2013) propose a studied the cognitive aspects if
Word Sense Disambiguation (WSD) through eye-
tracking. Earlier, Mishra et al. (2013) measure
translation annotation difficulty of a given sen-
tence based on gaze input of translators used to
label training data. Klerke et al. (2016) present
a novel multi-task learning approach for sentence
compression using labelled data, while, Barrett
and Søgaard (2015) discriminate between gram-
matical functions using gaze features. The recent
advancements in the literature discussed above,
motivate us to explore gaze-based cognition for
sentiment analysis.

We acknowledge that some of the well perform-
ing sentiment analyzers use Deep Learning tech-
niques (like Convolutional Neural Network based
approach by Maas et al. (2011) and Recursive
Neural Network based approach by dos Santos and
Gatti (2014)). In these, the features are automat-
ically learned from the input text. Since our ap-
proach is feature based, we do not consider these
approaches for our current experimentation. Tak-
ing inputs from gaze data and using them in a deep
learning setting sounds intriguing, though, it is be-
yond the scope of this work.

3 Eye-tracking and Sentiment Analysis
Datasets

We use two publicly available datasets for our ex-
periments. Dataset 1 has been released by Mishra
et al. (2016) which they use for the task of sarcasm
understandability prediction. Dataset 2 has been
used by Joshi et al. (2014) for the task of sentiment
annotation complexity prediction. These datasets
contain many instances with higher level nuances
like presence of implicit sentiment, sarcasm and
thwarting. We describe the datasets below.

3.1 Dataset 1
It contains 994 text snippets with 383 positive and
611 negative examples. Out of this, 350 are sar-
castic or have other forms of irony. The snippets
are a collection of reviews, normalized-tweets and

quotes. Each snippet is annotated by seven par-
ticipants with binary positive/negative polarity la-
bels. Their eye-movement patterns are recorded
with a high quality SR-Research Eyelink-1000 eye-
tracker (sampling rate 500Hz). The annotation ac-
curacy varies from 70%−90% with a Fleiss kappa
inter-rater agreement of 0.62.

3.2 Dataset 2

This dataset consists of 1059 snippets comprising
movie reviews and normalized tweets. Each snip-
pet is annotated by five participants with positive,
negative and objective labels. Eye-tracking is done
using a low quality Tobii T120 eye-tracker (sam-
pling rate 120Hz). The annotation accuracy varies
from 75% − 85% with a Fleiss kappa inter-rater
agreement of 0.68. We rule out the objective ones
and consider 843 snippets out of which 443 are
positive and 400 are negative.

3.3 Performance of Existing SA Systems
Considering Dataset -1 and 2 as Test Data

It is essential to check whether our selected
datasets really pose challenges to existing senti-
ment analyzers or not. For this, we implement two
statistical classifiers and a rule based classifier to
check the test accuracy of Dataset 1 and Dataset
2. The statistical classifiers are based on Support
Vector Machine (SVM) and Näive Bayes (NB) im-
plemented using Weka (Hall et al., 2009) and Lib-
SVM (Chang and Lin, 2011) APIs. These are on
trained on 10662 snippets comprising movie re-
views and tweets, randomly collected from stan-
dard datasets released by Pang and Lee (2004) and
Sentiment 140 (http://www.sentiment140.com/).
The feature-set comprises traditional features for
SA reported in a number of papers. They are dis-
cussed in section 4 under the category of Senti-
ment Features. The in-house rule based (RB) clas-
sifier decides the sentiment labels based on the
counts of positive and negative words present in
the snippet, computed using MPQA lexicon (Wil-
son et al., 2005). It also considers negators as ex-
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plained by Jia et al. (2009) and intensifiers as ex-
plained by Dragut and Fellbaum (2014).

Table 1 presents the accuracy of the three sys-
tems. The F-scores are not very high for all
the systems (especially for dataset 1 that contains
more sarcastic/ironic texts), possibly indicating
that the snippets in our dataset pose challenges for
existing sentiment analyzers. Hence, the selected
datasets are ideal for our current experimentation
that involves cognitive features.

4 Enhanced feature set for SA

Our feature-set into four categories viz. (1) Sen-
timent features (2) Sarcasm, Irony and Thwarting
related Features (3) Cognitive features from eye-
movement (4) Textual features related to reading
difficulty. We describe our feature-set below.

4.1 Sentiment Features

We consider a series of textual features that have
been extensively used in sentiment literature (Liu
and Zhang, 2012). The features are described be-
low. Each feature is represented by a unique ab-
breviated form, which are used in the subsequent
discussions.

1. Presence of Unigrams (NGRAM˙PCA) i.e.
Presence of unigrams appearing in each sen-
tence that also appear in the vocabulary ob-
tained from the training corpus. To avoid
overfitting (since our training data size is
less), we reduce the dimension to 500 using
Principal Component Analysis.

2. Subjective words (Positive words,
Negative words) i.e. Presence of positive
and negative words computed against MPQA
lexicon (Wilson et al., 2005), a popular lexi-
con used for sentiment analysis.

3. Subjective scores (PosScore, NegScore) i.e.
Scores of positive subjectivity and negative
subjectivity using SentiWordNet (Esuli and
Sebastiani, 2006).

4. Sentiment flip count (FLIP) i.e. Number
of times words polarity changes in the text.
Word polarity is determined using MPQA
lexicon.

5. Part of Speech ratios (VERB, NOUN,
ADJ, ADV) i.e. Ratios (proportions) of

verbs, nouns, adjectives and adverbs in the
text. This is computed using NLTK1.

6. Count of Named Entities (NE) i.e. Number
of named entity mentions in the text. This is
computed using NLTK.

7. Discourse connectors (DC) i.e. Number of
discourse connectors in the text computed us-
ing an in-house list of discourse connectors
(like however, although etc.)

4.2 Sarcasm, Irony and Thwarting related
Features

To handle complex texts containing constructs
irony, sarcasm and thwarted expectations as ex-
plained earlier, we consider the following features.
The features are taken from Riloff et al. (2013),
Ramteke et al. (2013) and Joshi et al. (2015).

1. Implicit incongruity (IMPLICIT PCA) i.e.
Presence of positive phrases followed by
negative situational phrase (computed using
bootstrapping technique suggested by Riloff
et al. (2013)). We consider the top 500 prin-
cipal components of these phrases to reduce
dimension, in order to avoid overfitting.

2. Punctuation marks (PUNC) i.e. Count of
punctuation marks in the text.

3. Largest pos/neg subsequence (LAR) i.e.
Length of the largest series of words with po-
larities unchanged. Word polarity is deter-
mined using MPQA lexicon.

4. Lexical polarity (LP) i.e. Sentence polarity
found by supervised logistic regression using
the dataset used by Joshi et al. (2015).

4.3 Cognitive features from eye-movement
Eye-movement patterns are characterized by two
basic attributes: (1) Fixations, corresponding to a
longer stay of gaze on a visual object (like char-
acters, words etc. in text) (2) Saccades, corre-
sponding to the transition of eyes between two fix-
ations. Moreover, a saccade is called a Regres-
sive Saccade or simply, Regression if it represents
a phenomenon of going back to a pre-visited seg-
ment. A portion of a text is said to be skipped
if it does not have any fixation. Figure 1 shows
eye-movement behavior during annotation of the
given sentence in dataset-1. The circles represent

1http://www.nltk.org/
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Figure 1: Snapshot of eye-movement behavior during annotation of an opinionated text. The circles
represent fixations and lines connecting the circles represent saccades. Boxes represent Areas of Interest
(AoI) which are words of the sentence in our case.

fixation and the line connecting the circles repre-
sent saccades. Our cognition driven features are
derived from these basic eye-movement attributes.
We divide our features in two sets as explained
ahead.

4.4 Basic gaze features

Readers’ eye-movement behavior, characterized
by fixations, forward saccades, skips and regres-
sions, can be directly quantified by simple statis-
tical aggregation (i.e., computing features for in-
dividual participants and then averaging). Since
these behaviors intuitively relate to the cognitive
process of the readers (Rayner and Sereno, 1994),
we consider simple statistical properties of these
factors as features to our model. Some of these
features have been reported by Mishra et al. (2016)
for modeling sarcasm understandability of read-
ers. However, as far as we know, these features
are being introduced in NLP tasks like sentiment
analysis for the first time.

1. Average First-Fixation Duration per word
(FDUR) i.e. Sum of first-fixation duration di-
vided by word count. First fixations are fixa-
tions occurring during the first pass reading.
Intuitively, an increased first fixation duration
is associated to more time spent on the words,
which accounts for lexical complexity. This
is motivated by Rayner and Duffy (1986).

2. Average Fixation Count (FC) i.e. Sum of
fixation counts divided by word count. If the
reader reads fast, the first fixation duration
may not be high even if the lexical complex-
ity is more. But the number of fixations may
increase on the text. So, fixation count may
help capture lexical complexity in such cases.

3. Average Saccade Length (SL) i.e. Sum
of saccade lengths (measured by number of
words) divided by word count. Intuitively,
lengthy saccades represent the text being
structurally/syntactically complex. This is

also supported by von der Malsburg and Va-
sishth (2011).

4. Regression Count (REG) i.e. Total num-
ber of gaze regressions. Regressions cor-
respond to both lexical and syntactic re-
analysis (Malsburg et al., 2015). Intuitively,
regression count should be useful in captur-
ing both syntactic and semantic difficulties.

5. Skip count (SKIP) i.e. Number of words
skipped divided by total word count. Intu-
itively, higher skip count should correspond
lesser semantic processing requirement (as-
suming that skipping is not done intention-
ally).

6. Count of regressions from second half to
first half of the sentence (RSF) i.e. Number
of regressions from second half of the sen-
tence to the first half of the sentence (given
the sentence is divided into two equal half of
words). Constructs like sarcasm, irony of-
ten have phrases that are incongruous (e.g.
”The book is so great that it can be used
as a paperweight”- the incongruous phrases
are ”book is so great” and ”used as a pa-
perweight”.. Intuitively, when a reader en-
counters such incongruous phrases, the sec-
ond phrases often cause a surprisal resulting
in a long regression to the first part of the text.
Hence, this feature is considered.

7. Largest Regression Position (LREG) i.e.
Ratio of the absolute position of the word
from which a regression with the largest am-
plitude (in terms of number of characters)
is observed, to the total word count of sen-
tence. This is chosen under the assumption
that regression with the maximum amplitude
may occur from the portion of the text which
causes maximum surprisal (in order to get
more information about the portion causing
maximum surprisal). The relative starting po-
sition of such portion, captured by LREG,
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I will always cherish the

original mis-
conception I had of you

Figure 2: Saliency graph of a human annotator for
the sentence I will always cherish the original mis-
conception I had of you.

may help distinguish between sentences with
different linguistic subtleties.

4.5 Complex gaze features
We propose a graph structure constructed from the
gaze data to derive more complex gaze features.
We term the graph as gaze-saliency graphs.

A gaze-saliency graph for a sentence S for a
reader R, represented as G = (V,E), is a graph
with vertices (V ) and edges (E) where each vertex
v ∈ V corresponds to a word in S (may not be
unique) and there exists an edge e ∈ E between
vertices v1 and v2 if R performs at least one sac-
cade between the words corresponding to v1 and
v2. Figure 2 shows an example of such a graph.

1. Edge density of the saliency gaze graph
(ED) i.e. Ratio of number of edges in the
gaze saliency graph and total number of pos-
sible links ((|V |×|V |−1|)/2) in the saliency
graph. As, Edge Density of a saliency graph
increases with the number of distinct sac-
cades, it is supposed to increase if the text is
semantically more difficult.

2. Fixation Duration at Left/Source as Edge
Weight (F1H, F1S) i.e. Largest weighted de-
gree (F1H) and second largest weighted de-
gree (F1S) of the saliency graph considering
the fixation duration on the word of node i of
edge Eij as edge weight.

3. Fixation Duration at Right/Target as Edge
Weight (F2H, F2S) i.e. Largest weighted de-
gree (F2H) and second largest weighted de-
gree (F2S) of the saliency graph considering
the fixation duration of the word of node i of
edge Eij as edge weight.

4. Forward Saccade Count as Edge Weight
(FSH, FSS) i.e. Largest weighted degree
(FSH) and second largest weighted degree
(FSS) of the saliency graph considering the
number of forward saccades between nodes i
and j of an edge Eij as edge weight..

5. Forward Saccade Distance as Edge Weight
(FSDH, FSDS) i.e. Largest weighted degree
(FSDH) and second largest weighted degree
(FSDS) of the saliency graph considering the
total distance (word count) of forward sac-
cades between nodes i and j of an edge Eij

as edge weight.

6. Regressive Saccade Count as Edge Weight
(RSH, RSS) i.e. Largest weighted degree
(RSH) and second largest weighted degree
(RSS) of the saliency graph considering the
number of regressive saccades between nodes
i and j of an edge Eij as edge weight.

7. Regressive Saccade Distance as Edge
Weight (RSDH, RSDS) i.e. Largest
weighted degree (RSDH) and second largest
weighted degree (RSDS) of the saliency
graph considering the number of regressive
saccades between nodes i and j of an edge
Eij as edge weight.

The ”highest and second highest degree” based
gaze features derived from saliency graphs are mo-
tivated by our qualitative observations from the
gaze data. Intuitively, the highest weighted degree
of a graph is expected to be higher if some phrases
have complex semantic relationships with others.

4.6 Features Related to Reading Difficulty
Eye-movement during reading text with sentiment
related nuances (like sarcasm) can be similar to
text with other forms of difficulties. To address the
effect of sentence length, word length and syllable
count that affect reading behavior, we consider the
following features.

1. Readability Ease (RED) i.e. Flesch Read-
ability Ease score of the text (Kincaid et al.,
1975). Higher the score, easier is the text to
comprehend.

2. Sentence Length (LEN) i.e. Number of
words in the sentence.

We now explain our experimental setup and re-
sults.

5 Experiments and results

We test the effectiveness of the enhanced feature-
set by implementing three classifiers viz., SVM
(with linear kernel), NB and Multi-layered Neural
Network. These systems are implemented using

161



Classifier Näive Bayes SVM Multi-layer NN
Dataset 1

P R F P R F P R F
Uni 58.5 57.3 57.9 67.8 68.5 68.14 65.4 65.3 65.34
Sn 58.7 57.4 58.0 69.6 70.2 69.8 67.5 67.4 67.5

Sn + Sr 63.0 59.4 61.14 72.8 73.2 72.6 69.0 69.2 69.1
Gz 61.8 58.4 60.05 54.3 52.6 53.4 59.1 60.8 60

Sn+Gz 60.2 58.8 59.2 69.5 70.1 69.6 70.3 70.5 70.4
Sn+ Sr+Gz 63.4 59.6 61.4 73.3 73.6 73.5 70.5 70.7 70.6

Dataset 2
Uni 51.2 50.3 50.74 57.8 57.9 57.8 53.8 53.9 53.8
Sn 51.1 50.3 50.7 62.5 62.5 62.5 58.0 58.1 58.0

Sn+Sr 50.7 50.1 50.39 70.3 70.3 70.3 66.8 66.8 66.8
Gz 49.9 50.9 50.39 48.9 48.9 48.9 53.6 54.0 53.3

Sn+Gz 51 50.3 50.6 62.4 62.3 62.3 59.7 59.8 59.8
Sn+ Sr+Gz 50.2 49.7 50 71.9 71.8 71.8 69.1 69.2 69.1

Table 2: Results for different feature combinations. (P,R,F)→ Precision, Recall, F-score. Feature labels
Uni→Unigram features, Sn→Sentiment features, Sr→Sarcasm features and Gz→Gaze features along
with features related to reading difficulty

the Weka (Hall et al., 2009) and LibSVM (Chang
and Lin, 2011) APIs. Several classifier hyperpa-
rameters are kept to the default values given in
Weka. We separately perform a 10-fold cross val-
idation on both Dataset 1 and 2 using different
sets of feature combinations. The average F-scores
for the class-frequency based random classifier are
33% and 46.93% for dataset 1 and dataset 2 re-
spectively.

The classification accuracy is reported in Ta-
ble 2. We observe the maximum accuracy with the
complete feature-set comprising Sentiment, Sar-
casm and Thwarting, and Cognitive features de-
rived from gaze data. For this combination, SVM
outperforms the other classifiers. The novelty of
our feature design lies in (a) First augmenting sar-
casm and thwarting based features (Sr) with sen-
timent features (Sn), which shoots up the accu-
racy by 3.1% for Dataset1 and 7.8% for Dataset2
(b) Augmenting gaze features with Sn+Sr, which
further increases the accuracy by 0.6% and 1.5%
for Dataset 1 and 2 respectively, amounting to
an overall improvement of 3.7% and 9.3% re-
spectively. It may be noted that the addition of
gaze features may seem to bring meager improve-
ments in the classification accuracy but the im-
provements are consistent across datasets and sev-
eral classifiers. Still, we speculate that aggregating
various eye-tracking parameters to extract the cog-
nitive features may have caused loss of informa-

tion, there by limiting the improvements. For ex-
ample, the graph based features are computed for
each participant and eventually averaged to get the
graph features for a sentence, thereby not lever-
aging the power of individual eye-movement pat-
terns. We intend to address this issue in future.

Since the best (Sn + Sr + Gz) and the second
best feature (Sn + Sr) combinations are close in
terms of accuracy (difference of 0.6% for dataset
1 and 1.5% for dataset 2), we perform a statistical
significance test using McNemar test (α = 0.05).
The difference in the F-scores turns out to be
strongly significant with p = 0.0060 (The odds
ratio is 0.489, with a 95% confidence interval).
However, the difference in the F-scores is not sta-
tistically significant (p = 0.21) for dataset 2 for
the best and second best feature combinations.

5.1 Importance of cognitive features

We perform a chi-squared test based feature sig-
nificance analysis, shown in Table 3. For dataset 1,
10 out of the top 20 ranked features are gaze-based
features and for dataset 2, 7 out of top 20 features
are gaze-based, as shown in bold letters. More-
over, if we consider gaze features alone for fea-
ture ranking using chi-squared test, features FC,
SL, FSDH, FSDS, RSDH and RSDS turn out to be
insignificant.

To study whether the cognitive features actu-
ally help in classifying complex output as hypoth-
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Rank Dataset 1 Dataset 2
1 PosScore LP
2 LP Negative Words
3 NGRAM PCA 1 Positive Words
4 FDUR NegCount
5 F1H PosCount
6 F2H NGRAM PCA 1
7 NGRAM PCA 2 IMPLICIT PCA 1
8 F1S FC
9 ADJ FDUR
10 F2S NGRAM PCA 2
11 NGRAM PCA 3 SL
12 NGRAM PCA 4 LREG
13 RSS SKIP
14 FSDH RSF
15 FSDS F1H
16 IMPLICIT PCA 1 RED
17 LREG LEN
18 SKIP PUNC
19 IMPLICIT PCA 2 IMPLICIT PCA 2

Table 3: Features as per their ranking for both
Dataset 1 and Dataset 2. Integer values N in
NGRAM PCA N and IMPLICIT PCA N repre-
sent the N th principal component.

Irony Non-Irony
Sn 58.2 75.5

Sn+Sr 60.1 75.9
Gz+Sn+Sr 64.3 77.6

Table 4: F-scores on held-out dataset for Com-
plex Constructs (Irony), Simple Constructs (Non-
irony)

esized earlier, we repeat the experiment on a held-
out dataset, randomly derived from Dataset 1. It
has 294 text snippets out of which 131 contain
complex constructs like irony/sarcasm and rest of
the snippets are relatively simpler. We choose
SVM, our best performing classifier, with similar
configuration as explained in section 5. As seen
in Table 4, the relative improvement of F-score,
when gaze features are included, is 6.1% for com-
plex texts and is 2.1% for simple texts (all the val-
ues are statistically significant with p < 0.05 for
McNemar test, except Sn and Sn + Sr for Non-
irony case.). This demonstrates the efficacy of the
gaze based features.

Table 5 shows a few example cases (obtained
from test folds) showing the effectiveness of our
enhanced feature set.

6 Feasibility of our approach

Since our method requires gaze data from human
readers to be available, the methods practicability

becomes questionable. We present our views on
this below.

6.1 Availability of Mobile Eye-trackers

Availability of inexpensive embedded eye-trackers
on hand-held devices has come close to reality
now. This opens avenues to get eye-tracking
data from inexpensive mobile devices from a huge
population of online readers non-intrusively, and
derive cognitive features to be used in predic-
tive frameworks like ours. For instance, Co-
gisen: (http://www.sencogi.com) has a patent (ID:
EP2833308-A1) on “eye-tracking using inexpen-
sive mobile web-cams”. Wood and Bulling (2014)
have introduced EyeTab, a model-based approach
for binocular gaze estimation that runs entirely on
tablets.

6.2 Applicability Scenario

We believe, mobile eye-tracking modules could be
a part of mobile applications built for e-commerce,
online learning, gaming etc. where automatic
analysis of online reviews calls for better solutions
to detect and handle linguistic nuances in senti-
ment analysis setting. To give an example, let’s
say a book gets different reviews on Amazon. Our
system could watch how readers read the review
using mobile eye-trackers, and thereby, decide the
polarity of opinion, especially when sentiment is
not expressed explicitly (e.g., using strong polar
words) in the text. Such an application can hori-
zontally scale across the web, helping to improve
automatic classification of online reviews.

6.3 Getting Users’ Consent for Eye-tracking

Eye-tracking technology has already been uti-
lized by leading mobile technology developers
(like Samsung) to facilitate richer user experiences
through services like Smart-scroll (where a user’s
eye movement determines whether a page has to
be scrolled or not) and Smart-lock (where user’s
gaze position decided whether to lock the screen
or not). The growing interest of users in us-
ing such services takes us to a promising situa-
tion where getting users’ consent to record eye-
movement patterns will not be difficult, though it
is yet not the current state of affairs.

7 Conclusion

We combined traditional sentiment features with
(a) different textual features used for sarcasm and
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Sentence Gold SVM Ex. NB Ex. RB Ex. Sn Sn+Sr Sn+Sr+Gz
1. I find television very educating. Every
time somebody turns on the set, I go into
the other room and read a book

-1 1 1 0 1 -1 -1

2. I love when you do not have two minutes
to text me back. -1 1 -1 1 1 1 -1

Table 5: Example test-cases from the heldout dataset. Labels Ex→Existing classifier, Sn→Sentiment
features, Sr→Sarcasm features and Gz→Gaze features. Values (-1,1,0)→ (negative,positive,undefined)

thwarting detection, and (b) cognitive features de-
rived from readers’ eye movement behavior. The
combined feature set improves the overall accu-
racy over the traditional feature set based SA by a
margin of 3.6% and 9.3% respectively for Datasets
1 and 2. It is significantly effective for text with
complex constructs, leading to an improvement of
6.1% on our held-out data. In future, we pro-
pose to explore (a) devising deeper gaze-based
features and (b) multi-view classification using in-
dependent learning from linguistics and cognitive
data. We also plan to explore deeper graph and
gaze features, and models to learn complex gaze
feature representation. Our general approach may
be useful in other problems like emotion analy-
sis, text summarization and question answering,
where textual clues alone do not prove to be suffi-
cient.
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Abstract

We introduce a deep neural network for
automated sarcasm detection. Recent
work has emphasized the need for mod-
els to capitalize on contextual features, be-
yond lexical and syntactic cues present in
utterances. For example, different speak-
ers will tend to employ sarcasm regard-
ing different subjects and, thus, sarcasm
detection models ought to encode such
speaker information. Current methods
have achieved this by way of laborious
feature engineering. By contrast, we pro-
pose to automatically learn and then ex-
ploit user embeddings, to be used in con-
cert with lexical signals to recognize sar-
casm. Our approach does not require elab-
orate feature engineering (and concomi-
tant data scraping); fitting user embed-
dings requires only the text from their
previous posts. The experimental results
show that the our model outperforms a
state-of-the-art approach leveraging an ex-
tensive set of carefully crafted features.

1 Introduction

Existing social media analysis systems are ham-
pered by their inability to accurately detect and in-
terpret figurative language. This is particularly rel-
evant in domains like the social sciences and poli-
tics, in which the use of figurative communication
devices such as verbal irony (roughly, sarcasm) is
common. Sarcasm is often used by individuals to
express opinions on complex matters and regard-
ing specific targets (Carvalho et al., 2009).

Early computational models for verbal irony
and sarcasm detection tended to rely on shallow
methods exploiting conditional token count reg-
ularities. But lexical clues alone are insufficient

Figure 1: An illustrative tweet.

to discern ironic intent. Appreciating the con-
text of utterances is critical for this; even for hu-
mans (Wallace et al., 2014). Indeed, the exact
same sentence can be interpreted as literal or sar-
castic, depending on the speaker. Consider the
sarcastic tweet in Figure 1 (ignoring for the mo-
ment the attached #sarcasm hashtag). Without
knowing the author’s political leanings, it would
be difficult to conclude with certainty whether the
remark was intended sarcastically or in earnest.

Recent work in sarcasm detection on social me-
dia has tried to incorporate contextual information
by exploiting the preceding messages of a user, to
e.g., detect contrasts in sentiments expressed to-
wards named entities (Khattri et al., 2015), infer
behavioural traits (Rajadesingan et al., 2015) and
capture the relationship between authors and the
audience (Bamman and Smith, 2015). However,
all of these approaches require the design and im-
plementation of complex features that explicitly
encode the content and (relevant) context of mes-
sages to be classified. This feature engineering
is labor intensive, and depends on external tools
and resources. Therefore, deploying such systems
in practice is expensive, time-consuming and un-
wieldy.

We propose a novel approach to sarcasm detec-
tion on social media that does not require exten-
sive manual feature engineering. Instead, we de-
velop a neural model that learns to represent and
exploit embeddings of both content and context.
For the former, we induce vector lexical repre-
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sentations via a convolutional layer; for the latter,
our model learns user embeddings. Inference con-
cerning whether an utterance (tweet) was intended
ironically (or not) is then modelled as a joint func-
tion of lexical representations and corresponding
author embeddings.

The main contributions of this paper are as fol-
lows. (i) We propose a novel convolutional neu-
ral network based model that explicitly learns and
exploits user embeddings in conjunction with fea-
tures derived from utterances. (ii) We show that
this model outperforms the strong baseline re-
cently proposed by Bamman and Smith (2015) by
more than 2% in absolute accuracy, while obviat-
ing the need to manually engineer features. (iii)
We show that the learned user embeddings can
capture relevant user attributes.

2 Related Work

Verbal irony is a rhetorical device in which speak-
ers say something other than, and often opposite
to, what they actually mean.1 Sarcasm may be
viewed as a special case of irony, where the posi-
tive literal meaning is perceived as an indirect in-
sult (Dews et al., 1995).

Most of the previously proposed computational
models to detect irony and sarcasm have used fea-
tures similar to those used in sentiment analy-
sis. Carvalho et al. (2009) analyzed comments
posted by users on a Portuguese online newspa-
per and found that oral and gestural cues indicate
irony. These included: emoticons, onomatopoeic
expressions for laughter, heavy punctuation, quo-
tation marks and positive interjections. Others
have used text classifiers with features based on
word and character n-grams, sentiment lexicons,
surface patterns and textual markers (Davidov et
al., 2010; González-Ibánez et al., 2011; Reyes et
al., 2013; Lukin and Walker, 2013). Elsewhere,
Barbieri and Saggion (2014) derived new word-
frequency based features to detect irony, e.g., com-
binations of frequent and rare words, ambiguous
words, ‘spoken style’ words combined with ‘writ-
ten style’ words and intensity of adjectives. Riloff
et al. (2013) demonstrated that one may exploit
the apparent expression of contrasting sentiment
in the same utterance as a marker of verbal irony.

The aforementioned approaches rely predomi-
nantly on features intrinsic to texts, but these will

1Like other forms of subjective expression, irony and sar-
casm are difficult to define precisely.

often be insufficient to infer figurative meaning:
context is needed. There have been some recent
attempts to exploit contextual information, e.g.
Khattri et al. (2015) extended the notion of con-
trasting sentiments beyond the textual content at
hand. In particular, they analyzed previous posts
to estimate the author’s prior sentiment towards
specific targets (i.e., entities). A tweet is then pre-
dicted to be sarcastic if it expresses a sentiment
about an entity that contradicts the author’s (esti-
mated) prior sentiment regarding the same.

Rajadesingan et al. (2015) built a system based
on theories of sarcasm expression from psychol-
ogy and behavioral sciences. To operationalize
such theories, they used several linguistic tools
and resources (e.g. lexicons, sentiment classifiers
and a PoS tagger), in addition to user profile in-
formation and previous posts, to model a range
of behavioural aspects (e.g., mood, writing style).
Wallace et al. (2015) developed an approach for
classifying posts on reddit2 as sarcastic or literal,
based in part on the interaction between the spe-
cific sub-reddit to which a post was made, the
entities mentioned, and the (apparent) sentiment
expressed. For example, if a post in the (polit-
ically) conservative sub-reddit mentions Obama,
it is more likely to have been intended ironically
than posts mentioning Obama in the progressive
sub-reddit. But this approach is limited because it
relies on the unique sub-reddit structure. Bamman
and Smith (2015) proposed an approach that relied
on an extensive, rich set of features capturing vari-
ous contextual information about authors of tweets
and the audience (in addition to lexical cues). We
review these at length in Section 5.1.

A major downside of these and related ap-
proaches, however, is the amount of manual ef-
fort required to derive these feature sets. A pri-
mary goal of this work is to explore whether neural
models can effectively learn these rich contextual-
izing features, thus obviating the need to manually
craft them. In particular, the model we propose
similarly aims to combine lexical clues with extra-
linguistic information. Unlike prior work, how-
ever, our model attempts to automatically induce
representations for the content and the author of a
message that are predictive of sarcasm.

2http://reddit.com is a social news aggregation
site comprising specific topical sub-reddits.
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3 Learning User Embeddings

Our goal is to learn representations (vectors) that
encode latent aspects of users and capture ho-
mophily, by projecting similar users into nearby
regions of the embedding space. We hypothe-
size that such representations will naturally cap-
ture some of the signals that have been described
in the literature as important indicators of sarcasm,
such as contrasts between what someone believes
and what they have ostensibly expressed (Camp-
bell and Katz, 2012) or Kreuz (1996) principle of
inferability, stating that sarcasm requires a com-
mon ground between parties to be understood.

To induce the user embeddings, we adopt an ap-
proach similar to that described in the preliminary
work of Li et al. (2015). In particular, we capture
relations between users and the content they pro-
duce by optimizing the conditional probability of
texts, given their authors (or, more precisely, given
the vector representations of their authors). This
method is akin to Le and Mikolov (2014)’s Para-
graph Vector model, which jointly estimates em-
beddings for words and paragraphs by learning to
predict the occurrence of a word w within a para-
graph p conditioned on the (learned) representa-
tion for p.

Given a sentence S = {w1, . . . , wN} where wi

denotes a word drawn from a vocabulary V , we
aim to maximize the following probability:

P (S|userj) =
∑
wi∈S

logP (wi|uj)

+
∑
wi∈S

∑
wk∈C(wi)

logP (wi|ek)
(1)

Where C(wi) denotes the set of words in a pre-
specified window around word wi, ek ∈ Rd and
uj ∈ Rd denote the embeddings of word k and
user j, respectively. This objective function en-
codes the notion that the occurrence of a word w,
depends both on the author of S and it’s neigh-
bouring words.

The conditional probabilities in Equation 1 can
be estimated with log-linear models of the form:

P (wi|x) =
exp(Wi · x + bi)∑Y

k=1 exp(Wk · x + bk)
(2)

Where x denotes a feature vector, Wk and bk are
the weight vectors and bias for class k. In our
case, we treat words as classes to be predicted.

Calculating the denominator thus requires sum-
ming over all of the words in the (large) vocabu-
lary, an expensive operation. To avoid this com-
putational bottleneck, we approximate the term
P (wi|ek) with Morin and Bengio (2005) Hierar-
chical Softmax.3

To learn meaningful user embeddings, we seek
representations that are predictive of individual
word-usage patterns. In light of this motiva-
tion, we approximate P (wi|uj) via the following
hinge-loss objective which we aim to minimize:

L(wi, userj) =∑
wl∈V,wl 6∈S

max(0, 1− ei · uj + el · uj)

(3)

Here, each wl (and corresponding embedding, el)
is a negative example, i.e., a word not in the sen-
tence under consideration, which was authored by
user j. The intuition is that in the aggregate, such
words are less likely to be employed by user j than
words observed in sentences she has authored.
Thus minimizing this objective attempts to induce
a representation that is discriminative with respect
to word usage.

In practice, V will be very large and hence we
approximate the objective via negative sampling, a
variant of Noise Contrastive Estimation. The idea
is to approximate the objective function in a binary
classification task by learning to discriminate be-
tween observed positive examples (sampled from
the true distribution) and pseudo-negative exam-
ples (sampled from a large space of predominantly
negative instances). Intuitively, this shifts prob-
ability mass to plausible observations. See Dyer
(2014) for notes on Negative Sampling and Noise
Contrastive Estimation.

Previous work by Collobert et al. (2011)
showed that this approach works well in represen-
tation learning tasks when a sufficient amount of
training data is available . However, we have ac-
cess to only a limited amount of text for each user
(see Section 5). We hypothesize that this problem
can be alleviated by carefully selecting the nega-
tive samples that mostly contribute to ‘push’ the
vectors into the appropriate region of the embed-
ding space (i.e., closer to the words commonly em-
ployed by a given user and far from other words).

3As implemented in Gensim (Řehůřek and Sojka, 2010).
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This requires designing a strategy for selectively
sampling negative examples. One straightforward
approach would be to sample from a user-specific
unigram model, informing which words are less
likely to be utilized by that user. But estimating the
parameters of such model with scarce data would
be prone to overfitting. Instead, we sample from a
unigram distribution estimated from the posts au-
thored by all the users. The goal is to select the
most commonly used words as the negative sam-
ples, thereby forcing the representations to capture
the differences between the words a given indi-
vidual employs and the words that everyone com-
monly uses.

4 Proposed Model

We now present the details of our proposed sar-
casm detection model. Given a message S au-
thored by user u, we wish to capture both the rel-
evant aspects of the content and the relevant con-
textual information about the author. To represent
the content, we use pre-trained word embeddings
as the input to a convolutional layer that extracts
high-level features. More formally, let E ∈ Rd×|V|

be a pre-trained word embedding matrix, where
each column represents a word from the vocabu-
lary V as a d dimensional vector. By selecting the
columns of E corresponding to the words in S, we
form the sentence matrix:

S =

 e1
...

em

 (4)

A convolutional layer is composed of a set of
filters F ∈ Rd×h where h is the height of the
filter. Filters slide across the input, extracting h-
gram features that constitute a feature map m ∈
R|S|−h+1, where each entry is obtained as

mi = α(F · S[i:i−h+1] + b) (5)

with i = 1, . . . i − h + 1. Here, S[i:j] de-
notes a sub-matrix of S (from row i to row j),
b ∈ R is an additive bias and α(·) denotes a
non-linear activation function, applied element-
wise. We transform the resultant feature map
into a scalar using max-pooling, i.e., we extract
the largest value in the map. We use 3 filters
(with varying heights) each of which gener-
ates M feature maps that are reduced to a vector
fk = [max(m1) ⊕max(m2) . . .⊕ max(mM )],

where ⊕ denotes concatenation. We set α(·) to be
the Rectified Linear Unit activation function (Nair
and Hinton, 2010). The output of all the filters
is then combined to form the final representation
c = [f1 ⊕ f2 ⊕ f3]. We will denote this feature
vector of a specific sentence S by cS .

To represent the context, we assume there is a
user embedding matrix U ∈ Rd×N , where each
column represents one of N users with a d dimen-
sional vector. The parameters of this embedding
matrix can be initialized randomly or using the ap-
proach described in Section 3. Then, we simply
map the author of the message into the user em-
bedding space by selecting the corresponding col-
umn of U. Letting Uu denote the user embedding
of author u, we formulate our sarcasm detection
model as follows:

P (y = k|s, u; θ) ∝ Yk · g(cS ⊕Uu) + bk

g(x) = α(H · x + h)
(6)

where g(·) denote the activations of a hid-
den layer, capturing the relations between
the content and context representations, and
θ = {Y,b,H,h,F1,F2,F3,E,U} are parame-
ters to be estimated during training. Here, Y ∈
R2×z and b ∈ R2 are the weights and bias of the
output layer; H ∈ Rz×3M+d and h ∈ Rz are the
weights and bias of the hidden layer; and Fi are
the weights of the convolutional filters. Hence-
forth, we will refer to this approach as Content
and User Embedding Convolutional Neural Net-
work (CUE-CNN). Figure 2 provides an illustra-
tive schematic depicting this model.

5 Experimental Setup

We replicated Bamman and Smith (2015) exper-
imental setup using (a subset of) the same Twit-
ter corpus. The labels were inferred from self-
declarations of sarcasm, i.e., a tweet is considered
sarcastic if it contains the hashtag #sarcasm or
#sarcastic and deemed non-sarcastic other-
wise.4 To comply with Twitter terms of service,
we were given only the tweet ids along with the
corresponding labels and had to retrieve the mes-
sages ourselves. By the time we tried to retrieve
the messages, some of them were not available.
We also did not have access to the historical user
tweets used by Bamman and Smith, hence, for

4Note that this is a form of noisy supervision, as of course
all sarcastic tweets will not be explicitly flagged as such.

170



Figure 2: Illustration of the CUE-CNN model for sarcasm detection. The model learns to represent and
exploit embeddings of both content and users in social media.

each author and mentioned user, we scraped ad-
ditional tweets from their Twitter feed. Due to re-
strictions in the Twitter API, we were only able
to crawl at most 1000 historical tweets per user.5

Furthermore, we were unable to collect historical
tweets for a significant proportion of the users,
thus, we discarded messages for which no con-
textual information was available, resulting in a
corpus of 11, 541 tweets involving 12, 500 unique
users (authors and mentioned users). It should also
be noted that our historical tweets were posted af-
ter the ones in the corpus used for the experiments.

5.1 Baselines

We reimplemented Bamman and Smith (2015)’s
sarcasm detection model. This a simple, logistic-
regression based classifier that exploits rich fea-
ture sets to achieve strong performance. These
are detailed at length in the original paper, but we
briefly summarize them here:

• tweet-features, encoding attributes of the
target tweet text, including: uni- and bi-
gram bag of words (BoW) features; Brown
et al. (1992) word clusters indicators; unla-
beled dependency bigrams (both BoW and
with Brown cluster representations); part-of-
speech, spelling and abbreviation features;
inferred sentiment, at both the tweet and
word level; and ‘intensifier’ indicators.

• author-features, aimed at encoding at-
tributes of the author, including: historically

5The original study (Bamman and Smith, 2015) was done
with at most 3, 200 historical tweets.

‘salient’ terms used by the author; the in-
ferred distribution over topics6 historically
tweeted about by the user; inferred sentiment
historically expressed by the user; and author
profile information (e.g., profile BoW fea-
tures).

• audience-features, capturing properties of
the addressee of tweets, in those cases that
a tweet is directed at someone (via the @
symbol). A subset of these, duplicate the
aforementioned author features for the ad-
dressee. Additionally, author/audience inter-
action features are introduced, which capture
similarity between the author and addressee,
w.r.t. inferred topic distributions. Finally,
this set includes a feature capturing the fre-
quency of past communication between the
author and addressee.

• response-features, for tweets written in re-
sponse to another tweet. This set of fea-
tures captures information relating the two,
with BoW features of the original tweet and
pairwise cluster indicator features, which the
encode Brown clusters observed in both the
original and response tweet.

We emphasize that implementing this rich set
of features took considerable time and effort. This
motivates our approach, which aims to effectively
induce and exploit contextually-aware representa-
tions without manual feature engineering.

6The topics were extracted from Latent Dirichlet Alloca-
tion (Blei et al., 2003).
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To assess the importance of modelling contex-
tual information in sarcasm detection, we consid-
ered two groups of models as baselines: the first
only takes into account the content of a target
tweet. The second, combines lexical cues with
contextual information. The first group includes
the following models:

• UNIGRAMS: `2-regularized logistic regres-
sion classifier with binary unigrams as fea-
tures.

• TWEET ONLY: `2-regularized logistic re-
gression classifier with binary unigrams and
tweet-features.

• NBOW: Logistic regression with neural word
embeddings as features. Given a sentence
matrix S (Eq. 4) as input, a d-dimensional
feature vector is computed by summing the
individual word embeddings.

• NLSE: The Non-linear subspace embedding
model due to Astudillo et al. (2015). The
NLSE model adapts pre-trained word embed-
dings for specific tasks by learning a pro-
jection into a small subspace. The idea is
that this subspace captures the most discrim-
inative latent aspects encoded in the word
embeddings. Given a sentence matrix S,
each word vector is first projected into the
subspace and then transformed through an
element-wise sigmoid function. The final
sentence representation is obtained by sum-
ming the (adapted) word embeddings and
passed into a softmax layer that outputs the
predictions.

• CNN: The CNN model for text classification
proposed by Kim (2014), using only features
extracted from the convolutional layer act-
ing on the lexical content. The input layer
was initialized with pre-trained word embed-
dings.

The second group of baselines consists of the
following models:

• TWEET+*: `2-regularized logistic regres-
sion classifier with a combination of tweet-
features and each of the aforementioned
Bamman and Smith (2015) feature sets.

• SHALLOW CUE-CNN: A simplified version
of our neural model for sarcasm detection,
without the hidden layer. We evaluated two

variants: initializing the user embeddings
at random, and initializing the user embed-
dings with the approach described in Section
3 (SHALLOW CUE-CNN+USER2VEC). In
both cases, the (word and user) embeddings
weights were updated during training.

• CUE-CNN+*: Our proposed neural net-
work for sarcasm detection. We also eval-
uated the two aforementioned variants: ran-
domly initialized user embeddings and pre-
trained user embeddings. But here we
compared two different approaches for the
negative sampling procedure, namely, sam-
pling from a unigram distribution (CUE-
CNN+USER2VEC) and sampling uniformly
at random from the vocabulary (CUE-
CNN+USER2VEC-UNIFRAND).

5.2 Pre-Training Word and User
Embeddings

We first trained Mikolov et al. (2013)’s skip-gram
model variant to induce word embeddings using
the union of: Owoputi et al. (2013)’s dataset of
52 Million unlabeled tweets, Bamman and Smith
(2015) sarcasm dataset and 5 Million historical
tweets collected from users.

To induce user embeddings, we estimated a un-
igram distribution with maximum likelihood es-
timation. Then, for each word in a tweet, we
extracted 15 negative samples (for the first term
in Eq.1) and used the skip-gram model to pre-
compute the conditional probabilities of words oc-
curring in a window of size 5 (for the second term
in Eq.1). Finally, Equation 1 was minimized via
Stochastic Gradient Descent on 90% of the histor-
ical data, holding out the remainder for validation
and using the P (tweet text|user) as early stopping
criteria.

Note that the parameters for each user only de-
pend on their own tweets; this allowed us to per-
form these computations in parallel to speed-up
the training.

m

5.3 Model Training and Evaluation
Evaluation was performed via 10-fold cross-
validation. For each split, we fit models to 80%
of the data, tuned them on 10% and tested on the
remaining, held-out 10%. These data splits were
kept fixed in all the experiments. For the linear
classifiers, in each split, the regularization con-
stant was selected with a linear search over the
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(a) Performance of the linear classifier baselines. We include
the results reported by Bamman and Smith (2015) as a refer-
ence. Discrepancies between their reported results and those
we achieved with our re-implementation reflect the fact that
their experiments were performed using a significantly larger
training set and more historical tweets than we had access to.

(b) Performance of the proposed neural models. We compare
simple neural models that only consider the lexical content of a
message (first 3 bars) with architectures that explicitly model
the context. Bars 4 and 5 show the gains obtained by pre-
training the user embeddings. The last 2 bars compare dif-
ferent negative sampling procedures for the user embedding
pre-training.

Figure 3: Comparison of different models. The left sub-plot shows linear model performance; the right
shows the performance of neural variants. The horizontal line corresponds to the best performance
achieved via linear models with rich feature sets. Performance was measured in terms of average accu-
racy over 10-fold cross-validation; error bars depict the variance.

range C = [1e−4, 1e−3, 1e−2, 1e−1, 1, 10] using
the training set to fit the model and evaluating on
the tuning set. After selecting the best regular-
ization constant, the model was re-trained on the
union of the train and tune sets, and evaluated on
the test set.

To train our neural model, we first had to
choose a suitable architecture and hyperpa-
rameter set. However, selecting the optimal
network parametrization would require an ex-
tensive search over a large configuration space.
Therefore, in these experiments, we followed
the recommendations in Zhang and Wallace
(2015), focusing our search over combinations of
dropout ratesD = [0.0, 0.1, 0.3, 0.5], filter heights
H = [(1, 3, 5), (2, 4, 6), (3, 5, 7), (4, 6, 8), (5, 7, 9)],
number of feature maps M = [100, 200, 400, 600]
and size of the hidden layer Z = [25, 50, 75, 100].

We performed random search by sampling with-
out replacement over half of the possible configu-
rations. For each data split, 20% of the training
set was reserved for early stopping. We compared
the sampled configurations by fitting the model on
the remaining training data and testing on the tune
set. After choosing the best configuration, we re-
trained the model on the union of the train and tune
set (again reserving 20% of the data for early stop-
ping) and evaluated on the test set.

The model was trained by minimizing the cross-
entropy error between the predictions and true la-
bels, the gradients w.r.t to the network parameters
were computed with backpropagation (Rumelhart
et al., 1988) and the model weights were updated
with the AdaDelta rule (Zeiler, 2012).

6 Results

6.1 Classification Results

Figure 3 presents the main experimental results.
In Figure 3a, we show the performance of lin-
ear classifiers with the manually engineered fea-
ture sets proposed by Bamman and Smith (2015).
Our results differ slightly from those originally re-
ported. Nonetheless, we observe the same general
trends: namely, that including contextual features
significantly improves the performance, and that
the biggest gains are attributable to features encod-
ing information about the authors of tweets.

The results of neural model variants are shown
in Figure 3b. Once again, we find that modelling
the context (i.e., the author) of a tweet yields sig-
nificant gains in accuracy. The difference is that
here the network jointly learns appropriate user
representations, lexical feature extractors and, fi-
nally, the classification model. Further improve-
ments are realized by pre-training the user embed-

173



(a) Users colored according to the politicians they follow on
Twitter: the blue circles represent users that follow at least one
of the (democrats) accounts: @BarackObama, @HillaryClin-
ton and @BernieSanders; the red circles represent users that
follow at least one of the (republicans) accounts: @marcoru-
bio, @tedcruz and @realDonaldTrump. Users that follow ac-
counts from both groups were excluded. We can see that users
with a similar political leaning tend to have similar vectors.

(b) Users colored with respect to the likelihood of following a
sports account. The 500 most popular accounts (according to
the authors in our training data) were manually inspected and
100 sports related accounts were selected, e.g., @SkySports,
@NBA and @cristiano. We should note that users for which
the probabilities lied in the range between 0.3− 0.7 were dis-
carded to emphasize the extremes.

Figure 4: T-SNE projection of the user embeddings into 2-dimensions. The users are color coded ac-
cording to their political preferences and interest in sports. The visualization suggests that the learned
embeddings capture some notion of homophily.

dings (we elaborate on this in the following sec-
tion). We see additional gains when we introduce
a hidden layer capturing the interactions between
the context (i.e., user vectors) and the content (lex-
ical vectors). This is intuitively agreeable: the
recognition of sarcasm is possible when we jointly
consider the speaker and the utterance at hand. In-
terestingly, we observed that our proposed model
not only outperforms all the other baselines, but
also shows less variance over the cross-validation
experiments.

Finally, we compared the effect of obtaining
negative samples uniformly at random with sam-
pling from a unigram distribution. The experimen-
tal results show that the latter improves the accu-
racy of the model by 0.8%. We believe the reason
is that considering the most likely words (under
the model) as negative samples, helps by pushing
the user vectors away from non-informative words
and simultaneously closer to the most discrimina-
tive words for that user.

6.2 User Embedding Analysis

We now investigate the user embeddings in more
detail. In particular, we are interested in two ques-
tions: first, what aspects are being captured in
these representations; and second, how they con-
tribute to the improved performance of our model.

Figure 5: Two sarcastic examples that were mis-
classified by a simple CNN (no user). Using
the CUE-CNN with contextual information drasti-
cally changes the model’s predictions on the same
examples.

To investigate the first question, we plotted a T-
SNE projection (Maaten and Hinton, 2008) of the
high-dimensional vector space where the users are
represented into two-dimensions. We then colored
each point (representing a user) according to their
apparent political leaning (Figure 4a), and accord-
ing to their interest in sports (Figure 4b). These
attributes were inferred using the Twitter accounts
that a user follows, as a proxy. The plots sug-
gest that the user vectors are indeed able to cap-
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ture latent aspects, such as political preferences
and personal interests. Moreover, the embeddings
seem to uncover a notion of homophily, i.e. sim-
ilar users tend to occupy neighbouring regions of
the embedding space. Regarding the second ques-
tion, we examined the influence of the contextual
information on the model’s predictions. To this
end, we measured the response of our model to
the same textual content with different hypothet-
ical contexts (authors). We selected two exam-
ples that were misclassified by a simple CNN and
ran them trough the CUE-CNN model with three
different user embeddings. In Figure 5, we show
these examples along with the predicted probabil-
ities of being a sarcastic post, when no user in-
formation is considered and when the author is
taken into account. We can see that the predic-
tions drastically change when contextual informa-
tion is available and that two of the authors trigger
similar responses on both examples. This example
provides evidence that our model captures the in-
tuition that the same utterance can be interpreted
as sarcastic or not, depending on the speaker.

7 Conclusions

We have introduced CUE-CNN, a novel, deep
neural network for automatically recognizing sar-
castic utterances on social media. Our model
jointly learns and exploits embeddings for the con-
tent and users, thus integrating information about
the speaker and what he or she has said. This is
accomplished without manual feature engineering.
Nonetheless, our model outperforms (by over 2%
in absolute accuracy) a recently proposed state-
of-the-art model that exploits an extensive, hand-
crafted set of features encoding user attributes and
other contextual information. Unlike other ap-
proaches that explicitly exploit the structure of
particular social media services, such as the forum
where a message was posted or metadata about
the users, learning user embeddings only requires
their preceding messages. Yet, the obtained vec-
tors are able to capture relevant user attributes and
a soft notion of homophily. This, we believe,
makes our model easier to deploy over different
social media environments.

Our implementation of the proposed method
and the datasets used in this paper have been made
publicly available7. As future work, we intended
to further explore the user embeddings for context

7https://github.com/samiroid/CUE-CNN

representation, namely by also incorporating the
interaction between the author and the audience
into the model.
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Abstract

Cross lingual projection of linguistic an-
notation suffers from many sources of bias
and noise, leading to unreliable annota-
tions that cannot be used directly. In this
paper, we introduce a novel approach to
sequence tagging that learns to correct the
errors from cross-lingual projection using
an explicit debiasing layer. This is framed
as joint learning over two corpora, one
tagged with gold standard and the other
with projected tags. We evaluated with
only 1,000 tokens tagged with gold stan-
dard tags, along with more plentiful par-
allel data. Our system equals or exceeds
the state-of-the-art on eight simulated low-
resource settings, as well as two real low-
resource languages, Malagasy and Kin-
yarwanda.

1 Introduction

Part-of-speech (POS) tagging is a critical task
for natural language processing (NLP) applica-
tions, providing lexical syntactic information. Au-
tomatic POS tagging has been extremely suc-
cessful for many rich resource languages through
the use of supervised learning over large train-
ing corpora (McCallum et al., 2000; Lafferty et
al., 2001; Ammar et al., 2016). However, learn-
ing POS taggers for low-resource languages from
small amounts of annotated data is very challeng-
ing (Garrette and Baldridge, 2013; Duong et al.,
2014). For such problems, distant supervision via
heuristic methods can provide cheap but inaccu-
rately labelled data (Mintz et al., 2009; Takamatsu
et al., 2012; Ritter et al., 2013; Plank et al., 2014).
A compromise, considered here, is to use a mix-
ture of both resources: a small collection of clean
annotated data and noisy “distant” data.

A popular method for distant supervision is to
use parallel data between a low-resource language
and a rich-resource language. Although annotated
data in low-resource languages is difficult to ob-
tain, bilingual resources are more plentiful. For
example parallel translations into English are of-
ten available, in the form of news reports, nov-
els or the Bible. Parallel data allows annotation
from a high-resource language to be projected
across alignments to the low-resource language,
which has been shown to be effective for sev-
eral language processing tasks including POS tag-
ging (Yarowsky and Ngai, 2001; Das and Petrov,
2011), named entity recognition (Wang and Man-
ning, 2014) and dependency parsing (McDonald
et al., 2013).

Although cross-lingual POS projection is popu-
lar it has several problems, including errors from
poor word alignments and cross-lingual syntac-
tic divergence (Täckström et al., 2013; Das and
Petrov, 2011). Previous work has proposed heuris-
tics or constraints to clean the projected tag before
or during learning. In contrast, we consider com-
pensating for these problems explicitly, by learn-
ing a bias transformation to encode the mapping
between ‘clean’ tags and the kinds of tags pro-
duced from projection.

We propose a new neural network model for se-
quence tagging in a low-resource language, suit-
able for training with both a tiny gold standard an-
notated corpus, as well as distant supervision us-
ing cross-lingual tag projection. Our model uses
a bidirectional Long Short-Term Memory (BiL-
STM), which produces two types of output: gold
tags generated directly from the hidden states of a
neural network, and uncertain projected tags gen-
erated after applying a further linear transforma-
tion. This transformation, encodes the mapping
between the projected tags from the high-resource
language, and the gold tags in the target low-
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resource language, and learns when and how much
to trust the projected data. For example, for lan-
guages without determiners, the model can learn
to map projected determiner tags to nouns, or if
verbs are often poorly aligned, the model can learn
to effectively ignore the projected verb tag, by as-
sociating all tags with verbs. Our model is trained
jointly on gold and distant projected annotations,
and can be trained end-to-end with backpropaga-
tion.

Our approach captures the relations among to-
kens, noisy projected POS tags and ground truth
POS tags. Our work differs in the use of projec-
tion, in that we explicitly model the transformation
between tagsets as part of a more expressive deep
learning neural network. We make three main con-
tributions. First, we study the noise of projected
data in word alignments and describe it with an
additional transformation layer in the model. Sec-
ond, we integrate the model into a deep neural
network and jointly train the model on both anno-
tated and projected data to make the model learn
from better supervision. Finally, evaluating on
eight simulated and two real-world low-resource
languages, experimental results demonstrate that
our approach uniformly equals or exceeds exist-
ing methods on simulated languages, and achieves
86.7% accuracy for Malagasy and 82.6% on Kin-
yarwanda, exceeding the state-of-the-art results of
Duong et al. (2014).

2 Related Work

For most natural language processing tasks, the
conventional approach to developing a system is
to use supervised learning algorithms trained on
a set of annotated data. However, this approach
is inappropriate for low-resource languages due
to the lack of annotated data. An alternative ap-
proach is to harness different source of informa-
tion aside from annotated text. Knowledge-bases
such as dictionaries are one such source, which
can be used to inform or constrain models, such as
limiting the search space for POS tagging (Banko
and Moore, 2004; Goldberg et al., 2008; Li et al.,
2012).

Parallel bilingual corpora provide another im-
portant source of information. These corpora are
often plentiful even for many low-resource lan-
guages in the form of multilingual government
documents, book translations, multilingual web-
sites, etc. Word alignments can provide a bridge

to project information from a resource-rich source
language to a resource-poor target language. For
example, parallel data has been used for named en-
tity recognition (Wang and Manning, 2014) based
on the observation that named entities are most of-
ten preserved in translation and also in syntactic
tasks such as POS tagging (Yarowsky and Ngai,
2001; Das and Petrov, 2011) and dependency pars-
ing (McDonald et al., 2013). Clues from related
languages can also compensate for the lack of an-
notated data, as we expect there to be informa-
tion shared between closely related languages in
terms of the lexical items, morphology and syn-
tactic structure. Some successful applications us-
ing language relatedness information are depen-
dency parsing (McDonald et al., 2011) and POS
tagging (Hana et al., 2004). However, these ap-
proaches are limited to closely related languages
such as Czech and Russian, or Telugu and Kan-
nada, and it is unclear whether these techniques
will work well in situations where parallel data
only exists for less-related languages, as is often
the case in practice.

To summarize, for all these mentioned tasks,
lexical resources are valuable sources of knowl-
edge, but are also costly to build. Language
relatedness information is applicable for closely
related languages, but it is often the case that
a given low-resource language does not have a
closely-related, resource-rich language. Parallel
data therefore appears to be the most realistic ad-
ditional source of information for developing NLP
systems for low-resource languages (Yarowsky
and Ngai, 2001; Duong et al., 2014; Guo et al.,
2015), and here we primarily investigate methods
to exploit parallel texts.

Yarowsky and Ngai (2001) pioneered the use
of parallel data for projecting POS tag informa-
tion from a resource-rich language to a resource-
poor language. Duong et al. (2014) proposed
an approach using a maximum entropy classifier
trained on 1000 tagged tokens, and used projected
tags as auxiliary outputs. Das and Petrov (2011)
used parallel data and exploited graph-based la-
bel propagation to expand the coverage of la-
belled tokens. Our work is closest to Duong et
al. (2014), and we share the same evaluation set-
ting, which we believe is well suited to the low-
resource applications. Our approach differs from
theirs in two ways: first we propose a deep learn-
ing model based on a long short-term memory re-
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current structure versus their maximum entropy
classifier, and secondly we model the projection
tag explicitly as a biased variant of the classifica-
tion output, while they attempt to capture the cor-
relations between tagsets only implicitly through a
joint feature set over both tags. We believe that our
work is the first to explicitly model the bias affect-
ing cross-lingual projected annotations, thereby
allowing this rich data resource to be better ex-
ploited for learning NLP models in low-resource
languages.

3 Framework

In this work, we consider the POS tagging prob-
lem for a low-resource language using both the
gold annotated and distant projected corpora. For
a low-resource language, we assume two sets of
data. First, there is a small conventional corpus for
the low-resource language, annotated with gold
tags. Second, there is a parallel corpus between
the language and English, where we can reliably
tag the English side and project these annotations
across the word alignments. Then based on the
annotated and the projected data, we learn a deep
neural model for the POS tagging. The goal of
learning here is to improve the POS tagging accu-
racy on the low-resource language.

3.1 POS projection via word alignments

Parallel data is often available for low-resource
languages. For example, for Malagasy we can
obtain bilingual documents with English directly
from the web. This provides ample opportu-
nity for projecting annotations from English into
the low-resource language. Although the POS
tags can be projected, given sentence and word-
alignments, direct projection has several issues
and results in noisy, biased and often unreliable
annotations (Yarowsky and Ngai, 2001; Duong et
al., 2014). One source of error are the word align-
ments. These errors arise from words in the source
language that are not aligned to any words in the
target language, which might be due to them not
being translated well enough, errors in alignments,
or translation phenomena that do not fit the as-
sumptions underlying the word based alignment
models (e.g., many-to-many translations cannot be
captured).

An example of POS projection via word align-
ments between Malagasy and English is shown in
Figure 1. A word in Malagasy is connected to a

fanomezan-kevitra ny vaovao

(NULL) inspiring    a    new  generation .

.taranaka

VERB NOUNADJ .

fanomezan-kevitra
VERB

ny
*

vaovao
ADJ

.
.

taranaka
NOUN

Projection:

Word alignments:

DET

Figure 1: An example of POS projection via word
alignments. * indicates unknown POS tag, which
we treat as having a tag distribution over all tokens
in the source sentence (in the example, a uniform
mix of VERB, DET, ADJ, NOUN and ‘.’).

word in English or the NULL word. Thus there
exist words in the target language which are not
aligned to a word in the source language, for ex-
ample ny in Figure 1. Previous work has either
used the majority projected POS tag for a token or
used a default value to represent the token (Duong
et al., 2014; Täckström et al., 2013). Another
problem are errors in the projected tags: for exam-
ple, in this sentence, fanomezan-kevitra is labelled
as VERB incorrectly, but should be NOUN, a con-
sequence of a non-literal translation.

We now turn to the labelling of the projected
data. For the parallel data, we consider each to-
ken in the low-resource language. Where this to-
ken is aligned to a single token in English, we as-
sign the tag for that English token. For tokens that
are aligned to many English words or none at all
(NULL), we assign a distribution over tags accord-
ing to the tag frequency distribution over the whole
English sentence.

A natural question is whether this projected la-
belling might be suitable for use directly in su-
pervised learning of a POS tagger. To test this,
we compare training a bidirectional Long Short-
Term Memory (BiLSTM) tagger on this data, a
small 1000 token dataset with gold-standard tags,
and the union of the two.1 Evaluating the tag-
ging accuracy against gold standard tags, we ob-
serve in Tables 1 and 2 (top section, rows labelled

1See §3.2 for the model details, and §4.1 for a description
of the datasets and evaluation.
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BiLSTM) that the use of the gold-standard (An-
notated) data is considerably superior to training
on the directly Projected data, despite the smaller
amount of Annotated data, while using the union
of the two datasets results in mild improvements
in a few languages, but worsens performance for
others.

These sobering results raise the question of how
we might use the bilingual resources in a more ef-
fective manner than direct projection. Clearly pro-
jections contain useful information, as the tagging
accuracy is well above chance. However, they are
riddled with noise and biases, which need to be
accounted for to improve performance.

3.2 BiLSTM with bias layer

To address this problem, we propose a model that
jointly models the clean annotated data and the
projected data. For this we use a bidirectional
LSTM tagger, as illustrated on the left in Fig-
ure 2, although other classifiers could be easily
used in its place. The BiLSTM offers access to
both the left and right lexical contexts around a
given word (Graves et al., 2013), which are likely
be of considerable use in POS tagging where con-
text of central importance.

Let xt indicate a word in a sentence and yt indi-
cate its corresponding POS tag, andK denotes the
size of the tagset.2 The recurrent layer is designed
to store contextual information, while the values
in the hidden and output layers are computed as
follows:

−→
h t = lstm(

−→
h t−1, xt)

←−
h t = lstm(

←−
h t+1, xt)

ot = softmax(W→
−→
h t +W←

←−
h t + b) (1)

yt ∼ Multinomial(ot) .

This supervised model is trained on annotated gold
data in the standard manner using a cross-entropy
objective with stochastic gradient descent through
the use of gradient backpropagation.

The projected data, however, needs to be treated
differently to the annotated data: the tagging is of-
ten uncertain, as tokens may have been aligned to
words with different parts of speech, or multiply
aligned, or left as an unaligned word. These tags
are not to be trusted in the same way as the gold

2We use the universal tagset from Petrov et al. (2011),
enabling easier comparison with related work, although this
is not a requirement of our work.

annotated data. Our work accounts for bias explic-
itly in the training objective, by modelling the cor-
respondence between the true tags and the error-
ful projected tags. The projected data consists of
pairs, (xt, ỹ), where ỹ denotes the projected POS
tag or tag distribution. In this setting, we assume
that the true label, yt, is latent variable and both ỹ
and y areK-dimensional binary random variables:
ỹt is a vector representation of a projected tag, and
yt is a one-hot representation of a gold tag.

We augment the deep neural network model to
include a bias transformation such that its predic-
tion matches the distribution of the projected tags,
as follows:

p(Ỹt = j|xt, θ, A) = softmax

(∑
i

ai,jot,i

)
,

(2)
where ot,i = p(Yt = i|xt, θ) is the probabil-
ity of tag i in position t according to (1). This
equation is parameterized by a K ×K matrix A.3

Each cell ai,j denotes the confusion score between
classes i and j, with negative values quashing the
correspondance, and positive values rewarding a
pairing; in the situations where the projected tags
closely match the supervised tagging, we expect
that A ∝ I .

Joint modelling of the gold supervision and pro-
jected data gives rise to a training objective com-
bining two cross-entropy terms,

L(θ,A) =− 1
|T p|

∑
t∈T p

〈ỹt, log softmax (Aot)〉

− 1
|T t|

∑
t∈T t

〈yt, log ot〉 ,

where T p indexes all the token positions in the
projected dataset, and T t does similarly for the an-
notated training set.

We illustrate the combined model in Figure 2,
showing on the left the gold supervised model and
on the right the distant supervised components.
The distant model builds on the base part by feed-
ing the output through a bias layer, which is finally
used in a softmax to produce the biased output
layer. The matrix A parameterizes the final layer,
to adjust the tag probabilities from the supervised
model into a distribution that better matches the
projected POS tags. However, the ultimate goal is

3Our approach also supports mismatching tagsets, in
which case A would be rectangular with dimensions based
on the sizes of the two tag sets.
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raha ny marina

embedding, e

text, x

BiLSTM, h�

h�

output, o

label, y Conj Det Noun

tsara fa

...

noised 
output, õ

projected 
labels, ỹ

Annotated data

Projected data

Shared 
layers

misaotra

Adj

Figure 2: Illustration of the model architecture, which uses a bidirectional LSTM recurrent network, with
a tag classification output. The left part illustrates the supervised training scenario and test setting, where
each word x is assigned a tag y; the right part shows the projection training setting, with a bias layer,
where the supervision is either a projected label or label distribution (used for NULL aligned words).

to predict the POS tag yt. Consider the training ef-
fect of the projected POS tags: when performing
error backpropagation, the cross-entropy error sig-
nal must pass through the tag transformation link-
ing õwith o, which can be seen as a debiasing step,
after which the cleaned error signal can be further
backpropagated to the rest of the model. Provided
there are consistent patterns of errors in the projec-
tion output, this technique can readily model these
sources of variation with a tiny handful of param-
eters, and thus greatly improve the utility of this
form of distant supervision.

Directly training the whole deep neural network
with random initialization is impractical, because
without a good estimate for the A matrix, the er-
rors from the projected tags may misdirect train-
ing result in a poor local optima. For this reason
the training process contains two stages. In the
first stage we use the clean annotated data to pre-
train the network. In the second stage we jointly
use both projected and annotated data to continue
training the model.

4 Experiments

We evaluate our algorithm using two kinds of
experimental setups, simulation experiments and
real-world experiments. For the simulation ex-
periments, we use the following eight European
languages: Danish (da), Dutch (nl), German (de),
Greek (el), Italian (it), Portuguese (pt), Spanish

(es), Swedish (sv). These languages are obvi-
ously not low-resource languages, however we can
use this data to simulate the low-resource setting
by only using a small 1,000 tokens of the gold
annotations for training. This evaluation tech-
nique is widely used in previous work, and al-
lows us to compare our results with prior state-
of-the-art algorithms. For the real-world experi-
ments, we use the following two low-resource lan-
guages: Malagasy, an Austronesian language spo-
ken in Madagascar, and Kinyarwanda, a Niger-
Congo language spoken in Rwanda.

4.1 Evaluation Corpora

4.1.1 Parallel data

For the simulation experiments, we use the Eu-
roparl v7 corpus, with English as the source lan-
guage and each of languages as the target lan-
guage. There are an average of 1.85 million
parallel sentences for each of the eight language
pairs. For the real-world experiments, the parallel
data is smaller and generally of a lower quality.
For Malagasy, we use a web-sourced collection
of parallel texts.4 The parallel data of Malagasy
has 100k sentences and 1,231k tokens. For Kin-
yarwanda, we obtained parallel texts from ARL
MURI project.5, constituting 11k sentences and

4http://www.cs.cmu.edu/˜ark/
global-voices

5The dataset was provided directly by Noah Smith.
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da nl de el it pt es sv Average
BiLSTM Annotated 89.3 87.4 89.5 88.1 85.9 89.5 90.6 84.7 88.1
BiLSTM Projected 64.4 81.9 81.3 78.9 80.1 81.9 81.2 74.9 78.0
BiLSTM Ann+Proj 85.4 88.9 90.2 84.2 86.1 88.2 91.3 83.6 87.2
MaxEnt Supervised 90.1 84.6 89.6 88.2 81.4 87.6 88.9 85.4 86.9
Duong et al. (2014) 92.1 91.1 92.5 92.1 89.9 92.5 91.6 88.7 91.3
BiLSTM Debias 92.3 91.7 92.5 92.8 90.2 92.9 92.4 89.1 91.7

Table 1: The POS tagging accuracy for various models in eight languages: Danish (da), Dutch (nl),
German (de), Greek (el), Italian (it), Portuguese (pt), Spanish (es), Swedish (sv). The top results of the
second part are taken from Duong et al. (2014), evaluated on the same data split.

52k tokens.

4.1.2 POS projection
We use GIZA++ to induce word alignments on
the parallel data (Och and Ney, 2003), using IBM
model 3 (Brown et al., 1993). Following prior
work (Duong et al., 2014), we retain only one-to-
one alignments. Using all alignments (i.e., many-
to-one and one-to-many), would result in many
more POS-tagged tokens, but also bring consid-
erable additional noise. For example, the English
laws (NNS) aligned to French les (DT) lois (NNS)
would end up incorrectly tagging the French de-
terminer les as a noun (NNS). We use the Stan-
ford POS tagger (Toutanova et al., 2003) to tag the
English side of the parallel data and then project
the labels to the target side. As we show in the
following section, and confirmed in many stud-
ies (Täckström et al., 2013; Das and Petrov, 2011),
the directly projected labels have many errors and
therefore it is unwise to use the tags directly.
We further filter the corpus using the approach
of Yarowsky and Ngai (2001) which selects sen-
tences with the highest sentence alignment scores
from IBM model 3. For the European languages,
we retain 200k sentences for each language, while
for the low-resource languages, we use all the par-
allel data.

4.1.3 Annotated data
Gold annotated data is expensive and difficult to
obtain, and thus we assume that only a small
annotated dataset is available. For the simula-
tion experiments, annotated data is obtained from
the CoNLL-X shared tasks (Buchholz and Marsi,
2006). To simulate the low-resource setting, we
take the first 1,000 tagged tokens for training and
the remaining data is split equally between devel-
opment and testing sets, following Duong et al.
(2014). For the real-world experiments, we use

the Malagasy and Kinyarwanda data from Gar-
rette and Baldridge (2013), who showed that a
small annotated dataset could be collected very
cheaply, requiring less than 2 hours of non-expert
time to tag 1,000 tokens. This constitutes a rea-
sonable demand for cheap portability to other low-
resource languages. We use the datasets from
Garrette and Baldridge (2013), constituting anno-
tated datasets of 383 sentences and 5,294 tokens in
Malagasy and 196 sentences and 4,882 tokens for
Kinyarwanda. We use 1,000 tokens as training set
and the rest is used for testing for each language.

4.2 Setup and baselines

We compare our algorithm with several base-
lines, including the state-of-the-art algorithm from
Duong et al. (2014), a two-output maxent model,
their reported baseline method of a supervised
maximum entropy model trained on the annotated
data, and our BiLSTM POS tagger trained directly
from the annotated and/or projected data (denoted
BiLSTM Annotated, Projected and Ann+Proj for
the model trained on the union of the two datasets).
For the real low-resource languages, we also com-
pare our algorithm with Garrette et al. (2013), who
reported good results on the two low-resource lan-
guages. Our implementation is based on the cnn
toolkit.6 In all cases, the BiLSTM models use
128 dimensional word embeddings and 128 di-
mensional hidden layers. We set the learning rate
to 1.0 and use stochastic gradient descent model to
learn the parameters.

We evaluate all algorithms on the gold testing
sets, evaluating in terms of tagging accuracy. Fol-
lowing standard practice in POS tagging, we re-
port results using per-token accuracy (i.e., the frac-
tion of predicted tags that exactly match the gold
standard tags). Note that for all our experiments,

6https://github.com/clab/cnn

183



da

it

V
E
R
B

N
O
U
N

P
R
O
N

A
D
J

A
D
V

A
D
P

C
O
N
J

D
E
T

N
U
M

P
R
T X

.

nl

pt

V
E
R
B

N
O
U
N

P
R
O
N

A
D
J

A
D
V

A
D
P

C
O
N
J

D
E
T

N
U
M

P
R
T X

.

de

es

V
E
R
B

N
O
U
N

P
R
O
N

A
D
J

A
D
V

A
D
P

C
O
N
J

D
E
T

N
U
M

P
R
T X

.

el

sv

V
E
R
B

N
O
U
N

P
R
O
N

A
D
J

A
D
V

A
D
P

C
O
N
J

D
E
T

N
U
M

P
R
T X

.

1.0

-1.0

1.0

-1.0

VERB

NOUN

PRON

ADJ

ADV

ADP

CONJ

DET

NUM

PRT

X

.

VERB

NOUN

PRON

ADJ

ADV

ADP

CONJ

DET

NUM

PRT

X

.

Figure 3: Bias transformation matrix A between POS tags and projection outputs, shown respectively as
columns and rows for the eight languages.

we work with the universal POS tags and accord-
ingly accuracy is measured against the gold tags
after automatic mapping into the universal tagset.

4.3 Results

First, we present the results for the 8 simulation
languages in Table 1. For most of the languages
our method performs better than that of Duong
et al. (2014) and the three naive BiLSTM base-
lines. Directly training on projected data hurts
the performance, which can be seen by comparing
BiLSTM Projected and BiLSTM Ann+Proj. BiL-
STM Annotated mostly outperforms MaxEnt Su-
pervised, but both methods are worse than Duong
et al. and our BiLSTM Debias, which both use the
projected data more effectively. The results show
the debiasing layer makes more effective use of
the projected data, improving the POS tagging ac-
curacy.

We show the learned bias transformation matri-
ces for the different languages in Figure 3. The
blue (dark) cells in the grids denote values that are
most highly weighted. Note the strong diagonal,
showing that the tags are mostly trusted, although
there is also evidence of significant mass in off-
diagonal entries. The worst case is in Greek (el)
with many weak values on the diagonal. In this
case, PRON and X appear to be confused for one
another. The light cells are also important, show-

Model Accuracy
Malagasy Kinyarwanda

BiLSTM Annotated 81.5 76.9
BiLSTM Projected 67.2 61.9
BiLSTM Ann+Proj 78.6 73.2
MaxEnt Supervised 80.0 76.4
Duong et al. (2014) 85.3 78.3
BiLSTM Debias 86.3 82.5
BiLSTM Debias (Penn) 86.7 82.6
Garrette et al. (2013) 81.2 81.9

Table 2: The POS tagging accuracy for various
models in Malagasy and Kinyarwanda. The top
results of the second part are taken from Duong et
al. (2014), evaluated on the same data split.

* Penn indicates the Penn treebank tagset. The proposed
BiLSTM Debias can use different tagsets for the source
language.

ing tag combinations that the model learns to ig-
nore, such as CONJ vs DET in Spanish (es) and
PRON vs ADP in Swedish (sv). The tokens that
are CONJ in Spanish (es) are seldom projected as
DET. Overall, for most of languages the level of
debiasing is modest, which might not come as a
surprise given the large, clean parallel corpus for
learning word alignments.

Now we present results for the two low-resource
languages, Malagasy and Kinyarwanda, which
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Malagasy Kinyarwanda
1.0

-1.0

Figure 4: Bias transformation matrix A between POS tags and projected outputs, shown respectively as
columns and rows for the two low-resource languages.

both have much smaller parallel corpora. The re-
sults in Table 2 show that our method works better
than all others in both languages, with a similar
pattern of results as for the European languages.
We also used the original Penn treebank tagset
for both two languages. The results of BiLSTM
Debias (Penn) show a small improvement, presum-
ably due to the information loss in the mapping
to the universal tagset. Note that our method out-
performs the state of the art on both languages
(Duong et al., 2014; Garrette et al., 2013).

To better understand the effect of the bias layer,
we present the learned transformation matrices A
in Figure 4. Note the strong diagonal for Mala-
gasy in Figure 4, showing that each tag is most
likely to map to itself, however there are also many
high magnitude off-diagonal elements. For in-
stance nouns map to not just nouns, but also ad-
jectives and numbers, but never pronouns (which
are presumably well aligned). Comparing results
of Malagasy and Kinyarwanda in Figure 4, we
can see the divergence between the gold and pro-
jected tags is much greater in Kinyarwanda. This
tallies with the performance results, in which we
get stronger results and a greater improvement on
Malagasy from using projection data where we
had more parallel data.

5 Conclusion

In this paper we presented a technique for ex-
ploiting errorful cross-lingual projected annota-
tions alongside a small amount of annotated data
in the context of POS tagging. Projection on its
own is unreliable and simple combination with

gold is not sufficient to improve accuracy, even
with only a tiny handful of gold annotations. To
utilize both sources of data, we proposed a new
model based on a bidirectional long short-term
memory recurrent neural network, with a layer for
explicitly handling projection labels. Over eight
European and two real low-resource languages,
our methods outperform other algorithms. Our
technique is general, and is likely to prove useful
for exploiting other noisy and biased annotations
such as distant supervision and crowd-sourced an-
notations.
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Abstract

We present a transition-based parser that
jointly produces syntactic and semantic
dependencies. It learns a representation
of the entire algorithm state, using stack
long short-term memories. Our greedy in-
ference algorithm has linear time, includ-
ing feature extraction. On the CoNLL
2008–9 English shared tasks, we obtain
the best published parsing performance
among models that jointly learn syntax
and semantics.

1 Introduction

We introduce a new joint syntactic and semantic
dependency parser. Our parser draws from the
algorithmic insights of the incremental structure
building approach of Henderson et al. (2008), with
two key differences. First, it learns representations
for the parser’s entire algorithmic state, not just the
top items on the stack or the most recent parser
states; in fact, it uses no expert-crafted features at
all. Second, it uses entirely greedy inference rather
than beam search. We find that it outperforms all
previous joint parsing models, including Hender-
son et al. (2008) and variants (Gesmundo et al.,
2009; Titov et al., 2009; Henderson et al., 2013) on
the CoNLL 2008 and 2009 (English) shared tasks.
Our parser’s multilingual results are comparable to
the top systems at CoNLL 2009.

Joint models like ours have frequently been pro-
posed as a way to avoid cascading errors in NLP
pipelines; varying degrees of success have been at-
tained for a range of joint syntactic-semantic anal-
ysis tasks (Sutton and McCallum, 2005; Hender-
son et al., 2008; Toutanova et al., 2008; Johansson,
2009; Lluı́s et al., 2013, inter alia).

One reason pipelines often dominate is that they
make available the complete syntactic parse tree,

and arbitrarily-scoped syntactic features—such as
the “path” between predicate and argument, pro-
posed by Gildea and Jurafsky (2002)—for seman-
tic analysis. Such features are a mainstay of high-
performance semantic role labeling (SRL) sys-
tems (Roth and Woodsend, 2014; Lei et al., 2015;
FitzGerald et al., 2015; Foland and Martin, 2015),
but they are expensive to extract (Johansson, 2009;
He et al., 2013).

This study shows how recent advances in repre-
sentation learning can bypass those expensive fea-
tures, discovering cheap alternatives available dur-
ing a greedy parsing procedure. The specific ad-
vance we employ is the stack LSTM (Dyer et al.,
2015), a neural network that continuously summa-
rizes the contents of the stack data structures in
which a transition-based parser’s state is conven-
tionally encoded. Stack LSTMs were shown to ob-
viate many features used in syntactic dependency
parsing; here we find them to do the same for joint
syntactic-semantic dependency parsing.

We believe this is an especially important find-
ing for greedy models that cast parsing as a se-
quence of decisions made based on algorithmic
state, where linguistic theory and researcher intu-
itions offer less guidance in feature design.

Our system’s performance does not match that
of the top expert-crafted feature-based systems
(Zhao et al., 2009; Björkelund et al., 2010; Roth
and Woodsend, 2014; Lei et al., 2015), systems
which perform optimal decoding (Täckström et
al., 2015), or of systems that exploit additional,
differently-annotated datasets (FitzGerald et al.,
2015). Many advances in those systems are or-
thogonal to our model, and we expect future work
to achieve further gains by integrating them.

Because our system is very fast— with an
end-to-end runtime of 177.6±18 seconds to parse
the CoNLL 2009 English test data on a single
core—we believe it will be useful in practical set-
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all are expected to reopen soon
expect.01 reopen.01

sbj

root

vc oprd im tmp

A1
C-A1

AM-TMP

A1

Figure 1: Example of a joint parse. Syntactic de-
pendencies are shown by arcs above the sentence
and semantic dependencies below; predicates are
marked in boldface. C- denotes continuation of
argument A1. Correspondences between depen-
dencies might be close (between expected and to)
or not (between reopen and all).

tings. Our open-source implementation has been
released.1

2 Joint Syntactic and Semantic
Dependency Parsing

We largely follow the transition-based, synchro-
nized algorithm of Henderson et al. (2013) to pre-
dict joint parse structures. The input to the algo-
rithm is a sentence annotated with part-of-speech
tags. The output consists of a labeled syntactic de-
pendency tree and a directed SRL graph, in which
a subset of words in the sentence are selected as
predicates, disambiguated to a sense, and linked
by labeled, directed edges to their semantic argu-
ments. Figure 1 shows an example.

2.1 Transition-Based Procedure

The two parses are constructed in a bottom-up
fashion, incrementally processing words in the
sentence from left to right. The state of the pars-
ing algorithm at timestep t is represented by three
stack data structures: a syntactic stack St, a se-
mantic stack Mt—each containing partially built
structures—and a buffer of input words Bt. Our
algorithm also places partial syntactic and seman-
tic parse structures onto the front of the buffer,
so it is also implemented as a stack. Each arc in
the output corresponds to a transition (or “action”)
chosen based on the current state; every transition
modifies the state by updating St, Mt, and Bt to
St+1, Mt+1, and Bt+1, respectively. While each
state may license several valid actions, each action

1https://github.com/clab/
joint-lstm-parser

has a deterministic effect on the state of the algo-
rithm.

Initially, S0 and M0 are empty, and B0 contains
the input sentence with the first word at the front
ofB and a special root symbol at the end.2 Execu-
tion ends on iteration t such that Bt is empty and
St and Mt contain only a single structure headed
by root.

2.2 Transitions for Joint Parsing

There are separate sets of syntactic and semantic
transitions; the former manipulate S and B, the
latter M and B. All are formally defined in Ta-
ble 1. The syntactic transitions are from the “arc-
eager” algorithm of Nivre (2008). They include:

• S-SHIFT, which copies3 an item from the front
of B and pushes it on S.
• S-REDUCE pops an item from S.
• S-RIGHT(`) creates a syntactic dependency.

Let u be the element at the top of S and v be
the element at the front of B. The new depen-
dency has u as head, v as dependent, and label
`. u is popped off S, and the resulting structure,
rooted at u, is pushed on S. Finally, v is copied
to the top of S.
• S-LEFT(`) creates a syntactic dependency with

label ` in the reverse direction as S-RIGHT. The
top of S, u, is popped. The front of B, v, is
replaced by the new structure, rooted at v.

The semantic transitions are similar, operating
on the semantic stack.

• M-SHIFT removes an item from the front of B
and pushes it on M .
• M-REDUCE pops an item from M .
• M-RIGHT(r) creates a semantic dependency.

Let u be the element at the top of M and v,
the front of B. The new dependency has u as
head, v as dependent, and label r. u is popped
off M , and the resulting structure, rooted at u,
is pushed on M .
• M-LEFT(r) creates a semantic dependency

with label r in the reverse direction as M-
RIGHT. The buffer front, v, is replaced by the
new v-rooted structure. M remains unchanged.

2This works better for the arc-eager algorithm (Balles-
teros and Nivre, 2013), in contrast to Henderson et al. (2013),
who initialized with root at the buffer front.

3Note that in the original arc-eager algorithm (Nivre,
2008), SHIFT and RIGHT-ARC actions move the item on the
buffer front to the stack, whereas we only copy it (to allow
the semantic operations to have access to it).
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and has otherCongress
have.03 problem.01

A2

problems

A1

AM-DIS A1

A0

Figure 2: Example of an SRL graph with an arc
from predicate problem.01 to itself, filling the A2
role. Our SELF(A2) transition allows recovering
this semantic dependency.

Because SRL graphs allow a node to be a se-
mantic argument of two parents—like all in the
example in Figure 1—M-LEFT and M-RIGHT

do not remove the dependent from the semantic
stack and buffer respectively, unlike their syntactic
equivalents, S-LEFT and S-RIGHT. We use two
other semantic transitions from Henderson et al.
(2013) which have no syntactic analogues:

• M-SWAP swaps the top two items on M , to al-
low for crossing semantic arcs.
• M-PRED(p) marks the item at the front of B

as a semantic predicate with the sense p, and
replaces it with the disambiguated predicate.

The CoNLL 2009 corpus introduces semantic
self-dependencies where many nominal predicates
(from NomBank) are marked as their own argu-
ments; these account for 6.68% of all semantic
arcs in the English corpus. An example involving
an eventive noun is shown in Figure 2. We intro-
duce a new semantic transition, not in Henderson
et al. (2013), to handle such cases:

• M-SELF(r) adds a dependency, with label r be-
tween the item at the front of B and itself. The
result replaces the item at the front of B.

Note that the syntactic and semantic transitions
both operate on the same buffer, though they in-
dependently specify the syntax and semantics, re-
spectively. In order to ensure that both syntactic
and semantic parses are produced, the syntactic
and semantic transitions are interleaved. Only syn-
tactic transitions are considered until a transition is
chosen that copies an item from the buffer front to
the syntactic stack (either S-SHIFT or S-RIGHT).
The algorithm then switches to semantic transi-
tions until a buffer-modifying transition is taken
(M-SHIFT).4 At this point, the buffer is modi-

4Had we moved the item at the buffer front during the
syntactic transitions, it would have been unavailable for the

fied and the algorithm returns to syntactic transi-
tions. This implies that, for each word, its left-
side syntactic dependencies are resolved before its
left-side semantic dependencies. An example run
of the algorithm is shown in Figure 3.

2.3 Constraints on Transitions
To ensure that the parser never enters an invalid
state, the sequence of transitions is constrained,
following Henderson et al. (2013). Actions that
copy or move items from the buffer (S-SHIFT,
S-RIGHT and M-SHIFT) are forbidden when the
buffer is empty. Actions that pop from a stack
(S-REDUCE and M-REDUCE) are forbidden when
that stack is empty. We disallow actions corre-
sponding to the same dependency, or the same
predicate to be repeated in the sequence. Repet-
itive M-SWAP transitions are disallowed to avoid
infinite swapping. Finally, as noted above, we re-
strict the parser to syntactic actions until it needs
to shift an item from B to S, after which it can
only execute semantic actions until it executes an
M-SHIFT.

Asymptotic runtime complexity of this greedy
algorithm is linear in the length of the input, fol-
lowing the analysis by Nivre (2009).5

3 Statistical Model

The transitions in §2 describe the execution paths
our algorithm can take; like past work, we apply
a statistical classifier to decide which transition to
take at each timestep, given the current state. The
novelty of our model is that it learns a finite-length
vector representation of the entire joint parser’s
state (S,M , andB) in order to make this decision.

3.1 Stack Long Short-Term Memory (LSTM)
LSTMs are recurrent neural networks equipped
with specialized memory components in addition
to a hidden state (Hochreiter and Schmidhuber,
1997; Graves, 2013) to model sequences. Stack
LSTMs (Dyer et al., 2015) are LSTMs that al-
low for stack operations: query, push, and pop.
A “stack pointer” is maintained which determines
which cell in the LSTM provides the memory and
hidden units when computing the new memory
cell contents. Query provides a summary of the
stack in a single fixed-length vector. Push adds

semantic transitions, hence we only copy it.
5The analysis in (Nivre, 2009) does not consider SWAP

actions. However, since we constrain the number of such ac-
tions, the linear time complexity of the algorithm stays intact.
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St Mt Bt Action St+1 Mt+1 Bt+1 Dependency
S M (v, v), B S-SHIFT (v, v), S M (v, v), B —

(u, u), S M B S-REDUCE S M B —

(u, u), S M (v, v), B S-RIGHT(`) (v, v), (gs(u, v, l), u), S M (v, v), B S ∪ u
`→ v

(u, u), S M (v, v), B S-LEFT(`) S M (gs(v, u, l), v), B S ∪ u
`← v

S M (v, v), B M-SHIFT S (v, v), M B —
S (u, u), M B M-REDUCE S M B —
S (u, u), M (v, v), B M-RIGHT(r) S (gm(u, v, r), u), M (v, v), B M∪ u

r→ v

S (u, u), M (v, v), B M-LEFT(r) S (u, u), M (gm(v, u, r), v), B M∪ u
r← v

S (u, u), (v, v), M B M-SWAP S (v, v), (u, u), M B —
S M (v, v), B M-PRED(p) S M (gd(v, p), v), B —
S M (v, v), B M-SELF(r) S M (gm(v, v, r), v), B M∪ v

r↔ v

Table 1: Parser transitions along with the modifications to the stacks and the buffer resulting from each.
Syntactic transitions are shown above, semantic below. Italic symbols denote symbolic representations
of words and relations, and bold symbols indicate (learned) embeddings (§3.5) of words and relations;
each element in a stack or buffer includes both symbolic and vector representations, either atomic or
recursive. S represents the set of syntactic transitions, andM the set of semantic transitions.

an element to the top of the stack, resulting in a
new summary. Pop, which does not correspond to
a conventional LSTM operation, moves the stack
pointer to the preceding timestep, resulting in a
stack summary as it was before the popped item
was observed. Implementation details (Dyer et al.,
2015; Goldberg, 2015) and code have been made
publicly available.6

Using stack LSTMs, we construct a represen-
tation of the algorithm state by decomposing it
into smaller pieces that are combined by recursive
function evaluations (similar to the way a list is
built by a concatenate operation that operates on a
list and an element). This enables information that
would be distant from the “top” of the stack to be
carried forward, potentially helping the learner.

3.2 Stack LSTMs for Joint Parsing
Our algorithm employs four stack LSTMs,
one each for the S, M , and B data struc-
tures.Like Dyer et al. (2015), we use a fourth stack
LSTM, A, for the history of actions—A is never
popped from, only pushed to. Figure 4 illustrates
the architecture. The algorithm’s state at timestep
t is encoded by the four vectors summarizing the
four stack LSTMs, and this is the input to the clas-
sifier that chooses among the allowable transitions
at that timestep.

Let st, mt, bt, and at denote the summaries
of St, Mt, Bt, and At, respectively. Let At =
Allowed(St,Mt, Bt, At) denote the allowed tran-
sitions given the current stacks and buffer. The
parser state at time t is given by a rectified linear
unit (Nair and Hinton, 2010) in vector yt:

yt = elementwisemax {0,d + W[st;mt;bt;at]}
6https://github.com/clab/lstm-parser

root soon reopen to

all

are expected

expect.01
all

all

sbj

A1

M

B

S

S-RIGHT 
(oprd)

...
M-PRED

(expect.01)
M-REDUCE M-LEFT

(A1)

A

are
vc

M-SHIFT

Figure 4: Stack LSTM for joint parsing. The state
illustrated corresponds to the ***-marked row in
the example transition sequence in Fig. 3.

where W and d are the parameters of the classi-
fier. The transition selected at timestep t is

arg max
τ∈At

qτ + θτ · yt (1)

≡ arg max
τ∈At

score(τ ;St,Mt, Bt, At)

where θτ and qτ are parameters for each transi-
tion type τ . Note that only allowed transitions are
considered in the decision rule (see §2.3).

3.3 Composition Functions
To use stack LSTMs, we require vector representa-
tions of the elements that are stored in the stacks.
Specifically, we require vector representations of
atoms (words, possibly with part-of-speech tags)
and parse fragments. Word vectors can be pre-
trained or learned directly; we consider a concate-
nation of both in our experiments; part-of-speech
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Figure 3: Joint parser transition sequence for the sentence in Figure 1, “all are expected to reopen soon.”
Syntactic labels are in lower-case and semantic role labels are capitalized. *** marks the operation
predicted in Figure 4.

vectors are learned and concatenated to the same.

To obtain vector representations of parse frag-
ments, we use neural networks which recursively
compute representations of the complex structured
output (Dyer et al., 2015). The tree structures here
are always ternary trees, with each internal node’s
three children including a head, a dependent, and
a label. The vectors for leaves are word vectors

and vectors corresponding to syntactic and seman-
tic relation types.

The vector for an internal node is a squashed
(tanh) affine transformation of its children’s vec-
tors. For syntactic and semantic attachments, re-
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Figure 5: Example of a joint parse tree fragment
with vector representations shown at each node.
The vectors are obtained by recursive composition
of representations of head, dependent, and label
vectors. Syntactic dependencies and labels are in
green, semantic in blue.

spectively, the composition function is:

gs(v,u, l) = tanh(Zs[v;u; l] + es) (2)

gm(v,u, r) = tanh(Zm[v;u; r] + em) (3)

where v and u are vectors corresponding to atomic
words or composed parse fragments; l and r are
learned vector representations for syntactic and se-
mantic labels respectively. Syntactic and semantic
parameters are separated (Zs, es and Zm, em, re-
spectively).

Finally, for predicates, we use another recur-
sive function to compose the word representa-
tion, v with a learned representation for the dis-
mabiguated sense of the predicate, p:

gd(v,p) = tanh(Zd[v;p] + ed) (4)

where Zd and ed are parameters of the model.
Note that, because syntactic and semantic transi-
tions are interleaved, the fragmented structures are
a blend of syntactic and semantic compositions.
Figure 5 shows an example.

3.4 Training
Training the classifier requires transforming each
training instance (a joint parse) into a transition se-
quence, a deterministic operation under our tran-
sition set. Given a collection of algorithm states
at time t and correct classification decisions τt, we
minimize the sum of log-loss terms, given (for one
timestep) by:

− log
exp(qτt + θτt · yt)∑

τ ′∈At
exp(qτ ′ + θτ ′ · yt) (5)

with respect to the classifier and LSTM parame-
ters. Note that the loss is differentiable with re-
spect to the parameters; gradients are calculated
using backpropagation. We apply stochastic gra-
dient descent with dropout for all neural network
parameters.

3.5 Pretrained Embeddings
Following Dyer et al. (2015), “structured skip-
gram” embeddings (Ling et al., 2015) were used,
trained on the English (AFP section), German,
Spanish and Chinese Gigaword corpora, with a
window of size 5; training was stopped after 5
epochs. For out-of-vocabulary words, a randomly
initialized vector of the same dimension was used.

3.6 Predicate Sense Disambiguation
Predicate sense disambiguation is handled within
the model (M-PRED transitions), but since senses
are lexeme-specific, we need a way to handle un-
seen predicates at test time. When a predicate is
encountered at test time that was not observed in
training, our system constructs a predicate from
the predicted lemma of the word at that position
and defaults to the “01” sense, which is correct
for 91.22% of predicates by type in the English
CoNLL 2009 training data.

4 Experimental Setup

Our model is evaluated on the CoNLL shared
tasks on joint syntactic and semantic dependency
parsing in 2008 (Surdeanu et al., 2008) and
2009 (Hajič et al., 2009). The standard training,
development and test splits of all datasets were
used. Per the shared task guidelines, automati-
cally predicted POS tags and lemmas provided in
the datasets were used for all experiments. As
a preprocessing step, pseudo-projectivization of
the syntactic trees (Nivre et al., 2007) was used,
which allowed an accurate conversion of even the
non-projective syntactic trees into syntactic transi-
tions. However, the oracle conversion of semantic
parses into transitions is not perfect despite using
the M-SWAP action, due to the presence of multi-
ple crossing arcs.7

7For 1.5% of English sentences in the CoNLL 2009 En-
glish dataset, the transition sequence incorrectly encodes the
gold-standard joint parse; details in Henderson et al. (2013).
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The standard evaluation metrics include the
syntactic labeled attachment score (LAS), the se-
mantic F1 score on both in-domain (WSJ) and out-
of-domain (Brown corpus) data, and their macro
average (Macro F1) to score joint systems. Be-
cause the task was defined somewhat differently
in each year, each dataset is considered in turn.

4.1 CoNLL 2008

The CoNLL 2008 dataset contains annotations
from the Penn Treebank (Marcus et al., 1993),
PropBank (Palmer et al., 2005) and Nom-
Bank (Meyers et al., 2004). The shared task evalu-
ated systems on predicate identification in addition
to predicate sense disambiguation and SRL.

To identify predicates, we trained a zero-
Markov order bidirectional LSTM two-class clas-
sifier. As input to the classifier, we use learned rep-
resentations of word lemmas and POS tags. This
model achieves an F1 score of 91.43% on marking
words as predicates (or not).

Hyperparameters The input representation for
a word consists of pretrained embeddings (size
100 for English, 80 for Chinese, 64 for Ger-
man and Spanish), concatenated with additional
learned word and POS tag embeddings (size 32
and 12, respectively). Learned embeddings for
syntactic and semantic arc labels are of size 20
and predicates 100. Two-layer LSTMs with hid-
den state dimension 100 were used for each of the
four stacks. The parser state yt and the composi-
tion function g are of dimension 100. A dropout
rate of 0.2 (Zaremba et al., 2014) was used on all
layers at training time, tuned on the development
data from the set of values {0.1, 0.2, 0.3, 1.0}. The
learned representations for actions are of size 100,
similarly tuned from {10, 20, 30, 40, 100}. Other
hyperparameters have been set intuitively; careful
tuning is expected to yield improvements (Weiss
et al., 2015).

An initial learning rate of 0.1 for stochastic gra-
dient descent was used and updated in every train-
ing epoch with a decay rate of 0.1 (Dyer et al.,
2015). Training is stopped when the development
performance does not improve for approximately
6–7 hours of elapsed time. Experiments were run
on a single thread on a CPU, with memory require-
ments of up to 512 MB.

4.2 CoNLL 2009

Relative to the CoNLL 2008 task (above), the
main change in 2009 is that predicates are pre-
identified, and systems are only evaluated on pred-
icate sense disambiguation (not identification).
Hence, the bidirectional LSTM classifier is not
used here. The preprocessing for projectivity, and
the hyperparameter selection is the same as in
§4.1.

In addition to the joint approach described in
the preceding sections, we experiment here with
several variants:

Semantics-only: the set of syntactic transitions
S, the syntactic stack S, and the syntactic compo-
sition function gs are discarded. As a result, the set
of constraints on transitions is a subset of the full
set of constraints in §2.3. Effectively, this model
does not use any syntactic features, similar to Col-
lobert et al. (2011) and Zhou and Xu (2015). It
provides a controlled test of the benefit of explicit
syntax in a semantic parser.

Syntax-only: all semantic transitions inM, the
semantic stack M , and the semantic composition
function gm are discarded. S-SHIFT and S-RIGHT

now move the item from the front of the buffer to
the syntactic stack, instead of copying. The set of
constraints on the transitions is again a subset of
the full set of constraints. This model is an arc-
eager variant of Dyer et al. (2015), and serves to
check whether semantic parsing degrades syntac-
tic performance.

Hybrid: the semantics parameters are trained
using automatically predicted syntax from the
syntax-only model. At test time, only seman-
tic parses are predicted. This setup bears simi-
larity to other approaches which pipeline syntax
and semantics, extracting features from the syn-
tactic parse to help SRL. However, unlike other
approaches, this model does not offer the entire
syntactic tree for feature extraction, since only the
partial syntactic structures present on the syntactic
stack (and potentially the buffer) are visible at a
given timestep. This model helps show the effect
of joint prediction.

5 Results and Discussion

CoNLL 2008 (Table 2) Our joint model signif-
icantly outperforms the joint model of Hender-
son et al. (2008), from which our set of tran-
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Model LAS Sem. Macro
F1 F1

joint models:
Lluı́s and Màrquez (2008) 85.8 70.3 78.1
Henderson et al. (2008) 87.6 73.1 80.5
Johansson (2009) 86.6 77.1 81.8
Titov et al. (2009) 87.5 76.1 81.8
CoNLL 2008 best:
#3: Zhao and Kit (2008) 87.7 76.7 82.2
#2: Che et al. (2008) 86.7 78.5 82.7
#2: Ciaramita et al. (2008) 87.4 78.0 82.7
#1: J&N (2008) 89.3 81.6 85.5
Joint (this work) 89.1 80.5 84.9

Table 2: Joint parsers: comparison on the CoNLL
2008 test (WSJ+Brown) set.

sitions is derived, showing the benefit of learn-
ing a representation for the entire algorithmic
state. Several other joint learning models have
been proposed (Lluı́s and Màrquez, 2008; Jo-
hansson, 2009; Titov et al., 2009) for the same
task; our joint model surpasses the performance
of all these models. The best reported systems on
the CoNLL 2008 task are due to Johansson and
Nugues (2008), Che et al. (2008), Ciaramita et
al. (2008) and Zhao and Kit (2008), all of which
pipeline syntax and semantics; our system’s se-
mantic and overall performance is comparable to
these. We fall behind only Johansson and Nugues
(2008), whose success was attributed to carefully
designed global SRL features integrated into a
pipeline of classifiers, making them asymptoti-
cally slower.

CoNLL 2009 English (Table 3) All of our
models (Syntax-only, Semantics-only, Hybrid and
Joint) improve over Gesmundo et al. (2009)
and Henderson et al. (2013), demonstrating the
benefit of our entire-parser-state representation
learner compared to the more locally scoped
model.

Given that syntax has consistently proven useful
in SRL, we expected our Semantics-only model
to underperform Hybrid and Joint, and it did. In
the training domain, syntax and semantics bene-
fit each other (Joint outperforms Hybrid). Out-
of-domain (the Brown test set), the Hybrid pulls
ahead, a sign that Joint overfits to WSJ. As a
syntactic parser, our Syntax-only model performs
slightly better than Dyer et al. (2015), who achieve
89.56 LAS on this task. Joint parsing is very
slightly better still.

The overall performance of Joint is on par with
the other winning participants at the CoNLL 2009
shared task (Zhao et al., 2009; Che et al., 2009;
Gesmundo et al., 2009), falling behind only Zhao
et al. (2009), who carefully designed language-
specific features and used a series of pipelines for
the joint task, resulting in an accurate but compu-
tationally expensive system.

State-of-the-art SRL systems (shown in the last
block of Table 3) which use advances orthog-
onal to the contributions in this paper, perform
better than our models. Many of these systems
use expert-crafted features derived from full syn-
tactic parses in a pipeline of classifiers followed
by a global reranker (Björkelund et al., 2009;
Björkelund et al., 2010; Roth and Woodsend,
2014); we have not used these features or rerank-
ing. Lei et al. (2015) use syntactic parses to obtain
interaction features between predicates and their
arguments and then compress feature representa-
tions using a low-rank tensor. Täckström et al.
(2015) present an exact inference algorithm for
SRL based on dynamic programming and their lo-
cal and structured models make use of many syn-
tactic features from a pipeline; our search pro-
cedure is greedy. Their algorithm is adopted
by FitzGerald et al. (2015) for inference in a model
that jointly learns representations from a combina-
tion of PropBank and FrameNet annotations; we
have not experimented with extra annotations.

Our system achieves an end-to-end runtime of
177.6±18 seconds to parse the CoNLL 2009 En-
glish test set on a single core. This is almost 2.5
times faster than the pipeline model of Lei et al.
(2015) (439.9±42 seconds) on the same machine.8

CoNLL 2009 Multilingual (Table 4) We tested
the joint model on the non-English CoNLL 2009
datasets, and the results demonstrate that it adapts
easily—it is on par with the top three systems in
most cases. We note that our Chinese parser relies
on pretrained word embeddings for its superior
performance; without them (not shown), it was on
par with the others. Japanese is a small-data case
(4,393 training examples), illustrating our model’s
dependence on reasonably large training datasets.

We have not extended our model to incorporate
morphological features, which are used by the sys-
tems to which we compare. Future work might in-

8See https://github.com/taolei87/
SRLParser; unlike other state-of-the-art systems, this
one is publicly available.
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Model LAS Sem. F1

(WSJ)
Sem. F1

(Brown)
Macro
F1

CoNLL’09 best:
#3 G+ ’09 88.79 83.24 70.65 86.03
#2 C+ ’09 88.48 85.51 73.82 87.00
#1 Z+ ’09a 89.19 86.15 74.58 87.69
this work:
Syntax-only 89.83
Sem.-only 84.39 73.87
Hybrid 89.83 84.58 75.64 87.20
Joint 89.94 84.97 74.48 87.45
pipelines:
R&W ’14 86.34 75.90
L+ ’15 86.58 75.57
T+ ’15 87.30 75.50
F+ ’15 87.80 75.50

Table 3: Comparison on the CoNLL 2009 English
test set. The first block presents results of other
models evaluated for both syntax and semantics on
the CoNLL 2009 task. The second block presents
our models. The third block presents the best pub-
lished models, each using its own syntactic pre-
processing.

corporate morphological features where available;
this could potentially improve performance, espe-
cially in highly inflective languages like Czech.
An alternative might be to infer word-internal rep-
resentations using character-based word embed-
dings, which was found beneficial for syntactic
parsing (Ballesteros et al., 2015).

Language #1 C+’09 #2 Z+ ’09a #3 G+ ’09 Joint
Catalan 81.84 83.01 82.66 82.40
Chinese 76.38 76.23 76.15 79.27
Czech 83.27 80.87 83.21 79.53
English 87.00 87.69 86.03 87.45
German 82.44 81.22 79.59 81.05
Japanese 85.65 85.28 84.91 80.91
Spanish 81.90 83.31 82.43 83.11
Average 82.64 82.52 82.14 81.96

Table 4: Comparison of macro F1 scores on the
multilingual CoNLL 2009 test set.

6 Related Work

Other approaches to joint modeling, not consid-
ered in our experiments, are notable. Lluı́s et al.
(2013) propose a graph-based joint model using
dual decomposition for agreement between syn-
tax and semantics, but do not achieve competi-
tive performance on the CoNLL 2009 task. Lewis
et al. (2015) proposed an efficient joint model for
CCG syntax and SRL, which performs better than

a pipelined model. However, their training neces-
sitates CCG annotation, ours does not. Moreover,
their evaluation metric rewards semantic depen-
dencies regardless of where they attach within the
argument span given by a PropBank constituent,
making direct comparison to our evaluation infea-
sible. Krishnamurthy and Mitchell (2014) pro-
pose a joint CCG parsing and relation extraction
model which improves over pipelines, but their
task is different from ours. Li et al. (2010) also
perform joint syntactic and semantic dependency
parsing for Chinese, but do not report results on
the CoNLL 2009 dataset.

There has also been an increased interest in
models which use neural networks for SRL. Col-
lobert et al. (2011) proposed models which per-
form many NLP tasks without hand-crafted fea-
tures. Though they did not achieve the best results
on the constituent-based SRL task (Carreras and
Màrquez, 2005), their approach inspired Zhou and
Xu (2015), who achieved state-of-the-art results
using deep bidirectional LSTMs. Our approach
for dependency-based SRL is not directly compa-
rable.

7 Conclusion

We presented an incremental, greedy parser for
joint syntactic and semantic dependency parsing.
Our model surpasses the performance of previous
joint models on the CoNLL 2008 and 2009 En-
glish tasks, without using expert-crafted, expen-
sive features of the full syntactic parse.
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Abstract

Current automatic machine translation
systems require heavy human proof-
reading to produce high-quality transla-
tions. We present a new interactive ma-
chine translation approach aimed at pro-
viding a natural collaboration between hu-
mans and translation systems. As such, we
grant the user complete freedom to vali-
date and correct any part of the translations
suggested by the system. Our approach
is then designed according to the require-
ments placed by this unrestricted proof-
reading protocol. In particular, the ability
of the system to suggest new translations
coherent with the set of potentially disjoint
translation segments validated by the user.

We evaluate our approach in a user-
simulated setting where reference transla-
tions are considered the output desired by
a human expert. Results show important
reductions in the number of edits in com-
parison to decoupled post-editing and con-
ventional prefix-based interactive transla-
tion prediction. Additionally, we provide
evidence that it can also reduce the cogni-
tive overload reported for interactive trans-
lation systems in previous user studies.

1 Introduction

Research in the field of machine translation (MT)
aims at developing computer systems that re-
duce the effort required to generate translations,
whether by assisting human translators or by di-
rectly replacing them. However, most research in
MT has focused on the development of fully auto-
matic MT approaches. Despite that, except for a
handful of very constrained domains, current au-
tomatic MT technology still only achieves results

that are not satisfactory in practice; automatic MT
still require heavy human proof-reading to pro-
duce human-quality translations.

We present a new computer-assisted translation
approach that integrates human translators and au-
tomatic MT into a tight feedback loop. In our ap-
proach, the user1 and the MT system collaborate
to generate translations through a series of inter-
actions. At each interaction, the system proposes
its best translation for the given input sentence. If
the user finds it correct, then it is accepted and the
process goes on with the next input sentence. Oth-
erwise, the user makes some corrections that the
system takes into account to improve the proposed
translation. The rationale behind this interactive
translation prediction (ITP) approach is to com-
bine the accuracy provided by the human expert
with the efficiency of the MT system in contrast
to decoupled post-editing (PE). Previous works,
e.g. (Barrachina et al., 2009), have explored this
paradigm; however their practical implementation
limits this general proof-reading approach to a
prefix-based interaction where the user is forced to
correct the errors in the sentence strictly according
to the reading order.

Our main contribution, described in Section 3,
is a new proof-reading protocol focused on pro-
viding a more natural interaction between the user
and the system. Specifically, we give complete
freedom to the user to validate or to correct any
part of the translation at any given interaction. As
such, the user is no longer bound to correct the
errors following the reading order as in previous
prefix-based ITP works (Barrachina et al., 2009;
González-Rubio et al., 2013; Green et al., 2014).
Preffix-based interaction can be a frustrating and
cognitively demanding limitation for the user, and
may be a factor in the somehow disappointing

1We use the terms “human expert”, “human translator”,
and ‘user” indistinctly.
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results of prefix-based ITP with users (Koehn,
2009; Underwood et al., 2014; Green et al., 2014;
Sanchis-Trilles et al., 2014). We design our ap-
proach to meet the requirements placed by the un-
restricted proof-reading protocol, not the opposite
way. The most significant new feature is condi-
tioned decoding, for translation generation coher-
ently to a set of segments validated by the user.

An evaluation involving human users is most
desirable to study the impact of any proof-reading
protocol. However, such a study is expensive,
time-consuming and it will require to take into
account additional sources of variation, namely
the human factor, that may obscure the compari-
son between different approaches. Therefore, we
chose to follow previous works, for instance (Bar-
rachina et al., 2009), and carry out our experi-
ments on a simulated setting intended to provide
a direct and, more importantly, objective compar-
ison to previous approaches (Section 4). Regard-
ing evaluation, we propose a new metric to auto-
matically estimate the cognitive load of potential
users working on the different ITP environments.
To the best of our knowledge, this is the first pro-
posal at this respect. Results in Section 5 confirm
the soundness of the proposed ITP approach. Re-
ported figures show important reductions in both
the number of corrections typed by the user and
her estimated cognitive load.

2 Related Work

Common proof-read MT protocols implement a
decoupled PE process in which, first, the MT sys-
tem returns a translation of a whole given docu-
ment. Next, a human reads it correcting, in any
order, the possible mistakes made by the system.

Interactive approaches (Isabelle and Church,
1998; Langlais and Lapalme, 2002; Tomás and
Casacuberta, 2006) were proposed as a more so-
phisticate way of taking advantage of MT technol-
ogy. Barrachina et al., (Barrachina et al., 2009)
presented a prefix-based ITP approach in which
the user is assumed to proof-read each automatic
translation correcting each time the first error, if
any, in the usual reading order. This can be a
reasonable assumption in text or speech transcrip-
tion (Toselli et al., 2007; Rodrı́guez et al., 2007)
where the output sequence is generated monoton-
ically respect to the input data. However, it has al-
ways be an important handicap for translation due
to the intrinsic reordering involved in the process.

ITP is a fruitful research field with diverse con-
tributions for multiple authors: (González-Rubio
et al., 2010; Alabau et al., 2013; Koehn et al.,
2014) among others. We share with (Sanchis-
Trilles et al., 2008) the idea of making a more
sophisticated use of the mouse actions performed
by the user while interacting with the system, and
with (González-Rubio et al., 2013) the common
ITP formulation for both phrase-based and hierar-
chical MT models. In particular, we significantly
modify the prefix-based ITP implementation pre-
sented in the latter work to support the proposed
unrestricted proof-reading protocol.

User studies of prefix-based ITP versus PE
have shown that while users tend to make less
corrections, overall translation time tend to be
higher (Koehn, 2009; Underwood et al., 2014;
Green et al., 2014; Sanchis-Trilles et al., 2014).
Coherently with these results, users also perceive
prefix-based ITP as a more cognitive demanding
task than PE. This is not surprising given that
users are asked to proof-read one new translation
(suffix) after each individual correction, which in-
creases significantly the amount of text to be pro-
cessed to generate a single translation. This is par-
ticularly frustrating when the user observes how a
correct translation is rewritten with a wrong one
by the next suffix suggested by the system. Given
that PE do not suffer from this effect, it provides
a comprehensive explanation of the somehow dis-
appointing results reported for prefix-based ITP.

To the best of our knowledge, the only alterna-
tive to prefix-based proof-reading was proposed
in the context of text recognition. Serrano et
al., (2014) implement a constrained search proce-
dure that profits from the monotonic alignment be-
tween input image, search states and user correc-
tions, to limit the set of possible transcriptions to
those coherent with a set of (disjoint) user correc-
tions. We apply a similar idea in a translation con-
text and provide solutions to cope with the non-
monotonicity inherent to the task.

3 Beyond Prefix-Based ITP

The goal of our approach is to give complete free-
dom to the user in her interaction with the system.
The process starts when the MT system proposes
a full translation of the source language sentence.
Then, the user reads the translation and is allowed
to validate -all or part of- the correct segments in it
and corrects any of its potential errors. Then, the
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source (s): No era el hombre más honesto ni el más piadoso , pero era un hombre valiente .
desired translation (t): He was not the most honest or pious of men , but he was courageous .

BEGIN
{

MT : It was not the most honest and the most pious man , but it was a brave man .

IT-1
{

User: It was not the most honest and the most pious of man , but it was a brave man .
MT : He was not the most honest or pious of men , but it was a brave man .

IT-2
{

User: He was not the most honest or pious of men , but it was courageous .
MT : He was not the most honest or pious of men , but he was courageous .

END
{

User: He was not the most honest or pious of men , but he was courageous .

Figure 1: Interactive translation of a Spanish sentence into English. First, the system suggests an initial
translation. At iteration 1, the user validates the parts of the suggestions she considers to be right and
introduces a correction by typing a word: “ of ”. This defines a new user feedback with five segments:
{“was not the most honest”, “pious of”, “, but”, “was”, “.”}. Then, the system suggests a new translation
that contains these segments in the given order. Iteration 2 is similar; the user validates words “He”
and “or”, and she types a new correction: “ courageous ”. The process ends when the user accepts the
translation suggested by the system in the last step. Only two edits are required. In comparison, PE
would have needed 10 edits.

system takes into account this feedback to suggest
a new translation that contains the segments vali-
dated by the user as well as the typed corrections.
Such process is repeated until the user validates
the whole suggested translation. An example of
this process is shown in Figure 1.

The crucial MT feature is the generation of a
new translation coherent to the segments already
validated by the user. Formally, we represent such
user feedback as a sequence of disjoint segments
f = f̃1, . . . , f̃k, . . . , f̃|f |, where each f̃k is a se-
quence of consecutive target language words. For
example, user feedback at iteration one in Figure 1
is composed of five disjoint segments: f̃1 = “was
not the most honest”, f̃2 = “pious of”, f̃3 = “, but”,
f̃4 = “was” and f̃5 = “.”. Segments in f do not
overlap and do not necessarily cover the whole
sentence. Prefix-based feedback in conventional
ITP is a special case of this with only one segment
starting at the beginning of the sentence.

Next, we describe the statistical formalization
of our approach, the models actually used to im-
plement such formalization, and the search proce-
dures required to efficiently generate translations
coherent with this generalized user feedback.

3.1 Statistical Framework

Our problem can be stated as follows: given a
source sentence s = s1 . . . s|s| and some user feed-
back f , we must find the best target language trans-

lation t = t1 . . . t|t| of s coherent with f :

t̂ = arg max
t

Pr(t | s, f)

We can make the naı̈ve Bayes’ assumption that
s and f are statistically independent variables
given t. This results in the basic equation for ITP
with error correction (Ortiz-Martı́nez, 2011):

t̂ = arg max
t

Pr(t | s) · Pr(f | t) (1)

where, as we will see in Section 3.2, distribution
Pr(t | s) can be approximated by a machine trans-
lation model, and Pr(f | t) by an error correction
model that measures the degree of compatibility
between f and t.

Note that by using a probability distribution
Pr(f | t), any translation is compatible with a
given user feedback to some degree. As a con-
sequence, the translation returned by Equation (1)
may still not contain the segments validated by the
user; we need to identify the sub-string of the re-
turned sentence that corresponds to the each of the
segments validated by the user. To solve this prob-
lem, we define an alignment a = a1, . . . , a|f | be-
tween the user-validated segments f = f̃1, . . . , f̃|f |
and a list of segments t̃ = t̃1, . . . , t̃|f |, where each
t̃k = tki

. . . tkj
is a sub-sequence of words in t.

Each alignment link ak = t̃k indicates the particu-
lar segment in t that should be replaced by the kth
user-validated segment f̃k to make t coherent to f .
Unaligned words in t constitute the free text that
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completes the gaps in between the user-validated
segments in f (González-Rubio et al., 2013). The
alignment also must be monotonic to preserve the
order of the user-validated segments. Formally,
for every pair of alignment links: ak = t̃k and
ak′ = t̃k′ , k < k′ ⇐⇒ kj < k′i.

After including alignment in Equation (1) and
following a maximum approximation, we arrive to
our final formulation of ITP with error correction:

(t̂, â) = arg max
t,a

Pr(t | s) · Pr(f ,a | t) (2)

In practice, we combine the probability distri-
butions in Equation (2) in a log-linear fashion as it
is typically done in MT (Och and Ney, 2002).

3.2 Models
Equation (2) includes two probability distribu-
tions: Pr(t | s) and Pr(f ,a | t). The first one can
be modeled by any of the multiple machine trans-
lation models that have been proposed in the liter-
ature; (Koehn, 2009) for example provide a good
description of them. We will focus our exposition
in the latter distribution, Pr(f ,a | t), that evalu-
ates the compatibility between a translation t and
some user feedback f through alignment a.

Following (González-Rubio et al., 2013), we
model Pr(f ,a | t) as an error correction model
based on the edit distance (Levenshtein, 1966).
Given a candidate string and the corresponding
reference string, we model edit distance as a
Bernoulli process where each word of the candi-
date has a probability pe of being edited. Under
this interpretation, the number of edits δ observed
in a candidate of length n is a random variable that
follows a binomial distribution, δ ∼ B(n, pe). By
assuming independence between each alignment
link, we can model error-correction probability as:

Pr(f ,a | t) ≈
|a|∏
k=1

PE (̃fk, ak)

=
|a|∏
k=1

(
nk
δk

)
pδke (1− pe)(nk−δk)

where PE (̃fk, ak) is the error correction probabil-
ity for the k-th alignment link whose value is given
by the probability mass function of the binomial
distribution, nk = |̃fk| is the length in words of
the k-th segment validated by the user (̃fk), and
δk is the edit distance between f̃k and the segment
ak = t̃k of t aligned to it according to a.

6

1

5

I saw a man with a telescope

2 3

4

I saw a man with a telescope
I saw with a telescope a man

Figure 2: Example of a hypergraph encoding two
different translations for the Spanish sentence: “Vi
a un hombre con un telescopio”.

The probability of editing pe is the single free
parameter of this model. Alternatively, we can use
a model based on a multinomial distribution as-
signing different probabilities to different edit op-
erations. Nevertheless, we adhere to the binomial
approximation due to its simplicity.

3.3 Search

Next, we address the problem posed by the max-
imization in Equation (2). Following (Barrachina
et al., 2009), we split search into a two step pro-
cess. Given a source language sentence, we first
generate a graph-based representation that con-
tains its most probable translations. Then, we
search for the optimal translation and alignment
on it according to Equation (2). In particular, we
use hypergraphs to represent such search space.

One important advantage of this approach, is
that it separates the proof-read step from the MT
engine used to generate the initial translations. As
such it provides an unified framework that ac-
cepts both the use of phrase-based and hierarchi-
cal/syntax translation models.

3.3.1 Hypergraphs
A hypergraph (Gallo et al., 1993) is a generaliza-
tion of the concept of graph where the edges (now
called hyperedges) may connect several nodes
(hypernodes) at the same time. Formally, a hy-
pergraph is a weighted acyclic graph represented
by a pair H =<V, E>, where V is a set of hy-
pernodes and E is a set of hyperedges. Each hy-
peredge ε ∈ E connects a set of tail hypernodes
T (ε) = {τ1 . . . τ|T (ε)|} τl ∈ V , to a head hypern-
ode H(ε) ∈ V . A hypernode with no ingoing hy-
peredges is a leaf, while a hypernode with no out-
going hyperedges is a root. Each hypernode rep-
resents a partial translation generated during the
MT decoding process. Each ingoing hyperedge ε
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represents the rule applied to generate the partial
solution in the head from the partial solutions in
the tail hypernodes, as such it has an associated
probability P (ε). Figure 2 shows an example hy-
pergraph2. Two alternative translations are con-
structed from the leaf hypernodes (1, 2 and 3) up
to the root hypernode (6). Hypergraphs provide
a compact representation of the translation space
that allows us to derive efficient search algorithms.

Hypergraphs are the natural representation for
hierarchical MT models (Chiang, 2005; Zollmann
and Venugopal, 2006). Note, however, that word-
graphs (Ueffing et al., 2002), which are used to
represent the search space for phrase-based mod-
els (Koehn et al., 2003), are a special case of hy-
pergraphs in which hyperedges have at most one
tail hypernode.

3.3.2 Search on hypergraphs
We formalize the maximization in Equation (2) as
a bottom-up search problem. Starting from the
leaf hypernodes, we keep track of the best solu-
tions (partial translation and alignment) achievable
at each hypernode. We define Q(ν, [m,n]) as the
probability of the most likely partial translation
derivable from hypernode ν aligned to (accounting
for) user-validated segments fromm-th to n-th, we
will refer to this interval as the coverage of the
partial solution. Given a node ν and a coverage,
we compute its score from its ingoing hyperedges.
Specifically, Q(ν, [m,n]) will be equal to the max-
imum score of the partial solutions computed from
any ingoing hyperedge. Partial solutions from an
ingoing hyperedge ε are defined as combinations
of partial solutions on its tail hypernodes under the
constrain that the concatenation of their coverages
equals [m,n]. Formally, given an ingoing hyper-
edge ε, a combination c = {Q(τl, [ml, nl])}|T (ε)|

l=1

is valid if it holds the following four conditions:

1. m1 = m

2. n|T (ε)| = n

3. ∀l, τl ∈ T (ε)

4. ∀l : 1 < l ≤ |T (ε)|,ml = nl−1 + 1

Q(ν, [m,n]) can be computed efficiently via the
following dynamic programming recursion:

Q(ν, [m,n]) = max
ε∈I(ν)

c∈C(ε,[m,n])

P (ε)
∏

Q(τl,[ml,nl])∈c
Q(τl, [ml, nl])

2For simplicity, we do not show hyperedge probabilities.

EU corpus (Es/En)
train tune test

Sentences 214K 400 800
Tokens 5.9M / 5.2M 12K / 10K 23K / 20K
Vocabulary 97K / 84K 3K / 3K 5K / 4K

Table 1: Main figures of the EU corpus. K and M
stand for thousands and millions of elements.

where I(ν) are the ingoing hyperedges of ν, P (ε)
is the probability of hyperedge ε, C(ε, [m,n]) is
the set of valid combinations for hyperedge ε and
coverage [m,n], and c ∈ C(ε, [m,n]) is one of
such valid combinations

Leaf hypernodes represent the base cases for
this recursion. For simplicity, we restrict them to
be fully-aligned to at most one user-validated seg-
ment3. That is, given a leaf hypernode λ ∈ V:

Q(λ, [m,n])=
{
PMT(λ)PE(w(λ), f̃m) if m=n
0 otherwise.

where PMT(λ) is the MT probability (language
plus translation model) of λ, and PE(w(λ), f̃m) is
the error correction probability between the target
text covered by the leaf hypernode, w(λ), and the
m-th user-validated segment in f .

The score of the optimal solution is given by
Q(α, [1, |f |]), where α ∈ V is the root hypernode.
We can recover (t̂, â) through backtracking.

The process described above loops over all
hyperedges and coverages (bounded by |E||f |2),
evaluating all valid combinations (bounded by the
coverage partitions). It can be implemented by an
algorithm with a complexity inO(|E||f |2τ ), where
τ is the average number of tail hypernodes per
hyperedge (usually set to 2). In practice, our ap-
proach has a complexity in O(|E||f |4).

4 Experimental Setup

4.1 Corpus and MT systems

We tested the proposed methods in the Spanish-
to-English (Es–En) partition of the Bulletin of the
European Union (EU) corpus (Barrachina et al.,
2009; González-Rubio et al., 2013). We tokenized
the corpus keeping the real case of the sentences.
Table 1 shows the main figures of the corpus.

We estimated a hierarchical MT model for the
train partition with the standard configuration of

3Preliminary experiments did not show a difference in the
final results when relaxing this restriction.
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the Moses toolkit (Koehn et al., 2007). Log-
linear weighs were estimated by minimum error-
rate training (Och, 2003) on the tune partition.
Then, we automatically translated tune and test
partitions using the optimized model to obtain the
corresponding hypergraphs. Next, we optimized
the single free parameter pe of the error correc-
tion model (see Section 3.2) on the tune partition.
Finally, we interactively translated both partitions
according to the unrestricted ITP approach pro-
posed in Section 3.

4.2 User Simulation
ITP evaluation with human translators is simply
to slow and expensive to be applied on a frequent
and ongoing basis during system development. In-
stead, we carried out an automatic evaluation with
simulated users which is faster and cheaper.

At each ITP iteration (see Figure 1), we have
to decide which segments in the suggested trans-
lation should be validated, and which error should
be corrected. To do that, we considered the ref-
erence translations in the corpus as the output
that a human expert would want to obtain. Then,
we align the suggested translation and the refer-
ence via edit distance: words aligned to itself are
marked as valid, while edited words are potential
corrections to be typed by the simulated user.

Without loss of generality, we introduced two
restrictions: (1) we restrict users to validate seg-
ments only at the first iteration, and (2) the sim-
ulated user always corrected the first (in reading
order) error in the suggested translation. We are
aware that the results obtained with this user simu-
lation will be pessimistic since it forbids behaviors
that may improve user productivity, e.g. validat-
ing segments at each iteration or correcting more
promising parts of the suggested translation. Our
goal is not to match the behavior of a human trans-
lator, but to allow for a meaningful comparison
against conventional ITP. Note that prefix-based
proof-reading is a particular case of our user sim-
ulation with no segment validation.

4.3 Evaluation Metrics
ITP systems are evaluated according to the effort
needed to generate the desired translations. This
effort is usually estimated as the number of actions
performed by the user while interacting with the
system. In our user simulation, we describe two
different actions: segment-validation, and word-
correction. Each segment validation involves the

user to “click” on the initial and final words of the
segment4. Each correction corresponds to an edit
operation performed by the user. Specifically, we
used the following measures in our experiments:

Word stroke ratio (WSR): Proposed in (Tomás
and Casacuberta, 2006) as the quotient between
the number of words edited by the user (word-
strokes), and the number of words in the final
translation. Word-strokes are considered as sin-
gle actions with constant cost independently of
the length of the edited word.

Mouse action ratio (MAR): Proposed in (Bar-
rachina et al., 2009) as the quotient between the
number of “clicks” made by the user (mouse-
actions), and the number of words in the final
translation. In addition to the “clicks” for seg-
ment validation, we count one more mouse ac-
tion per sentence accounting for the final accep-
tance of the suggested translation.

Conceptually (Macklovitch et al., 2005), MAR
can be seen as accounting for the cognitive part of
the supervision process: undertanding the transla-
tion and identifying the errors in it, while WSR
accounts for the actual physical effort required to
type the corrections. As such, both metrics are
complementary to express the total human effort
involved in proof-reading a document.

We also evaluated the quality of the initial auto-
matic translations generated by the system:

Bilingual evaluation understudy (BLEU):
Proposed in (Papineni et al., 2002), it is based
on the precision of n-grams between the
suggested translation and the reference; it also
includes a brevity penalty to penalize short
translations. This score ranges between 0 and
100, with 100 denoting a perfect translation.

Translation edit rate (TER): Proposed
in (Snover et al., 2006), it measures the
number of edit operations (substitution, inser-
tion and deletion of single words, and swap
of word sequences) divided by the number of
words in the reference.

In addition to be an MT quality metric, TER can
also be seen as a human-effort measure in PE sce-
narios. Therefore, we can use TER and WSR to
compare human effort between PE and ITP.

4One single “click” is enough for one-word segments.
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AUTOMATIC TRANSLATION

tune test
BLEU [%](⇑) TER [%](⇓) BLEU [%](⇑) TER [%](⇓)
38.9±1.4 47.2±1.4 44.2±1.3 41.1±1.2

COMPUTER-ASSISTED TRANSLATION

TER [%](⇓) TER [%](⇓)
Post-editing 47.2±1.4 41.1±1.2

MAR [%](⇓) WSR [%](⇓) MAR [%](⇓) WSR [%](⇓)
prefix-based ITP 11.2±0.4 45.8±2.0 10.3±0.3 54.5±1.4
Our approach 33.9±1.2 30.5±1.6 35.4±0.9 35.1±1.1

Table 2: Results of different approaches when interactively translating the tune and test partitions of the
EU corpus. We compare decoupled PE, prefix-based ITP and the unrestricted ITP approach proposed in
this work. Automatic translation results are shown to indicate the difficulty of the task. Results in bold
indicate the lowest human effort (typing) achievable by the different scenarios.

Finally, in order to assess the statistical signif-
icance of the results, we also provide 95% con-
fidence intervals for their values. These inter-
vals were computed via pair-wise bootstrap re-
sampling as proposed in (Zhang and Vogel, 2004).

5 Results

This section presents the results of the experiments
performed to assess the unrestricted ITP approach
proposed in Section 3. First, we compare our
ITP approach to the prefix-based ITP scenario de-
scribed in (Barrachina et al., 2009) and the decou-
pled PE approach. Then, we further study our
approach investigating the relationship between
segment-validation and typing effort. Finally, we
provide evidence that the proposed unrestricted
proof-reading protocol allows to reduce the cogni-
tive overload produced by the changing translation
completions of prefix-based ITP approaches.

Table 2 displays user-effort results for the pro-
posed ITP approach against prefix-based ITP (Bar-
rachina et al., 2009)5 and a decoupled PE base-
line approach. Automatic translation results are
also displayed to give an idea of the difficulty
of the task. We can observe how our approach
clearly outperformed both prefix-based ITP and
PE in terms of user typing effort as measured by
WSR and TER respectively. According to these
results, a human translator assisted by our ITP sys-
tem would only need to correct only about one
third of the words to generate the correct transla-
tions. In comparison, PE would require to type

5For prefix-based ITP, MAR accounts for the prefixes val-
idated by the user while proof-reading the translations.

Figure 3: WSR and MAR as a function of the max-
imum number of words validated by the simulated
user in our ITP approach. No changes were ob-
served for more than 40 validated words.

∼ 41% of the words (17% more) while prefix-
based ITP would require to correct more that half
of them (55% more). Additionally, we can observe
that prefix-based ITP was not better than the PE
baseline in all cases. This result, coherent with
previous works e.g. (González-Rubio et al., 2013;
Green et al., 2014), exemplifies the potential limi-
tations of prefix-based ITP.

The large reductions in typing effort observed
for our ITP approach came together with an im-
portant increase in the number of mouse actions.
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Next, we focused on the differences between
prefix-based and our approach. To do that, we car-
ried out different experiments allowing the sim-
ulated user to validate an increasing number of
words from zero to infinity (corresponding respec-
tively to the results of prefix-based ITP and our ap-
proach in Table 2). Figure 3 shows WSR (top) and
MAR (bottom) for the Test partition as a function
of the maximum number or words allowed to be
validated by the user.

As we allowed the simulated user to validate
more words, the amount of words to be corrected
(WSR) decreased dramatically. For example, we
obtained a 10% relative reduction in WSR when
we allowed the user to validate a maximum of
4 words. A similar trend (but in the opposite
direction) can be observed for MAR: as we al-
lowed the user to validate more words, the num-
ber of mouse actions increased until stabilization.
In other words, our ITP approach allows to reduce
user typing effort at the expense of an increase in
the number of mouse actions. As we have said
before, WSR and MAR account for different phe-
nomena and thus have different cost from a hu-
man point of view (Macklovitch et al., 2005). It
may seem that we have simply exchanged typing
effort for cognitive effort. However, two consid-
erations allow us to consider this a beneficial ex-
change. On the one hand, from a pure mechanistic
point of view, typying a whole word usually re-
quires more effort than “clicking” on it. On the
other hand, from a cognitive point of view, the
user has to read, understand, and evaluate the sug-
gested translation in both prefix-based ITP and our
approach. Hence, the difference in cognitive effort
between these two approaches approaches is most
probably negligible. Nevertheless, these consid-
erations should be tested with actual human users
before reaching categorical conclusions.

Average response time of our Python prototype
was below 3 seconds6. Obviously, it does not qual-
ify as real-time. However, we expect an important
reduction in response time after implementing our
approach in a more efficient language.

We performed a final analysis to evaluate to
which extent our proposal alleviates the main an-
noying effect inherent to prefix-based ITP, namely
correct words in a given suffix overwritten by the
next suggested suffix. This common effect, ob-
served in several user studies, make human users

6The test machine was an Intel i5 CPU at 3.4 GHz.

Figure 4: Percentage of words suggested by the
system that were correct but overwritten in subse-
quent translation suggestions, as a function of the
number of words validated by the simulated user.
This ratio can be seen as a measure of the user
cognitive overload.

feel that cognitive effort invested in evaluating
each suggested translation was wasted.

To do that, we measured the number of correct
words that were modified by subsequent transla-
tion suggestions, normalized by the total number
of suggested words. Figure 4 displays this per-
centage as a function of the maximum number of
words that can be validated by the simulated user.
We can observe how for prefix-based ITP (zero
value in the x-axis), this cognitive overload is a
very important phenomena; more than 30% of the
words suggested by the system were correct but
modified by following suffix suggestions. As we
allowed more words to be fixed, this percentage
steadily decreased down to zero. This indicates
that our ITP proposal actually provides a mecha-
nism to overcome the cognitive overload inherent
to prefix-based ITP.

6 Summary

We have presented a new ITP approach where the
user is not longer bound to interact with the system
in a prefix-based fashion (Barrachina et al., 2009).
The proposed ITP approach gives the user com-
plete freedom to validate and correct any part of
the suggested translations thus providing a more
natural working environment for human transla-
tors. We formalize the problem as a MT model
with error correction which, in practice, is imple-
mented as a constrained search on hypergraphs.

Simulated results showed that the proposed
ITP approach drastically reduced the typing effort
needed to generate translations, improving results
of both decoupled PE and prefix-based ITP. This
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reduction in typing effort came at the expense of
a larger amount of mouse actions required to val-
idate correct segments of the suggested transla-
tions. However, since mouse actions are cheaper
than typing full words, we can expect this ex-
change to reduce overall user effort. Nevertheless,
this expectation should be confirmed in future ex-
periments with actual human users. Finally, in ad-
dition to reduce user effort, we also provide evi-
dence indicating that the proposed ITP approach
can reduce the cognitive overload commonly re-
ported by humans using prefix-based ITP systems.
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Abstract

Machine Translation Quality Estimation is
a notoriously difficult task, which lessens
its usefulness in real-world translation en-
vironments. Such scenarios can be im-
proved if quality predictions are accompa-
nied by a measure of uncertainty. How-
ever, models in this task are tradition-
ally evaluated only in terms of point es-
timate metrics, which do not take predic-
tion uncertainty into account. We investi-
gate probabilistic methods for Quality Es-
timation that can provide well-calibrated
uncertainty estimates and evaluate them in
terms of their full posterior predictive dis-
tributions. We also show how this poste-
rior information can be useful in an asym-
metric risk scenario, which aims to capture
typical situations in translation workflows.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004; Spe-
cia et al., 2009) models aim at predicting the
quality of automatically translated text segments.
Traditionally, these models provide point esti-
mates and are evaluated using metrics like Mean
Absolute Error (MAE), Root-Mean-Square Error
(RMSE) and Pearson’s r correlation coefficient.
However, in practice QE models are built for use
in decision making in large workflows involving
Machine Translation (MT). In these settings, rely-
ing on point estimates would mean that only very
accurate prediction models can be useful in prac-
tice.

A way to improve decision making based on
quality predictions is to explore uncertainty esti-
mates. Consider for example a post-editing sce-
nario where professional translators use MT in an
effort to speed-up the translation process. A QE

model can be used to determine if an MT seg-
ment is good enough for post-editing or should be
discarded and translated from scratch. But since
QE models are not perfect they can end up al-
lowing bad MT segments to go through for post-
editing because of a prediction error. In such a sce-
nario, having an uncertainty estimate for the pre-
diction can provide additional information for the
filtering decision. For instance, in order to ensure
good user experience for the human translator and
maximise translation productivity, an MT segment
could be forwarded for post-editing only if a QE
model assigns a high quality score with low uncer-
tainty (high confidence). Such a decision process
is not possible with point estimates only.

Good uncertainty estimates can be acquired
from well-calibrated probability distributions over
the quality predictions. In QE, arguably the most
successful probabilistic models are Gaussian Pro-
cesses (GPs) since they considered the state-of-
the-art for regression (Cohn and Specia, 2013;
Hensman et al., 2013), especially in the low-data
regimes typical for this task. We focus our anal-
ysis in this paper on GPs since other common
models used in QE can only provide point esti-
mates as predictions. Another reason why we fo-
cus on probabilistic models is because this lets us
employ the ideas proposed by Quiñonero-Candela
et al. (2006), which defined new evaluation met-
rics that take into account probability distributions
over predictions.

The remaining of this paper is organised as fol-
lows:

• In Section 2 we further motivate the use of
GPs for uncertainty modelling in QE and re-
visit their underlying theory. We also propose
some model extensions previously developed
in the GP literature and argue they are more
appropriate for the task.
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• We intrinsically evaluate our proposed mod-
els in terms of their posterior distributions on
training and test data in Section 3. Specifi-
cally, we show that differences in uncertainty
modelling are not captured by the usual point
estimate metrics commonly used for this task.

• As an example of an application for predici-
tive distributions, in Section 4 we show how
they can be useful in scenarios with asym-
metric risk and how the proposed models can
provide better performance in this case.

We discuss related work in Section 5 and give con-
clusions and avenues for future work in Section 6.

While we focus on QE as application, the meth-
ods we explore in this paper can be applied to
any text regression task where modelling predic-
tive uncertainty is useful, either in human decision
making or by propagating this information for fur-
ther computational processing.

2 Probabilistic Models for QE

Traditionally, QE is treated as a regression task
with hand-crafted features. Kernel methods are
arguably the state-of-the-art in QE since they can
easily model non-linearities in the data. Further-
more, the scalability issues that arise in kernel
methods do not tend to affect QE in practice since
the datasets are usually small, in the order of thou-
sands of instances.

The most popular method for QE is Support
Vector Regression (SVR), as shown in the multiple
instances of the WMT QE shared tasks (Callison-
burch et al., 2012; Bojar et al., 2013; Bojar et
al., 2014; Bojar et al., 2015). While SVR mod-
els can generate competitive predictions for this
task, they lack a probabilistic interpretation, which
makes it hard to extract uncertainty estimates us-
ing them. Bootstrapping approaches like bagging
(Abe and Mamitsuka, 1998) can be applied, but
this requires setting and optimising hyperparame-
ters like bag size and number of bootstraps. There
is also no guarantee these estimates come from a
well-calibrated probabilistic distribution.

Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) is an alternative kernel-based
framework that gives competitive results for point
estimates (Cohn and Specia, 2013; Shah et al.,
2013; Beck et al., 2014b). Unlike SVR, they ex-
plicitly model uncertainty in the data and in the
predictions. This makes GPs very applicable when

well-calibrated uncertainty estimates are required.
Furthermore, they are very flexible in terms of
modelling decisions by allowing the use of a vari-
ety of kernels and likelihoods while providing effi-
cient ways of doing model selection. Therefore, in
this work we focus on GPs for probabilistic mod-
elling of QE. In what follows we briefly describe
the GPs framework for regression.

2.1 Gaussian Process Regression
Here we follow closely the definition of GPs
given by Rasmussen and Williams (2006). Let
X = {(x1, y1), (x2, y2), . . . , (xn, yn)} be our
data, where each x ∈ RD is a D-dimensional in-
put and y is its corresponding response variable. A
GP is defined as a stochastic model over the latent
function f that generates the data X :

f(x) ∼ GP(m(x), k(x,x′)),

where m(x) is the mean function, which is usu-
ally the 0 constant, and k(x,x′) is the kernel or
covariance function, which describes the covari-
ance between values of f at the different locations
of x and x′.

The prior is combined with a likelihood via
Bayes’ rule to obtain a posterior over the latent
function:

p(f |X ) =
p(y|X, f)p(f)

p(y|X)
,

where X and y are the training inputs and re-
sponse variables, respectively. For regression, we
assume that each yi = f(xi) + η, where η ∼
N (0, σ2

n) is added white noise. Having a Gaussian
likelihood results in a closed form solution for the
posterior.

Training a GP involves the optimisation of
model hyperparameters, which is done by max-
imising the marginal likelihood p(y|X) via gra-
dient ascent. Predictive posteriors for unseen x∗
are obtained by integrating over the latent function
evaluations at x∗.

GPs can be extended in many different ways by
applying different kernels, likelihoods and modi-
fying the posterior, for instance. In the next Sec-
tions, we explain in detail some sensible mod-
elling choices in applying GPs for QE.

2.2 Matèrn Kernels
Choosing an appropriate kernel is a crucial step
in defining a GP model (and any other kernel
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method). A common choice is to employ the ex-
ponentiated quadratic (EQ) kernel1:

kEQ(x,x′) = σv exp(−r
2

2
) ,

where r2 =
D∑

i=1

(xi − x′i)2
l2i

is the scaled distance between the two inputs, σv is
a scale hyperparameter and l is a vector of length-
scales. Most kernel methods tie all lengthscale
to a single value, resulting in an isotropic kernel.
However, since in GPs hyperparameter optimisa-
tion can be done efficiently, it is common to em-
ploy one lengthscale per feature, a method called
Automatic Relevance Determination (ARD).

The EQ kernel allows the modelling of non-
linearities between the inputs and the response
variables but it makes a strong assumption: it
generates smooth, infinitely differentiable func-
tions. This assumption can be too strong for noisy
data. An alternative is the Matèrn class of kernels,
which relax the smoothness assumption by mod-
elling functions which are ν-times differentiable
only. Common values for ν are the half-integers
3/2 and 5/2, resulting in the following Matèrn
kernels:

kM32 = σv(1 +
√

3r2) exp(−
√

3r2)

kM52 = σv

(
1 +
√

5r2 +
5r2

3

)
exp(−

√
5r2) ,

where we have omitted the dependence of kM32
and kM52 on the inputs (x,x′) for brevity. Higher
values for ν are usually not very useful since the
resulting behaviour is hard to distinguish from
limit case ν → ∞, which retrieves the EQ kernel
(Rasmussen and Williams, 2006, Sec. 4.2).

The relaxed smoothness assumptions from the
Matèrn kernels makes them promising candidates
for QE datasets, which tend to be very noisy. We
expect that employing them will result in a better
models for this application.

2.3 Warped Gaussian Processes

The Gaussian likelihood of standard GPs has sup-
port over the entire real number line. However,
common quality scores are strictly positive val-
ues, which means that the Gaussian assumption

1Also known as Radial Basis Function (RBF) kernel.

is not ideal. A usual way to deal with this prob-
lem is model the logarithm of the response vari-
ables, since this transformation maps strictly pos-
itive values to the real line. However, there is no
reason to believe this is the best possible mapping:
a better idea would be to learn it from the data.

Warped GPs (Snelson et al., 2004) are an ex-
tension of GPs that allows the learning of arbi-
trary mappings. It does that by placing a mono-
tonic warping function over the observations and
modelling the warped values inside a standard GP.
The posterior distribution is obtained by applying
a change of variables:

p(y∗|x∗) =
f ′(y∗)√

2πσ2∗
exp

(
f(y∗)− µ∗

2σ∗

)
,

where µ∗ and σ∗ are the mean and standard devia-
tion of the latent (warped) response variable and f
and f ′ are the warping function and its derivative.

Point predictions from this model depend on the
loss function to be minimised. For absolute error,
the median is the optimal value while for squared
error it is the mean of the posterior. In standard
GPs, since the posterior is Gaussian the median
and mean coincide but this in general is not the
case for a Warped GP posterior. The median can
be easily obtained by applying the inverse warping
function to the latent median:

ymed
∗ = f−1(µ∗).

While the inverse of the warping function is usu-
ally not available in closed form, we can use its
gradient to have a numerical estimate.

The mean is obtained by integrating y∗ over the
latent density:

E[y∗] =
∫
f−1(z)Nz(µ∗, σ2

∗)dz,

where z is the latent variable. This can be eas-
ily approximated using Gauss-Hermite quadrature
since it is a one dimensional integral over a Gaus-
sian density.

The warping function should be flexible enough
to allow the learning of complex mappings, but
it needs to be monotonic. Snelson et al. (2004)
proposes a parametric form composed of a sum of
tanh functions, similar to a neural network layer:

f(y) = y +
I∑

i=1

ai tanh(bi(y + ci)),
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where I is the number of tanh terms and a,b and
c are treated as model hyperparameters and opti-
mised jointly with the kernel and likelihood hyper-
parameters. Large values for I allow more com-
plex mappings to be learned but raise the risk of
overfitting.

Warped GPs provide an easy and elegant way
to model response variables with non-Gaussian
behaviour within the GP framework. In our ex-
periments we explore models employing warping
functions with up to 3 terms, which is the value
recommended by Snelson et al. (2004). We also
report results using the f(y) = log(y) warping
function.

3 Intrinsic Uncertainty Evaluation

Given a set of different probabilistic QE models,
we are interested in evaluating the performance of
these models, while also taking their uncertainty
into account, particularly to distinguish among
models with seemingly same or similar perfor-
mance. A straightforward way to measure the per-
formance of a probabilistic model is to inspect its
negative (log) marginal likelihood. This measure,
however, does not capture if a model overfit the
training data.

We can have a better generalisation measure
by calculating the likelihood on test data instead.
This was proposed in previous work and it is
called Negative Log Predictive Density (NLPD)
(Quiñonero-Candela et al., 2006):

NLPD(ŷ,y) = − 1
n

n∑
i=1

log p(ŷi = yi|xi).

where ŷ is a set of test predictions, y is the set of
true labels and n is the test set size. This metric
has since been largely adopted by the ML com-
munity when evaluating GPs and other probabilis-
tic models for regression (see Section 5 for some
examples).

As with other error metrics, lower values are
better. Intuitively, if two models produce equally
incorrect predictions but they have different uncer-
tainty estimates, NLPD will penalise the overcon-
fident model more than the underconfident one.
On the other hand, if predictions are close to the
true value then NLPD will penalise the undercon-
fident model instead.

In our first set of experiments we evaluate mod-
els proposed in Section 2 according to their neg-
ative log likelihood (NLL) and the NLPD on test

data. We also report two point estimate metrics on
test data: Mean Absolute Error (MAE), the most
commonly used evaluation metric in QE, and Pear-
son’s r, which has recently proposed by Graham
(2015) as a more robust alternative.

3.1 Experimental Settings
Our experiments comprise datasets containing
three different language pairs, where the label to
predict is post-editing time:

English-Spanish (en-es) This dataset was used in
the WMT14 QE shared task (Bojar et al.,
2014). It contains 858 sentences translated
by one MT system and post-edited by a pro-
fessional translator.

French-English (fr-en) Described in (Specia,
2011), this dataset contains 2, 525 sentences
translated by one MT system and post-edited
by a professional translator.

English-German (en-de) This dataset is part of
the WMT16 QE shared task2. It was trans-
lated by one MT system for consistency we
use a subset of 2, 828 instances post-edited
by a single professional translator.

As part of the process of creating these datasets,
post-editing time was logged on an sentence ba-
sis for all datasets. Following common practice,
we normalise the post-editing time by the length
of the machine translated sentence to obtain post-
editing rates and use these as our response vari-
ables.

Technically our approach could be used with
any other numeric quality labels from the litera-
ture, including the commonly used Human Trans-
lation Error Rate (HTER) (Snover et al., 2006).
Our decision to focus on post-editing time was
based on the fact that time is a more complete
measure of post-editing effort, capturing not only
technical effort like HTER, but also cognitive ef-
fort (Koponen et al., 2012). Additionally, time is
more directly applicable in real translation envi-
ronments – where uncertainty estimates could be
useful, as it relates directly to productivity mea-
sures.

For model building, we use a standard set of
17 features from the QuEst framework (Specia
et al., 2015). These features are used in the
strong baseline models provided by the WMT

2www.statmt.org/wmt16
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QE shared tasks. While the best performing sys-
tems in the shared tasks use larger feature sets,
these are mostly resource-intensive and language-
dependent, and therefore not equally applicable
to all our language pairs. Moreover, our goal is
to compare probabilistic QE models through the
predictive uncertainty perspective, rather than im-
proving the state-of-the-art in terms of point pre-
dictions. We perform 10-fold cross validation in-
stead of using a single train/test splits and report
averaged metric scores.

The model hyperparameters were optimised by
maximising the likelihood on the training data.
We perform a two-pass procedure similar to that
in (Cohn and Specia, 2013): first we employ an
isotropic kernel and optimise all hyperparameters
using 10 random restarts; then we move to an
ARD equivalent kernel and perform a final optimi-
sation step to fine tune feature lengthscales. Point
predictions were fixed as the median of the distri-
bution.

3.2 Results and Discussion

Table 1 shows the results obtained for all datasets.
The first two columns shows an interesting finding
in terms of model learning: using a warping func-
tion drastically decreases both NLL and NLPD.
The main reason behind this is that standard GPs
distribute probability mass over negative values,
while the warped models do not. For the fr-en
and en-de datasets, NLL and NLPD follow simi-
lar trends. This means that we can trust NLL as a
measure of uncertainty for these datasets. How-
ever, this is not observed in the en-es dataset.
Since this dataset is considerably smaller than the
others, we believe this is evidence of overfitting,
thus showing that NLL is not a reliable metric for
small datasets.

In terms of different warping functions, using
the parametric tanh function with 3 terms per-
forms better than the log for the fr-en and en-de
datasets. This is not the case of the en-es dataset,
where the log function tends to perform better. We
believe that this is again due to the smaller dataset
size. The gains from using a Matèrn kernel over
EQ are less conclusive. While they tend to per-
form better for fr-en, there does not seem to be
any difference in the other datasets. Different ker-
nels can be more appropriate depending on the
language pair, but more experiments are needed
to verify this, which we leave for future work.

English-Spanish - 858 instances
NLL NLPD MAE r

EQ 1244.03 1.632 0.828 0.362
Mat32 1237.48 1.649 0.862 0.330
Mat52 1240.76 1.637 0.853 0.340
log EQ 986.14 1.277 0.798 0.368
log Mat32 982.71 1.271 0.793 0.380
log Mat52 982.31 1.272 0.794 0.376
tanh1 EQ 992.19 1.274 0.790 0.375
tanh1 Mat32 991.39 1.272 0.790 0.379
tanh1 Mat52 992.20 1.274 0.791 0.376
tanh2 EQ 982.43 1.275 0.792 0.376
tanh2 Mat32 982.40 1.281 0.791 0.382
tanh2 Mat52 981.86 1.282 0.792 0.278
tanh3 EQ 980.50 1.282 0.791 0.380
tanh3 Mat32 981.20 1.282 0.791 0.380
tanh3 Mat52 980.70 1.275 0.790 0.385

French-English - 2525 instances
NLL NLPD MAE r

EQ 2334.17 1.039 0.491 0.322
Mat32 2335.81 1.040 0.491 0.320
Mat52 2344.86 1.037 0.490 0.320
log EQ 1935.71 0.855 0.493 0.314
log Mat32 1949.02 0.857 0.493 0.310
log Mat52 1937.31 0.855 0.493 0.313
tanh1 EQ 1884.82 0.840 0.482 0.322
tanh1 Mat32 1890.34 0.840 0.482 0.317
tanh1 Mat52 1887.41 0.834 0.482 0.320
tanh2 EQ 1762.33 0.775 0.483 0.323
tanh2 Mat32 1717.62 0.754 0.483 0.313
tanh2 Mat52 1748.62 0.768 0.486 0.306
tanh3 EQ 1814.99 0.803 0.484 0.314
tanh3 Mat32 1723.89 0.760 0.486 0.302
tanh3 Mat52 1706.28 0.751 0.482 0.320

English-German - 2828 instances
NLL NLPD MAE r

EQ 4852.80 1.865 1.103 0.359
Mat32 4850.27 1.861 1.098 0.369
Mat52 4850.33 1.861 1.098 0.369
log EQ 4053.43 1.581 1.063 0.360
log Mat32 4054.51 1.580 1.063 0.363
log Mat52 4054.39 1.581 1.064 0.363
tanh1 EQ 4116.86 1.597 1.068 0.343
tanh1 Mat32 4113.74 1.593 1.064 0.351
tanh1 Mat52 4112.91 1.595 1.068 0.349
tanh2 EQ 4032.70 1.570 1.060 0.359
tanh2 Mat32 4031.42 1.570 1.060 0.362
tanh2 Mat52 4032.06 1.570 1.060 0.361
tanh3 EQ 4023.72 1.569 1.062 0.359
tanh3 Mat32 4024.64 1.567 1.058 0.364
tanh3 Mat52 4026.07 1.566 1.059 0.365

Table 1: Intrinsic evaluation results. The first three
rows in each table correspond to standard GP mod-
els, while the remaining rows are Warped GP mod-
els with different warping functions. The number
after the tanh models shows the number of terms
in the warping function (see Equation 2.3). All r
scores have p < 0.05.
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The differences in uncertainty modelling are by
and large not captured by the point estimate met-
rics. While MAE does show gains from standard
to Warped GPs, it does not reflect the difference
found between warping functions for fr-en. Pear-
son’s r is also quite inconclusive in this sense,
except for some observed gains for en-es. This
shows that NLPD indeed should be preferred as
a evaluation metric when proper prediction uncer-
tainty estimates are required by a QE model.

3.3 Qualitative Analysis

To obtain more insights about the performance in
uncertainty modelling we inspected the predictive
distributions for two sentence pairs in the fr-en
dataset. We show the distributions for a standard
GP and a Warped GP with a tanh3 function in Fig-
ure 1. In the first case, where both models give
accurate predictions, we see that the Warped GP
distribution is peaked around the predicted value,
as it should be. It also gives more probability mass
to positive values, showing that the model is able
to learn that the label is non-negative. In the sec-
ond case we analyse the distributions when both
models make inaccurate predictions. We can see
that the Warped GP is able to give a broader distri-
bution in this case, while still keeping most of the
mass outside the negative range.

We also report above each plot in Figure 1 the
NLPD for each prediction. Comparing only the
Warped GP predictions, we can see that their val-
ues reflect the fact that we prefer sharp distribu-
tions when predictions are accurate and broader
ones when predictions are not accurate. However,
it is interesting to see that the metric also penalises
predictions when their distributions are too broad,
as it is the case with the standard GPs since they
can not discriminate between positive and negative
values as well as the Warped GPs.

Inspecting the resulting warping functions can
bring additional modelling insights. In Figure 2
we show instances of tanh3 warping functions
learned from the three datasets and compare them
with the log warping function. We can see that
the parametric tanh3 model is able to learn non-
trivial mappings. For instance, in the en-es case
the learned function is roughly logarithmic in the
low scales but it switches to a linear mapping after
y = 4. Notice also the difference in the scales,
which means that the optimal model uses a latent
Gaussian with a larger variance.

Figure 1: Predictive distributions for two fr-en in-
stances under a Standard GP and a Warped GP.
The top two plots correspond to a prediction with
low absolute error, while the bottom two plots
show the behaviour when the absolute error is
high.

4 Asymmetric Risk Scenarios

Evaluation metrics for QE, including those used in
the WMT QE shared tasks, are assumed to be sym-
metric, i.e., they penalise over and underestimates
equally. This assumption is however too simplistic
for many possible applications of QE. For exam-
ple:

• In a post-editing scenario, a project manager
may have translators with limited expertise in
post-editing. In this case, automatic transla-
tions should not be provided to the transla-
tor unless they are highly likely to have very
good quality. This can be enforced this by in-
creasing the penalisation weight for underes-
timates. We call this the pessimistic scenario.

• In a gisting scenario, a company wants to au-
tomatically translate their product reviews so
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Figure 2: Warping function instances from the
three datasets. The vertical axis correspond to the
latent warped values. The horizontal axis show
the observed response variables, which are always
positive in our case since they are post-editing
times.

that they can be published in a foreign lan-
guage without human intervention. The com-
pany would prefer to publish only the reviews
translated well enough, but having more re-
views published will increase the chances of
selling products. In this case, having bet-
ter recall is more important and thus only
reviews with very poor translation quality
should be discarded. We can accomplish this
by heavier penalisation on overestimates, a
scenario we call optimistic.

In this Section we show how these scenarios can
be addressed by well-calibrated predictive distri-
butions and by employing asymmetric loss func-
tions. An example of such a function is the asym-
metric linear (henceforth, AL) loss, which is a
generalisation of the absolute error:

L(ŷ, y) =

{
w(ŷ − y) if ŷ > y

y − ŷ if ŷ ≤ y,
where w > 0 is the weight given to overestimates.
If w > 1 we have the pessimistic scenario, and the
optimistic one can be obtained using 0 < w < 1.
For w = 1 we retrieve the original absolute error
loss.

Another asymmetric loss is the linear exponen-
tial or linex loss (Zellner, 1986):

L(ŷ, y) = exp[w(ŷ − y)]− (ŷ − y)− 1

where w ∈ R is the weight. This loss attempts to
keep a linear penalty in lesser risk regions, while

imposing an exponential penalty in the higher risk
ones. Negative values for w will result in a pes-
simistic setting, while positive values will result
in the optimistic one. For w = 0, the loss approx-
imates a squared error loss. Usual values for w
tend to be close to 1 or−1 since for higher weights
the loss can quickly reach very large scores. Both
losses are shown on Figure 3.

Figure 3: Asymmetric losses. These curves cor-
respond to the pessimistic scenario since they im-
pose larger penalties when the prediction is lower
than the true label. In the optimistic scenario the
curves would be reflected with respect to the ver-
tical axis.

4.1 Bayes Risk for Asymmetric Losses
The losses introduced above can be incorporated
directly into learning algorithms to obtain models
for a given scenario. In the context of the AL loss
this is called quantile regression (Koenker, 2005),
since optimal estimators for this loss are posterior
quantiles. However, in a production environment
the loss can change over time. For instance, in the
gisting scenario discussed above the parameter w
could be changed based on feedback from indica-
tors of sales revenue or user experience. If the loss
is attached to the underlying learning algorithms,
a change in w would require full model retraining,
which can be costly.

Instead of retraining the model every time there
is a different loss, we can train a single probabilis-
tic model and derive Bayes risk estimators for the
loss we are interested in. This allows estimates to
be obtained without having to retrain models when
the loss changes. Additionally, this allows differ-
ent losses/scenarios to be employed at the same
time using the same model.

Minimum Bayes risk estimators for asymmet-
ric losses were proposed by Christoffersen and
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Diebold (1997) and we follow their derivations in
our experiments. The best estimator for the AL
loss is equivalent to the w

w+1 quantile of the pre-
dictive distribution. Note that we retrieve the me-
dian when w = 1, as expected. The best estimator
for the linex loss can be easily derived and results
in:

ŷ = µy −
wσ2

y

2

where µy and σ2
y are the mean and the variance of

the predictive posterior.

4.2 Experimental Settings
Here we assess the models and datasets used in
Section 3.1 in terms of their performance in the
asymmetric setting. Following the explanation in
the previous Section, we do not perform any re-
training: we collect the predictions obtained us-
ing the 10-fold cross-validation protocol and ap-
ply different Bayes estimators corresponding to
the asymmetric losses. Evaluation is performed
using the same loss employed in the estimator
(for instance, when using the linex estimator with
w = 0.75 we report the results using the linex loss
with same w) and averaged over the 10 folds.

To simulate both pessimistic and optimistic sce-
narios, we use w ∈ {3, 1/3} for the AL loss and
w ∈ {−0.75, 0.75} for the linex loss. The only
exception is the en-de dataset, where we report re-
sults for w ∈ −0.25, 0.75 for linex3. We also re-
port results only for models using the Matèrn52
kernel. While we did experiment with differ-
ent kernels and weighting schemes4 our findings
showed similar trends so we omit them for the sake
of clarity.

4.3 Results and Discussion
Results are shown on Table 2. In the optimistic
scenario the tanh-based warped GP models give
consistently better results than standard GPs. The
log-based models also gives good results for AL
but for linex the results are mixed except for en-es.
This is probably again related to the larger sizes
of the fr-en and en-de datasets, which allows the
tanh-based models to learn richer representations.

3Using w = −0.75 in this case resulted in loss values
on the order of 107. In fact, as it will be discussed in the
next Section, the results for the linex loss in the pessimistic
scenario were inconclusive. However, we report results using
a higher w in this case for completeness and to clarify the
inconclusive trends we found.

4We also tried w ∈ {1/9, 1/7, 1/5, 5, 7, 9} for the AL
loss and w ∈ {−0.5,−0.25, 0.25, 0.5} for the linex loss.

English-Spanish
Optimistic Pessimistic
AL Linex AL Linex

Std GP 1.187 0.447 1.633 3.009
log 1.060 0.299 1.534 3.327
tanh1 1.050 0.300 1.528 3.251
tanh2 1.054 0.300 1.543 3.335
tanh3 1.053 0.299 1.538 3.322

French-English
Optimistic Pessimistic
AL Linex AL Linex

Std GP 0.677 0.127 0.901 0.337
log 0.675 0.161 0.914 0.492
tanh1 0.677 0.124 0.901 0.341
tanh2 0.671 0.121 0.894 0.347
tanh3 0.666 0.120 0.886 0.349

English-German
Optimistic Pessimistic
AL Linex AL Linex

Std GP 1.528 0.610 2.120 0.217
log 1.457 0.537 2.049 0.222
tanh1 1.459 0.503 2.064 0.220
tanh2 1.455 0.504 2.045 0.220
tanh3 1.456 0.497 2.042 0.219

Table 2: Asymmetric loss experiments results.
The first line in each table corresponds to a stan-
dard GP while the others are Warped GPs with
different warping functions. All models use the
Matèrn52 kernel. The optimistic setting corre-
sponds tow = 1/3 for AL andw = 0.75 for linex.
The pessimistic setting uses w = 3 for AL and
w = −0.75 for linex, except for English-German,
where w = −0.25.

The pessimistic scenario shows interesting
trends. While the results for AL follow a similar
pattern when compared to the optimistic setting,
the results for linex are consistently worse than
the standard GP baseline. A key difference be-
tween AL and linex is that the latter depends on the
variance of the predictive distribution. Since the
warped models tend to have less variance, we be-
lieve the estimator is not being “pushed” towards
the positive tails as much as in the standard GPs.
This turns the resulting predictions not conserva-
tive enough (i.e. the post-editing time predictions
are lower) and this is heavily (exponentially) pe-
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nalised by the loss. This might be a case where
a standard GP is preferred but can also indicate
that this loss is biased towards models with high
variance, even if it does that by assigning probabil-
ity mass to nonsensical values (like negative time).
We leave further investigation of this phenomenon
for future work.

5 Related Work

Quality Estimation is generally framed as text re-
gression task, similarly to many other applications
such as movie revenue forecasting based on re-
views (Joshi et al., 2010; Bitvai and Cohn, 2015)
and detection of emotion strength in news head-
lines (Strapparava and Mihalcea, 2008; Beck et al.,
2014a) and song lyrics (Mihalcea and Strapparava,
2012). In general, these applications are evalu-
ated in terms of their point estimate predictions,
arguably because not all of them employ proba-
bilistic models.

The NLPD is common and established met-
ric used in the GP literature to evaluate new ap-
proaches. Examples include the original work on
Warped GPs (Snelson et al., 2004), but also oth-
ers like Lázaro-Gredilla (2012) and Chalupka et
al. (2013). It has also been used to evaluate re-
cent work on uncertainty propagation methods for
neural networks (Hernández-Lobato and Adams,
2015).

Asymmetric loss functions are common in the
econometrics literature and were studied by Zell-
ner (1986) and Koenker (2005), among others. Be-
sides the AL and the linex, another well studied
loss is the asymmetric quadratic, which in turn
relates to the concept of expectiles (Newey and
Powell, 1987). This loss generalises the com-
monly used squared error loss. In terms of applica-
tions, Cain and Janssen (1995) gives an example in
real estate assessment, where the consequences of
under- and over-assessment are usually different
depending on the specific scenario. An engineer-
ing example is given by Zellner (1986) in the con-
text of dam construction, where an underestimate
of peak water level is much more serious than an
overestimate. Such real-world applications guided
many developments in this field: we believe that
translation and other language processing scenar-
ios which rely on NLP technologies can heavily
benefit from these advancements.

6 Conclusions

This work explored new probabilistic models for
machine translation QE that allow better uncer-
tainty estimates. We proposed the use of NLPD,
which can capture information on the whole pre-
dictive distribution, unlike usual point estimate-
based metrics. By assessing models using NLPD
we can make better informed decisions about
which model to employ for different settings. Fur-
thermore, we showed how information in the pre-
dictive distribution can be used in asymmetric loss
scenarios and how the proposed models can be
beneficial in these settings.

Uncertainty estimates can be useful in many
other settings beyond the ones explored in this
work. Active Learning can benefit from vari-
ance information in their query methods and it has
shown to be useful for QE (Beck et al., 2013).
Exploratory analysis is another avenue for future
work, where error bars can provide further insights
about the task, as shown in recent work (Nguyen
and O’Connor, 2015). This kind of analysis can be
useful for tracking post-editor behaviour and as-
sessing cost estimates for translation projects, for
instance.

Our main goal in this paper was to raise aware-
ness about how different modelling aspects should
be taken into account when building QE models.
Decision making can be risky using simple point
estimates and we believe that uncertainty informa-
tion can be beneficial in such scenarios by provid-
ing more informed solutions. These ideas are not
restricted to QE and we hope to see similar studies
in other natural language applications in the fu-
ture.
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Abstract

Named Entity Recognition (NER) mod-
els for language L are typically trained
using annotated data in that language.
We study cross-lingual NER, where a
model for NER in L is trained on an-
other, source, language (or multiple source
languages). We introduce a language
independent method for NER, building
on cross-lingual wikification, a technique
that grounds words and phrases in non-
English text into English Wikipedia en-
tries. Thus, mentions in any language
can be described using a set of cate-
gories and FreeBase types, yielding, as we
show, strong language-independent fea-
tures. With this insight, we propose an
NER model that can be applied to all lan-
guages in Wikipedia. When trained on
English, our model outperforms compa-
rable approaches on the standard CoNLL
datasets (Spanish, German, and Dutch)
and also performs very well on low-
resource languages (e.g., Turkish, Taga-
log, Yoruba, Bengali, and Tamil) that have
significantly smaller Wikipedia. More-
over, our method allows us to train on mul-
tiple source languages, typically improv-
ing NER results on the target languages.
Finally, we show that our language-
independent features can be used also to
enhance monolingual NER systems, yield-
ing improved results for all 9 languages.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying and typing phrases that contain the
names of persons, organizations, locations, and so
on. It is an information extraction task that is im-

portant for understanding large bodies of text and
is considered an essential pre-processing stage in
Natural Language Processing (NLP) and Informa-
tion Retrieval systems.

NER is successful for languages which have a
large amount of annotated data, but for languages
with little to no annotated data, this task becomes
very challenging. There are two common ap-
proaches to address the lack of training data prob-
lem. The first approach is to automatically gener-
ate annotated training data in the target language
from Wikipedia articles or from parallel corpora.
The performance of this method depends on the
quality of the generated data and how well the
language-specific features are explored. The sec-
ond approach is to train a model on another lan-
guage which has abundant training data, and then
apply the model directly on test documents in the
target language. This direct transfer technique re-
lies on developing language-independent features.
Note that these two approaches are orthogonal and
can be used together.

In this paper, we focus on the second, direct
transfer setting. We propose a cross-lingual NER
model which is trained on annotated documents
in one or multiple source languages, and can
be applied to all languages in Wikipedia. The
model depends on a cross-lingual wikifier, which
only requires multilingual Wikipedia, no sentence-
aligned or word-aligned parallel text is needed.

The key contribution of this paper is the de-
velopment of a method that makes use of cross-
lingual wikification and entity linking (Tsai and
Roth, 2016; Ji et al., 2015; Ji et al., 2016; Moro et
al., 2014) to generate language-independent fea-
tures for NER, and showing how useful this can
be for training NER models with no annotation in
the target language. Given a mention (sub-string)
from a document written in a foreign language, the
goal of cross-lingual wikification is to find the cor-
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Schwierigkeiten beim nachvollziehenden Verstehen Albrecht Lehmann läßt Flüchtlinge und Vertriebene in Westdeutschland 

Problem_solving Understanding Albert,_Duke_of_Prussia Jens_Lehmann Refugee Western_Germany 

hobby 
media_genre 

media_common 
quotation_subject 

person 
noble_person 

person 
athlete 

field_of_study 
literature_subject 

location 
country 

Wikipedia titles: 
FreeBase types: 

NER Tags: Person Location
Sentence: 

Figure 1: An example of a German sentence. We ground each word to the English Wikipedia using a
cross-lingual wikifier. A word is not linked if it is a stop word or the wikifier returns NIL. We can see
that the FreeBase types are strong signals to NER even with imperfect disambiguation.

responding title in the English Wikipedia. Tradi-
tionally, wikification has been considered a down-
stream task of NER. That is, a named entity rec-
ognizer is first applied to identify mentions of in-
terest, and then a wikifier is used to ground the
extracted mentions to Wikipedia entries. In con-
trast to this traditional pipeline, we show that the
ability to ground and disambiguate words is very
useful to NER. By grounding every n-gram to the
English Wikipedia, we obtain useful clues to NER,
regardless of the target language.

Figure 1 shows an example of a German sen-
tence. We use a cross-lingual wikifier to ground
each word to the English Wikipedia. We can see
that even though the disambiguation is not per-
fect, the FreeBase types still provide valuable in-
formation. That is, although “Albrecht Lehmann”
is not an entry in Wikipedia, the wikifier still
links “Albrecht” and “Lehmann” to people. Since
words in any language are grounded to the En-
glish Wikipedia, the corresponding Wikipedia
categories and Freebase types can be used as
language-independent features.

The proposed model significantly outperforms
comparable direct transfer methods on the Span-
ish, Dutch, and German CoNLL data. We also
evaluate the model on five low-resource lan-
guages: Turkish, Tagalog, Yoruba, Bengali, and
Tamil. Due to small sizes of Wikipedia, the over-
all performance is not as good as the CoNLL ex-
periments. Nevertheless, the wikifier features still
give significant improvements, and the proposed
direct transfer model outperforms the state of the
art, which assumes parallel text and some interac-
tion with a native speaker of the target language.
In addition, we show that the proposed language-
independent features not only perform well on the
direct transfer scenario, but also improve monolin-
gual models, which are trained on the target lan-
guage. Another advantage of the proposed direct
transfer model is that we can train on documents
from multiple languages together, and further im-

prove the results.

2 Related Work

There are three main branches of work for ex-
tending NLP systems to many languages: pro-
jection across parallel data, Wikipedia-based ap-
proaches, and direct transfer. Projection and di-
rect transfer take advantage of the success of NLP
tools on high-resource languages. Wikipedia-
based approaches exploit the fact that, by editing
Wikipedia, thousands of people have made anno-
tations in hundreds of languages.

2.1 Projection
Projection methods take a parallel corpus between
source and target languages, annotate the source
side, and push annotations across learned align-
ment edges. Assuming that source side annota-
tions are of high quality, success depends largely
on the quality of the alignments, which depends,
in turn, on the size of the parallel data, and the dif-
ficulty of aligning with the target language.

There is work on projection for POS tagging
(Yarowsky et al., 2001; Das and Petrov, 2011;
Duong et al., 2014), NER (Wang and Manning,
2014; Kim et al., 2012; Ehrmann et al., 2011), and
parsing (Hwa et al., 2005; McDonald et al., 2011).

Wang and Manning (2014) show that projecting
expectations of labels instead of hard labels can
improve results. They experiment in two different
settings: weakly-supervised, where only parallel
data is available, and semi-supervised, where an-
notated training data is available along with unla-
beled parallel data.

2.2 Using Wikipedia
Wikipedia has been used for a large number
of NLP tasks, from use as a semantic space
(Gabrilovich and Markovitch, 2007; Chang et al.,
2008; Song and Roth, 2014), to generating par-
allel data (Smith et al., 2010), to use in open in-
formation extraction (Wu and Weld, 2010). It has
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also been used to extract training data for NER,
under the intuition that Wikipedia is already (par-
tially) annotated with NER labels, in the form of
links to pages. Nothman et al. (2012) generate
silver-standard NER data from Wikipedia using
link targets, and other heuristics. This can be gath-
ered for any language in Wikipedia, but several of
the heuristics depend on language-specific rules.
Al-Rfou et al. (2015) generate training data from
Wikipedia articles using a similar manner. The
polyglot word embeddings (Al-Rfou et al., 2013)
are used as features in their NER model. Although
the features are delexicalized, the embeddings are
unique to each language, and so the model cannot
transfer.

Kim et al. (2012) use Wikipedia to generate par-
allel sentences with NE annotations. They propose
a semi-CRF model for aligning entities in parallel
sentences. Results are very strong on Wikipedia
data. This is a hybrid approach in that it is super-
vised projection using Wikipedia.

Our work is most closely related to Kazama and
Torisawa (2007). They do NER using Wikipedia
category features for each mention. However,
their method for wikifying text is not robust to am-
biguity, and they only do monolingual NER.

Sil and Yates (2013) create a joint model for
NER and entity linking in English. They avoid the
traditional pipeline by overgenerating mentions in
the first stage and using NER features to rank
candidates. While the results are promising, the
model is not scalable to other languages because it
requires both a trained NER and a NP chunker.

2.3 Direct Transfer

In direct transfer once trains a model in a high-
resource setting using delexicalized features, that
is, features that do not depend on word forms, and
then directly applies it to text in a new language.

Täckström et al. (2012) experimented with di-
rect transfer of dependency parsing and NER, and
showed that using word cluster features can help,
especially if the clusters are forced to conform
across languages. The cross-lingual word clusters
were induced using large parallel corpora.

Building on this work, Täckström (2012) fo-
cuses solely on NER, and includes experiments on
self-training and multi-source transfer for NER.
Their experiments are orthogonal to ours, and
could be combined nicely. This work is closest
to ours in terms of method, and therefore we com-

Base features
Non-Lexical

Previous Tags (ti−1, ti−2)
Tag Context (distr. for [wi, wi+1, wi+2])

Lexical
Forms (..., wi−1, wi, wi+1, ...)
Affixes (prefixes and suffixes of wi)
Capitalization (wi capitalized?)
Prev. Tag Pattern (ti−2, wi−1, wi)
Word type (capital? digits? letter?)

Gazetteers
Multilingual Wikipedia titles

Cross-lingual Wikifier Features
Freebase types of (wi−1, wi, wi+1)
Wikipedia categories of (wi−1, wi, wi+1)

Table 1: Feature groups. Base features are the fea-
tures used by Ratinov and Roth (2009), the state of
the art English NER model. Gazetteers and cross-
lingual wikifier features are described in detail in
Section 3.

pare against it in our experiments.
Our work falls under the umbrella of di-

rect transfer methods combined with the use of
Wikipedia. We introduce wikifier features, which
are truly delexicalized, and use Wikipedia as a
source of information for each language.

3 Named Entity Recognition Model

We use the state of the art English NER model of
Ratinov and Roth (2009) as the base model. This
model approaches NER as a multiclass classifica-
tion problem with greedy decoding, using the BIO
labeling scheme. The underlying classifier is aver-
aged perceptron.

Table 1 summarizes the features used in our
model. These can be divided into a base set of
standard features which are included in Ratinov
and Roth (2009), a set of gazetteer features which
are based on titles in multilingual Wikipedia, and
our novel cross-lingual wikifier features. The base
set of features can be further divided into non-
lexical and lexical categories.

3.1 Base Features

Non-Lexical Features Ratinov and Roth (2009)
uses a small number of non-lexical features. For
example, the previous tag feature is useful in pre-
dicting I- tags, because the previous tag should
never be an O. The tag context feature looks in a
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1000 word history and gathers statistics over tags
assigned to words [wi, wi+1, wi+2]. These fea-
tures are included in all experiments.

In contrast with (Täckström et al., 2012), we
do not use POS tags as features. We could not
get the universal POS tags for all languages in our
experiments, and an earlier experiment indicated
that adding POS tags does not improve the perfor-
mance due to the accuracy of tagger.

Lexical Features Lexical features are very im-
portant for monolingual NER. In the direct trans-
fer setting, lexical features are useful if the target
language is close to the training language. We
use a small number of simple features, including
word forms, affixes, capitalization, and tag pat-
terns. The latter feature considers a small window
(at most 2 tokens) before the word in question. If
there is a named entity in the window, it makes
a feature out of NETag+wi−2 + wi−1. Word type
features simply indicate whether the word in ques-
tion is all capitalized, is all digits, or is all letters.

3.2 Gazetteer Features

One of the larger performance improvements in
Ratinov and Roth (2009) came from the use of
(partial matches with) gazetteers. We include
gazetteers also in our model, except we gather
them in each language from Wikipedia. As in
Ratinov and Roth (2009), we use the gazetteers as
features. Specifically, we group them by topic, and
use the name of the gazetteer file as the feature.

The method iteratively extends a short window
to the right of the word in question. As the window
increases in size, we search all gazetteers for oc-
currences of the phrase in the window. If we find a
match, we add a feature to each word in the phrase
according to its position in the phrase, either B for
beginning, or I for inside.

This method generalizes gazetteers to unseen
entities. For example, given the phrase “Bill and
Melinda Gates Foundation”, “Bill” is marked as
both B-PersonNames and B-Organizations, while
“Foundation” is marked as I-Organizations. Imag-
ine encountering at test time a fictional organi-
zation called “Dave and Sue Harris Foundation.”
Although there is no gazetteer that contains this
name, we have learned that “B-PersonName and
B-PersonName B-PersonName Foundation” is a
strong signal for an organization.

3.3 Cross-lingual Wikifier Features

As shown in Figure 1, disambiguating words to
Wikipedia entries allows us to obtain useful in-
formation for NER from the corresponding Free-
Base types and Wikipedia categories. A cross-
lingual wikifier grounds words and phrases of
non-English languages to the English Wikipedia,
which provides language-independent features for
transferring an NER model directly.

We use the system proposed in Tsai and Roth
(2016), which grounds input strings to the inter-
section of (the title spaces of) the English and the
target language Wikipedias. The only requirement
is a multilingual Wikipedia dump and it can be ap-
plied to all languages in Wikipedia.

Since we want to ground every n-gram (n ≤ 4)
in the document, deviating from the normal usage
that only considers a few mentions of interest, we
modify the system in the following two ways:

• The original candidate generation process
queries the index by both whole input string
and the individual tokens of the string. For
the n-grams where n > 1, we generate ti-
tle candidates only according to the whole
string, not individual tokens. If we allow
generating title candidates based on individ-
ual tokens then, for instance, the bigram “in
Germany” will be linked to the title Germany
thus wrongly considered as a named entity.

• The original ranking model includes the em-
beddings of other mentions in the document
as features. It is clear that if we know what
other important entities exist in the docu-
ment, they provide useful clues to disam-
biguate a mention. However, if we want to
wikify all n-grams, it makes no sense to in-
clude all of them as features, since the rank-
ing model has already included features from
TF-IDF weighted context words.

After wikifying every n-gram 1, we set the types
of each n-gram as the coarse- and fine-grained
FreeBase types and Wikipedia categories from the
top 2 title candidates returned by wikifier. For
each word wi, we use the types of wi, wi+1, and
wi−1, and the types of the n-grams which contain
wi as features. Moreover, we also include wik-
ifier’s ranking features from the top candidate as
features. This could serve as a linker (Ratinov et

1We set n to 4 in all our experiments.
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al., 2011), which rejects the top prediction if it has
a low confidence.

4 Experiments and Analysis

In this section, we conduct experiments to vali-
date and analyze the proposed NER model. First,
we show that adding wikifier features improves re-
sults on monolingual NER. Second, we show that
wikifier features are strong signals in direct trans-
fer of a trained NER model across languages. Fi-
nally, we explore the importance of Wikipedia size
to the quality of wikifier features and study the use
of multiple source languages.

4.1 Datasets

We use data from CoNLL2002/2003 shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). The 4 languages represented
are English, German, Spanish, and Dutch, each
annotated using the IOB1 labeling scheme, which
we convert to the BIO labeling scheme. All train-
ing is on the train set, and testing is on the test
set. The evaluation metric for all experiments is
phrase level F1, as explained in (Tjong Kim Sang,
2002). In order to experiment on a broader
range of languages, we also use data from the
REFLEX (Simpson et al., 2008) and LORELEI
projects. From LORELEI, we use Turkish,2 From
REFLEX, we use Bengali, Tagalog, Tamil, and
Yoruba.3 While Turkish, Tagalog, and Yoruba
each has a few non-Latin characters, Bengali and
Tamil are with an entirely non-Latin script. This is
a major reason for inclusion in our experiments.
We use the same set of test documents as used
in Zhang et al. (2016). All other documents in
the REFLEX and LORELEI packages are used as
the training documents in our monolingual exper-
iments. We refer to these five languages collec-
tively as low-resource languages.

Besides PER, LOC, and ORG, some low-
resource languages contain TIME tags and TTL
tags, which represented titles in text, such as Sec-
retary, President, or Minister. Since such words
are not tagged in the CoNLL training data, we
opted to simply remove these tags. On the other
hand, there is no MISC tag in the low-resource
languages. Instead, many MISC-tagged entities
in the CoNLL datasets have LOC tags in the RE-
FLEX and LORELEI packages, e.g., Italian and

2LDC2014E115
3LDC2015E13,LDC2015E90,LDC2015E83,LDC2015E91

Chinese. We modify a MISC-tagged word to LOC
tag if it is grounded to an entity with location as
a FreeBase type, and remove all the other MISC
tags in the training data. This process of changing
MISC tags is only done when we train on CoNLL
documents and test on low-resource languages.

The only requirement to build the cross-lingual
wikifier model is a multilingual Wikipedia dump,
and it can be trivially applied to all languages
in Wikipedia. The top section of Table 2 lists
Wikipedia sizes in terms of articles,4 the number
of titles linked to English titles, and the number of
training and test mentions for each language.

Besides the English gazetteers used in Ratinov
and Roth (2009), we collect gazetteers for each
language using Wikipedia titles. A Wikipedia ti-
tle is included in the list for person names if it
contains FreeBase type person. Similarly, we also
create a location list and an organization list for
each language. The total number of names in the
gazetteers of each language is listed in Table 2.

4.2 Monolingual Experiments

We begin by showing that wikifier features help
when we train and test on the same language. The
middle section of Table 2 shows these results.

In the ‘Wikifier only’ row, we use only wiki-
fier features and previous tags features. This is
intended to show the predictive power of wiki-
fier features alone. Without using any lexical fea-
tures, it gets good scores on the languages that
have a large Wikipedia. These numbers represent
the quality of the cross-lingual wikifier in that lan-
guage, which in turn is correlated with the size
of Wikipedia and size of the intersection with En-
glish Wikipedia.

The next row, ‘Base features’, shows that lexi-
cal features are always better than wikifier features
only. This agrees with the common wisdom that
lexical features are important for NER.

Adding gazetteers to the base features improves
by more than 3 points for higher-resource lan-
guages. This is because the low-resource lan-
guages have much smaller gazetteers which have
lower coverage than other languages’ gazetteers.

Finally, the ‘+Wikifier’ row shows that our pro-
posed features are valuable even in combination
with strong features. It improves upon base fea-
tures and gazetteer features for all 9 languages.

4From https://en.wikipedia.org/wiki/
List_of_Wikipedias, retrieved March 2016
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Latin Script Non-Latin Script

APPROACH EN NL DE ES TR TL YO BN TA AVG

Wiki size 5.1M 1.9M 1.9M 1.3M 269K 64K 31K 42K 85K -
En. intersection - 755K 964K 757K 169K 49K 30K 34K 51K -
Gazetteer size 8.5M 579K 1M 943K 168K 54K 20K 29K 10K -
Entities (train) 23.5K 18.8K 11.9K 13.3K 5.1K 4.6K 4.1K 8.8K 7.0K -
Entities (test) 5.6K 3.6K 3.7K 3.9K 2.2K 3.4K 3.4K 3.5K 4.6K -

Monolingual Experiments

Wikifier only 71.57 57.02 49.74 60.13 52.84 51.02 29.35 47.78 38.05 50.83
Base Features 85.50 76.64 65.88 80.66 64.98 75.03 55.26 69.26 55.93 69.90
+Gazetteers 89.49 82.41 69.31 83.62 70.41 76.71 57.12 69.51 57.10 72.89
+Wikifier 89.92 84.49 73.13 83.87 73.86 77.64 57.60 71.15 60.02 74.72

Direct Transfer Experiments

Wikifier only 40.44 39.83 43.82 41.79 42.11 27.91 43.27 29.64 38.01
Base Features 43.38 24.93 42.85 29.21 49.85 32.57 2.53 1.74 28.06
+Gazetteers 50.26 34.47 54.59 30.21 64.06 34.37 3.25 0.30 33.83
+Wikifier 61.56 48.12 60.55 47.12 65.44 36.65 18.18 5.65 41.41

Täckström baseline 48.4 23.5 45.6 - - - - - -
Täckström bitext clusters 58.4 40.4 59.3 - - - - - -
Zhang et al. (2016) - - - 43.6 51.3 36.0 34.8 26.0 38.3

Table 2: Data sizes, monolingual experiments, and direct transfer experiments. Wiki size is the
number of articles in Wikipedia. For monolingual experiments, we train the proposed model on the
training data of the target languages. ‘Wikifier only’ uses the previous tags features also. For direct
transfer experiments, all models are trained on CoNLL English training set. The rows marked Täckström
come from (Täckström et al., 2012), and are the baseline and clustering result. The plus signs (+) signify
cumulative addition. EN: English, NL: Dutch, DE: German, ES: Spanish, TR: Turkish, TL: Tagalog,
YO: Yoruba, BN: Bengali, TA: Tamil.

These numbers may be less than state of the art
because the features we use are designed for En-
glish, and may not capture lexical subtleties in ev-
ery language. Nevertheless, they show that wiki-
fier features have a non-trivial signal that has not
been captured by other features.

4.3 Direct Transfer Experiments

We evaluate our direct transfer experiments by
training on English and testing on the target lan-
guage. The results from these experiments are
shown in the bottom section of Table 2.

The ‘Wikifier only’ row shows that the wikifier
features alone preserve a signal across languages.
Interestingly, for both Bengali and Tamil, this is
the strongest signal, and gets the highest score. If
the lexical features are included when we train the
English model, the learning algorithm will give
them too much emphasis, thus decreasing the im-
portance of the wikifier features. Since Bengali
and Tamil use non-Latin scripts, no lexical feature
in English will fire at test time. Thus, approaches
that include base features perform poorly.

The results of ‘Base features’ can be viewed as

a sort of language similarity to English, which, in
this case, is related to lexical overlap and similar-
ity between the scripts. Comparing to monolin-
gual experiments, we can see that the lexical fea-
tures become weak in the cross-lingual setting.

The gazetteer features are again shown to be
very useful for almost all languages except Ben-
gali and Tamil due to the reason explained in the
monolingual experiment and to the inclusion of
lexical features. For all other languages, the gain
from adding gazetteers is even larger than it is in
the monolingual setting.

For nearly every language, wikifier features
help dramatically, which indicates that they are
very good delexicalized features. Wikifier features
add more than 10 points on Dutch, German, and
Turkish.

The trend in Table 2 suggests the following
strategy when we want to extract named entities in
a new foreign language: It is better to include all
features if the foreign language uses Latin script,
since the names are likely to be mentioned simi-
larly to the English names. Otherwise, using wik-
ifier features only could be the best setting.
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Täckström et al. (2012) also directly transfer
an English NER model using the same setting as
ours: train on the CoNLL English training set and
predict on the test set of other three languages. We
compare our baseline transfer model (Base Fea-
tures) to the row denoted by “Täckström baseline”.
Even though we do not use gold POS tags, we
see that our results are comparable. The second
Täckström row uses parallel text to induce multi-
lingual word clustering. While this approach is or-
thogonal to ours, and could be used in tandem to
get even better scores, we compare against it for
lack of a more closely aligned scenario. We see
that for each language, our approach significantly
outperforms their approach.

We note that our numbers are comparable to
those reported for WIKI-2 in Nothman et al. (2012)
for the CoNLL languages (with the exception of
German, where their result is higher). However,
they require language-specific heuristics to gener-
ate silver-standard training data from Wikipedia
articles. What they gain for single languages, they
likely lose in generalization to other languages.
This approach is orthogonal to ours; we, too, can
use their silver-standard data in training.

For the low-resource languages, we compare
our direct transfer model with the expectation
learning model proposed in Zhang et al. (2016).
This model is not a direct transfer model, but it
does not use any training data in the target lan-
guages either. Instead, for each target language,
it generates patterns from parallel documents be-
tween English and the target language, a large
monolingual corpus in the target language, and
one-hour interaction with a native speaker of the
target language. Note that they also use a cross-
lingual wikifier, but only for refining the entity
types. On the other hand, in our model, the fea-
tures from the wikifier are used both in detecting
entity mention boundaries and entity types. We
can see that our approach performs better than
their model on all five languages even though we
assume much fewer resources. The difference is
most significant on Turkish, Tagalog, and Bengali.

4.4 Quality of Wikifier Features

One immediate question is, why are wikifier fea-
tures less helpful on the low-resource languages
results than on the CoNLL languages? In this ex-
periment, we show that smaller Wikipedia sizes
result in worse Wikipedia features, which is the

FEATURES SPANISH GERMAN
#inter. F1 #inter. F1

Wikifier only 757K 43.82 964K 39.83
W.−FB query 757K 34.69 964K 28.27
W.−FB−50% inter. 379K 30.32 482K 27.24
W.−FB−90% inter. 76K 29.44 96K 25.94

Table 3: The F1 scores of using only wikifier fea-
tures with removing the support from FreeBase
and varying the number of titles linked to the
English Wikipedia. ‘W.−FB query’ removes the
component of querying FreeBase by the target lan-
guage title from ‘Wikifier only’. ‘−X% inter.’ in-
dicates removing X% of the interlanguage links
with English titles. The column #inter. shows the
number of titles that intersect with English.

reason Yoruba has bad ‘Wikifier only’ results and
then only small improvement from the wikifier
features over base features.

The cross-lingual wikifier that we use in our
system only grounds words to the intersection of
the English and target language Wikipedia. Given
a Wikipedia title in the target language, we first
retrieve FreeBase IDs by querying the FreeBase
API. If it fails, we find the corresponding English
Wikipedia title via interlanguage links and then
query the API with the English title. However,
FreeBase does not contain entities in Yoruba, Ben-
gali, and Tamil, so the first step will always fail
for these three languages. We remove this step
in the experiments of high-resource languages and
the results are shown in the row ‘W.−FB query ’
of Table 3. We see that the performance drops sig-
nificantly, because many words have no features
from FreeBase types.

Next, we randomly remove 50% and 90% of
the interlanguage links to English titles. This
will not only reduce the number of fired fea-
tures from Wikipedia categories, but also Free-
Base types since English titles are used to query
FreeBase IDs. When 90% of interlanguage links
are removed, the scores of Spanish and German
are closer to Yoruba’s score (27.91).

4.5 Training Languages

In all previous experiments, the training language
is always English. In order to test the efficacy
of training with languages other than English, we
create a train/test matrix with all combinations of
languages, as seen in Figure 2.

The vertical axis represents training language,
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Figure 2: Different training/test language pairs.
Scores shown are the F1 scores. The red boxes
signify the best non-target training languages.

and the horizontal axis represents test language.
A darker color signifies a higher score. For ex-
ample, if we train on Spanish (ES) and test on
Yoruba (YO), we get an F1 of 37.5. When the
training or test language is Bengali (BN) or Tamil
(TA), we only use wikifier features. For other set-
tings, all features are included. Note that when
the test language is one of the CoNLL languages
(EN, NL, DE, ES) and the training language is a
non-CoNLL language, we ignore all MISC tags
in evaluation, since there is no MISC tag in the
low-resource languages. The diagonals represent
the monolingual setting in which we use all fea-
tures for all languages. Since we are interested in
transferring a model, we ignore the diagonals, and
identify the best training language for a given test
language as the largest off-diagonal in each col-
umn. These are demarcated with red boxes.

English is the best for most languages, with
the only exception of Spanish being the best
for Yoruba. It makes sense that high-resource
languages are better training languages because
1) there are more annotated training instances,
2) larger Wikipedia creates denser wikifier fea-
tures, therefore providing better estimation of the
weights to these features.

Table 4 shows the results of training on multiple
languages. We use all features in this experiment.
The row “EN” only trains the model on the En-
glish training documents, and the results are iden-

TRAINING LANG TR TL YO AVG

EN 47.12 65.44 36.65 49.74
EN+ES 44.85 66.61 37.57 49.68
EN+NL 48.34 66.09 36.87 50.43
EN+DE 49.47 64.10 35.14 49.57
EN+ES+NL+DE 49.00 66.37 38.02 51.13
ALL−Test Lang 49.83 67.12 37.56 51.50

Table 4: The F1 scores of the proposed direct
transfer model on three low-resource languages
using training data in multiple languages. The
row “ALL−Test Lang” trains the model on all
languages except the test language, Bengali, and
Tamil. Bengali and Tamil are excluded since we
use all features in this experiment.

tical to those shown in Table 2. Using all CoNLL
languages (EN+ES+NL+DE) adds more than 1
point F1 in average comparing to using English
only. Finally, training on all but the test languages
further improves the results.

This experiment shows that we can augment
training data from other languages’ annotated doc-
uments. Although the performance only increases
a little, it does not hurt most of the time.

4.6 Domain Adaptation
To improve the results of the monolingual experi-
ments, we consider the domain adaptation setting
where there is annotated data for both source and
target domains. The question is whether training
data from the source domain can improve a model
that is trained solely on the target-domain data. In
this experiment, we use English as the source do-
main, and use Spanish, Dutch, Turkish, and Taga-
log as four different target domains. We compare
three approaches:

• Target: only uses the training data in the tar-
get domain. This is the setting of the mono-
lingual experiments in Table 2.

• Src+Tgt: directly uses the training data from
both source and target domains. This method
is identical to the setting in our previous
multi-source direct transfer experiments.

• FrustEasy: the “Frustratingly Easy” adapta-
tion framework proposed by (Daumé, 2007).

All types of features are used in all settings.
The results are shown in Table 5. We can see
that although Src+Tgt is always the best approach,
the improvement over the baseline, Target, is tiny.
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APPROACH ES NL TR TL AVG

Target 83.87 84.49 73.86 77.64 79.96
Src+Tgt 84.17 84.81 74.52 77.80 80.33
FrustEasy 83.89 84.08 73.73 77.04 79.69

Table 5: The domain adaptation experiments. The
source domain (English) training examples are
used to improve the monolingual baseline model
(Target) which is only trained on the target domain
(Spanish, Dutch, Turkish, and Tagalog) training
data. The numbers are the phrase-level F1 scores.

Interestingly, the FrustEasy framework does not
help for most languages. This result is consis-
tent with the analysis and observation in Chang
et al. (2010) that 1) when the source and target
domains are very different, the baseline approach
(Target) is very strong, and 2) when there are
cross-domain clustering features (e.g., the wiki-
fier features), Src+Tgt is better than FrustEasy.
To further improve the monolingual baselines via
adaptation from other languages, better cross-
lingual or language-independent information may
be needed.

5 Conclusion and Discussion

We propose a language-independent model for
cross-lingual NER building on a cross-lingual
wikifier. This model works on all languages in
Wikipedia and the only requirement is a Wikipedia
dump. We study a wide range of languages in both
the monolingual and the cross-lingual settings,
and show significant improvements over strong
baselines. An analysis shows that the quality of
the wikifier features depends on the Wikipedia size
of the test language.

This work shows that if we can disambiguate
words and phrases to the English Wikipedia, the
typing information from Wikipedia categories and
FreeBase are useful language-independent fea-
tures for NER. However, there is additional in-
formation in Wikipedia that could be helpful and
which we do not use, including words in the doc-
uments and relations between titles; this would re-
quire additional research.

In the future, we would like to experiment with
combining our method with other techniques for
multilingual NER (Section 2), including parallel
projection and the automatic generation of training
data from Wikipedia.
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Montréal, Canada

abbas.ghaddar@umontreal.ca

Philippe Langlais
RALI-DIRO
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Abstract

Wikipedia is a resource of choice ex-
ploited in many NLP applications, yet we
are not aware of recent attempts to adapt
coreference resolution to this resource. In
this work, we revisit a seldom studied
task which consists in identifying in a
Wikipedia article all the mentions of the
main concept being described. We show
that by exploiting the Wikipedia markup
of a document, as well as links to external
knowledge bases such as Freebase, we can
acquire useful information on entities that
helps to classify mentions as coreferent or
not. We designed a classifier which dras-
tically outperforms fair baselines built on
top of state-of-the-art coreference resolu-
tion systems. We also measure the benefits
of this classifier in a full coreference reso-
lution pipeline applied to Wikipedia texts.

1 Introduction

Coreference Resolution (CR) is the task of iden-
tifying all mentions of entities in a document and
grouping them into equivalence classes. CR is a
prerequisite for many NLP tasks. For example, in
Open Information Extraction (OIE) (Yates et al.,
2007), one acquires subject-predicate-object rela-
tions, many of which (e.g., <the foundation stone,
was laid by, the Queen s daughter>) are useless
because the subject or the object contains mate-
rial coreferring to other mentions in the text being
mined.

Most CR systems, including state-of-the-art
ones (Durrett and Klein, 2014; Martschat and
Strube, 2015; Clark and Manning, 2015) are es-
sentially adapted to news-like texts. This is basi-
cally imputable to the availability of large datasets
where this text genre is dominant. This includes

resources developed within the Message Under-
standing Conferences (Hirshman and Chinchor,
1998) or the Automatic Content Extraction (ACE)
program (Doddington et al., 2004), as well as re-
sources developed within the collaborative anno-
tation project OntoNotes (Pradhan et al., 2007).

It is now widely accepted that coreference reso-
lution systems trained on newswire data performs
poorly when tested on other text genres (Hen-
drickx and Hoste, 2009; Schäfer et al., 2012), in-
cluding Wikipedia texts, as we shall see in our ex-
periments.

Wikipedia is a large, multilingual, highly struc-
tured, multi-domain encyclopedia, providing an
increasingly large wealth of knowledge. It is
known to contain well-formed, grammatical and
meaningful sentences, compared to say, ordinary
internet documents. It is therefore a resource of
choice in many NLP systems, see (Medelyan et
al., 2009) for a review of some pioneering works.

While being a ubiquitous resource in the NLP
community, we are not aware of much work con-
ducted to adapt CR to this text genre. Two no-
table exceptions are (Nguyen et al., 2007) and
(Nakayama, 2008), two studies dedicated to ex-
tract tuples from Wikipedia articles. Both studies
demonstrate that the design of a dedicated rule-
based CR system leads to improved extraction ac-
curacy. The focus of those studies being informa-
tion extraction, the authors did not spend much ef-
forts in designing a fully-fledged CR designed for
Wikipedia, neither did they evaluate it on a coref-
erence resolution task.

Our main contribution in this work is to revisit
the task initially discussed in (Nakayama, 2008)
which consists in identifying in a Wikipedia article
all the mentions of the concept being described by
this article. We refer to this concept as the “main
concept” (MC) henceforth. For instance, within
the article Chilly Gonzales, the task is to find
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all proper (e.g. Gonzales, Beck), nominal (e.g. the
performer) and pronominal (e.g. he) mentions that
refer to the MC “Chilly Gonzales”.

More specifically, we frame this task as a bi-
nary classification problem, where one has to de-
cide whether a detected mention refers to the MC.
Our classifier exploits carefully designed features
extracted from Wikipedia markup and characteris-
tics, as well as from Freebase; many of which we
borrowed from the related literature.

We show that our approach outperforms state-
of-the-art generic coreference resolution engines
on this task. We further demonstrate that the in-
tegration of our classifier into the state-of-the-art
rule-based coreference system of Lee et al. (2013)
improves the detection of coreference chains in
Wikipedia articles.

The paper is organized as follows. We discuss
related works in Section 2. We describe in Sec-
tion 3 the Wikipedia-based dataset we exploited
in this study, and show the drop in performance
of state-of-the-art coreference resolution systems
when faced to this corpus. We describe in Sec-
tion 4 the baselines we built on top of two state-of-
the-art coreference resolution systems, and present
our approach in Section 5. We report on experi-
ments we conducted in section 6, and conclude in
Section 7.

2 Related Works

Our approach is inspired by, and extends, previ-
ous works on coreference resolution which show
that incorporating external knowledge into a CR
system is beneficial. In particular, a variety
of approaches (Ponzetto and Strube, 2006; Ng,
2007; Haghighi and Klein, 2009) have been
shown to benefit from using external resources
such as Wikipedia, WordNet (Miller, 1995), or
YAGO (Suchanek et al., 2007). Ratinov and
Roth (2012) and Hajishirzi et al. (2013) both in-
vestigate the integration of named-entity linking
into machine learning and rule-based coreference
resolution system respectively. They both use
GLOW (Ratinov et al., 2011) a wikification sys-
tem which associates detected mentions with their
equivalent entity in Wikipedia. In addition, they
assign to each mention a set of highly accurate
knowledge attributes extracted from Wikipedia
and Freebase (Bollacker et al., 2008), such as the
Wikipedia categories, gender, nationality, aliases,
and NER type (ORG, PER, LOC, FAC, MISC).

One issue with all the aforementioned studies is
that inaccuracies often cause cascading errors in
the pipeline (Zheng et al., 2013). Consequently,
most authors concentrate on high-precision link-
ing at the cost of low recall.

Dealing specifically with Wikipedia articles, we
can directly exploit the wealth of markup available
(redirects, internal links, links to Freebase) with-
out resorting to named-entity linking, thus bene-
fiting from much less ambiguous information on
mentions.

3 Dataset

As our approach is dedicated to Wikipedia arti-
cles, we used the freely1 available resource called
WikiCoref (Ghaddar and Langlais, 2016). This
ressource consists in 30 English Wikipedia arti-
cles manually coreference-annotated. It comprises
60k tokens annotated with the OntoNotes project
guidelines (Pradhan et al., 2007). Each mention
is annotated with three attributes: the mention
type (named-entity, noun phrase, or pronominal),
the coreference type (identity, attributive or copu-
lar) and the equivalent Freebase entity if it exists.
The resource contains roughly 7 000 non single-
ton mentions, among which 1 800 refer to the main
concept, which is to say that 30 chains out of 1 469
make up for 25% of the mentions annotated.

System WikiCoref OntoNotes
Dcoref 51.77 55.59
Durrett and Klein (2013) 51.01 61.41
Durrett and Klein (2014) 49.52 61.79
Cort 49.94 62.47
Scoref 46.39 63.61

Table 1: CoNLL F1 score of recent state-of-the-
art systems on the WikiCoref dataset, and the 2012
OntoNotes test data for predicted mentions.

Since most coreference resolution systems for
English are trained and tested on ACE (Dodding-
ton et al., 2004) or OntoNotes (Hovy et al., 2006)
resources, it is interesting to measure how state-of-
the art systems perform on the WikiCoref dataset.
To this end, we ran a number of recent CR sys-
tems: the rule-based system of (Lee et al., 2013),
hereafter named Dcoref; the Berkeley systems
described in (Durrett and Klein, 2013; Durrett and
Klein, 2014); the latent model of Martschat and

1http://rali.iro.umontreal.ca/rali/?q=
en/wikicoref
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Strube (2015); and the system described in (Clark
and Manning, 2015), hereafter named Scoref.

We evaluate the systems on the whole dataset,
using the v8.01 of the CoNLL scorer2 (Pradhan
et al., 2014). The results are reported in Table 1
along with the performance of the systems on the
CoNLL 2012 test data (Pradhan et al., 2012). Ex-
pectedly, the performance of all systems dramati-
cally decrease on WikiCoref, which calls for fur-
ther research on adapting the coreference resolu-
tion technology to new text genres.

Somehow more surprisingly, the rule-based sys-
tem of (Lee et al., 2013) works better than the
machine-learning based systems on the WikiCoref
dataset. Nevertheless, statistical systems can be
trained or adapted to the WikiCoref dataset, a
point we leave for future investigations. Also, we
observe that the ranking of the statistical systems
on this dataset differs from the one obtained on the
OntoNotes test set.

The WikiCoref dataset is far smaller than the
OntoNotes one; still, the authors paid attention to
sample Wikipedia articles of various characteris-
tics: size, topic (people, organizations, locations,
events, etc.) and internal link density. Therefore,
we believe our results to be representative. Those
results further confirm the conclusions in (Hen-
drickx and Hoste, 2009), which show that a CR
system trained on news-paper significantly under-
performs on data coming from users comments
and blogs.

4 Baselines

Since there is no system readily available for our
task, we devised four baselines on top of two avail-
able coreference resolution systems. Given the
output of a CR system applied on a Wikipedia ar-
ticle, our goal here is to isolate the coreference
chain that represents the main concept. We exper-
imented with several heuristics, yielding the fol-
lowing baselines.

B1 picks the longest coreference chain identified
and considers that its mentions are those that
co-refer to the main concept. The underlying
assumption is that the most mentioned con-
cept in a Wikipedia article is the main con-
cept itself.

B2 picks the longest coreference chain identified
2http://conll.github.io/

reference-coreference-scorers

if it contains a mention that exactly matches
the MC title, otherwise it checks in decreasing
order (longest to shortest) for a chain contain-
ing the title. We expect this baseline to be
more precise than the previous one overall.

It turns out that, for CR systems, mentions of
the MC often are spread over several coreference
chains. Therefore we devised two more baselines
that aggregate chains, with an expected increase in
recall.

B3 conservatively aggregates chains containing a
mention that exactly matches the MC title.

B4 more loosely aggregates all chains that con-
tain at least one mention whose span is a sub-
string of the title.3 For instance, given the
main concept Barack Obama, we concatenate
all chains containing either Obama or Barack
in their mentions. Obviously, this baseline
should show a higher recall than the previ-
ous ones, but risks aggregating mentions that
are not related to the MC. For instance, it
will aggregate the coreference chain referring
to University of Sydney concept with a chain
containing the mention Sydney.

We observed that, for pronominal mentions,
those baselines were not performing very well in
terms of recall. With the aim of increasing recall,
we added to the chain all the occurrences of pro-
nouns found to refer to the MC (at least once) by
the baseline. This heuristic was first proposed by
Nguyen et al. (2007). For instance, if the pronoun
he is found in the chain identified by the baseline,
all pronouns he in the article are considered to be
mentions of the MC Barack Obama. Obviously,
there are cases where those pronouns do not co-
refer to the MC, but this step significantly improves
the performance on pronouns.

5 Approach

Our approach is composed of a preprocessor
which computes a representation of each mention
in an article as well as its main concept; and a
feature extractor which compares both represen-
tations for inducing a set of features.

5.1 Preprocessing
We extract mentions using the same mention de-
tection algorithm embedded in Lee et al. (2013)

3Grammatical words are not considered for matching.
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and Clark and Manning (2015). This algorithm
described in (Raghunathan et al., 2010) extracts all
named-entities, noun phrases and pronouns, and
then removes spurious mentions.

We leverage the hyperlink structure of the arti-
cle in order to enrich the list of predicted mentions
with shallow semantic attributes. For each link
found within the article under consideration, we
look through the list of predicted mentions for all
mentions that match the surface string of the link.
We assign to them the attributes (entity type, gen-
der and number) extracted from the Freebase entry
(if it exists) corresponding to the Wikipedia article
the hyperlink points to. This module behaves as
a substitute to the named-entity linking pipelines
used in other works, such as (Ratinov and Roth,
2012; Hajishirzi et al., 2013). We expect it to be of
high quality because it exploits human-made links.

We use the WikipediaMiner (Milne and
Witten, 2008) API for easily accessing any piece
of structure (clean text, labels, internal links, redi-
rects, etc) in Wikipedia, and Jena4 to index and
query Freebase.

In the end, we represent a mention by three
strings (actual mention span, head word, and span
up to the head noun), as well as its coarse attributes
(entity type, gender and number). Figure 1 shows
the representation collected for the mention San
Fernando Valley region of the city of Los Angeles
found in the Los Angeles Pierce College
article.

string span
. San Fernando Valley region

of the city of Los Angeles
head word span

. region
span up to the head noun

. San Fernando Valley region
coarse attribute

. ∅, neutral, singular

Figure 1: Representation of a mention.

We represent the main concept of a Wikipedia
article by its title, its inferred type (a common
noun inferred from the first sentence of the arti-
cle). Those attributes were used by Nguyen et al.
(2007) to heuristically link a mention to the main
concept of an article. We further extend this rep-
resentation by the MC name variants extracted

4http://jena.apache.org

from the markup of Wikipedia (redirects, text an-
chored in links) as well as aliases from Freebase;
the MC entity types we extracted from the Free-
base notable types attribute, and its coarse
attributes extracted from Freebase, such as its
NER type, its gender and number. If the con-
cept category is a person (PER), we import the
profession attribute. Figure 2 illustrates the
information we collect for the Wikipedia concept
Los Angeles Pierce College.

title (W)
. Los Angeles Pierce College

inferred type (W)
Los Angeles Pierce College, also known as
Pierce College and just Pierce, is a commu-
nity college that serves . . .

. college
name variants (W,F)

. Pierce Junior College, LAPC
entity type (F)

. College/University
coarse attributes (F)

. ORG, neutral, singular

Figure 2: Representation of a Wikipedia concept.
The source from which the information is ex-
tracted is indicated in parentheses: (W)ikipedia,
(F)reebase.

5.2 Feature Extraction

We experimented with a few hundred features for
characterizing each mention, focusing on the most
promising ones that we found simple enough to
compute. In part, our features are inspired by
coreference systems that use Wikipedia and Free-
base as feature sources (see Section 2). These fea-
tures, along with others related to the characteris-
tics of Wikipedia texts, allow us to recognize men-
tions of the MC more accurately than current CR
systems. We make a distinction between features
computed for pronominal mentions and features
computed from the other mentions.

5.2.1 Non-pronominal Mentions
For each mention, we compute seven families of
features we sketch below.

base Number of occurrences of the mention span
and the mention head found in the list of
candidate mentions. We also add a normal-
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ized version of those counts (frequency / total
number of mentions).

title, inferred type, name variants, entity type
Most often, a concept is referred to by its
name, one of its variants, or its type which
are encoded in the four first fields of our MC

representation. We define four families of
comparison features, each corresponding to
one of the first four fields of a MC represen-
tation (see Figure 2). For instance, for the
title family, we compare the title text span
with each of the text spans of the mention
representation (see Figure 1). A comparison
between a field of the MC representation
and a mention text span yields 10 boolean
features. These features encode string
similarities (exact match, partial match, one
being the substring of another, sharing of a
number of words, etc.). An eleventh feature
is the semantic relatedness score of Wu and
Palmer (1994). For title, we therefore end up
with 3 sets of 11 feature vectors.

tag Part-of-speech tags of the first and last words
of the mention, as well as the tag of the words
immediately before and after the mention in
the article. We convert this into 34×4 binary
features (presence/absence of a specific com-
bination of tags).

main Boolean features encoding whether the MC

and the mention coarse attributes matches;
also we use conjunctions of all pairs of fea-
tures in this family.

5.2.2 Pronominal Mentions
We characterize pronominal mentions by five fam-
ilies of features, which, with the exception of the
first one, all capture information extracted from
Wikipedia.

base The pronoun span itself, number, gender and
person attributes, to which we add the num-
ber of occurrences of the pronoun, as well as
its normalized count. The most frequently
occurring pronoun in an article is likely to
co-refer to the main concept, and we expect
these features to capture this to some extent.

main MC coarse attributes, such as NER type,
gender, number (see Figure 2).

tag Part-of-speech of the previous and following
tokens, as well as the previous and the next
POS bigrams (this is converted into 2380 bi-
nary features).

position Often, pronouns at the beginning of a
new section or paragraph refer to the main
concept. Therefore, we compute 5 (binary)
features encoding the relative position (first,
first tier, second tier, last tier, last) of a men-
tion in the sentence, paragraph, section and
article.

distance Within a sentence, we search before and
after the mention for an entity that is com-
patible (according to Freebase information)
with the pronominal mention of interest. If
a match is found, one feature encodes the
distance between the match and the mention;
another feature encodes the number of other
compatible pronouns in the same sentence.
We expect that this family of features will
help the model to capture the presence of lo-
cal (within a sentence) co-references.

6 Experiments

In this section, we first describe the data prepa-
ration we conducted (section 6.1), and provide
details on the classifier we trained (section 6.2).
Then, we report experiments we carried out on the
task of identifying the mentions co-referent (pos-
itive class) to the main concept of an article (sec-
tion 6.3). We compare our approach to the base-
lines described in section 4, and analyze the im-
pact of the families of features described in sec-
tion 5. We also investigate a simple extension of
Dcoref which takes advantage of our classifier
for improving coreference resolution (section 6.4).

6.1 Data Preparation

Each article in WikiCoref was part-of-speech
tagged, syntactically parsed and the named-
entities were identified. This was done thanks
to the Stanford CoreNLP toolkit (Manning et
al., 2014). Since WikiCoref does not contain sin-
gleton mentions (in conformance to the OntoNotes
guidelines), we automatically extract singleton
mentions using the method described in (Raghu-
nathan et al., 2010). Overall, we added about
13 400 automatically extracted mentions (single-
tons) to the 7 000 coreferent mentions annotated
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Pronominal Non Pronominal All
P R F1 P R F1 P R F1

Dcoref
B1 64.51 76.55 70.02 70.33 63.09 66.51 67.92 67.77 67.85
B2 76.45 50.23 60.63 83.52 49.57 62.21 80.90 49.80 61.65
B3 76.39 65.55 70.55 83.67 56.20 67.24 80.72 59.45 68.47
B4 71.74 83.41 77.13 74.39 75.59 74.98 73.30 78.31 75.77

Scoref
B1 76.59 78.30 77.44 54.66 39.37 45.77 64.11 52.91 57.97
B2 89.59 74.16 81.15 69.90 31.20 43.15 79.69 46.14 58.44
B3 83.91 77.35 80.49 73.17 55.44 63.08 77.39 63.06 69.49
B4 78.48 90.74 84.17 67.51 67.85 67.68 71.68 75.81 73.69

this work 85.46 92.82 88.99 91.65 85.88 88.67 89.29 88.30 88.79

Table 2: Performance of the baselines on the task of identifying all MC coreferent mentions.

in WikiCoref. In the end, our training set con-
sists of 20 362 mentions: 1 334 pronominal ones
(627 of them referring to the MC), and 19 028 non-
pronominal ones (16% of them referring to the
MC).

6.2 Classifier

We trained two Support Vector Machine classi-
fiers (Cortes and Vapnik, 1995), one for pronom-
inal mentions and one for non-pronominal ones,
making use of the LIBSVM library (Chang and
Lin, 2011) and the features described in Sec-
tion 5.2. For both models, we selected5 the C-
support vector classification and used a linear ker-
nel. Since our dataset is unbalanced (at least for
non-pronominal mentions), we penalized the neg-
ative class with a weight of 2.0.

During training, we do not use gold mention
attributes, but we automatically enrich mentions
with the information extracted from Wikipedia
and Freebase, as described in Section 5.

6.3 Main Concept Resolution Performance

We focus on the task of identifying all the men-
tions referring to the main concept of an article.
We measure the performance of the systems we
devised by average precision, recall and F1 rates
computed by a 10-fold cross-validation procedure.

We generated baselines for all the systems dis-
cussed in Section 3, but found results derived from
statistical approaches to be close enough that we

5We tried with less success other configurations on a held-
out dataset.

only include results of two systems in the sequel:
Dcoref (Lee et al., 2013) and Scoref (Clark
and Manning, 2015). We choose these two be-
cause they use the same pipeline (parser, men-
tion detection, etc), while applying very different
techniques (rules versus machine learning). The
results of the baselines and our approach are re-
ported in Table 2.

Clearly, our approach outperforms all baselines
for both pronominal and non-pronominal men-
tions, and across all metrics. On all mentions, our
best classifier yields an absolute F1 increase of 13
points over Dcoref, and 15 points over Scoref.

In order to understand the impact of each family
of features we considered in this study, we trained
various classifiers in a greedy fashion. We started
with the simplest feature set (base) and gradually
added one family of features at a time, keeping
at each iteration the one leading to the highest in-
crease in F1. The outcome of this process for the
pronominal mentions is reported in Table 3.

P R F1
always positive 46.70 100.00 63.70

base 70.34 78.31 74.11
+main 74.15 90.11 81.35

+position 80.43 89.15 84.57
+tag 82.12 90.11 85.93

+distance 85.46 92.82 88.99

Table 3: Performance of our approach on the
pronominal mentions, as a function of the features.

A baseline that always considers that a pronom-
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inal mention is co-referent to the main concept
results in an F1 measure of 63.7%. This naive
baseline is outperformed by the simplest of our
model (base) by a large margin (over 10 absolute
points). We observe that recall significantly im-
proves when those features are augmented with
the MC coarse attributes (+main). In fact, this
variant already outperforms all the Dcoref-based
baselines in terms of F1 score. Each feature family
added further improves the performance overall,
leading to better precision and recall than any of
the baselines tested. Inspection shows that most
of the errors on pronominal mentions are intro-
duced by the lack of information on noun phrase
mentions surrounding the pronouns. In example
(f) shown in Figure 3, the classifier associates the
mention it with the MC instead of the Johnston
Atoll “ Safeguard C ” mission.

P R F1
base 60.89 62.24 61.56

+title 85.56 68.03 75.79
+inferred type 87.45 75.26 80.90

+name variants 86.49 81.12 83.72
+entity type 86.37 82.99 84.65

+tag 87.09 85.46 86.27
+main 91.65 85.88 88.67

Table 4: Performance of our approach on the non-
pronominal mentions, as a function of the features.

Table 4 reports the results obtained for the non-
pronominal mentions classifier. The simplest clas-
sifier is outperformed by most baselines in terms
of F1. Still, this model is able to correctly match
mentions in example (a) and (b) of Figure 3 simply
because those mentions are frequent within their
respective article. Of course, such a simple model
is often wrong as in example (c), where all men-
tions the United States are associated to the MC,
simply because this is a frequent mention.

The title feature family drastically increases
precision, and the resulting classifier (+title) out-
performs all the baselines in terms of F1 score.
Adding the inferred type feature family gives a
further boost in recall (7 absolute points) with no
loss in precision (gain of almost 2 points). For
instance, the resulting classifier can link the men-
tion the team to the MC Houston Texans (see ex-
ample (d)) because it correctly identifies the term
team as a type. The family name variants also
gives a nice boost in recall, in a slight expense of

precision. This drop is due to some noisy redi-
rects in Wikipedia, misleading our classifier. For
instance, Johnston and Sand Islands is a redirect
of the Johnston Atoll article.

The entity type family further improves perfor-
mance, mainly because it plays a role similar to
the inferred type features extracted from Free-
base. This indicates that the noun type induced
directly from the first sentence of a Wikipedia arti-
cle is pertinent and can complement the types ex-
tracted from Freebase when available or serve as
proxy when they are missing.

a MC= Anatole France
France is also widely believed to be the model
for narrator Marcel’s literary idol Bergotte in
Marcel Proust’s In Search of Lost Time.

b MC= Harry Potter and the Chamber of Secrets
Although Rowling found it difficult to finish
the book, it won . . . .

c MC= Barack Obama
On August 31, 2010, Obama announced that
the United States* combat mission in Iraq
was over.

d MC= Houston Texans
In 2002, the team wore a patch commemorat-
ing their inaugural season...

e MC= Houston Texans
The name Houston Oilers was unavailable to
the expansion team...

f MC= Johnston Atoll
In 1993 , Congress appropriated no funds
for the Johnston Atoll Safeguard C mission
, bringing it* to an end.

g MC= Houston Texans
The Houston Texans are a professional Amer-
ican football team based in Houston* , Texas.

Figure 3: Examples of mentions (underlined) as-
sociated with the MC. An asterisk indicates wrong
decisions.

Finally, the main family significantly increases
precision (over 4 absolute points) with no loss in
recall. To illustrate a negative example, the result-
ing classifier wrongly recognizes mentions refer-
ring to the town Houston as coreferent to the foot-
ball team in example (g). We handpicked a num-
ber of classification errors and found that most of
these are difficult coreference cases. For instance,
our best classifier fails to recognize that the men-
tion the expansion team refers to the main concept
Houston Texans in example (e).
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System
MUC B3 CEAFφ4 CoNLL

P R F1 P R F1 P R F1 F1
Dcoref 61.59 60.42 61.00 53.55 43.33 47.90 42.68 50.86 46.41 51.77
D&K (2013) 68.52 55.96 61.61 59.08 39.72 47.51 48.06 40.44 43.92 51.01
D&K (2014) 63.79 57.07 60.24 52.55 40.75 45.90 45.44 39.80 42.43 49.52
M&S (2015) 70.39 53.63 60.88 60.81 37.58 46.45 47.88 38.18 42.48 49.94
C&M (2015) 69.45 49.53 57.83 57.99 34.42 43.20 46.61 33.09 38.70 46.58
Dcoref++ 66.06 62.93 64.46 57.73 48.58 52.76 46.76 49.54 48.11 55.11

Table 5: Performance of Dcoref++ on WikiCoref compared to the state-of-the-art systems: Lee et al.
(2013); Durrett and Klein (2013) - Final; Durrett and Klein (2014) - Joint; Martschat and Strube (2015)
- Ranking:Latent; Clark and Manning (2015) - Statistical mode with clustering.

6.4 Coreference Resolution Performance

While identifying all the mentions of the MC

in a Wikipedia article is certainly useful in a
number of NLP tasks (Nguyen et al., 2007;
Nakayama, 2008), finding all coreference chains
in a Wikipedia article is also worth studying. In the
following, we describe an experiment where we
introduced in Dcoref a new high-precision sieve
which uses our classifier6. Sieves in Dcoref are
ranked in decreasing order of precision, and we
ranked this new sieve first. The aim of this sieve
is to construct the coreference chain equivalent to
the main concept. It merges two chains whenever
they both contain mentions to the MC according
to our classifier. We further prevent other sieves
from appending new mentions to the MC corefer-
ence chain.

We ran this modified system (called
Dcoref++) on the WikiCoref dataset, where
mentions were automatically predicted. The
results of this system are reported in Table 5,
measured in terms of MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFφ4 (Luo,
2005) and the average F1 CoNLL score (Denis
and Baldridge, 2009).

We observe an improvement for Dcoref++
over the other systems, for all the metrics. In par-
ticular, Dcoref++ increases by 4 absolute points
the CoNLL F1 score. This shows that early deci-
sions taken by our classifier benefit other sieves as
well. It must be noted, however, that the overall
gain in precision is larger than the one in recall.

7 Conclusion

We developed a simple yet powerful approach that
accurately identifies all the mentions that co-refer

6We use predicted results from 10-fold cross-validation.

to the concept being described in a Wikipedia ar-
ticle. We tackle the problem with two (pronom-
inal and non-pronominal) models based on well
designed features. The resulting system is com-
pared to baselines built on top of state-of-the-art
systems adapted to this task. Despite being rela-
tively simple, our model reaches 89 % in F1 score,
an absolute gain of 13 F1 points over the best base-
line. We further show that incorporating our sys-
tem into the Stanford deterministic rule-based sys-
tem (Lee et al., 2013) leads to an improvement of
4% in F1 score on a fully fledged coreference task.
A natural extension of this work is to identify all
coreference relations in a Wikipedia article, a task
we are currently investigating.

The material used in this study, as well
as a (huge) dump of all the mentions in En-
glish Wikipedia (version of April 2013) our
classifier identified as referring to the main
concept, along with information we extracted
from Wikipedia and Freebase are available
at http://rali.iro.umontreal.ca/
rali/en/wikipedia-main-concept. We
hope this ressource will foster further research on
Wikipedia-based coreference resolution.
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Abstract

Coreference resolution for event men-
tions enables extraction systems to process
document-level information. Current sys-
tems in this area base their decisions on rich
semantic features from various knowledge
bases, thus restricting them to domains
where such external sources are available.
We propose a model for this task which
does not rely on such features but instead
utilizes sentential features coming from
convolutional neural networks. Two such
networks first process coreference candi-
dates and their respective context, thereby
generating latent-feature representations
which are tuned towards event aspects rel-
evant for a linking decision. These rep-
resentations are augmented with lexical-
level and pairwise features, and serve as
input to a trainable similarity function pro-
ducing a coreference score. Our model
achieves state-of-the-art performance on
two datasets, one of which is publicly avail-
able. An error analysis points out direc-
tions for further research.

1 Introduction

Event extraction aims at detecting mentions of real-
world events and their arguments in text documents
of different domains, e.g., news articles. The sub-
sequent task of event linking is concerned with
resolving coreferences between recognized event
mentions in a document, and is the focus of this
paper.

Several studies investigate event linking and re-
lated problems such as relation mentions spanning
multiple sentences. Swampillai and Stevenson
(2010) find that 28.5 % of binary relation mentions
in the MUC 6 dataset are affected, as are 9.4 % of

relation mentions in the ACE corpus from 2003.
Ji and Grishman (2011) estimate that 15 % of slot
fills in the training data for the “TAC 2010 KBP
Slot Filling” task require cross-sentential inference.
To confirm these numbers, we analyzed the event
annotation of the ACE 2005 corpus and found that
approximately 23 % of the event mentions lack ar-
guments which are present in other mentions of
the same event instance in the respective document.
These numbers suggest that event linking is an im-
portant task.

Previous approaches for modeling event men-
tions in context of coreference resolution (Bejan
and Harabagiu, 2010; Sangeetha and Arock, 2012;
Liu et al., 2014) make either use of external feature
sources with limited cross-domain availability like
WordNet (Fellbaum, 1998) and FrameNet (Baker
et al., 1998), or show low performance. At the
same time, recent literature proposes a new kind
of feature class for modeling events (and relations)
in order to detect mentions and extract their argu-
ments, i.e., sentential features from event-/relation-
mention representations that have been created by
taking the full extent and surrounding sentence of
a mention into account (Zeng et al., 2014; Nguyen
and Grishman, 2015; Chen et al., 2015; dos Santos
et al., 2015; Zeng et al., 2015). Their promising
results motivate our work. We propose to use such
features for event coreference resolution, hoping
to thereby remove the need for extensive external
semantic features while preserving the current state-
of-the-art performance level.

Our contributions in this paper are as follows:
We design a neural approach to event linking which
in a first step models intra-sentential event men-
tions via the use of convolutional neural networks
for the integration of sentential features. In the next
step, our model learns to make coreference deci-
sions for pairs of event mentions based on the pre-
viously generated representations. This approach

239



does not rely on external semantic features, but
rather employs a combination of local and senten-
tial features to describe individual event mentions,
and combines these intermediate event representa-
tions with standard pairwise features for the corefer-
ence decision. The model achieves state-of-the-art
performance in our experiments on two datasets,
one of which is publicly available. Furthermore, we
present an analysis of the system errors to identify
directions for further research.

2 Problem definition

We follow the notion of events from the ACE 2005
dataset (LDC, 2005; Walker et al., 2006). Consider
the following example:

British bank Barclays had agreed to buy
Spanish rival Banco Zaragozano for 1.14 billion
euros. The combination of the banking operations
of Barclays Spain and Zaragozano will bring to-
gether two complementary businesses and will hap-
pen this year, in contrast to Barclays’ postponed
merger with Lloyds.1

Processing these sentences in a prototypical,
ACE-style information extraction (IE) pipeline
would involve (a) the recognition of entity men-
tions. In the example, mentions of entities are
underlined. Next, (b) words in the text are pro-
cessed as to whether they elicit an event reference,
i.e., event triggers are identified and their seman-
tic type is classified. The above sentences contain
three event mentions with type Business.Merge-
Org, shown in boldface. The task of event extrac-
tion further requires that (c) participants of rec-
ognized events are determined among the entity
mentions in the same sentence, i.e., an event’s ar-
guments are identified and their semantic role wrt.
the event is classified. The three recognized event
mentions are:

E1: buy(British bank Barclays, Spanish rival Banco
Zaragozano, 1.14 billion euros)

E2: combination(Barclays Spain, Zaragozano, this year)
E3: merger(Barclays, Lloyds)

Often, an IE system involves (d) a disambiguation
step of the entity mentions against one another in
the same document. This allows to identify the
three mentions of “Barclays” in the text as referring
to the same real-world entity. The analogous task
on the level of event mentions is called (e) event
linking (or: event coreference resolution) and is
the focus of this paper. Specifically, the task is

1Based on an example in (Araki and Mitamura, 2015).

to determine that E3 is a singleton reference in
this example, while E1 and E2 are coreferential,
with the consequence that a document-level event
instance can be produced from E1 and E2, listing
four arguments (two companies, buying price, and
acquisition date).

3 Model design

This section first motivates the design decisions
of our model for event linking, before going into
details about its two-step architecture.

Event features from literature So far, a wide
range of features has been used for the represen-
tation of events and relations for extraction (Zhou
et al., 2005; Mintz et al., 2009; Sun et al., 2011;
Krause et al., 2015) and coreference resolution (Be-
jan and Harabagiu, 2010; Lee et al., 2012; Liu et
al., 2014; Araki and Mitamura, 2015; Cybulska
and Vossen, 2015) purposes. The following is an
attempt to list the most common classes among
them, along with examples:

• lexical: surface string, lemma, word embeddings, con-
text around trigger

• syntactic: depth of trigger in parse tree, dependency
arcs from/to trigger

• discourse: distance between coreference candidates,
absolute position in document

• semantic (intrinsic): comparison of event arguments
(entity fillers, present roles), event type of coreference
candidates

• semantic (external): coreference-candidates similarity
in lexical-semantic resources (WordNet, FrameNet) and
other datasets (VerbOcean corpus), enrichment of ar-
guments with alternative names from external sources
(DBpedia, Geonames)

While lexical, discourse, and intrinsic-semantic fea-
tures are available in virtually all application sce-
narios of event extraction/linking, and even syn-
tactic parsing is no longer considered an expen-
sive feature source, semantic features from exter-
nal knowledge sources pose a significant burden
on the application of event processing systems, as
these sources are created at high cost and come
with limited domain coverage.

Fortunately, recent work has explored the use of
a new feature class, sentential features, for tackling
relation-/event-extraction related tasks with neural
networks (Zeng et al., 2014; Nguyen and Grishman,
2015; Chen et al., 2015; dos Santos et al., 2015;
Zeng et al., 2015). These approaches have shown
that processing sentences with neural models yields
representations suitable for IE, which motivates
their use in our approach.
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Figure 1: The two parts of the model. The first part computes a representation for a single event mention.
The second part is fed with two such event-mention representations plus a number of pairwise features for
the input event-mention pair, and calculates a coreference score.

Data properties A preliminary analysis of one
dataset used in our experiments (ACE++; see
Section 5) further motivates the design of our
model. We found that 50.97 % of coreferential
event-mentions pairs share no arguments, either
by mentioning distinct argument roles or because
one/both mentions have no annotated arguments.
Furthermore, 47.29 % of positive event-mention
pairs have different trigger words. It is thus im-
portant to not solely rely on intrinsic event proper-
ties in order to model event mentions, but to addi-
tionally take the surrounding sentence’s semantics
into account. Another observation regards the dis-
tance of coreferential event mentions in a document.
55.42% are more than five sentences apart. This
indicates that a locality-based heuristic would not
perform well and also encourages the use of sen-
tential features for making coreference decisions.

3.1 Learning event representations

The architecture of the model (Figure 1) is split into
two parts. The first one aims at adequately repre-
senting individual event mentions. As is common
in literature, words of the whole sentence of an
input event mention are represented as real-valued
vectors vi

w of a fixed size dw, with i being a word’s
position in the sentence. These word embeddings

are updated during model training and are stored in
a matrix Ww ∈ Rdw×|V |; |V | being the vocabulary
size of the dataset.

Furthermore, we take the relative position of to-
kens with respect to the mention into account, as
suggested by (Collobert et al., 2011; Zeng et al.,
2014). The rationale is that while the absolute posi-
tion of learned features in a sentence might not be
relevant for an event-related decision, the position
of them wrt. the event mention is. Embeddings vi

p

of size dp for relative positions of words are gener-
ated in a way similar to word embeddings, i.e., by
table lookup from a matrix Wp ∈ Rdp×smax∗2−1 of
trainable parameters. Again i denotes the location
of a word in a sentence; smax is the maximum sen-
tence length in the dataset. Embeddings for words
and positions are concatenated into vectors vi

t of
size dt = dw + dp, this means that now every word
in the vocabulary has a different representation for
each distinct distance with which it occurs to an
event trigger.

A sentence with s words is represented by a ma-
trix of dimensions s × dt. This matrix serves as
input to a convolution layer. In order to compress
the semantics of s words into a sentence-level fea-
ture vector with constant size, the convolution layer
applies dc filters to each window of n consecutive
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words, thereby calculating dc features for each n-
gram of a sentence. For a single filter wc ∈ Rn∗dt

and particular window of n words starting at posi-
tion i, this operation is defined as

vi
c = relu(wc · vi:i+n−1

t + bc), (1)

where vi:i+n−1
t is the flattened concatenation of

vectors v(·)
t for the words in the window, bc is a bias,

and relu is the activation function of a rectified
linear unit. In Figure 1, dc = 3 and n = 2.

In order to identify the most indicative features
in the sentence and to introduce invariance for the
absolute position of these, we feed the n-gram rep-
resentations to a max-pooling layer, which identi-
fies the maximum value for each filter. We treat
n-grams on each side of the trigger word separately
during pooling, which allows the model to han-
dle multiple event mentions per sentence, similar
in spirit to (Chen et al., 2015; Zeng et al., 2015).
The pooling step for a particular convolution fil-
ter j ∈ [1, dc] and sentence part k ∈ {←[, 7→} is
defined as

vj,k
m = max (vi

c), (2)

where i runs through the convolution windows of
k. The output of this step are sentential features
vsent ∈ R2∗dc of the input event mention:

vsent = (v1,←[
m , . . . , vdc,←[

m , v1, 7→
m , . . . , vdc, 7→

m ) (3)

Additionally, we provide the network with
trigger-local, lexical-level features by concatenat-
ing vsent with the word embeddings v(·)

w of the trig-
ger word and its left and right neighbor, resulting in
vsent+lex ∈ R2∗dc+3∗dw . This encourages the model
to take the lexical semantics of the trigger into ac-
count, as these can be a strong indicator for coref-
erence. The result is processed by an additional
hidden layer, generating the final event-mention
representation ve with size de used for the subse-
quent event-linking decision:

ve = tanh(Wevsent+lex + be). (4)

3.2 Learning coreference decisions
The second part of the model (Figure 1b) processes
the representations for two event mentions v1

e , v2
e ,

and augments these with pairwise comparison fea-
tures vpairw to determine the compatibility of the
event mentions. The following features are used, in
parentheses we give the feature value for the pair
E1, E2 from the example in Section 1:

• Coarse-grained and/or fine-grained event type agree-
ment (yes, yes)

• Antecedent event is in first sentence (yes)
• Bagged distance between event mentions in #sen-

tences/#intermediate event mentions (1, 0)
• Agreement in event modality (yes)
• Overlap in arguments (two shared arguments)

The concatenation of these vectors

vsent+lex+pairw = (v1
e , v

2
e , vpairw) (5)

is processed by a single-layer neural network which
calculates a distributed similarity of size dsim for
the two event mentions:

vsim = square(Wsimvsent+lex+pairw + bsim). (6)

The use of the square function as the network’s
non-linearity is backed by the intuition that for
measuring similarity, an invariance under polarity
changes is desirable. Having dsim similarity dimen-
sions allows the model to learn multiple similarity
facets in parallel; in our experiments, this setup
outperformed model variants with different activa-
tion functions as well as a cosine-similarity based
comparison.

To calculate the final output of the model, vsim is
fed to a logistic regression classifier, whose output
serves as the coreference score:

score = σ(Woutvsim + bout) (7)

We train the model parameters

θ = {Ww,Wp, {wc}, {bc},We, be,Wsim, bsim,Wout, bout} (8)

by minimizing the logistic loss over shuffled mini-
batches with gradient descent using Adam (Kingma
and Ba, 2014).

3.3 Example generation and clustering

We investigated two alternatives for the genera-
tion of examples from documents with recognized
event mentions. Figure 2 shows the strategy we
found to perform best, which iterates over the event
mentions of a document and pairs each mention
(the “anaphors”) with all preceding ones (the “an-
tecedent” candidates). This strategy applies to both
training and inference time. Soon et al. (2001) pro-
pose an alternative strategy, which during training
creates positive examples only for the closest ac-
tual antecedent of an anaphoric event mention with
intermediate event mentions serving as negative
antecedent candidates. In our experiments, this
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1: procedure GENERATEEXAMPLES(Md):
2: Md = (m1, . . . ,m|Md|)
3: Pd ← ∅
4: for i = 2, . . . , |Md| do
5: for j = 1, . . . , i− 1 do
6: Pd ← Pd ∪ {(mi,mj)}
7: return Pd

Figure 2: Generation of examples Pd for a docu-
ment d with a sequence of event mentionsMd.

1: procedure GENERATECLUSTERS(Pd, score):
2: Pd = {(mi,mj)}i,j
3: score : Pd 7→ [0, 1]
4: Cd ← {(mi,mj) ∈ Pd : score(mi,mj) > 0.5}
5: while ∃(mi,mk), (mk,mj) ∈ Cd : (mi,mj) 6∈ Cd do
6: Cd ← Cd ∪ {(mi,mj)}
7: return Cd

Figure 3: Generation of event clusters Cd for a
document d based on the coreference scores from
the model. Pd is the set of all event-mention pairs
from a document, as implemented in Figure 2.

strategy performed worse than the less elaborate
algorithm in Figure 2.

The pairwise coreference decisions of our model
induce a clustering of a document’s event men-
tions. In order to force the model to output a
consistent view on a given document, a strategy
for resolving conflicting decisions is needed. We
followed the strategy detailed in Figure 3, which
builds the transitive closure of all positive links. Ad-
ditionally, we experimented with Ng and Gardent
(2002)’s “BestLink” strategy, which discards all
but the highest-scoring antecedent of an anaphoric
event mention. Liu et al. (2014) reported that for
event linking, BestLink outperforms naive tran-
sitive closure, however, in our experiments (Sec-
tion 5) we come to a different conclusion.

4 Experimental setting, model training

We implemented our model using the TensorFlow
framework (Abadi et al., 2015, v0.6), and chose
the ACE 2005 dataset (Walker et al., 2006, later:
ACE) as our main testbed. The annotation of this
corpus focuses on the event types Conflict.Attack,
Movement.Transport, and Life.Die reporting about
terrorist attacks, movement of goods and people,
and deaths of people; but also contains many more
related event types as well as mentions of business-
relevant and judicial events. The corpus consists
of merely 599 documents, which is why we cre-
ate a second dataset that encompasses these doc-
uments and additionally contains 1351 more web

ACE ACE++

# documents 599 1950
# event instances 3617 7520
# event mentions 4728 9956

Table 1: Dataset properties.

dw 300 η 10−5

dp 8 β1 0.2

dc 256 β2 0.999

de 50 ε 10−2

dsim 2 batch size 512

n 3 epochs ≤ 2000

Dropout no `2 reg. no

Table 2: Hyperparameter settings.

documents annotated in an analogous fashion with
the same set of event types. We refer to this sec-
ond dataset as ACE++. Both datasets are split 9:1
into a development (dev) and test partition; we
further split dev 9:1 into a training (train) and vali-
dation (valid) partition. Table 1 lists statistics for
the datasets.

There are a number of architectural alternatives
in the model as well as hyperparameters to opti-
mize. Besides varying the size of intermediate
representations in the model (dw, dp, dc, de, dsim),
we experimented with different convolution win-
dow sizes n, activation functions for the similarity-
function layer in model part (b), whether to use
the dual pooling and final hidden layer in model
part (a), whether to apply regularization with `2
penalties or Dropout, and parameters to Adam
(η, β1, β2, ε). We started our exploration of this
space of possibilities from previously reported hy-
perparameter values (Zhang and Wallace, 2015;
Chen et al., 2015) and followed a combined strat-
egy of random sampling from the hyperparameter
space (180 points) and line search. Optimization
was done by training on ACE++

train and evaluating on
ACE++

valid. The final settings we used for all follow-
ing experiments are listed in Table 2. Ww is ini-
tialized with pre-trained embeddings of (Mikolov
et al., 2013)2, the embedding matrix for relative
positions (Wp) and all other model parameters are
randomly initialized. Model training is run for
2000 epochs, after which the best model on the
respective valid partition is selected.

2
https://code.google.com/archive/p/word2vec/
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BLANC B-CUBED MUC Positive links

4 ∗ (Precision / Recall / F1 score) in %

This paper 71.80 75.16 73.31 90.52 86.12 88.26 61.54 45.16 52.09 47.89 56.20 51.71
(Liu et al., 2014) 70.88 70.01 70.43 89.90 88.86 89.38 53.42 48.75 50.98 55.86 40.52 46.97
(Bejan and Harabagiu, 2010) — — — 83.4 84.2 83.8 — — — 43.3 47.1 45.1
(Sangeetha and Arock, 2012) — — — — — 87.7 — — — — — —

Table 3: Event-linking performance of our model & competitors on ACE. Best value per metric in bold.

5 Evaluation

This section elaborates on the conducted experi-
ments. First, we compare our approach to state-of-
art systems on dataset ACE, after which we report
experiments on ACE++, where we contrast varia-
tions of our model to gain insights about the impact
of the utilized feature classes. We conclude this
section with an error analysis.

5.1 Comparison to state-of-the-art on ACE

Table 3 depicts the performance of our model,
trained on ACEtrain, on ACEtest, along with the per-
formance of state-of-the-art systems from the liter-
ature. From the wide range of proposed metrics for
the evaluation of coreference resolution, we believe
BLANC (Recasens and Hovy, 2011) has the high-
est validity, as it balances the impact of positive
and negative event-mention links in a document.
Negative links and consequently singleton event
mentions are more common in this dataset (more
than 90 % of links are negative). As Recasens and
Hovy (2011) point out, the informativeness of met-
rics like MUC (Vilain et al., 1995), B-CUBED
(Bagga and Baldwin, 1998), and the naive positive-
link metric suffers from such imbalance. We still
add these metrics for completeness, and because
BLANC scores are not available for all systems.

Unfortunately, there are two caveats to this com-
parison. First, while a 9:1 train/test split is the com-
monly accepted way of using ACE, the exact docu-
ments in the partitions vary from system to system.
We are not aware of any publicized split from previ-
ous work on event linking, which is why we create
our own and announce the list of documents in
ACEvalid/ACEtest at https://git.io/vwEEP.
Second, published methods follow different strate-
gies regarding preprocessing components. While
all systems in Table 3 use gold-annotated event-
mention triggers, Bejan and Harabagiu (2010) and
Liu et al. (2014) use a semantic-role labeler and
other tools instead of gold-argument information.
We argue that using full gold-annotated event men-

tions is reasonable in order to mitigate error propa-
gation along the extraction pipeline and make per-
formance values for the task at hand more informa-
tive.

We beat Liu et al. (2014)’s system in terms of F1
score on BLANC, MUC, and positive-links, while
their system performs better in terms of B-CUBED.
Even when taking into account the caveats men-
tioned above, it seems justified to assess that our
model performs in general on-par with their state-
of-the-art system. Their approach involves random-
forest classification with best-link clustering and
propagation of attributes between event mentions,
and is grounded on a manifold of external feature
sources, i.e., it uses a “rich set of 105 semantic
features”. Thus, their approach is strongly tied to
domains where these semantic features are avail-
able and is potentially hard to port to other text
kinds. In contrast, our approach does not depend
on resources with restricted domain availability.

Bejan and Harabagiu (2010) propose a non-
parametric Bayesian model with standard lexical-
level features and WordNet-based similarity be-
tween event elements. We outperform their system
in terms of B-CUBED and positive-links, which in-
dicates that their system tends to over-merge event
mentions, i.e., has a bias against singletons. They
use a slightly bigger variant of ACE with 46 addi-
tional documents in their experiments.

Sangeetha and Arock (2012) hand-craft a simi-
larity metric for event mentions based on the num-
ber of shared entities in the respective sentences,
lexical terms, synsets in WordNet, which serves as
input to a mincut-based cluster identification. Their
system performs well in terms of B-CUBED F1,
however their paper provides few details about the
exact experimental setup.

Another approach with results on ACE was
presented by Chen et al. (2009), who employ a
maximum-entropy classifier with agglomerative
clustering and lexical, discourse, and semantic fea-
tures, e.g., also a WordNet-based similarity mea-

244



Model Dataset BLANC

(P/R/F1 in %)

1) Section 3 ACE 71.80 75.16 73.31
2) Sec. 3 + BestLink ACE 75.68 69.72 72.19

3) Section 3 ACE++ 73.22 83.21 76.90
4) Sec. 3 + BestLink ACE++ 74.24 68.86 71.09

Table 4: Impact of data amount and clustering.

Pw Loc Sen Dataset BLANC

(P/R/F1 in %)

1) X ACE++ 57.45 68.16 56.69
2) X X ACE++ 62.24 76.23 64.12
3) X X X ACE++ 73.22 83.21 76.90
4) X X ACE++ 82.60 70.71 74.97
5) X X ACE++ 59.67 66.25 61.28
6) X ACE++ 58.38 55.85 56.70

Table 5: Impact of feature classes; “Pw” is short
for pairwise features, “Loc” refers to trigger-local
lexical features, “Sen” corresponds to sentential
features.

sure. However, they report performance using a
threshold optimized on the test set, thus we decided
to not include the performance here.

5.2 Further evaluation on ACE and ACE++

We now look at several aspects of the model perfor-
mance to gain further insights about it’s behavior.

Impact of dataset size and clustering strategy
Table 4 shows the impact of increasing the amount
of training data (ACE → ACE++). This increase
(rows 1, 3) leads to a boost in recall, from 75.16%
to 83.21%, at the cost of a small decrease in preci-
sion. This indicates that the model can generalize
much better using this additional training data.

Looking into the use of the alternative cluster-
ing strategy BestLink recommended by Liu et al.
(2014), we can make the expected observation of
a precision improvement (row 1 vs. 2; row 3 vs.
4), due to fewer positive links being used before
the transitive-closure clustering takes place. This is
however outweighed by a large decline in recall, re-
sulting in a lower F1 score (73.31→ 72.19; 76.90
→ 71.09). The better performance of BestLink
in Liu et al.’s model suggests that our model al-
ready weeds out many low confidence links in the
classification step, which makes a downstream fil-
tering unnecessary in terms of precision, and even
counter-productive in terms of recall.

Model Dataset BLANC

(P/R/F1 in %)

Section 3 ACE++ 73.22 83.21 76.90
All singletons ACE++ 45.29 50.00 47.53
One instance ACE++ 4.71 50.00 8.60
Same type ACE++ 62.73 84.75 61.35

Table 6: Event-linking performance of our model
against naive baselines.

Impact of feature classes Table 5 shows our
model’s performance when particular feature
classes are removed from the model (with re-
training), with row 3 corresponding to the full
model as described in Section 3. Unsurprisingly,
classifying examples with just pairwise features
(row 1) results in the worst performance, and
adding first trigger-local lexical features (row 2),
then sentential features (row 3) subsequently raises
both precision and recall. Just using pairwise fea-
tures and sentential ones (row 4), boosts precision,
which is counter-intuitive at first, but may be ex-
plained by a different utilization of the sentential-
feature part of the model during training. This part
is then adapted to focus more on the trigger-word
aspect, meaning the sentential features degrade to
trigger-local features. While this allows to reach
higher precision (recall that Section 3 finds that
more than fifty percent of positive examples have
trigger-word agreement), it substantially limits the
model’s ability to learn other coreference-relevant
aspects of event-mention pairs, leading to low re-
call. Further considering rows 5 & 6, we can con-
clude that all feature classes indeed positively con-
tribute to the overall model performance.

Baselines The result of applying three naive base-
lines to ACE++ is shown in Table 6. The all sin-
gletons/one instance baselines predict every input
link to be negative/positive, respectively. In partic-
ular the all-singletons baseline performs well, due
to the large fraction of singleton event mentions
in the dataset. The third baseline, same type, pre-
dicts a positive link whenever there is agreement
on the event type, namely, it ignores the possibility
that there could be multiple event mentions of the
same type in a document which do not refer to the
same real-world event, e.g., referring to different
terrorist attacks. This baseline also performs quite
well, in particular in terms of recall, but shows low
precision.
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Error analysis We manually investigated a sam-
ple of 100 false positives and 100 false negatives
from ACE++ in order to get an understanding of
system errors.

It turns out that a significant portion of the false
negatives would involve the resolution of a pronoun
to a previous event mention, a very hard and yet un-
solved problem. Consider the following examples:

• “It’s crazy that we’re bombing Iraq. It sickens me.”
• “Some of the slogans sought to rebut war supporters’

arguments that the protests are unpatriotic. [...] Nobody
questions whether this is right or not.

In both examples, the event mentions (trigger
words in bold font) are gold-annotated as coref-
erential, but our model failed to recognize this.

Another observation is that for 17 false negatives,
we found analogous cases among the sampled false
positives where annotators made a different anno-
tation decision. Consider these examples:

• The 1860 Presidential Election. [...] Lincoln won a
plurality with about 40% of the vote.

• She lost her seat in the 1997 election.

Each bullet point has two event mentions (in bold
font) taken from the same document and refer-
ring to the same event type, i.e., Personnel.Elect.
While in the first example, the annotators identified
the mentions as coreferential, the second pair of
mentions is not annotated as such. Analogously,
22 out of the 100 analyzed false positives were
cases where the misclassification of the system
was plausible to a human rater. This exemplifies
that this task has many boundary cases were a pos-
itive/negative decision is hard to make even for
expert annotators, thus putting the overall perfor-
mance of all models in Table 3 in perspective.

6 Related work

We briefly point out other relevant approaches and
efforts from the vast amount of literature.

Event coreference In addition to the competitors
mentioned in Section 5, approaches for event link-
ing were presented, e.g., by Chen and Ji (2009),
who determine link scores with hand-crafted com-
patibility metrics for event mention pairs and a
maximum-entropy model, and feed these to a spec-
tral clustering algorithm. A variation of the event-
coreference resolution task extends the scope to
cross-document relations. Cybulska and Vossen
(2015) approach this task with various classifica-
tion models and propose to use a type-specific

granularity hierarchy for feature values. Lee et al.
(2012) further extend the task definition by jointly
resolving entity and event coreference, through sev-
eral iterations of mention-cluster merge operations.
Sachan et al. (2015) describe an active-learning
based method for the same problem, where they de-
rive a clustering of entities/events by incorporating
bits of human judgment as constraints into the ob-
jective function. Araki and Mitamura (2015) simul-
taneously identify event triggers and disambiguate
them wrt. one another with a structured-perceptron
algorithm.

Resources Besides the ACE 2005 corpus, a num-
ber of other datasets with event-coreference annota-
tion have been presented. Hovy et al. (2013) reports
on the annotation process of two corpora from the
domains of “violent events” and biographic texts;
to our knowledge neither of them is publicly avail-
able. OntoNotes (Weischedel et al., 2013) com-
prises different annotation layers including coref-
erence (Pradhan et al., 2012), however intermin-
gles entity and event coreference. A series of re-
leases of the EventCorefBank corpus (Bejan and
Harabagiu, 2010; Lee et al., 2012; Cybulska and
Vossen, 2014) combine linking of event mentions
within and across documents, for which Liu et al.
(2014) report a lack of completeness on the within-
document aspect. The ProcessBank dataset (Berant
et al., 2014) provides texts with event links from
the difficult biological domain.

Other A few approaches to the upstream task
of event extraction, while not considering within-
document event linking, still utilize discourse-level
information or even cross-document inference. For
example, Liao and Grishman (2010) showed how
the output of sentence-based classifiers can be fil-
tered wrt. discourse-level consistency. Yao et al.
(2010) resolved coreferences between events from
different documents in order to make a global
extraction decision, similar to (Ji and Grishman,
2008) and (Li et al., 2011).

In addition to convolutional neural networks,
more types of neural architectures lend themselves
to the generation of sentential features. Recently
many recursive networks and recurrent ones have
been proposed for the task of relation classification,
with state-of-the-art results (Socher et al., 2012;
Hashimoto et al., 2013; Ebrahimi and Dou, 2015;
Xu et al., 2015; Li et al., 2015).
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7 Conclusion

Our proposed model for the task of event linking
achieves state-of-the-art results without relying on
external feature sources. We have thus shown that
low linking performance, coming from a lack of
semantic knowledge about a domain, is evitable.
In addition, our experiments give further empirical
evidence for the usefulness of neural models for
generating latent-feature representations for sen-
tences.

There are several areas for potential future work.
As next steps, we plan to test the model on
more datasets and task variations, i.e., in a cross-
document setting or for joint trigger identification
and coreference resolution. On the other hand,
separating anaphoricity detection from antecedent
scoring, as is often done for the task of entity coref-
erence resolution (e.g., by Wiseman et al. (2015)),
might result in performance gains; also the gener-
ation of sentential features from recurrent neural
networks seems promising. Regarding our medium-
term research agenda, we would like to investigate
if the model can benefit from more fine-grained in-
formation about the discourse structure underlying
a text. This could guide the model when encoun-
tering the problematic case of pronoun resolution,
described in the error analysis.
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Abstract

Named Entity Disambiguation (NED)
refers to the task of resolving multiple
named entity mentions in a document to
their correct references in a knowledge
base (KB) (e.g., Wikipedia). In this paper,
we propose a novel embedding method
specifically designed for NED. The pro-
posed method jointly maps words and enti-
ties into the same continuous vector space.
We extend the skip-gram model by us-
ing two models. The KB graph model
learns the relatedness of entities using the
link structure of the KB, whereas the an-
chor context model aims to align vectors
such that similar words and entities occur
close to one another in the vector space
by leveraging KB anchors and their con-
text words. By combining contexts based
on the proposed embedding with standard
NED features, we achieved state-of-the-
art accuracy of 93.1% on the standard
CoNLL dataset and 85.2% on the TAC
2010 dataset.

1 Introduction

Named Entity Disambiguation (NED) is the task
of resolving ambiguous mentions of entities to
their referent entities in a knowledge base (KB)
(e.g., Wikipedia). NED has lately been extensively
studied (Cucerzan, 2007; Mihalcea and Csomai,
2007; Milne and Witten, 2008b; Ratinov et al.,
2011) and used as a fundamental component in
numerous tasks, such as information extraction,
knowledge base population (McNamee and Dang,
2009; Ji et al., 2010), and semantic search (Blanco
et al., 2015). We use Wikipedia as KB in this pa-
per.

The main difficulty in NED is ambiguity in the

meaning of entity mentions. For example, the
mention “Washington” in a document can refer
to various entities, such as the state, or the capi-
tal of the US, the actor Denzel Washington, the
first US president George Washington, and so
on. In order to resolve these ambiguous men-
tions into references to the correct entities, early
approaches focused on modeling textual context,
such as the similarity between contextual words
and encyclopedic descriptions of a candidate en-
tity (Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007). Most state-of-the-art methods use
more sophisticated global approaches, where all
mentions in a document are simultaneously disam-
biguated based on global coherence among disam-
biguation decisions.

Word embedding methods are also becom-
ing increasingly popular (Mikolov et al., 2013a;
Mikolov et al., 2013b; Pennington et al., 2014).
These involve learning continuous vector repre-
sentations of words from large, unstructured text
corpora. The vectors are designed to capture the
semantic similarity of words when similar words
are placed near one another in a relatively low-
dimensional vector space.

In this paper, we propose a method to construct
a novel embedding that jointly maps words and en-
tities into the same continuous vector space. In
this model, similar words and entities are placed
close to one another in a vector space. Hence,
we can measure the similarity between any pair of
items (i.e., words, entities, and a word and an en-
tity) by simply computing their cosine similarity.
This enables us to easily measure the contextual
information for NED, such as the similarity be-
tween a context word and a candidate entity, and
the relatedness of entities required to model coher-
ence.

Our model is based on the skip-gram model
(Mikolov et al., 2013a; Mikolov et al., 2013b), a
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recently proposed embedding model that learns to
predict each context word given the target word.
Our model consists of the following three models
based on the skip-gram model: 1) the conventional
skip-gram model that learns to predict neighboring
words given the target word in text corpora, 2) the
KB graph model that learns to estimate neighbor-
ing entities given the target entity in the link graph
of the KB, and 3) the anchor context model that
learns to predict neighboring words given the tar-
get entity using anchors and their context words in
the KB. By jointly optimizing these models, our
method simultaneously learns the embedding of
words and entities.

Based on our proposed embedding, we also de-
velop a straightforward NED method that com-
putes two contexts using the proposed embedding:
textual context similarity, and coherence. Textual
context similarity is measured according to vector
similarity between an entity and words in a docu-
ment. Coherence is measured based on the relat-
edness between the target entity and other entities
in a document. Our NED method combines these
contexts with several standard features (e.g., prior
probability) using supervised machine learning.

We tested the proposed method using two stan-
dard NED datasets: the CoNLL dataset and the
TAC 2010 dataset. Experimental results revealed
that our method outperforms state-of-the-art meth-
ods on both datasets by significant margins. More-
over, we conducted experiments to separately as-
sess the quality of the vector representation of enti-
ties using an entity relatedness dataset, and discov-
ered that our method successfully learns the qual-
ity representations of entities.

2 Joint Embedding of Words and
Entities

In this section, we first describe the conventional
skip-gram model for learning word embedding.
We then explain our method to construct an em-
bedding that jointly maps words and entities into
the same continuous d-dimensional vector space.
We extend the skip-gram model by adding the KB
graph model and the anchor context model.

2.1 Skip-gram Model for Word Similarity

The training objective of the skip-gram model is to
find word representations that are useful to predict
context words given the target word. Formally,
given a sequence of T words w1, w2, ..., wT , the

model aims to maximize the following objective
function:

Lw =
T∑

t=1

∑
−c≤j≤c,j 6=0

logP (wt+j |wt) (1)

where c is the size of the context window, wt de-
notes the target word, andwt+j is its context word.
The conditional probability P (wt+j |wt) is com-
puted using the following softmax function:

P (wt+j |wt) =
exp(Vwt

>Uwt+j )∑
w∈W exp(Vwt

>Uw)
(2)

where W is a set containing all words in the vo-
cabulary, and Vw ∈ Rd and Uw ∈ Rd denote the
vectors of word w in matrices V and U, respec-
tively.

The skip-gram model is trained to optimize the
above functionLw, and V are used as the resulting
vector representations of words.

2.2 Extending the Skip-gram Model
We extend the skip-gram model to learn the vector
representations of entities. We expand matrices V
and U to include the vectors of entities Ve ∈ Rd

and Ue ∈ Rd in addition to the vectors for words.

2.2.1 KB Graph Model
We use an internal link structure in KB to enable
the model to learn the relatedness between pairs of
entities. Wikipedia Link-based Measure (WLM)
(Milne and Witten, 2008a) is a method to measure
entity relatedness based on its link structure. It
has been used as a standard method to compute
the relatedness of entities for modeling coherence
in past NED studies. The relatedness between two
entities is computed using the following function:

WLM(e1, e2) = 1− log max(|Ce1 |,|Ce2 |)−log |Ce1∩Ce2 |
log |E|−log min(|Ce1 |,|Ce2 |) (3)

where E is the set of all entities in KB and Ce is
the set of entities with a link to an entity e. In-
tuitively, WLM assumes that entities with similar
incoming links are related. Despite its simplicity,
WLM yields state-of-the-art performance (Hoffart
et al., 2012).

Inspired by WLM, the KB graph model simply
learns to place entities with similar incoming links
near one another in the vector space. We formalize
this as the following objective function:

Le =
∑
ei∈E

∑
eo∈Cei ,ei 6=eo

logP (eo|ei) (4)
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We compute the conditional probability P (eo|ei)
using the following softmax function:

P (eo|ei) =
exp(Vei

>Ueo)∑
e∈E exp(Vei

>Ue)
(5)

We train the model to predict the incoming links
Ce given an entity e. Therefore, Ce plays a similar
role to context words in the skip-gram model.

2.2.2 Anchor Context Model
If we add only the KB graph model to the skip-
gram model, the vectors of words and entities do
not interact, and can be placed in different sub-
spaces of the vector space. To address this issue,
we introduce the anchor context model to place
similar words and entities near one another in the
vector space.

The idea underlying this model is to lever-
age KB anchors and their context words to train
the model. As mentioned in Section 1, we use
Wikipedia as a KB. It contains many internal an-
chors that can be safely treated as unambiguous
occurrences of referent KB entities. By using
these anchors, we can easily obtain many occur-
rences of entities and their corresponding context
words directly from the KB.

As in the skip-gram model, we simply train the
model to predict the context words of an entity
pointed to by the target anchor. The objective
function is as follows:

La =
∑

(ei,Q)∈A

∑
wo∈Q

logP (wo|ei) (6)

where A denotes a set of anchors in the KB, each
of which contains a pair of a referent entity ei and
a set of its context words Q. Here, Q contains the
previous c words and the next c words. Note that
|A| equals the number of internal anchors in the
KB. As in past models, the conditional probability
P (wo|ei) is computed using the softmax function:

P (wo|ei) =
exp(Vei

>Uwo)∑
w∈W exp(Vei

>Uw)
(7)

Using the proposed model, we align the vec-
tor representations of words and entities by plac-
ing words and entities with similar context words
close to one another in the vector space.

2.3 Training
Considering the three model components men-
tioned above, we propose the following objective

function by linearly combining the above objec-
tive functions:

L = Lw + Le + La (8)

The training of the model is intended to maximize
the above function, and the resulting matrix V is
used to embed words and entities.

One of the problems in training our model is
that the normalizers contained in the softmax func-
tions P (wt+j |wt), P (eo|ei), and P (wo|ei) are
computationally very expensive because they in-
volve summation over all words W or entities E.
To address this problem, we use negative sampling
(NEG) (Mikolov et al., 2013b) to convert original
objective functions into computationally feasible
ones. NEG is defined by the following objective
function:

log σ(Vwt
>Uwt+j ) +

∑g
i=1 Ewi∼Pneg(w)

[
log σ(−Vwt

>Uwi)
]

(9)

where σ(x) = 1/(1 + exp(−x)) and g is the
number of negative samples. We replace the
logP (wt+j |wt) term in Eq. (1) with the above ob-
jective function. Consequently, the objective func-
tion is transformed from that in Eq. (1) to a sim-
ple objective function of the binary classification
to distinguish the observed word wt from words
drawn from noise distribution Pneg(w). We also
replace logP (eo|ei) in Eq. (4) and logP (wo|ei)
in Eq. (6) in the same manner.

Note that NEG takes a negative distribution
Pneg(w) as a free parameter. Following (Mikolov
et al., 2013b), we use the unigram distribution
of words (U(w)) raised to the 3/4th power (i.e.,
U(w)3/4/Z, where Z is a normalization constant)
in the skip-gram model and the anchor context
model. In the KB graph model, we use a uniform
distribution over KB entitiesE as the negative dis-
tribution.

We use Wikipedia to train all the above mod-
els. Optimization is carried out simultaneously
to maximize the transformed objective function
by iterating over Wikipedia pages several times.
We use stochastic gradient descent (SGD) for the
optimization. The optimization is performed us-
ing a multiprocess-based implementation of our
model using Python, Cython, and NumPy config-
ured with OpenBLAS with storing matrices V and
U in the shared memory. To improve speed, we
decide not to introduce locks to the shared matri-
ces.
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3 Named Entity Disambiguation Using
Embedding

In this section, we explain our NED method us-
ing our proposed embedding. Let us formally
define the task. Given a set of entity mentions
M = {m1,m2, ...,mN} in a document d with an
entity set E = {e1, e2, ..., eK} in the KB, the task
is defined as resolving mentions (e.g., “Washing-
ton”) into their referent entities (e.g., Washington
D.C.).

We introduce two measures that have been fre-
quently observed in past NED studies: entity prior
P (e) and prior probability P (e|m). We define en-
tity prior P (e) = |Ae,∗|/|A∗,∗| where A∗,∗ de-
notes all anchors in the KB and Ae,∗ is the set
of anchors that point to entity e. Prior probabil-
ity is defined as P (e|m) = |Ae,m|/|A∗,m| where
A∗,m represents all anchors with the same surface
as mention m in KB and Ae,m is a subset of A∗,m
that points to entity e.

We separate the NED task into two sub-tasks:
candidate generation and mention disambigua-
tion. In candidate generation, candidates of ref-
erent entities are generated for each mention. De-
tails of candidate generation are provided in Sec-
tion 4.3.1.

3.1 Mention Disambiguation

Given a document d and mention m with its can-
didate referent entities {e1, e2, ..., ek} generated in
the candidate generation step, the task is to disam-
biguate mention m by selecting the most relevant
entity from the candidate entities.

The key to improving the performance of this
task is to effectively model the context. We pro-
pose two novel methods to model the context us-
ing the proposed embedding. Further, we combine
these two models with several standard NED fea-
tures using supervised machine learning described
in 3.1.3.

3.1.1 Modeling Textual Context
Textual context is designed based on the assump-
tion that an entity is more likely to appear if the
context of a given mention is similar to that of the
entity.

We propose a method to measure the similarity
between textual context and entity using the pro-
posed embedding by first deriving the vector rep-
resentation of the context and then computing the
similarity between the context and the entity using

cosine similarity. To derive the vector of context,
we average the vectors of context words:

~vcw =
1

|Wcm |
∑

w∈Wcm

~vw (10)

where Wcm is a set of the context words of men-
tion m and ~vw ∈ V denotes the vector represen-
tation of word w. We use all noun words in docu-
ment d as context words.1 Moreover, we ignore a
context word if the surface of mention m contains
it.

We then measure the similarity between candi-
date entity and the derived textual context by using
cosine similarity between ~vcw and the vector of en-
tity ~ve.

3.1.2 Modeling Coherence
It has been revealed that effectively modeling co-
herence in the assignment of entities to mentions
is important for NED. However, this is a chicken-
and-egg problem because the assignment of enti-
ties to mentions, which is required to measure co-
herence, is not possible prior to performing NED.

Similar to past work (Ratinov et al., 2011), we
address this problem by employing a simple two-
step approach: we first train the machine learn-
ing model using the coherence score among unam-
biguous mentions2, in addition to other features,
and then retrain the model using the coherence
score among the predicted entity assignments in-
stead.

To estimate coherence, we first calculate the
vector representation of the context entities and
measure the similarity between the vector of the
context entities and that of the target entity e. Note
that context entities are unambiguous entities in
the first step, and predicted entities are used in-
stead in the second step.

To derive the vector representation of context
entities, we average their vector representations:

~vce =
1
|Ecm |

∑
e∗∈Ecm

~ve∗ (11)

where Ecm denotes the set of context entities de-
scribed above.

To estimate the coherence score, we again use
cosine similarity between the vector of entity ~ve

and that of context entities ~vce .
1We used Apache OpenNLP tagger to detect nouns.

https://opennlp.apache.org/
2We consider that mention m unambiguously refers to en-

tity e if its prior probability P (e|m) is greater than 0.95.
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3.1.3 Learning to Rank
To combine the proposed contextual information
described above with standard NED features, we
employ a method of supervised machine learning
to rank the candidate entities given mentionm and
document d.

In particular, we use Gradient Boosted Regres-
sion Trees (GBRT) (Friedman, 2001), a state-
of-the-art point-wise learning-to-rank algorithm
widely used for various tasks, which has been re-
cently adopted for the sort of tasks for which we
employ it here (Meij et al., 2012). GBRT consists
of an ensemble of regression trees, and predicts
a relevance score given an instance. We use the
GBRT implementation in scikit-learn3 and the lo-
gistic loss is used as the loss function. The main
parameters of GBRT are the number of iterations
η, the learning rate β, and the maximum depth of
the decision trees ξ.

With regard to the features of machine learning,
we first use prior probability (P (e|m)) and entity
prior (P (e)). Further, we include a feature repre-
senting the maximum prior probability of the can-
didate entity e of all mentions in the document. We
also add the number of entity candidates for men-
tion m as a feature. The above set of four features
is called base features in the rest of the paper.

We also use several string similarity features
used in past work on NED (Meij et al., 2012).
These features aim to capture the similarity be-
tween the title of entity e and the surface of men-
tion m, and consist of the edit distance, whether
the title of entity e exactly equals or contains the
surface of mention m, and whether the title of en-
tity e starts or ends with the surface of mention m.

Finally, we include contextual features mea-
sured using the proposed embedding. We use co-
sine similarity between the candidate entity and
the textual context (see Section 3.1.1), and similar-
ity between an entity and contextual entities (see
Section 3.1.2). Furthermore, we include the rank
of entity e among candidate entities of mentionm,
sorted according to these two similarity scores in
descending order.

4 Experiments

In this section, we describe the setup and results
of our experiments. In addition to experiments on
the NED task, we separately assessed the quality
of pairwise entity relatedness in order to test the

3http://scikit-learn.org/

NDCG@1 NDCG@5 NDCG@10 MAP

Our Method 0.59 0.56 0.59 0.52
WLM 0.54 0.52 0.55 0.48

Table 1: Results of the entity relatedness task.

effectiveness of our method in capturing pairwise
similarity between pairs of entities. We first de-
scribe the details of the training of the embedding
and then present the experimental results.

4.1 Training for the Proposed Embedding

To train the proposed embedding, we used the
December 2014 version of the Wikipedia dump4.
We first removed the pages for navigation, main-
tenance, and discussion, and used the remaining
4.9 million pages. We parsed the Wikipedia pages
and extracted text and anchors from each page.
We further tokenized the text using the Apache
OpenNLP tokenizer. We also filtered out rare
words that appeared fewer than five times in the
corpus. We thus obtained approximately 2 billion
tokens and 73 million anchors. The total num-
ber of words and entities in the embedding were
approximately 2.1 million and 5 million, respec-
tively. Consequently, the number of rows of ma-
trices V and U were 7.1 million.

The number of dimensions d of the embed-
ding was set to 500. Following (Mikolov et al.,
2013b), we also used learning rate α = 0.025
which linearly decreased with the iterations of the
Wikipedia dump. Regarding the other parameters,
we set the size of the context window c = 10
and the negative samples g = 30. The model
was trained online by iterating over pages in the
Wikipedia dump 10 times. The training lasted ap-
proximately five days using a server with a 40-core
CPU on Amazon EC2.

4.2 Entity Relatedness

To test the quality of the vector representation
of entities, we conducted an experiment using a
dataset for entity relatedness created by Cecca-
relli et al. (Ceccarelli et al., 2013). The dataset
consists of training, test, and validation sets, and
we only use the test set for this experiment. The
test set contains 3,314 entities, where each entity
has 91 candidate entities with gold-standard la-
bels indicating whether the two entities are related.

4The dump was retrieved from Wikimedia Downloads.
http://dumps.wikimedia.org/
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Following (Huang et al., 2015), we obtained the
ranked order of the candidate entities using cosine
similarity between the target entity and each of
the candidate entities, and computed the two stan-
dard measures: normalized discounted cumulative
gain (NDCG) (Järvelin and Kekäläinen, 2002) and
mean average precision (MAP) (Manning et al.,
2008). We adopted WLM as baseline.

Table 1 shows the results. The score for WLM
was obtained from Huang et al. (Huang et al.,
2015). Our method clearly outperformed WLM.
The results show that our method accurately cap-
tures pairwise entity relatedness.

4.3 Named Entity Disambiguation

4.3.1 Setup
We now explain our experimental setup for the
NED task. We tested the performance of our pro-
posed method on two standard NED datasets: the
CoNLL dataset and the TAC 2010 dataset. The de-
tails of these datasets are provided below. More-
over, as with the corpus used in the embedding, we
used the December 2014 version of the Wikipedia
dump as the referent KB, and to derive the prior
probability as well as the entity prior.

To find the best parameters for our machine
learning model, we ran a parameter search on the
CoNLL development set. We used η = 10, 000
trees, and tested all combinations of the learning
rate β = {0.01, 0.02, 0.03, 0.05} and the maxi-
mum depth of the decision trees ξ = {3, 4, 5}. We
computed their accuracy on the dataset, and found
that the parameters did not significantly affect per-
formance (1.0% at most). We used β = 0.02 and
ξ = 4 which yielded the best performance.

CoNLL The CoNLL dataset is a popular NED
dataset constructed by Hoffart et al. (Hoffart et al.,
2011). The dataset is based on NER data from the
CoNLL 2003 shared task, and consists of training,
development, and test sets, containing 946, 216,
and 231 documents, respectively. We trained our
machine learning model using the training set and
reported its performance using the test set. We also
used the development set for the parameter tuning
described above. Following (Hoffart et al., 2011),
we only used 27,816 mentions with valid entries in
the KB and reported the standard micro- (aggre-
gates over all mentions) and macro- (aggregates
over all documents) accuracies of the top-ranked
candidate entities to assess disambiguation perfor-
mance. For candidate generation, we use the fol-

lowing two resources: 1) a public dataset recently
built by Pershina et al. (Pershina et al., 2015) (de-
noted by PPRforNED) for the sake of compati-
bility with their state-of-the-art results, and 2) a
dictionary built using a standard YAGO means re-
lation dataset (Hoffart et al., 2011) (denoted by
YAGO). Moreover, we used PPRforNED for the
parameter tuning of the machine learning model
and for error analysis.

TAC 2010 The TAC 2010 dataset is another pop-
ular NED dataset constructed for the Text Analysis
Conference (TAC)5 (Ji et al., 2010). The dataset
is based on news articles from various agencies
and Web log data, and consists of a training and a
test set containing 1,043 and 1,013 documents, re-
spectively. Following past work (He et al., 2013;
Chisholm and Hachey, 2015), we used mentions
only with a valid entry in the KB, and reported the
micro-accuracy score of the top-ranked candidate
entities. We trained our model using the training
set and assessed its performance using the test set.
Consequently, we evaluated our model on 1,020
mentions contained in the test set. For candidate
generation, we used a dictionary that was directly
built from the Wikipedia dump mentioned previ-
ously. Similar to past work, we retrieved possible
mention surfaces of an entity from (1) the title of
the entity, (2) the title of another entity redirect-
ing to the entity, and (3) the names of anchors that
point to the entity. We retained the top 50 candi-
dates through their entity priors for computational
efficiency.

4.3.2 Comparison with State-of-the-art
Methods

We compared our method with the following re-
cently proposed state-of-the-art methods:

• Hoffart et al. (Hoffart et al., 2011) is a graph-
based approach that finds a dense subgraph
of entities in a document to address NED.

• He et al. (He et al., 2013) uses deep neural
networks to derive the representations of en-
tities and mention contexts and applies them
to NED.

• Chisholm and Hachey (Chisholm and
Hachey, 2015) uses a Wikilinks dataset
(Singh et al., 2012) to improve the perfor-
mance of NED.

5http://www.nist.gov/tac/
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Micro
accuracy

Macro
accuracy

CoNLL (PPRforNED) 93.1 92.6
CoNLL (YAGO) 91.5 90.9
TAC 2010 85.2 -

Table 2: Experimental results of our proposed
NED method.

CoNLL

(Micro)

CoNLL

(Macro)

TAC10

(Micro)

Our Method 93.1 92.6 85.2
Hoffart et al., 2011 82.5 81.7 -
He et al., 2013 85.6 84.0 81.0
Chisholm & Hachey, 2015 88.7 - 80.7
Pershina et al., 2015 91.8 89.9 -

Table 3: Accuracy scores of the proposed method
and the state-of-the-art methods.

• Pershina et al. (Pershina et al., 2015) im-
proved NED by modeling coherence using
the personalized page rank algorithm, and
achieved the best-known accuracy on the
CoNLL dataset.

4.3.3 Results
Table 2 shows the experimental results of our pro-
posed method. Our method successfully achieved
enhanced performance on both the CoNLL and the
TAC 2010 datasets. Moreover, we found that the
choice of candidate generation method consider-
ably affected performance on the CoNLL dataset.

Further, Table 3 shows the experimental results
of our proposed method as well as those of state-
of-the-art methods. Our method outperformed all
the state-of-the-art methods on both datasets.

4.3.4 Feature Study
We conducted a feature study on our method. We
began with base features, added various features
to our system incrementally, and reported their im-
pact on performance. We then introduced our two-
step approach to achieve the final results.

Table 4 shows the results. Surprisingly, we
attained results comparable with those of some
state-of-the-art methods on the both datasets by
only using base features. Adding string similarity
features slightly further improved performance.

We observed significant improvement when
adding textual context features based on our pro-
posed embedding. Our method outperformed

Micro
accuracy

Macro
accuracy

CoNLL (PPRforNED):
Base 85.4 87.4
+String similarity 85.8 87.8
+Textual context 90.9 92.4
+Coherence 91.4 92.1
Two-step 93.1 92.6
CoNLL (YAGO):
Base 81.1 83.6
+String similarity 81.3 84.2
+Textual context 87.2 89.6
+Coherence 90.3 90.8
Two-step 91.5 90.9
TAC 2010:
Base 80.1 -
+String similarity 81.7 -
+Textual context 84.6 -
+Coherence 85.5 -
Two-step 85.2 -

Table 4: The results of our feature study.

some state-of-the-art methods without using co-
herence.

Further, coherence based on unambiguous en-
tity mentions and our two-step approach sig-
nificantly improved performance on the CoNLL
dataset. However, it did not contribute to perfor-
mance on the TAC 2010 dataset. This was because
of the significant difference in the density of en-
tity mentions between the datasets. The CoNLL
dataset contains approximately 20 entity mentions
per document, but the TAC 2010 only contains ap-
proximately one mention per document which is
unarguably insufficient to model coherence.

4.3.5 Error Analysis

We also conducted an error analysis on the
CoNLL test set with candidate generation using
PPRforNED dataset. We observed that approx-
imately 48.6% errors were caused by metonymy
mentions (Ling et al., 2015) (i.e., mentions with
more than one plausible annotation). In particu-
lar, our NED method often erred when an incor-
rect entity was highly popular and exactly matched
the mention surface (e.g., “South Africa” referring
to the entity South Africa national rugby union
team rather than the entity South Africa). This
makes sense because our machine learning model
uses the popularity statistics of the KB (i.e., prior
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probability and entity prior), and the string simi-
larity between the title of the entity and the men-
tion surface. This problem is discussed further in
(Ling et al., 2015).

Furthermore, because our method depends on
the presence of KB anchors in order to learn en-
tity representation, it arguably fails to learn sat-
isfactory representations of tail entities (i.e., enti-
ties rarely referred to by anchors), thus resulting in
disambiguation errors. We discovered that nearly
9.6% errors were due to referent entities with less
than 10 inbound KB anchors, and 4.5% involved
entities with no inbound KB anchor. These errors
might be addressed using KB data other than KB
anchors, such as the description of the entities and
the KB categories in order to avoid dependence on
the KB anchors. This remains part of our future
work.

5 Related Work

Early NED methods addressed the problem as
a well-studied word sense disambiguation prob-
lem (Mihalcea and Csomai, 2007). These meth-
ods primarily focused on modeling the similar-
ity of textual (local) context. Most recent state-
of-the-art methods focus on modeling coherence
among disambiguated entities in the same docu-
ment (Cucerzan, 2007; Milne and Witten, 2008b;
Hoffart et al., 2011; Ratinov et al., 2011). These
approaches have also been called collective or
global approaches in the literature.

Learning the representations of entities for NED
has been addressed in past literature. Guo and
Barbosa (Guo and Barbosa, 2014) used random
walks on KB graphs to construct vector represen-
tations of entities and documents to address NED.
Blanco et al. (Blanco et al., 2015) proposed a
method to map entities into the word embedding
(i.e., Word2vec (Mikolov et al., 2013b)) space us-
ing entity descriptions in the KB and applied it for
NED. He et al. (He et al., 2013) used deep neu-
ral networks to compute representations of entities
and contexts of mentions directly from the KB.
Similarly, Sun et al. (Sun et al., 2015) proposed
a method based on deep neural networks to model
representations of mentions, contexts of mentions,
and entities. Huang et al. (Huang et al., 2015)
also leveraged deep neural networks to learn entity
representations such that the consequent pairwise
entity relatedness was more suitable than of a stan-
dard method (i.e., WLM) for NED. Further, Hu et

al. (Hu et al., 2015) used hierarchical information
in the KB to build entity embedding and applied
it to model coherence. Unlike these methods, our
proposed approach involves jointly learning vector
representations of entities as well as words, hence
enabling the accurate computation of the semantic
similarity among its items to model both the tex-
tual context and coherence.

Moreover, Yaghoobzadeh and Schutze
(Yaghoobzadeh and Schütze, 2015) addressed an
entity typing task by building an embedding of
words and entities on a corpus with annotated
entities (i.e., FACC1 (Gabrilovich et al., 2013))
using the skip-gram model. Compared to our
method, in addition to the significant difference
between their task and NED, their embedding
does not incorporate the link graph data of KB,
which is known to be highly important for NED.

Furthermore, in the context of knowledge graph
embedding, another tenor of recent works has been
published (Bordes et al., 2011; Socher et al., 2013;
Lin et al., 2015). These methods focus on learning
vector representations of entities to primarily ad-
dress the link prediction task that aims to predict
a new fact based on existing facts in KB. Particu-
larly, Wang et al. (Wang et al., 2014) have recently
revealed that the joint modeling of the embedding
of words and entities can improve performance
in several tasks including the link prediction task,
which is somewhat analogous to our experimental
results.

6 Conclusions

In this paper, we proposed an embedding method
to jointly map words and entities into the same
continuous vector space. Our method enables us
to effectively model both textual and global con-
texts. Further, armed with these context mod-
els, our NED method outperforms state-of-the-art
NED methods.

In future work, we intend to improve our model
by leveraging relevant knowledge, such as rela-
tions in a knowledge graph (e.g., Freebase).
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Abstract

For most entity disambiguation systems,
the secret recipes are feature representa-
tions for mentions and entities, most of
which are based on Bag-of-Words (BoW)
representations. Commonly, BoW has
several drawbacks: (1) It ignores the
intrinsic meaning of words/entities; (2)
It often results in high-dimension vector
spaces and expensive computation; (3) For
different applications, methods of design-
ing handcrafted representations may be
quite different, lacking of a general guide-
line. In this paper, we propose a different
approach named EDKate. We first learn
low-dimensional continuous vector repre-
sentations for entities and words by jointly
embedding knowledge base and text in the
same vector space. Then we utilize these
embeddings to design simple but effec-
tive features and build a two-layer disam-
biguation model. Extensive experiments
on real-world data sets show that (1) The
embedding-based features are very effec-
tive. Even a single one embedding-based
feature can beat the combination of sev-
eral BoW-based features. (2) The superi-
ority is even more promising in a difficult
set where the mention-entity prior cannot
work well. (3) The proposed embedding
method is much better than trivial imple-
mentations of some off-the-shelf embed-
ding algorithms. (4) We compared our
EDKate with existing methods/systems
and the results are also positive.

1 Introduction

Entity disambiguation is the task of linking entity
mentions in unstructured text to the correspond-
ing entities in a knowledge base. For example,
in the sentence “Michael Jordan is newly elected
as AAAI fellow”, the mention “Michael Jordan”
should be linked to “Michael I. Jordan” (Berke-
ley Professor) rather than “Michael Jordan” (NBA
Player). Formally, given a set of mentions M =
{m1,m2, ..., mk} (specified or detected automati-
cally) in a document d, for each mention mi ∈ M ,
the task is to find the correct entity ei in the knowl-
edge base (KB) K to which the mention mi refers.

There are various methods proposed for the
problem in the past decades. But generally
speaking, an entity disambiguation method is
commonly composed of three stages/components.
(1) Constructing representations for men-
tions/entities from raw data, often as the form
of sparse vectors. (2) Extracting features for
disambiguation models based on the represen-
tations of mentions and entities constructed in
stage (1). (3) Optimizing the disambiguation
model by empirically setting or learning weights
on the extracted features, e.g., by training a
classifier/ranker. There exist few features directly
defined by heuristics, skipping the first stage. For
example, string similarity or edit distance between
a mention surface and an entity’s canonical
form (Cucerzan, 2011; Cassidy et al., 2011), and
the prior probability of a mention surface being
some entity, etc. However, they are the minority
as it is difficult for human to design such features.

Almost all the existing methods focus on the
second or the third stages while the importance of
the first stage is often overlooked. The common
practice to deal with the first stage of representa-
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tions is defining handcrafted BoW representations.
For example, an entity is often represented by a
sparse vector of weights on the n-grams contained
in the description text of the entity, i.e., the stan-
dard Bag-of-Words (BoW) representation. TF-
IDF is often used to set the weights. There are sev-
eral variants for this way, e.g., using selected key
phrases or Wikipedia in-links/out-links instead of
all n-grams as the dimensions of the vectors (Rati-
nov et al., 2011). The problem is more challeng-
ing when representing a mention. The common
choice is using the n-gram vector of the surround-
ing text. Obviously the information of the local
text window is too limited to well represent a men-
tion. In practice, there is another constraint, the
representations of entities and mentions should be
in the same space, i.e., the dimensions of the vec-
tors should be shared. This constraint makes the
representation design more difficult. How to de-
fine such representations and the features based on
them almost become the secrete sauce of a disam-
biguation system. For example, Cucerzan (2007)
uses Wikipedia anchor surfaces and “Category”
values as dimensions and designed complex mech-
anisms to represent words, mentions and entities
as sparse vectors on those dimensions.

BoW representations have several intrinsic
drawbacks: First, the semantic meaning of a di-
mension is largely ignored. For example, “cat”,
“cats” and “tree” are equally distant under one-
hot BoW representations. Second, BoW repre-
sentations often introduce high dimension vector
spaces and lead to expensive computation. Third,
for different applications, methods of designing
handcrafted representations may be quite differ-
ent, lacking of a general guideline. The intuitive
questions like “why using n-grams, Wikipedia
links or category values as dimensions” and “why
using TF-IDF as weights” are hinting us it is very
likely these handcrafted representations are not the
best and there should be some better representa-
tions.

In this paper we focus on the first stage, the
problem of representations. Inspired by the re-
cent works on word embedding (Bengio et al.,
2003; Collobert et al., 2011; Mikolov et al., 2013a;
Mikolov et al., 2013b), knowledge embedding
(Bordes et al., 2011; Bordes et al., 2013; Socher et
al., 2013; Wang et al., 2014b) and joint embedding
KBs and texts (Wang et al., 2014a; Zhong and
Zhang, 2015), we propose to learn representations

for entity disambiguation. Specifically, from KBs
and texts, we jointly embed entities and words
into the same low-dimensional continuous vector
space. The embeddings are obtained by optimiz-
ing a global objective considering all the infor-
mation in the KBs and texts thus the intrinsic se-
mantics of words and entities are believed to be
preserved during the embedding. Then we design
simple but effective features based on embeddings
and build a two-layer disambiguation model. We
conduct extensive experiments on real-word data
sets and exhibit the effectiveness of our words and
entities’ representation.

2 Related Work

Entity Disambiguation Entity disambiguation
methods roughly fall into two categories: local
approaches and collective approaches. Local ap-
proaches disambiguate each mention in a docu-
ment separately. For example, Bunescu and Pasca
(2006) compare the context of each mention with
the Wikipedia categories of an entity candidate;
Milne and Witten (2008) come up with the con-
cept “unambiguous link” and make it convenient
to compute entity relatedness. Differently, collec-
tive approaches require all entities in a document
“coherent” in semantic, measured by some objec-
tive functions. Cucerzan (2007) proposes a topic
representation for document by aggregating topic
vectors of all entity candidates in the document.
Kulkarni et al. (2009) model pair-wise coherence
of entity candidates for two different mentions and
use hill-climbing algorithm to get a proximate so-
lution. Hoffart et al. (2011) treat entity disam-
biguation as the task of finding a dense subgraph
which contain all mention nodes and exactly one
mention-entity edge for each mention from a large
graph.

Most methods above design various represen-
tations for mentions and entities. For example,
based on Wikipedia, Cucerzan (2007) uses anchor
surfaces to represent entities in “context space”
and use items in the category boxes to represent
entities in “topic space”. For mentions, he takes
context words among a fixed-size window around
the mention as the context vector. Kulkarni et al.
(2009) exploit sets of words, sets of word counts
and sets of TF-IDFs to represent entities. Rati-
nov et al. (2011) express entities with extensive
in-links and out-links in Wikipedia.

In recent years, some works are considering
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how to apply neural network to disambiguate enti-
ties from context. For example, He et al. (2013)
use feed-forward network to represent context
based on BoW input while Sun et al. (2015) turn
to convolution network directly based on the orig-
inal word2vec (Mikolov et al., 2013a). However,
they pay little attention to design effective word
and entity representations. In this paper, we focus
on learning representative word and entity vectors
for disambiguation.
Embedding Word embedding aims to learn con-
tinuous vector representation for words. Word em-
beddings are usually learned from unlabeled text
corpus by predicting context words surrounded or
predicting the current word given context words
(Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013a; Mikolov et al., 2013b).
These embeddings can usually catch syntactic and
semantic relations between words.

Recently knowledge embedding also becomes
popular. The goal is to embed entities and rela-
tions of knowledge graphs into a low-dimension
continuous vector space while certain properties
in the graph are preserved (Bordes et al., 2011;
Bordes et al., 2013; Socher et al., 2013; Wang et
al., 2014a; Wang et al., 2014b). To connect word
embedding and knowledge embedding, (Wang et
al., 2014a) propose to align these two spaces by
Wikipedia anchors and names of entities. (Zhong
and Zhang, 2015) conduct alignment by entities’
description.

3 Disambiguation by Embedding

In this part, we first refine current joint embed-
ding techniques to train word and entity embed-
dings from Freebase and Wikipedia texts for dis-
ambiguation tasks. Then in section 3.2, we design
simple features based on embeddings. Finally in
section 3.3, we propose a two-layer disambigua-
tion model to balance mention-entity prior and
other features.

3.1 Embeddings Jointly Learning

We mainly base the joint learning framework on
(Wang et al., 2014a)’s joint model and also utilize
the alignment technique from (Zhong and Zhang,
2015) to better align word and entity embeddings
into a same space. Furthermore, we optimize
the embedding for disambiguation from two as-
pects. First, we add url-anchor (entity-entity) co-
occurrence from Wikipedia. Second, we refine

the traditional negative sampling part to have enti-
ties in candidate list more probable to be sampled,
which aims to discriminate entity candidates from
each other.

3.1.1 Knowledge Model
A knowledge base K is usually composed of a set
of triplets (h, r, t), where h, t ∈ E (the set of en-
tities) and r ∈ R (the set of relations). Here, we
follow (Wang et al., 2014a) to use h, r, t to denote
the embeddings of h, r, t respectively. And score
a triplet in this way:

z(h, r, t) = b− 1
2
∥h + r − t∥2 (1)

where b is a constant for numerical stability in the
approximate optimization stage described in 3.1.5.
Then normalize z and define:

Pr(h|r, t) =
exp{z(h, r, t)}∑

h̃∈E exp{z(h̃, r, t)} (2)

Pr (r|h, t) and Pr (t|h, r) are also defined in a
similar way. And the likelihood of observing a
triplet is:

Ltriplet(h, r, t) = log Pr(h|r, t) + log Pr(r|h, t)
+ log Pr(t|h, r)

(3)
Then the goal is to maximize the likelihood of all
triplets in the whole knowledge graph:

LK =
∑

(h,r,t)∈K
Ltriplet(h, r, t) (4)

3.1.2 Text Model
In text model, to be compatible with the knowl-
edge model, a pair of co-occurrence words is
scored in this way:

z(w, v) = b− 1
2
∥w − v∥2 (5)

where w and v represent co-occurrence of two
words in a context window; w and v represent the
corresponding embeddings for w and v. Then nor-
malize z(w, v) and give a probability representa-
tion:

Pr(w|v) =
exp{z(w, v)}∑

w̃∈V exp{z(w̃, v)} (6)

where V is our vocabulary. Then the goal of the
text model is to maximize the likelihood of all
word co-occurrence pairs:

LT =
∑
(w,v)

[log Pr(w|v) + log Pr(v|w)] (7)
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3.1.3 Alignment Model
Alignment model guarantees the vectors of enti-
ties and words are in the same space, i.e., the sim-
ilarity/distance between an entity vector and an
word vector is meaningful. We combine all the
three alignment models proposed in (Wang et al.,
2014a) and (Zhong and Zhang, 2015).

Alignment by Wikipedia Anchors (Wang et
al., 2014a). Mentions are replaced with the enti-
ties they link to and word-word co-occurrence be-
comes word-entity co-occurrence.

LAA =
∑

(w,a),a∈A
[log Pr(w|ea) + log Pr(ea|w)]

(8)
where A denotes the set of anchors and ea denotes
the entity behind the anchor a.

Alignment by Names of Entities (Wang et al.,
2014a). For each triplet (h, r, t), h or t are re-
placed with their corresponding names, so we get
(wh, r, t), (h, r, wt) and (wh, r, wt), where wh de-
notes the name of h and wt denotes the name of
t.

LAN =
∑

(h,r,t)

[Ltriplet(wh, r, t) + Ltriplet(h, r, wt)

+ Ltriplet(wh, r, wt)]
(9)

Alignment by Entities’ Description (Zhong
and Zhang, 2015). This alignment utilizes the co-
occurrence of Wikipedia url and words in the de-
scription of that url page, which is similar to the
PV-DBOW model in (Le and Mikolov, 2014).

LAD =
∑
e∈E

∑
w∈De

[log Pr(e|w) + log Pr(w|e)]

(10)
where De denotes the description of an entity e.
To clarify again, “url” is equivalent with “en-
tity” in this paper. Combine these three kinds of
alignment techniques, we get the whole alignment
model:

LA = LAA + LAN + LAD (11)

3.1.4 Url-Anchor Co-occurrence
For entity disambiguation, the entity relatedness
graph is useful to capture the “topics” of an entity
in Wikipedia. Thus we also hope to encode such
information into our embedding. Specifically we
further incorporate “url-anchor” co-occurrence to
the training objective. “url” stands for the url of a

Wikipedia page and “anchor” stands for the hyper-
links of anchor fields in that page.

LU =
∑
e∈E

∑
a∈ADe

[Pr(e|ea) + Pr(ea|e)] (12)

where ADe stands for all anchors in Wikpedia
page De. Pr(e|ea) and Pr(ea|e) are defined simi-
larly as equation 6.

Considering knowledge model, text model,
alignment model and url-anchor co-occurrence all
together, we get the overall objective (likelihood)
to maximize:

L = LK + LT + LA + LU (13)

3.1.5 Negative Sampling Refinement

In training phase, to avoid the computation of
the normalizer in equation (2) and (6), we fol-
low (Mikolov et al., 2013b) to transform the origin
softmax-like objective to a simpler binary classi-
fication objective, which aims to distinguish ob-
served data from noise.

To optimize for entity disambiguation, when us-
ing the context words to predict an anchor (en-
tity), i.e., optimizing Pr(ea|w), rather than uni-
formly sampling negatives from the vocabulary as
(Mikolov et al., 2013b), we conduct our sampling
according to the candidates’ prior distribution.

3.2 Disambiguation Features Design

With the embeddings we train above, many entity
disambiguation methods can directly take them
as the words and entities’ representation and re-
define their features. In this section, we only de-
sign some simple features to illustrate the capabil-
ity of the embeddings in disambiguation. In the
section of experiment, we can observe that even a
single embedding-based feature can beat the com-
bination of several BoW-based features.

3.2.1 Mention-Entity Prior

This feature is directly counted from Wikipedia’s
anchor fields and measures the link probability of
an entity e given a mention m. Prior is a strong in-
dicator (Fader et al., 2009) to select the correct en-
tity. However, it is unwise to take prior as a feature
all the time because prior usually get a very large
weight, which overfits the training data. Later in
this paper, we will propose a classifier to tell when
to use the prior or not.
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3.2.2 Global Context Relatedness (E-GCR)
This feature comes from the hypothesis that the
true entity of a mention will coincide with the
meaning of most of the other words in the same
document. So this feature sums up all idf-
weighted relatedness scores between an entity
candidate and each context word, then average
them:

∀e ∈ Γ(m),E −GCR(e, d|m) =
1
|d|

∑
w∈d

idf(w) · Ω(e, w) (14)

where Γ(m) denotes the entity candidate set of
mention m; d denotes the document containing
m; Ω(e, w) denotes a distance-based relatedness
b− 1

2 ∥e − w∥2, which is compatible with the em-
bedding model.

3.2.3 Local Context Relatedness (E-LCR)
E-GCR can only coarsely rank topic-related can-
didates to one of the top positions. But sometimes
there is nearly no relation between the true entity
and the topic of the document:
Ex.1 “Stefani, a DJ at The Zone 101.5 FM in
Phoenix, AZ, sent me an awesome MP3 of the in-
terview...”
In this example, E-GCR will link AZ to AZ (rap-
per) because the context is all about music al-
though Phoenix should be a strong hint to link AZ
to Arizona.

To avoid this kind of errors, we design a fea-
ture to describe the relatedness between an en-
tity candidate and some important words around
the mention. To identify these words, we
turn to dependency parser provided by Stanford
CoreNLP (Manning et al., 2014). Formulate this
feature:

∀e ∈ Γ(m),E − LCR(e, d|m) =
1

|Sdepend|
∑

w∈Sdepend

Ω(e, w) (15)

where Sdepend is the set consisting all adjacent
words of m in the dependency graph of the doc-
ument d.

3.2.4 Local Entity Coherence (E-LEC)
In practice, there are usually many casual men-
tions linked to an entity, such as w v for West Vir-
ginia.
Ex.2 “We would like to welcome you to the official

website for the city of Chester, w v. ”
In this case, “w v” should be a strong hint for the
disambiguation of “Chester”. However, “w”, “v”
or “w v” is too casual to catch useful informa-
tion if we only take their lexical expression. So
we should not only take the relative surface forms
but also their entity candidates into consideration.
Then the entity “West Virginia” will be quite help-
ful to link “Chester” to “Chester, West Virginia”
This feature is similar to the previous collective
or topic-coherence methods. And our local entity
coherence is more accurate because we only con-
sider relative mentions/entities around rather than
all entities in a document. Formulate this feature:

∀e ∈ Γ(m), E − LEC(e, d|m) =
1

|Sdepend|
∑

w∈Sdepend
max

e′∈Γ(w),e′ ̸=e
Ω(e, e′) (16)

3.3 Two-layer Disambiguation Model

To balance the usage of prior and other features,
we propose a two-layer disambiguation model. It
includes two steps: (1) Build a binary classifier to
give a probability pconf denoting the confidence to
use prior only. Features used to construct this clas-
sifier are E-GCR, mention word itself and context
words in a window sized 4 around the mention. (2)
If pconf achieve a designated threshold ξ, we only
adopt prior to select the best candidate, otherwise
we only consider other embedding-based features
described in section 3.2. Formulate this model:

∀m, e∗ =


arg max
e∈Γ(m)

prior(e|m), pconf ≥ ξ

arg max
e∈Γ(m)

∑|F |
i wi · fi, pconf < ξ

(17)
where e∗ is the entity we choose for the mention
m.

4 Experiments

In the experiments, we first compare our
embedding-based features with some traditional
BoW-based features. Then we illustrate the ca-
pability of the two-layer disambiguation model.
After that we compare our embedding technique
EDKate in entity disambiguation tasks with some
other straightforward work-arounds. Finally we
incorporate mention detection and construct a dis-
ambiguation system to compare with other exist-
ing systems.
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4.1 Data
We take Freebase as the KB, full Wikipedia corpus
as text corpus. For comparison, we also use some
small benchmark corpus for testing purpose.

4.1.1 Wikipedia
We adopt the Wikipedia dumped from Feb. 13th,
2015. With the raw htmls, we first filter out
non-English and non-entity pages. Then we ex-
tract text and anchors information according to
the html templates. After the preprocessing pro-
cedures, we get 4,532,397 pages with 93,299,855
anchors. Furthermore, we split the remained pages
into training, developing and testing sets with pro-
portion 8:1:1. In some experiments, only “valid
entities” will be considered and a “(filtered)” tag
will be added to the name of the dataset. For sta-
tistical summary, please refer to Table 1.

4.1.2 Valid Entities
In some experiments, we limit our KB entities
to the Wikipedia training set and remove enti-
ties which are mentioned less than 3 times in
Wikipedia training set for efficiency. We call the
remaining entities “valid entities”.

4.1.3 Knowledge Base
We use Freebase dumped from Feb. 13th, 2015
as our knowledge base. We only want to link
mentions to Wikipedia entities so we filter out
triplets whose head or tail entity isn’t covered by
Wikipedia. Finally we get 99,980,159 triplets.
If we only consider valid entities, there are
37,606,158.

4.1.4 Small Benchmark Corpus
Besides Wikipedia, we also evaluate our
embedding-based method in some small bench-
mark datasets. KBP 2010 comes from the KBP’s
annual tracks held by TAC and contains only
one mention in one document. AQUAINT is
originally collected by (Milne and Witten, 2008)
and mimics the structure of Wikipedia. MSNBC
is taken from (Cucerzan, 2007) and focuses on
news wire text; ACE is collected by (Ratinov et
al., 2011) from the ACE co-reference dataset. For
statistics in detail, see Table 1.

4.1.5 Difficult Set
We find that in all the data sets, large part of
the examples can be simply well solved by the
mention-entity prior without considering any con-
texts. But there indeed exist some examples the

Dataset # documents # mentions

Wiki:all 4,532,397 93,299,855
Wiki:all (filtered) 2,476,438 52,422,949

Wiki:train (filtered) 1,567,080 37,956,309
Wiki:develop (filtered) 454,906 7,248,850

Wiki:test (filtered) 454,452 7,217,790
Wiki:test (filtered, difficult) 454,452 1,069,428

KBP 2010 1020 1020
KBP 2010 (filtered) 780 780

KBP 2010 (filtered, difficult) 780 183
AQUAINT 50 727

ACE 35 257
MSNBC 20 747

Table 1: Statistics for each corpus

prior cannot work well. We think disambiguation
should pay more attention to this part of exam-
ples rather than the part where prior already works
well. Thus from the testing sets “Wikipedia:test
(filtered)” and “KBP 2010 (filtered)”, we collect
the cases where prior cannot rank the correct en-
tity to top 1 and construct the separate “difficult”
set.

4.2 Embedding Training
We use stochastic gradient descent (SGD) to opti-
mize the objective (see equation (13)). We set the
dimension of word and entity embeddings to 150
and initialize each element of an embedding with
a random number near 0. For the constant b, we
empirically set it to 7.

In knowledge model, we use Freebase as our
knowledge base. We don’t set a fix epoch num-
ber and the knowledge training thread will not ter-
minate until the text training thread stop. Further-
more, we also adapt the learning rate in knowledge
training to that in text training. When a triplet
(h, r, t) is considered, the numbers of negative
samples to construct (h̃, r, t), (h, r̃, t) and (h, r, t̃)
are all 10, in which h̃ and t̃ are uniformly sampled
from E while r̃ is uniformly sampled from R.

In text model, we use the filtered Wikipedia
training set as our text corpus. We set the number
of epoch to 6 and set initial learning rate to 0.025,
which will decreases linearly with the training pro-
cess. When a word is encountered, we take words
inside a 5-word-window as co-occurred words.
For each co-occurred word, we sample 30 nega-
tives from the unigram distribution raised to the
3/4rd power.

In alignment model, “alignment by Wikipedia
anchors” and “alignment by entity names” can be
absorbed into text model and knowledge model re-
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spectively. For “alignment by entity’s description,
we sample 10 negatives in Pr(e|w) and 30 nega-
tives in Pr(w|e).

For Pr(ea|w) in “url-anchor co-occurrence”,
we sample 20 negatives from the candidate list
of the anchor mention and 10 negatives from the
whole entity set.

To balance the training process, we give knowl-
edge model 10 threads and text model 20 threads.
We adopt the share-memory scheme like (Bordes
et al., 2013) and don’t apply locks.

4.3 Comparison between Embedding-based
and BoW-based Feature

We set up this experiment to exhibit the expres-
siveness of our embeddings. We compare E-GCR
(global context relatedness) with some traditional
BoW-based features. Moreover, in this experi-
ment, we report the results on “difficult set” where
the mention-entity prior fails. Following the same
metric used in (Cucerzan, 2011), we take accuracy
to evaluate the disambiguation performance, that
is, the fraction of all mentions for which the cor-
rect entity is ranked to top 1.

4.3.1 Implementation
For embedding-based features, we only consider
the E-GCR, which is more comparable with the
BoW-based features B-CS and B-TS we use
here because they all consider the whole docu-
ment as context. These BoW-based features in-
clude: (1)Mention-Entity Prior; (2)BoW Con-
text Similarity (B-CS). This feature is proposed
by (Cucerzan, 2011). First, for each entity in
Wikipedia, take all surface forms of anchors in that
page as its representation vector. Then compute
scalar product between this representation vec-
tor and the context word vector of a given men-
tion; (3)BoW Topic Similarity (B-TS). First con-
struct the topic vector for each entity from cate-
gory boxes like (Cucerzan, 2011). Then compute
scalar product between topic vector and context
word vector of a given mention.

4.3.2 Results
From Table 2, we get (1) E-GCR can beat the com-
bination of several BoW-based features. This is
mainly because, embeddings training owns a in-
ner optimizaiton objective and embraces the infor-
mation of these BoW-based representations. (2)
Embedding-based feature appear robust and sig-
nificantly outperform BoW-based features in diffi-

Feature
Wiki:test KBP 2010
(filtered) (filtered)

overall difficult overall difficult

Prior 0.8488 0 0.7645 0
Prior+B-CS 0.8545 0.0587 0.7645 0.0308

Prior+B-CS+B-TS 0.8680 0.1609 0.7907 0.1437
B-CS 0.6375 0.3159 0.3648 0.3210

B-CS+B-TS 0.6793 0.3943 0.5422 0.4491
E-GCR 0.8738 0.5183 0.8445 0.6358

Table 2: Comparison between Embedding-based
Feature and BoW-based Feature

Model Type
Wiki:test KBP 2010
(filtered) (filtered)

overall difficult overall difficult

Linear 0.8671 0.1310 0.7791 0.0617
Two-layer 0.8931 0.4795 0.8474 0.5140

Table 3: Comparison between Linear Disam-
biguation Model and Two-layer Model

cult set, which indicate that these BoW represen-
tation cannot well catch the information in these
cases while embeddings are still expressive . (3)
Unlike the situation in difficult set, the gap be-
tween “E-GCR” and “Prior+B-CS+B-TS” is not
so large mainly because “difficult set” only occupy
a small proportion and prior would cover the draw-
backs of BoW-based features.

This experiment hints us to pay more attention
to the difficult set, which is helpful to improve the
overall performance.

4.4 Comparison between Linear and
Two-layer Disambiguation Model

In this section we evaluate the quality of the
two-layer disambiguation model and compare it
with the linear disambiguation model (Cucerzan,
2011). Moreover, we also report results in the “dif-
ficult set” defined above to see whether our two-
layer model could balance prior and other features
or not. The features we use here are prior and E-
GCR. Accuracy is used as the evaluation metric.

4.4.1 Implementation

We use logistic regression for both models. For
the two-layer model, we first apply the prior clas-
sification and get pconf . Here we set the threshold
ξ to 0.95 according to experiments in development
set.
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Figure 1: Precision-Recall Curves for Prior Clas-
sification

4.4.2 Results
From Figure 1, we see that the classifier is quite
good at classifying positive cases to the correct
class. From Table 3, we observe that our two-
layer model receive a promising result in overall
and difficult set against the linear model. This ev-
idence indicates the prior classifier works and the
two-layer model can balance the usage of prior and
other features.

4.5 Comparison between Different
Embeddings

This experiment compares our embeddings tech-
nique (EDKate) with some other methods:
(Mikolov et al., 2013b), (Wang et al., 2014a) and
(Zhong and Zhang, 2015). Here, We only consider
the cases given mentions and take accuracy as the
evaluation metric.

4.5.1 Implementation
For (Mikolov et al., 2013b), we directly take their
word2vec model and replace anchor surface with
the entity symbol in the training corpus. In this
way, we get embeddings for words and entities.
For (Wang et al., 2014a) and (Zhong and Zhang,
2015), we completely follow the model in the orig-
inal paper. For our method. We use the knowl-
edge model and text model described in (Wang et
al., 2014a) and combine the alignment techniques
in both of (Wang et al., 2014a) and (Zhong and
Zhang, 2015). Moreover, we add “url-anchor” co-
occurence to the training objective and refine the
negative sampling method by having entities in
candidates list more probable to be sampled. In
this experiment, we only use E-GCR as our fea-
ture for simplicity.

4.5.2 Results
From Table 4, we observe that (Wang et al., 2014a)
outperform (Mikolov et al., 2013b), which indi-
cates the introduction of some structure informa-

Embedding Version Wiki: test KBP 2010
(filtered) (filtered)

(Mikolov et al., 2013b) 0.8062 0.7311
(Wang et al., 2014a) 0.8283 0.7922

(Zhong and Zhang, 2015) 0.8355 0.7965
EDKate 0.8738 0.8445

Table 4: Comparison between Different Embed-
dings

Method Accuracy on KBP 2010

(Lehmann et al., 2010) 0.806
(He et al., 2013) 0.809
(Sun et al., 2015) 0.839
(Cucerzan, 2011) 0.873

EDKate 0.889

Table 5: Comparison with other reported results
on KBP 2010

tion like knowledge base is quite beneficial. And
the utilization of description message for enti-
ties improve the performance as well. For our
method EDKate, we further take advantages of
“url-anchor” co-occurrence and special sampling
method, which make embeddings more expressive
and guarantee the performance.

4.6 Comparison with Reported Results on
KBP 2010

In this section, we will compare our result on KBP
2010 with other existing reported results, in which
Cucerzan (2011) holds the best record in KBP
2010 so far; Lehmann et al. (2010) rank first in the
2010 competition while He et al. (2013) and Sun
et al. (2015) adopt neural-network-based methods.
We still use accuracy as the evaluation metric be-
cause KBP 2010 specifies the input mentions. Be-
cause some papers only report the accuracy with
3 decimal places, we unify all results to 3 decimal
places.

4.6.1 Implementation
We take the dataset “Wikipedia:all” to train em-
beddings here and use all features we defined in
section 3.2. In this experiment, we adopt the unfil-
tered version of KBP 2010 as the test corpus.

4.6.2 Results
Table 5 shows that EDKate outperforms the cur-
rent best record (Cucerzan, 2011) in KBP 2010
dataset. Sun et al. (2015) apply convolution neu-
ral network and take advantages of (Mikolov et al.,
2013a)’s word2vec as input but it seems not so ef-
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System AQUAINT ACE MSNBC

WikipediaMiner 0.8361 0.7276 0.6849
Wikifier v1 0.8394 0.7725 0.7488

EDKate 0.8515 0.8079 0.7550
Wikifier v2 0.8888 0.8530 0.8120

Table 6: Comparison with other Wikification sys-
tems in BoT F1 metric

fective as ours, which shows the importance of the
embedding quality in this disambiguation task.

4.7 Comparison with Other Wikification
Systems

In this section, we equip EDKate with mention de-
tection and compare our system with Wikipedi-
aMiner (Milne and Witten, 2008), Wikifier v1
(Ratinov et al., 2011) and Wikifier v2 (Cheng and
Roth, 2013). For the evaluation metric, we adopt
the Bag-of-Title (BoT) F1 evaluation metric which
is used in all other systems we choose here.

4.7.1 Implementation
We first make use of all mentions in the mention-
entity table to construct a Trie-tree, which is used
to detect mentions in input text. To remove noise,
we simply retain mentions which contain at least
one noun and filter mentions that completely con-
sist of stop words. Then we apply our disambigua-
tion technique to the mentions detected. The same
as experiment 4.6, we make use of all features de-
scribed in section 3.2 here.

4.7.2 Results
Table 6 shows that our embedding-based method
EDKate is better than two popular systems but
cannot outperform Wikifier v2 in these three
datasets. It should be mentioned that Wikifier v2
is largely based on Wikifier v1 and its magic is
to add relational inference with some handcrafted
rules. Actually, the embedding methods can per-
forms well to model relations (Wang et al., 2014a),
so the idea to introduce relational information into
our current framework is promising and will be the
future work.

5 Conclusion

In this paper, we propose to refine a knowledge
and text joint learning framework for entity dis-
ambiguation tasks and learn semantics-rich em-
beddings for words and entities. Then we design
some simple embedding-based features and build

a two-layer disambiguation model. Extensive ex-
periments show that our embeddings are very ex-
pressive and is quite helpful in the entity disam-
biguation tasks.
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Abstract

We propose an unsupervised approach for
substring-based transliteration which in-
corporates two new sources of knowledge
in the learning process: (i) context by
learning substring mappings, as opposed
to single character mappings, and (ii) pho-
netic features which capture cross-lingual
character similarity via prior distributions.

Our approach is a two-stage iterative,
boot-strapping solution, which vastly
outperforms Ravi and Knight (2009)’s
state-of-the-art unsupervised translitera-
tion method and outperforms a rule-based
baseline by up to 50% for top-1 accuracy
on multiple language pairs. We show that
substring-based models are superior to
character-based models, and observe that
their top-10 accuracy is comparable to the
top-1 accuracy of supervised systems.

Our method only requires a phonemic rep-
resentation of the words. This is possi-
ble for many language-script combinations
which have a high grapheme-to-phoneme
correspondence e.g. scripts of Indian lan-
guages derived from the Brahmi script.
Hence, Indian languages were the focus of
our experiments. For other languages, a
grapheme-to-phoneme converter would be
required.

1 Introduction

Transliteration is a key building block for multi-
lingual and cross-lingual NLP since it is useful for
user-friendly input methods and applications like
machine translation and cross-lingual information
retrieval. The best performing solutions are su-
pervised, discriminative learning methods which

learn transliteration models from parallel translit-
eration corpora. However, such corpora are avail-
able only for some language pairs. It is also expen-
sive and time-consuming to build a parallel corpus.
This limitation can be addressed in three ways:

(i) train a transliteration model on mined parallel
transliterations. The transliterations can be mined
from monolingual comparable corpora (Jagarla-
mudi and Daumé III, 2012) or parallel translation
corpora (Sajjad et al., 2012). However, it may
not be possible to mine enough transliteration pairs
to train a system for most languages (Irvine et
al., 2010). (ii) transliterate via a bridge language
(Khapra et al., 2010) when transliteration corpora
involving bridge languages is available. (iii) learn
transliteration models in an unsupervised setting
using only monolingual word lists. Unsupervised
transliteration can be defined as: Learn a translit-
eration model (T X ) from the source language (F)
to the target (E) language given their respective
monolingual word lists, WF and WE respectively.
We explore this direction in the present work, ad-
dressing shortcomings in the previous work (Ravi
and Knight, 2009; Chinnakotla et al., 2010).
Our work addresses two major limitations in

existing unsupervised transliteration approaches:
(i) lack of linguistic signals to drive the learning,
and (ii) limited use of context since their model is
character-based. Due to this knowledge-lite ap-
proach, these model performs poorly. Our pri-
mary contributions are novel methods to incor-
porate two knowledge sources, phonetic and con-
textual, in the training process. These knowledge
sources are critical since statistical co-occurrence
signals used in supervised learning are not avail-
able for unsupervised learning. Unlike transliter-
ation mining, our approach can learn effectively
even if the source and target corpus do not have
any transliteration pairs in common.
We propose a two-stage iterative, bootstrapping
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approach for learning unsupervised transliteration
models. In the first stage, a character-based model
is learnt which is used to bootstrap and learn a
series of improved substring-based models in the
second stage.
The first stage incorporates two linguistic sig-

nals to drive the learning process: phonemic
correspondence and phonetic similarity. This
means we make the model aware that two charac-
ters represent either the same phoneme (क in Hindi
and ক in Bengali [IPA: k] ) or similar phonemes (क
[IPA: k] inHindi and খ [IPA: kh] in Bengali - which
differ only in aspiration). We achieve this by in-
corporating phonetic information as prior distri-
butions in our EM-MAP approach to character-
based unsupervised learning. We show that these
linguistic signals can improve top-1 accuracy by
20%-100% over a baseline rule-based system. It
is also vastly superior to knowledge-lite unsuper-
vised methods.
The second stage incorporates contextual

knowledge by unsupervised learning of a
substring-based transliteration model viz. learning
mappings from substring in one language to
another, as opposed to learning single character
mappings. In other words, along with learning
mappings of the form (khindi → kbengali),
we also try to learn mappings of the form
(kaahindi → kaabengali). It is known that
substring-based transliteration outperforms
character-based transliteration in a supervised
setting due to the additional context information
(Sherif and Kondrak, 2007). To the best of
our knowledge, ours is the first unsupervised
approach for substring-based transliteration.
It outperforms a character-based model by up to
11% in terms of top-1 accuracy and 27% in terms
of top-10 accuracy.
The top-10 accuracy of our unsupervised sys-

tem is comparable to the top-1 accuracy of a su-
pervised system. Hence, the unsupervised system
may be a reasonable substitute for supervised sys-
tems in applications which require transliteration
(e.g. handling untranslated words in MT) and can
disambiguate from the top-k transliterations with
information available to the application (e.g. LM
in MT systems).
The focus of our work was Indian languages

using scripts descended from the ancient Brahmi
script. We show that our methods can be applied to
these languages without requiring phoneme dic-

tionaries or grapheme-to-phoneme converters.
We achieve this by using scriptural properties
and similarity across scripts to capture phonemic
correspondence and phonetic similarity, and show
results on 4 languages using 4 different scripts. At
least 19 of the Indian subcontinent’s top 30 and 9
of the top 10 most spoken languages use Brahmi-
derived scripts. Each of these languages havemore
than a million speakers with an aggregate speaker
population of about 900 million, so our method is
widely applicable.

2 Related Work

Unsupervised transliteration has not been widely
explored. Chinnakotla et al. (2010) generate
transliteration candidates using manually devel-
oped charactermapping rules and rerank themwith
a character language model. The major limita-
tions are: (i) character transliteration probability
is not learnt, so there is undue reliance on the lan-
guage model to handle ambiguity, and (ii) signifi-
cant manual effort for good coverage of mapping
rules.
Ravi and Knight (2009) propose a decipherment

framework based approach (Knight et al., 2006) to
learn phoneme mappings for transliteration with-
out parallel data. In theory, it should be able to
learn transliteration probabilities and is a gener-
alization of Chinnakotla et al. (2010)’s approach.
But its performance is very poor due to lack of
linguistic knowledge and has a reasonable perfor-
mance only when a unigram word-level LM is
used. This signal essentially reduces the approach
to a lookup for the generated transliterations in a
target language word list; the method resembles
transliteration mining. It will perform well only if
the unigram LM has a good coverage of all named
entities in the source word list. For morphologi-
cally rich target languages, it may be difficult to
find the exact surface words in the unigram LM.
Our character level model approach is a further

generalization of Ravi and Knight (2009)’s work
since it also allows modelling of prior linguistic
knowledge in the learning process. This over-
comes the most significant gap in their work.
Some approaches to transliteration mining are

also relevant to the present work. Tao et al.
(2006) show improvement in transliteration min-
ing performance using phonetic feature vectors re-
sembling the ones we have used. Jagarlamudi
and Daumé III (2012) use phonemic representa-
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Figure 1: Overview of Proposed Approach

tion based interlingual projection for multilingual
transliteration mining. To the best of our knowl-
edge, ours is the first work to use phonetic feature
vectors for transliteration as opposed to transliter-
ation mining.
We use a substring-based log-linear model in

our second stage. There are some parallels to this
approach in the transliteration mining litereature.
Some transliteration mining approaches have used
a log-linear classifier to incorporate features to dis-
tinguish transliterations from non-transliterations
(Klementiev and Roth, 2006; Chang et al., 2009).
Sajjad et al. (2011) use a substring-based log-linear
model trained on a noisy, intermediate translit-
eration corpus to iteratively remove bad (low-
scoring) transliteration pairs found in the discov-
ery process.

3 Unsupervised Substring-based
Transliteration

In this section, we give a high-level overview
of our approach for learning a substring-based
transliteration model in an unsupervised setting
(depicted in Figure 1). The inputs are monolingual
lists of words, WF and WE , for the source (F) and
target (E) languages respectively. Note that these
are neither parallel nor comparable lists. We need
a phonemic representation of the words.
For Indic scripts, which are used in our ex-

periments, we use the orthographic representa-
tion itself as the phonemic representation since
there is high grapheme to phoneme correspon-
dence. Hence, we use the terms character and
phoneme interchangeably.
The training is a two-stage process as described

below. First, character mappings are learnt fol-
lowed by learning of substring mappings by boot-
strapping the character-based model. This process

is analogous to phrase-based statistical machine
translation, where phrase pairs are extracted from
word aligned sentence pairs.
Stage One: In the first stage, character transliter-
ation probabilities are learnt from the monolingual
word lists.
In a supervised setting, an EM algorithm us-

ing maximum likelihood estimation (EM-MLE)
(Knight and Graehl, 1998) exploits co-occurrence
of characters to learn model parameters. But, prior
linguistic knowledge has to be incorporated for ef-
fective learning in an unsupervised setting. Hence,
we propose an unsupervised Expectation Maxi-
mization with Maximum Aposteriori estimation
framework (EM-MAP) for learning the character-
level transliteration model. Linguistic knowledge
is incorporated in the form of prior distributions on
the model parameters in this framework. The de-
tails of the model and choice of prior distributions
are described in Section 4.
We considered two linguistic signals for design-

ing the prior distributions. The first is phonemic
correspondence i.e. characters in the two lan-
guages representing the same phoneme. e.g. The
characters क (ka) in Hindi and ক (ka) Bengali rep-
resent the same phoneme (IPA: k). But phone-
mic correspondence cannot account for phonemes
which differ only by some phonetic features. e.g.
vowel length (short इ [i] in Hindi, long ঈ [I] in Ben-
gali), aspiration (unaspirated क in Hindi [IPA: k],
aspirated খ in Bengali [IPA: kh]). Such transfor-
mations are common during transliteration, so we
use phonetic similarity as our second linguistic
signal.
Stage Two: In the second stage, we learn a dis-
criminative, log-linear model with arbitrary sub-
strings as the unit of transliteration. For learn-
ing the substring based model, a pseudo-parallel
transliteration corpus is first synthesized using the
character-level model. We discuss Stage 2 in de-
tail in Section 5.
We illustrate the need for substring level mod-

els with an example. In Indic scripts, the anus-
vaara (nasalization diacritic) can map to any of
the 5 nasal consonants depending on the consonant
following the ansuvaara in the source word. So,
in the hi-bn pair (चंबल [ca.mbala], চমব্ল [cambala]),
the anusvaara (.m) maps to the nasal consonant
(m) since the next character is the labial consonant
ba. This shows the need for contextual information
to resolve transliteration ambiguities. Substring-
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Algorithm 1 Train character-level model
1: procedure UNSUP-CHAR(WF , LME)

▷ LME : char-level language model for E
2: Θ← initialize-params()
3: i← 0
4: while i ≤ N do ▷ N: Number of iterations
5: WE′ ← c-decode(WF , Θ, LME)
6: A←gen-alignments(WF ,WE′)
7: Θ← argmaxΘQ

′
WF

(Θ) ▷ m-step
8: if converged(Θ) then
9: break
10: σ ← e-step(A, Θ)
11: return Θ

basedmodels, which learn substringmappings like
.mba→ mba, are one way to incorporate contex-
tual information and have been shown to perform
better in a supervised setting (Sherif and Kondrak,
2007). Contextual information is especially im-
portant in an unsupervised setting.

4 Character-based Unsupervised
Transliteration

In the first stage, we learn character transliter-
ation probabilities from monolingual word lists.
The generative story for the training data (the
source language corpus, WF ) is explained below
using a noisy channel model.
An unknown target language word e is selected

using a language model P (e). The target word
is transformed to a source language word f by a
channel whose properties are represented by the
transliteration probability distribution (Θ). The
target language word e is a latent variable in the
unsupervised setting, so we need to compute the
expectation over all possible values of e.

P (f) =
∑
e

P (f|e)P (e) (1)

We use Knight and Graehl (1998)’s transliteration
model where, the word pair (f, e) is generated by
successively selecting one or more source charac-
ters f for each target character e as per a latent
alignment a with probability P (f |e) = θf,e. We
restrict our model to 1-1 and 1-2 character map-
pings from target to source characters. The likeli-
hood of a single training instance is given by:

L(Θ) =
∑
e

P (e)
∑
a

|e|∏
i=1

θfai ,ei
(2)

In the supervised framework of Knight and Graehl
(1998), parameters are learnt using the EM al-
gorithm where the alignment structure a is the
latent variable. The discovery of hidden align-
ments helps compute the transliteration probabili-
ties based on co-occurrence of characters. In the
absence of parallel corpora, co-occurrence is no
longer a learning signal and it is not possible to
learn the character transliteration probabilities re-
liably. To compensate for this, we define Dirich-
let priors (De) over each character transliteration
probability distributions (Θe), which can be used
to encode linguistic knowledge. This leads to our
proposed EM-MAP training objective for the M-
step over the entire training set (WF ).

QWF
(Θ) =

∑
f∈WF

{ ∑
e

{
δe,f

∑
a

[
σa,f,e

∑
f,e

nf,e,a log θf,e

]
+ logP (e)

}}
+

∑
e∈CE

logDe(αf1,e...αf|CF |,e) (3)

s.t

∀e ∈ CE ,

j=|CF |∑
j=1

θfj ,e = 1

where,
δe,f = P (e|f), σa,f,e = P (a|e, f) are conditional
probabilities of the latent variables computed in the
E-step. These are computed using the previous it-
eration’s parameter values, whose values are fixed
in the current iteration.
nf,e,a is the number of times characters e and f are
aligned in the alignment structure a.
CF andCE are the character sets of the source and
target languages respectively.
In the unsupervised setting, the target word (e)

is also an latent variable. As seen in Equation 3,
theM-step requires computing an expectation over
all latent variables (target word and alignments).
Given the target word, it is possible to enumerate
all alignments of the word pairs, but it is not pos-
sible to enumerate all possible strings (e). Hence,
we approximate the expectation over e by a max
operation (the so-called Viterbi approximation).
The modified objective (Q′

WF
) for the M-step

effectively means: With the current set of param-
eter values, we decode the source words to gener-
ate the target words, creating a synthetic parallel
transliteration corpus. Then, the M-step updates
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can be done using Knight and Graehl (1998)’s su-
pervised framework. The resulting update equa-
tion for the transliteration probabilities in the M-
step is:

θf,e =
1
λe

{
αf,e−1+

∑
f∈WF

∑
a

σa,f,enf,e,a

}
(4)

where, λe is a normalizing factor and e is the
best transliteration of f as per the previous itera-
tion’s parameters. Note that δe,f plays no role in
(Q′

WF
).

The E-step update to compute the conditional
probabilities of the latent alignment variables is
given by:

σa,f,e =
1
Z
×

|e|∏
i=1

θfai ,ei
(5)

where, Z is a normalizing factor.
The training procedure can thus be understood

to follow a decode-train-iterate paradigm. Algo-
rithm 1 shows the procedure for character level
training. In each iteration, a pseudo-parallel cor-
pus by decoding WF using the current set of
parameters (Line 5, Viterbi approximation) from
which updated parameters are learnt (Line 7) and
alignment probabilities recomputed (Line 10).

4.1 Linguistically Informed Priors:
In this section, the different prior distributions
we designed to encode phonetic knowledge about
characters is described. These are instantiations of
Dirichlet priors (De), which serve as a conjugate
prior to the multinomial distribution (θf,e). The
hyperparameters (αf,e) ofDe determine the nature
of the prior distribution. They can be interpreted as
additional, virtual alignment counts of the charac-
ter pair (f, e) for maximum likelihood estimation
of θf,e.

Phoneme Correspondence (PC) Prior: This
simply establishes a one-one correspondence (de-
noted by =̂) between the same phonemes (or char-
acters representing the same phonemes). It does
not capture the notion of similarity between char-
acters.

αf,e = β iff=̂e (6)
= 0.01 elsewhere (7)

Phonemic correspondence is also used to initial-
ize the transliteration probabilities for the EM al-
gorithm (PC Init):

Basic Character Type:
vowel, consonant, anusvaara, nukta, halanta, others

Vowel Features
Length: short, long
Strength: weak, medium, strong
Status: Independent, Dependent
Horizontal position: Front, Back
Vertical position: Close, Close-Mid, Open-Mid, Open
Lip roundedness: Close, Open

Consonant Features
Place of Articulation:
velar, palatal, retroflex, dental, labial
Manner of Articulation:
plosive, fricative, flap, approximant (central or lateral)
Aspiration, Voicing, Nasal: True, False

Table 1: Phonetic features for Indic scripts

θinitf,e =
αf,e∑

x∈CF

αx,e
(8)

Phonetic Similarity Priors This prior captures
similarity between two phonemes based on their
phonetic properties. The phonetic properties of a
phoneme can be encoded as a bit vector (v) as ex-
plained in Section 4.2. We experimented with two
priors based on phonetic properties.

• Cosine Prior: It is based on the cosine similarity
between the two bit vectors.

αf,e = γc cos(vf , ve) (9)

• Sim1 Prior: Cosine similarity tends to produce
very diffused transliteration probability distribu-
tions. We propose a modified prior (called sim1)
which tries to alleviate this problem by making
the phonemic differences sharper.

αf,e = γs
5vf .ve∑

x∈CF

5vx.ve
(10)

β, γc and γs are scale factors for the Dirichlet
distribution.

4.2 Extracting Phonetic Features for Indic
scripts

We now describe a method for deriving phonetic
correspondences and constructing phonetic fea-
tures vectors for Indic scripts. Indic scripts gener-
ally have a one-one correspondence from charac-
ters to phonemes in the scripts. Hence, each char-
acter is represented by a feature vector represent-
ing its phonetic properties as described in Table
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1. The feature vector is represented as a bit vector
with a bit for each value of every property.
The logical character set is roughly the same

across all Indic scripts, though the visual glyph
varies to a great extent. So phonemic correspon-
dence can be easily determined for Unicode text
since the first 85 characters of all Indic scripts
are aligned to each other by virtue of having the
same offset from the start of the script’s code-
page. These cover all commonly used characters.
There are a few exceptions to this simple mapping
scheme, most of which can be handled using sim-
ple rules.
Notable among these is the Tamil script, which

does not have characters for aspirated as well as
voiced plosives, so the corresponding unvoiced,
unaspirated plosive characters are used to repre-
sent these sounds too. In the phonetic feature
representation of such characters for Tamil, both
the voiced as well as unvoiced bits and aspi-
rated/unaspirated bits are set on, reflecting the am-
biguity in the grapheme-to-phoneme mapping.

5 Bootstrapping substring-based models

In the second stage, we train a discriminative, log-
linear transliteration model which learns sub-
string mappings. We use the log-linear model
proposed byOch andNey (2002) for statistical ma-
chine translation and analogous transliteration fea-
tures. The features are: substring transliteration
probabilities, weighted average character translit-
eration probabilities and character language model
score. The conditional probability of the target
word e given the source word f is:

P (e|f) =
NP∏
i=1

P (ēi|f̄i) =
NP∏
i=1

exp
NF∑
j=0

λjgj(f̄i, ēi)

(11)
where, f̄i and ēi are source and target substrings re-
spectively, λj and gj are feature weight and feature
function respectively for feature j, NP number of
substrings and NF is number of features.
We synthesize a pseudo-parallel translitera-

tion corpus (WF , WE′) for training the discrimi-
nativemodel by transliterating the source language
words (WF ) using the character level model from
the first stage. Since the top-1 transliteration may
be incorrect, we consider the top-k transliterations
to improve the odds that the pseudo-parallel cor-
pus contains the correct transliteration. For train-

ing, the pseudo-parallel corpus contains k translit-
eration pairs for every source language word. For
tuning the feature weights, we use a small held-out
set of top-1 transliteration pairs from the pseudo-
parallel corpus, since it likely to be the most accu-
rate one.
We run multiple iterations of the discrimina-

tive training process, with each being trained on
the pseudo-parallel corpus synthesized using the
previous iteration’s models. The models in subse-
quent iterations are bootstrapped from the earlier
models. The training continues for a fixed num-
ber of iterations although other convergence meth-
ods can also be explored. Like the MAP-EM solu-
tion for the first stage, the second stage also uses
a decode - train - iterate paradigm for learning a
substring-based model.

6 Experiments

Data: We experimented on the following In-
dian language pairs representing two language
families: Bengali→Hindi, Kannada→Hindi,
Hindi→Kannada and Tamil→Kannada. Bengali
(bn) and Hindi (hi) are Indo-Aryan languages,
while Kannada (kn) and Tamil (ta) are Dravidian
languages. We used 10k source language names
as training corpus, which were collected from
various sources.
We evaluated our systems on the NEWS 2015

Indic dataset. We created this set from the English
to Indian language training corpora of the NEWS
2015 shared task (Banchs et al., 2015) by mining
name pairs which have English names in common.
1500 words were selected at random to create the
testset. The remaining pairs are used to train and
tune a skyline supervised transliteration system for
comparison. The training sets are small, the num-
ber of name pairs being: 2556 (bn-hi), 4022 (kn-
hi), 3586 (hi-kn) and 3230 (ta-kn).

Experimental Setup: We trained the charac-
ter level unsupervised transliteration systems with
source language word lists using a custom imple-
mentation 1. We set the the value of the scaling
factors (β, γc, γs) to 100. Viterbi decoding was
done with a bigram character language model, fol-
lowed by re-ranking with a 5-gram character lan-
guage model.
We trained the substring level discriminative

transliteration models as well as a skyline su-
1https://github.com/anoopkunchukuttan/

transliterator
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Method bn-hi hi-kn kn-hi ta-kn
A1 F1 A10 A1 F1 A10 A1 F1 A10 A1 F1 A10

PC_Init 12.72 68.95 18.94 0.00 44.76 0.07 0.20 48.84 0.54 0.00 44.46 0.27
Rule 16.13 74.60 16.13 13.75 79.67 13.75 12.90 79.29 12.90 10.25 68.49 10.25
Initialization: PC_Init+
PC_Prior 18.27 75.50 27.04 12.53 77.32 17.89 27.69 81.06 43.55 13.49 69.85 29.06
Cosine Prior 17.74 75.09 26.57 11.38 75.08 18.09 17.54 77.69 32.86 13.21 69.44 26.64
Sim1 Prior 18.07 75.25 29.05 11.72 75.61 20.26 19.69 78.18 37.84 13.55 69.74 28.19
Supervised 32.06 83.03 63.32 30.01 85.93 69.37 54.23 90.05 80.04 30.74 81.62 64.33

Table 2: Results for character-based model (% scores)

pervised transliteration system using the Moses
(Koehn et al., 2007) machine translation system
with default parameters. BatchMIRA (Cherry and
Foster, 2012) was used to tune the Stage 2 systems
with 1000 name pairs and supervised systems with
500 name pairs. The tuning set for the Stage 2 sys-
temswere drawn from the the top-1 transliterations
in the synthesized, pseudo-parallel corpus; no true
parallel corpus is used. Monotone decoding was
performed. We used a 5-gram character language
model trained with Witten-Bell smoothing on 40k
names for all target languages. We ran Stage 2 for
5 iterations.
For a rule-based baseline, we used the script

conversion method implemented in the Indic NLP
Library2 (Kunchukuttan et al., 2015) which is
based on phonemic correspondences.

Evaluation: We used top-1 accuracy based on
exact match (A1) and Mean F-score (F1) at the
character level as defined in the NEWS shared
tasks as our evaluation metrics (Banchs et al.,
2015). We also used top-10 accuracy as an evalu-
ation metric (A10), since applications like MT and
IR can further disambiguate with context informa-
tion available to these applications.

7 Results and Discussion

Table 2 shows the results for the rule-based system
and various character-based unsupervised models.
Table 3 shows results for substring-level models
bootstrapped from different character-based mod-
els. Results of supervised transliteration on a small
training set are also shown in both tables.

Baseline models: Parameter initialization with
phoneme correspondence mappings and add-one
smoothing prior (PC_Init) is comparable to Ravi
and Knight (2009)’s method and performs very

2http://anoopkunchukuttan.github.io/indic_
nlp_library

poorly as reported in their work too. We also ex-
perimented with re-ranking the results using a uni-
gram word based LM - our approximation to Ravi
and Knight (2009)’s use of a word based LM - and
its accuracy is comparable to PC_Init. The uni-
gram LM was trained on a corpus of 185 million
and 42 million tokens for hi and kn respectively.
Thus, this knowledge-lite approach cannot learn a
transliteration model effectively.
Rule-based transliteration (Rule) performs sig-

nificantly better than PC_Init. The phonetic na-
ture of Indic scripts makes the rule-based system
a stronger baseline, yet this simple approach does
not ensure high accuracy transliteration. Phonetic
changes like changes in manner/place of articula-
tion, voicing, etc. make transliteration non-trivial
and phonetic correspondence is not sufficient to
ensure good transliteration.

Effect of linguistic priors: The addition of
linguistically motivated priors (PC_Prior, Co-
sine_Prior, Sim1_Prior) significantly improves
the transliteration accuracy over the PC_Init ap-
proach. There is a significant improvement in top-
1 accuracy over the Rule approach too for 2 lan-
guage pairs (12%, 31% and 133% increase for bn-
hi, ta-kn and kn-hi pairs respectively), but a drop
of 9% for the hi-kn pair. A major reason for lower
accuracy of hi→kn pair is an important difference
between Kannada and Hindi writing conventions.
Unlike Hindi, Kannada assumes an implicit vowel
‘A’ at the end of a word unless another vowel or
nasal character terminates theword. Therefore, the
vowel suppressor character (halanta) must be gen-
erated during hi→kn transliteration. Ourmethod is
poor at this generation, but conversely it does bet-
ter at deletion of halanta for kn→hi transliteration.
There is substantial improvement for the ta-kn pair
also, even though there are some grapheme-to-
phoneme ambiguities in the Tamil script.
In general, the phonemic correspondence prior

results in better top-1 accuracy, whereas priors us-
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Stage1 Model Iterations bn-hi hi-kn kn-hi ta-kn
A1 A10 A1 A10 A1 A10 A1 A10

PC_Init 1 14.12 22.89 0.00 0.06 0.53 4.50 0.07 1.35
5 15.26 25.43 0.00 0.47 1.01 8.53 0.40 2.76

PC_Init+PC_Prior 1 18.74 29.38 13.21 19.31 28.43 44.96 15.31 32.23
5 19.34 32.73 13.21 20.39 21.10 45.03 19.29 37.15

PC_Init+Cosine prior 1 18.86 29.65 12.40 20.94 17.94 39.92 15.71 32.91
5 18.94 31.33 12.94 23.92 16.73 44.76 18.88 36.08

PC_Init+Sim1 prior 1 19.28 34.34 12.6 23.85 19.62 47.98 16.99 34.86
5 20.54 37.61 13.82 25.88 18.55 50.27 18.95 38.50

Supervised 32.06 63.32 30.01 69.37 54.23 80.04 30.74 64.33
Mined Pairs 26.97 51.34 - - - - - -

Bridge Languages 25.97 58.23 18.22 52.85 33.60 67.88 13.01 42.28

Table 3: Results for substring-based model (% scores)

ing phonetic similarity give better top-10 accuracy.
The phonetic similarity based priors are smoother
compared to the sparse PC_Prior since they cap-
ture character similarity. This allows them to dis-
cover more character mappings, resulting in bet-
ter top-10 accuracy at the cost of a drop in top-1
accuracy. The sparse sim1 prior outperforms the
smoother cosine similarity prior.

Effect of learning substring mappings:
Substring-based transliteration improves the
top-1 as well as top-10 accuracy significantly over
the underlying character-based models. Across
languages, the best substring-based models im-
prove top-1 accuracy by upto 11% and top-10
accuracy by upto 25% over the best character-
based models. Therefore, it is clear that contextual
information can be harnessed in an unsupervised
setting to substantially improve transliteration
accuracy.
The iterative procedure is beneficial and translit-

eration accuracy increases as improved models are
built in successive iterations. Large gains are par-
ticularly observed in top-10 accuracy.
While PC_Prior gives best top-1 accuracy re-

sults at the character-level, substring-based mod-
els bootstrapped from the Sim1 prior give better
results for both top-1 and top-10 accuracy metrics.
Since the Sim1 prior based character model has
better top-10 accuracy, the pseudo-parallel corpus
created using this mode is likely to be better than
one created using PC_Prior. We also observe that
substring-based models built without using pho-
netic priors cannot improve over much over the
baseline transliteration.

Illustrative Examples:

• Phonetic similarity based priors were able to
discover mappings between similar phonemes.

e.g. The Bengali word ওেয়স্ (keolAdeo) was
correctly transliterated to the Hindi word केवलादेव
(kevalAdeva), due to discovery of similarity be-
tween the labial sounds (v) and (o).

• Substring-based models made use of the con-
text to learn the correct transliteration. e.g.The
Bengali word Ƴকওলােদও (oyaesTa) was correctly
transliterated to the Hindi word वेस्ट (vesta), since
the model learnt the substring mapping oya→ve.

• Substring-based models could make the right
choice between short and long vowels (a major
source of errors in character-based models).

Comparison with supervised system and some
resource-constrained approaches: We com-
pared our best substring-based model (based on
sim1 prior) with a supervised system and the
following resource-constrained transliteration sys-
tems built using: (i) Mined pairs from a transla-
tion corpus: We experimented with bn-hi on the
Brahminet mined pairs corpus (Kunchukuttan et
al., 2015). Mined corpora involving kn were not
available. (ii) Bridge languages: We used the
NEWS 2015 corpus for our experiments with En-
glish as the bridge language. (Results in Table 3).
The accuracies of this substring-based system

are less than the accuracies of the other methods.
This is not unexpected since these methods use
more parallel resources than the substring-based
approach. But, note that the top-10 accuracy of
the substring-based model is comparable to the
top-1 accuracies of other approaches. Hence, the
substring-based model may be sufficient for an
application, like MT or cross-lingual IR, which
uses the output of a transliteration system. In
MT, untranslated words are replaced by their top-
k transliterations. A language model can choose
among the transliterations based on context while
re-ranking resulting candidate sentences.
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Applicability to different languages and scripts:
Our experiments span 4 widely-spoken languages
from the two major language families in the In-
dian subcontinent (Indo-Aryan [IA] and Dravid-
ian [DR]). All languages use different Brahmi-
descended scripts. We show improvements in
IA→IA, DR→DR, DR→IA and IA→DR translit-
eration.
The first stage leverages the phonetic nature

of Indic scripts to obtain phonetic representations
from orthographic representations. There are at
least 19 languages in India where this condition
holds, so at least 171 language pairs can use
this approach without grapheme to phoneme con-
verters. Many other script/language pairs also
show high grapheme-phoneme correspondence3.
Our method, though, can also be applied to non-
phonetic scripts also by representing the training
data at the phonemic level using grapheme-to-
phoneme converters.
The second stage makes no assumptions about

language or script.

8 Conclusion and Future work

We show that unsupervised transliteration can
substantially benefit from contextual and rich pho-
netic knowledge. Phonetic knowledge is incorpo-
rated through a novel design of prior distributions
for character-level learning, while context is incor-
porated via substring-based learning. The top-10
accuracy of our systems is comparable with top-1
accuracy of supervised systems, but requires only
monolingual resources: word lists for Indic lan-
guages using Brahmi-derived scripts or phoneme
dictionaries for other languages.
In future, we plan to evaluate our method for

non-Indic languages and for languages that are less
related than the ones studied in this work. Pos-
sibilities for improvement include incorporation
of phonetic knowledge while learning substring
mappings (Stage 2) and better handling of noisy
transliterations in the bootstrapping process. It
would also be interesting to compare our method
with other unsupervised log-linear learning meth-
ods like contrastive estimation (Smith and Eisner,
2005).
We would like to note the potential for har-

nessing similarities among languages for statisti-
cal NLP, especially in an unsupervised setting, as

3http://www.omniglot.com lists grapheme-phoneme
correspondences for many language/script combinations

demonstrated by our use of similarity among Indic
scripts. Finally, the iterative, bootstrapping frame-
work may be useful for unsupervised translation.
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Abstract

In this work, we model abstractive text
summarization using Attentional Encoder-
Decoder Recurrent Neural Networks, and
show that they achieve state-of-the-art per-
formance on two different corpora. We
propose several novel models that address
critical problems in summarization that
are not adequately modeled by the basic
architecture, such as modeling key-words,
capturing the hierarchy of sentence-to-
word structure, and emitting words that
are rare or unseen at training time. Our
work shows that many of our proposed
models contribute to further improvement
in performance. We also propose a new
dataset consisting of multi-sentence sum-
maries, and establish performance bench-
marks for further research.

1 Introduction

Abstractive text summarization is the task of gen-
erating a headline or a short summary consisting
of a few sentences that captures the salient ideas of
an article or a passage. We use the adjective ‘ab-
stractive’ to denote a summary that is not a mere
selection of a few existing passages or sentences
extracted from the source, but a compressed para-
phrasing of the main contents of the document,
potentially using vocabulary unseen in the source
document.

This task can also be naturally cast as map-
ping an input sequence of words in a source doc-
ument to a target sequence of words called sum-
mary. In the recent past, deep-learning based mod-
els that map an input sequence into another out-
put sequence, called sequence-to-sequence mod-
els, have been successful in many problems such
as machine translation (Bahdanau et al., 2014),

speech recognition (Bahdanau et al., 2015) and
video captioning (Venugopalan et al., 2015). In
the framework of sequence-to-sequence models,
a very relevant model to our task is the atten-
tional Recurrent Neural Network (RNN) encoder-
decoder model proposed in Bahdanau et al.
(2014), which has produced state-of-the-art per-
formance in machine translation (MT), which is
also a natural language task.

Despite the similarities, abstractive summariza-
tion is a very different problem from MT. Unlike
in MT, the target (summary) is typically very short
and does not depend very much on the length of
the source (document) in summarization. Addi-
tionally, a key challenge in summarization is to op-
timally compress the original document in a lossy
manner such that the key concepts in the original
document are preserved, whereas in MT, the trans-
lation is expected to be loss-less. In translation,
there is a strong notion of almost one-to-one word-
level alignment between source and target, but in
summarization, it is less obvious.

We make the following main contributions in
this work: (i) We apply the off-the-shelf atten-
tional encoder-decoder RNN that was originally
developed for machine translation to summariza-
tion, and show that it already outperforms state-
of-the-art systems on two different English cor-
pora. (ii) Motivated by concrete problems in sum-
marization that are not sufficiently addressed by
the machine translation based model, we propose
novel models and show that they provide addi-
tional improvement in performance. (iii) We pro-
pose a new dataset for the task of abstractive sum-
marization of a document into multiple sentences
and establish benchmarks.

The rest of the paper is organized as follows.
In Section 2, we describe each specific problem
in abstractive summarization that we aim to solve,
and present a novel model that addresses it. Sec-
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tion 3 contextualizes our models with respect to
closely related work on the topic of abstractive text
summarization. We present the results of our ex-
periments on three different data sets in Section 4.
We also present some qualitative analysis of the
output from our models in Section 5 before con-
cluding the paper with remarks on our future di-
rection in Section 6.

2 Models

In this section, we first describe the basic encoder-
decoder RNN that serves as our baseline and then
propose several novel models for summarization,
each addressing a specific weakness in the base-
line.

2.1 Encoder-Decoder RNN with Attention
and Large Vocabulary Trick

Our baseline model corresponds to the neural ma-
chine translation model used in Bahdanau et al.
(2014). The encoder consists of a bidirectional
GRU-RNN (Chung et al., 2014), while the decoder
consists of a uni-directional GRU-RNN with the
same hidden-state size as that of the encoder, and
an attention mechanism over the source-hidden
states and a soft-max layer over target vocabu-
lary to generate words. In the interest of space,
we refer the reader to the original paper for a de-
tailed treatment of this model. In addition to the
basic model, we also adapted to the summariza-
tion problem, the large vocabulary ‘trick’ (LVT)
described in Jean et al. (2014). In our approach,
the decoder-vocabulary of each mini-batch is re-
stricted to words in the source documents of that
batch. In addition, the most frequent words in the
target dictionary are added until the vocabulary
reaches a fixed size. The aim of this technique
is to reduce the size of the soft-max layer of the
decoder which is the main computational bottle-
neck. In addition, this technique also speeds up
convergence by focusing the modeling effort only
on the words that are essential to a given example.
This technique is particularly well suited to sum-
marization since a large proportion of the words in
the summary come from the source document in
any case.

2.2 Capturing Keywords using Feature-rich
Encoder

In summarization, one of the key challenges is to
identify the key concepts and key entities in the

document, around which the story revolves. In
order to accomplish this goal, we may need to
go beyond the word-embeddings-based represen-
tation of the input document and capture addi-
tional linguistic features such as parts-of-speech
tags, named-entity tags, and TF and IDF statis-
tics of the words. We therefore create additional
look-up based embedding matrices for the vocab-
ulary of each tag-type, similar to the embeddings
for words. For continuous features such as TF
and IDF, we convert them into categorical values
by discretizing them into a fixed number of bins,
and use one-hot representations to indicate the bin
number they fall into. This allows us to map them
into an embeddings matrix like any other tag-type.
Finally, for each word in the source document, we
simply look-up its embeddings from all of its as-
sociated tags and concatenate them into a single
long vector, as shown in Fig. 1. On the target side,
we continue to use only word-based embeddings
as the representation.
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Figure 1: Feature-rich-encoder: We use one embedding

vector each for POS, NER tags and discretized TF and IDF

values, which are concatenated together with word-based em-

beddings as input to the encoder.

2.3 Modeling Rare/Unseen Words using
Switching Generator-Pointer

Often-times in summarization, the keywords or
named-entities in a test document that are central
to the summary may actually be unseen or rare
with respect to training data. Since the vocabulary
of the decoder is fixed at training time, it cannot
emit these unseen words. Instead, a most common
way of handling these out-of-vocabulary (OOV)
words is to emit an ‘UNK’ token as a placeholder.
However this does not result in legible summaries.
In summarization, an intuitive way to handle such
OOV words is to simply point to their location in
the source document instead. We model this no-
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tion using our novel switching decoder/pointer ar-
chitecture which is graphically represented in Fig-
ure 2. In this model, the decoder is equipped with
a ‘switch’ that decides between using the genera-
tor or a pointer at every time-step. If the switch
is turned on, the decoder produces a word from its
target vocabulary in the normal fashion. However,
if the switch is turned off, the decoder instead gen-
erates a pointer to one of the word-positions in the
source. The word at the pointer-location is then
copied into the summary. The switch is modeled
as a sigmoid activation function over a linear layer
based on the entire available context at each time-
step as shown below.

P (si = 1) = σ(vs · (Ws
hhi + Ws

eE[oi−1]
+ Ws

cci + bs)),

where P (si = 1) is the probability of the switch
turning on at the ith time-step of the decoder, hi

is the hidden state, E[oi−1] is the embedding vec-
tor of the emission from the previous time step,
ci is the attention-weighted context vector, and
Ws

h,W
s
e,W

s
c ,b

s and vs are the switch parame-
ters. We use attention distribution over word posi-
tions in the document as the distribution to sample
the pointer from.

P a
i (j) ∝ exp(va · (Wa

hhi−1 + Wa
eE[oi−1]

+ Wa
ch

d
j + ba)),

pi = arg max
j

(P a
i (j)) for j ∈ {1, . . . , Nd}.

In the above equation, pi is the pointer value at
ith word-position in the summary, sampled from
the attention distribution Pa

i over the document
word-positions j ∈ {1, . . . , Nd}, where P a

i (j) is
the probability of the ith time-step in the decoder
pointing to the jth position in the document, and
hd

j is the encoder’s hidden state at position j.
At training time, we provide the model with ex-

plicit pointer information whenever the summary
word does not exist in the target vocabulary. When
the OOV word in summary occurs in multiple doc-
ument positions, we break the tie in favor of its
first occurrence. At training time, we optimize the
conditional log-likelihood shown below, with ad-
ditional regularization penalties.

logP (y|x) =
∑

i

(gi log{P (yi|y−i,x)P (si)}

+(1− gi) log{P (p(i)|y−i,x)(1− P (si))})
where y and x are the summary and document
words respectively, gi is an indicator function that

is set to 0 whenever the word at position i in the
summary is OOV with respect to the decoder vo-
cabulary. At test time, the model decides automat-
ically at each time-step whether to generate or to
point, based on the estimated switch probability
P (si). We simply use the arg max of the poste-
rior probability of generation or pointing to gener-
ate the best output at each time step.

The pointer mechanism may be more robust in
handling rare words because it uses the encoder’s
hidden-state representation of rare words to decide
which word from the document to point to. Since
the hidden state depends on the entire context of
the word, the model is able to accurately point to
unseen words although they do not appear in the
target vocabulary.1
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Figure 2: Switching generator/pointer model: When the

switch shows ’G’, the traditional generator consisting of the

softmax layer is used to produce a word, and when it shows

’P’, the pointer network is activated to copy the word from

one of the source document positions. When the pointer is

activated, the embedding from the source is used as input for

the next time-step as shown by the arrow from the encoder to

the decoder at the bottom.

2.4 Capturing Hierarchical Document
Structure with Hierarchical Attention

In datasets where the source document is very
long, in addition to identifying the keywords in
the document, it is also important to identify the
key sentences from which the summary can be
drawn. This model aims to capture this notion of
two levels of importance using two bi-directional

1Even when the word does not exist in the source vocabu-
lary, the pointer model may still be able to identify the correct
position of the word in the source since it takes into account
the contextual representation of the corresponding ’UNK’ to-
ken encoded by the RNN. Once the position is known, the
corresponding token from the source document can be dis-
played in the summary even when it is not part of the training
vocabulary either on the source side or the target side.
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RNNs on the source side, one at the word level
and the other at the sentence level. The attention
mechanism operates at both levels simultaneously.
The word-level attention is further re-weighted by
the corresponding sentence-level attention and re-
normalized as shown below:

P a(j) =
P a

w(j)P a
s (s(j))∑Nd

k=1 P
a
w(k)P a

s (s(k))
,

where P a
w(j) is the word-level attention weight at

jth position of the source document, and s(j) is
the ID of the sentence at jth word position, P a

s (l)
is the sentence-level attention weight for the lth

sentence in the source, Nd is the number of words
in the source document, and P a(j) is the re-scaled
attention at the jth word position. The re-scaled
attention is then used to compute the attention-
weighted context vector that goes as input to the
hidden state of the decoder. Further, we also con-
catenate additional positional embeddings to the
hidden state of the sentence-level RNN to model
positional importance of sentences in the docu-
ment. This architecture therefore models key sen-
tences as well as keywords within those sentences
jointly. A graphical representation of this model is
displayed in Figure 3.
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Figure 3: Hierarchical encoder with hierarchical attention:

the attention weights at the word level, represented by the

dashed arrows are re-scaled by the corresponding sentence-

level attention weights, represented by the dotted arrows.

The dashed boxes at the bottom of the top layer RNN rep-

resent sentence-level positional embeddings concatenated to

the corresponding hidden states.

3 Related Work

A vast majority of past work in summarization
has been extractive, which consists of identify-
ing key sentences or passages in the source doc-
ument and reproducing them as summary (Neto et

al., 2002; Erkan and Radev, 2004; Wong et al.,
2008a; Filippova and Altun, 2013; Colmenares et
al., 2015; Litvak and Last, 2008; K. Riedhammer
and Hakkani-Tur, 2010; Ricardo Ribeiro, 2013).

Humans on the other hand, tend to paraphrase
the original story in their own words. As such, hu-
man summaries are abstractive in nature and sel-
dom consist of reproduction of original sentences
from the document. The task of abstractive sum-
marization has been standardized using the DUC-
2003 and DUC-2004 competitions.2 The data for
these tasks consists of news stories from various
topics with multiple reference summaries per story
generated by humans. The best performing system
on the DUC-2004 task, called TOPIARY (Zajic
et al., 2004), used a combination of linguistically
motivated compression techniques, and an unsu-
pervised topic detection algorithm that appends
keywords extracted from the article onto the com-
pressed output. Some of the other notable work in
the task of abstractive summarization includes us-
ing traditional phrase-table based machine transla-
tion approaches (Banko et al., 2000), compression
using weighted tree-transformation rules (Cohn
and Lapata, 2008) and quasi-synchronous gram-
mar approaches (Woodsend et al., 2010).

With the emergence of deep learning as a viable
alternative for many NLP tasks (Collobert et al.,
2011), researchers have started considering this
framework as an attractive, fully data-driven alter-
native to abstractive summarization. In Rush et
al. (2015), the authors use convolutional models
to encode the source, and a context-sensitive at-
tentional feed-forward neural network to generate
the summary, producing state-of-the-art results on
Gigaword and DUC datasets. In an extension to
this work, Chopra et al. (2016) used a similar con-
volutional model for the encoder, but replaced the
decoder with an RNN, producing further improve-
ment in performance on both datasets. In another
paper that is closely related to our work, Hu et al.
(2015) introduce a large dataset for Chinese short
text summarization. They show promising results
on their Chinese dataset using an encoder-decoder
RNN, but do not report experiments on English
corpora. In another very recent work, Cheng and
Lapata (2016) used RNN based encoder-decoder
for extractive summarization of documents.

Our work starts with the same framework as
(Hu et al., 2015), but we go beyond the stan-

2http://duc.nist.gov/
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dard architecture and propose novel models that
address critical problems in summarization. We
analyze the similarities and differences of our pro-
posed models with related work on abstractive
summarization below.
Feature-rich encoder (Sec. 2.2): Linguistic fea-
tures such as POS tags, and named-entities as well
as TF and IDF information were used in many
extractive approaches to summarization (Wong et
al., 2008b), but they are novel in the context of
deep learning approaches for abstractive summa-
rization, to the best of our knowledge.
Switching generator-pointer model (Sec. 2.3):
This model combines extractive and abstractive
approaches to summarization in a single end-to-
end framework. Rush et al. (2015) also used
a combination of extractive and abstractive ap-
proaches, but their extractive model is a sepa-
rate log-linear classifier with handcrafted features.
Pointer networks (Vinyals et al., 2015) have also
been used earlier for the problem of rare words
in the context of machine translation (Luong et
al., 2015), but the novel addition of switch in our
model allows it to strike a balance between when
to be faithful to the original source (e.g., for named
entities and OOV) and when it is allowed to be cre-
ative. We believe such a process arguably mim-
ics how human produces summaries. For a more
detailed treatment of this model, and experiments
on multiple tasks, please refer to the parallel work
published by some of the authors of this work
(Gulcehre et al., 2016).
Hierarchical attention model (Sec. 2.4): Pre-
viously proposed hierarchical encoder-decoder
models use attention only at sentence-level (Li et
al., 2015). The novelty of our approach lies in joint
modeling of attention at both sentence and word
levels, where the word-level attention is further in-
fluenced by sentence-level attention, thus captur-
ing the notion of important sentences and impor-
tant words within those sentences. Concatenation
of positional embeddings with the hidden state at
sentence-level is also new.

4 Experiments and Results

4.1 Gigaword Corpus

In this series of experiments3, we used the anno-
tated Gigaword corpus as described in Rush et al.

3We used Kyunghyun Cho’s code (https://github.
com/kyunghyuncho/dl4mt-material) as the start-
ing point.

(2015). We used the scripts made available by
the authors of this work4 to preprocess the data,
which resulted in about 3.8M training examples.
The script also produces about 400K validation
and test examples, but we created a randomly sam-
pled subset of 2000 examples each for validation
and testing purposes, on which we report our per-
formance. Further, we also acquired the exact test
sample used in Rush et al. (2015) to make precise
comparison of our models with theirs. We also
made small modifications to the script to extract
not only the tokenized words, but also system-
generated parts-of-speech and named-entity tags.
Training: For all the models we discuss below, we
used 200 dimensional word2vec vectors (Mikolov
et al., 2013) trained on the same corpus to initial-
ize the model embeddings, but we allowed them
to be updated during training. The hidden state di-
mension of the encoder and decoder was fixed at
400 in all our experiments. When we used only
the first sentence of the document as the source,
as done in Rush et al. (2015), the encoder vocabu-
lary size was 119,505 and that of the decoder stood
at 68,885. We used Adadelta (Zeiler, 2012) for
training, with an initial learning rate of 0.001. We
used a batch-size of 50 and randomly shuffled the
training data at every epoch, while sorting every
10 batches according to their lengths to speed up
training. We did not use any dropout or regular-
ization, but applied gradient clipping. We used
early stopping based on the validation set and used
the best model on the validation set to report all
test performance numbers. For all our models, we
employ the large-vocabulary trick, where we re-
strict the decoder vocabulary size to 2,0005, be-
cause it cuts down the training time per epoch by
nearly three times, and helps this and all subse-
quent models converge in only 50%-75% of the
epochs needed for the model based on full vocab-
ulary.
Decoding: At decode-time, we used beam search
of size 5 to generate the summary, and limited the
size of summary to a maximum of 30 words, since
this is the maximum size we noticed in the sam-
pled validation set. We found that the average sys-
tem summary length from all our models (7.8 to
8.3) agrees very closely with that of the ground
truth on the validation set (about 8.7 words), with-
out any specific tuning.

4https://github.com/facebook/NAMAS
5Larger values improved performance only marginally,

but at the cost of much slower training.
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Computational costs: We trained all our mod-
els on a single Tesla K40 GPU. Most models took
about 10 hours per epoch on an average except the
hierarchical attention model, which took 12 hours
per epoch. All models typically converged within
15 epochs using our early stopping criterion based
on the validation cost. The wall-clock training
time until convergence therefore varies between
6-8 days depending on the model. Generating
summaries at test time is reasonably fast with a
throughput of about 20 summaries per second on
a single GPU, using a batch size of 1.
Evaluation metrics: In Rush et al. (2015), the
authors used full-length version of Rouge recall6

to evaluate their systems on the Gigaword cor-
pus7. However, full-length recall favors longer
summaries, so it may not be fair to use this met-
ric to compare two systems that differ in summary
lengths. Full-length F1 solves this problem since
it can penalize longer summaries. Therefore, we
use full-length F1 scores from 1, 2 and L variants
of Rouge using the official script to evaluate our
systems. However, in the interest of fair compari-
son with previous work, we also report full-length
recall scores where necessary. In addition, we also
report the percentage of tokens in the system sum-
mary that occur in the source (which we call ‘src.
copy rate’ in Table 1).
We describe all our experiments and results on the
Gigaword corpus below.
words-lvt2k-1sent: This is the baseline attentional
encoder-decoder model with the large vocabulary
trick. This model is trained only on the first sen-
tence from the source document, as done in Rush
et al. (2015).
words-lvt2k-2sent: This model is identical to the
model above except for the fact that it is trained
on the first two sentences from the source. On
this corpus, adding the additional sentence in the
source does seem to aid performance, as shown
in Table 1. We also tried adding more sentences,
but the performance dropped, which is probably
because the latter sentences in this corpus are not
pertinent to the summary.
words-lvt2k-2sent-hieratt: Since we used two sen-
tences from source document, we trained the hi-
erarchical attention model proposed in Sec 2.4.
As shown in Table 1, this model improves perfor-

6http://www.berouge.com/Pages/default.
aspx

7confirmed from personal communication with the first-
author of the paper.

mance compared to its flatter counterpart by learn-
ing the relative importance of the first two sen-
tences automatically.

feats-lvt2k-2sent: Here, we still train on the first
two sentences, but we exploit the parts-of-speech
and named-entity tags in the annotated gigaword
corpus as well as TF, IDF values, to augment the
input embeddings on the source side as described
in Sec 2.2. In total, our embedding vector grew
from the original 100 to 155, and produced incre-
mental gains compared to its counterpart words-
lvt2k-2sent as shown in Table 1, demonstrating the
utility of syntax based features in this task.

feats-lvt2k-2sent-ptr: This is the switching gener-
ator/pointer model described in Sec. 2.3, but in
addition, we also use feature-rich embeddings on
the document side as in the above model. Our ex-
periments indicate that the new model is able to
achieve the best performance on our test set by all
three Rouge variants as shown in Table 1.

Comparison with state-of-the-art: (Rush et al.,
2015) reported recall-only from full-length version
of Rouge, but the authors kindly provided us with
their F1 numbers, as well as their test sample. We
compared the performance of our model words-
lvt2k-1sent with their best system on their sample,
on both Recall as well as F1, as displayed in Table
1. The reason we did not evaluate our best models
here is that this test set consisted of only 1 sen-
tence from the source document, and did not in-
clude NLP annotations, which are needed in our
best models. The table shows that, despite this
fact, our model outperforms the state of the art
model of Rush et al. (2015), on both recall and
F1, with statistical significance. In addition, our
models exhibit better abstractive ability as shown
by the src. copy rate metric in the last column of
the table.

We believe the bidirectional RNN we used to
model the source captures richer contextual infor-
mation of every word than the bag-of-embeddings
representation used by Rush et al. (2015) in their
convolutional and attentional encoders, which
might explain our superior performance. Further,
explicit modeling of important information such
as multiple source sentences, word-level linguis-
tic features, using the switch mechanism to point
to source words when needed, and hierarchical at-
tention, solve specific problems in summarization,
each boosting performance incrementally.
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# Model name Rouge-1 Rouge-2 Rouge-L Src. copy rate (%)
Full length F1 on our internal test set

1 words-lvt2k-1sent 34.97 17.17 32.70 75.85
2 words-lvt2k-2sent 35.73 17.38 33.25 79.54
3 words-lvt2k-2sent-hieratt 36.05 18.17 33.52 78.52
4 feats-lvt2k-2sent 35.90 17.57 33.38 78.92
5 feats-lvt2k-2sent-ptr *36.40 17.77 *33.71 78.70

Full length Recall on the test set used by (Rush et al., 2015)
6 ABS+ (Rush et al., 2015) 31.47 12.73 28.54 91.50
7 words-lvt2k-1sent *34.19 *16.29 *32.13 74.57

Full length F1 on the test set used by (Rush et al., 2015)
8 ABS+ (Rush et al., 2015) 29.78 11.89 26.97 91.50
9 words-lvt2k-1sent *32.67 *15.59 *30.64 74.57

Table 1: Performance comparison of various models. ’*’ indicates statistical significance of the corresponding model with

respect to the baseline model on its dataset as given by the 95% confidence interval in the official Rouge script. We report

statistical significance only for the best performing models. ’src. copy rate’ for the reference data on our validation sample is

45%. Please refer to Section 4 for explanation of notation.

4.2 DUC Corpus

The DUC corpus8 comes in two parts: the 2003
corpus consisting of 624 document, summary
pairs and the 2004 corpus consisting of 500 pairs.
Since these corpora are too small to train large
neural networks on, Rush et al. (2015) trained
their models on the Gigaword corpus, but com-
bined it with an additional log-linear extractive
summarization model with handcrafted features,
that is trained on the DUC 2003 corpus. They
call the original neural attention model the ABS
model, and the combined model ABS+. The lat-
ter model is current state-of-the-art since it outper-
forms all previously published baselines includ-
ing non-neural network based extractive and ab-
stractive systems, as measured by the official DUC
metric of limited-length recall. In these exper-
iments, we use the same metric to evaluate our
models too, but we omit reporting numbers from
other systems in the interest of space.

In our work, we simply run the model trained
on Gigaword corpus as it is, without tuning it on
the DUC validation set. The only change we made
to the decoder is to suppress the model from emit-
ting the end-of-summary tag, and force it to emit
exactly 30 words for every summary, since the of-
ficial evaluation on this corpus is based on limited-
length Rouge recall. On this corpus too, since we
have only a single sentence from source and no
NLP annotations, we ran just the model words-
lvt2k-1sent.

The performance of this model on the test set
is compared with ABS and ABS+ models, as well
as TOPIARY, the top performing system on DUC-
2004 in Table 2. We note that although our model

8http://duc.nist.gov/duc2004/tasks.html

consistently outperforms ABS+ on all three vari-
ants of Rouge, the differences are not statistically
significant. However, when the comparison is
made with ABS model, which is really the true
un-tuned counterpart of our model, the results are
indeed statistically significant.

Model Rouge-1 Rouge-2 Rouge-L
TOPIARY 25.12 6.46 20.12
ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
words-lvt2k-1sent 28.35 9.46 24.59

Table 2: Evaluation of our models using the limited-length

Rouge Recall on DUC validation and test sets. Our best

model, although trained exclusively on the Gigaword corpus,

consistently outperforms the ABS+ model which is tuned on

the DUC-2003 validation corpus in addition to being trained

on the Gigaword corpus.

We would also like to bring the reader’s atten-
tion to the concurrently published work of Chopra
et al. (2016) where they also used an RNN based
decoder for summary generation. While their
numbers on Gigaword corpus are slightly better
than our best performance on all three Rouge F1
metrics, our performance is marginally higher on
DUC-2004 corpus on Rouge-2 and Rouge-L. We
believe their work also confirms the effectiveness
of RNN-based models for abstractive text summa-
rization.

4.3 CNN/Daily Mail Corpus
The existing abstractive text summarization cor-
pora including Gigaword and DUC consist of only
one sentence in each summary. In this section,
we present a new corpus that comprises multi-
sentence summaries. To produce this corpus, we
modify an existing corpus that has been used
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Model Rouge-1 Rouge-2 Rouge-L
words-lvt2k 32.49 11.84 29.47
words-lvt2k-ptr 32.12 11.72 29.16
words-lvt2k-hieratt 31.78 11.56 28.73

Table 3: Performance of various models on CNN/Daily

Mail test set using full-length Rouge-F1 metric. Bold faced

numbers indicate best performing system.

for the task of passage-based question answering
(Hermann et al., 2015). In this work, the au-
thors used the human generated abstractive sum-
mary bullets from new-stories in CNN and Daily
Mail websites as questions (with one of the enti-
ties hidden), and stories as the corresponding pas-
sages from which the system is expected to an-
swer the fill-in-the-blank question. The authors re-
leased the scripts that crawl, extract and generate
pairs of passages and questions from these web-
sites. With a simple modification of the script, we
restored all the summary bullets of each story in
the original order to obtain a multi-sentence sum-
mary, where each bullet is treated as a sentence. In
all, this corpus has 286,817 training pairs, 13,368
validation pairs and 11,487 test pairs, as defined
by their scripts. The source documents in the train-
ing set have 766 words spanning 29.74 sentences
on an average while the summaries consist of 53
words and 3.72 sentences. The unique character-
istics of this dataset such as long documents, and
ordered multi-sentence summaries present inter-
esting challenges, and we hope will attract future
researchers to build and test novel models on it.

The dataset is released in two versions: one
consisting of actual entity names, and the other,
in which entity occurrences are replaced with
document-specific integer-ids beginning from 0.
Since the vocabulary size is smaller in the
anonymized version, we used it in all our exper-
iments below. We limited the source vocabulary
size to 150K, and the target vocabulary to 60K,
the source and target lengths to at most 800 and
100 words respectively. We used 100-dimensional
word2vec embeddings trained on this dataset as
input, and we fixed the model hidden state size at
200. We also created explicit pointers in the train-
ing data by matching only the anonymized entity-
ids between source and target on similar lines as
we did for the OOV words in Gigaword corpus.

Computational costs: We used a single Tesla K-
40 GPU to train our models on this dataset as well.
While the flat models (words-lvt2k and words-
lvt2k-ptr) took under 5 hours per epoch, the hier-

archical attention model was very expensive, con-
suming nearly 12.5 hours per epoch. Convergence
of all models is also slower on this dataset com-
pared to Gigaword, taking nearly 35 epochs for
all models. Thus, the wall-clock time for train-
ing until convergence is about 7 days for the flat
models, but nearly 18 days for the hierarchical at-
tention model. Decoding is also slower as well,
with a throughput of 2 examples per second for
flat models and 1.5 examples per second for the
hierarchical attention model, when run on a single
GPU with a batch size of 1.
Evaluation: We evaluated our models using the
full-length Rouge F1 metric that we employed for
the Gigaword corpus, but with one notable differ-
ence: in both system and gold summaries, we con-
sidered each highlight to be a separate sentence.9

Results: Results from three models we ran on
this corpus are displayed in Table 3. Although
this dataset is smaller and more complex than the
Gigaword corpus, it is interesting to note that the
Rouge numbers are in the same range. However,
our switching pointer/generator model as well as
the hierarchical attention model described in Sec.
2.4 fail to outperform the baseline attentional de-
coder, indicating that further research and experi-
mentation needs to be done on this dataset. These
results, although preliminary, should serve as a
good baseline for future researchers to compare
their models against.

5 Qualitative Analysis

Table 4 presents a few high quality and poor qual-
ity output on the validation set from feats-lvt2k-
2sent, one of our best performing models. Even
when the model differs from the target summary,
its summaries tend to be very meaningful and rel-
evant, a phenomenon not captured by word/phrase
matching evaluation metrics such as Rouge. On
the other hand, the model sometimes ‘misinter-
prets’ the semantics of the text and generates a
summary with a comical interpretation as shown
in the poor quality examples in the table. Clearly,
capturing the ‘meaning’ of complex sentences re-
mains a weakness of these models.

Our next example output, presented in Figure
4, displays the sample output from the switching
generator/pointer model on the Gigaword corpus.

9This was done by modifying the pre-processing script
such that each highlight gets its own "<a>" tag in the xml file
that goes as input to the evaluation script.
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Good quality summary output
S: a man charged with the murder last year of a british back-
packer confessed to the slaying on the night he was charged
with her killing , according to police evidence presented at a
court hearing tuesday . ian douglas previte , ## , is charged
with murdering caroline stuttle , ## , of yorkshire , england
T: man charged with british backpacker ’s death confessed
to crime police officer claims
O: man charged with murdering british backpacker con-
fessed to murder
S: following are the leading scorers in the english premier
league after saturday ’s matches : ## - alan shearer -lrb-
newcastle united -rrb- , james beattie .
T: leading scorers in english premier league
O: english premier league leading scorers
S: volume of transactions at the nigerian stock exchange
has continued its decline since last week , a nse official said
thursday . the latest statistics showed that a total of ##.###
million shares valued at ###.### million naira -lrb- about
#.### million us dollars -rrb- were traded on wednesday in
, deals .
T: transactions dip at nigerian stock exchange
O: transactions at nigerian stock exchange down
Poor quality summary output
S: broccoli and broccoli sprouts contain a chemical that kills
the bacteria responsible for most stomach cancer , say re-
searchers , confirming the dietary advice that moms have
been handing out for years . in laboratory tests the chemical
, <unk> , killed helicobacter pylori , a bacteria that causes
stomach ulcers and often fatal stomach cancers .
T: for release at #### <unk> mom was right broccoli is
good for you say cancer researchers
O: broccoli sprouts contain deadly bacteria
S: norway delivered a diplomatic protest to russia on mon-
day after three norwegian fisheries research expeditions
were barred from russian waters . the norwegian research
ships were to continue an annual program of charting fish
resources shared by the two countries in the barents sea re-
gion .
T: norway protests russia barring fisheries research ships
O: norway grants diplomatic protest to russia
S: j.p. morgan chase ’s ability to recover from a slew of
recent losses rests largely in the hands of two men , who are
both looking to restore tarnished reputations and may be
considered for the top job someday . geoffrey <unk> , now
the co-head of j.p. morgan ’s investment bank , left goldman
, sachs & co. more than a decade ago after executives say
he lost out in a bid to lead that firm .
T: # executives to lead j.p. morgan chase on road to recov-
ery
O: j.p. morgan chase may be considered for top job

Table 4: Examples of generated summaries from our best

model on the validation set of Gigaword corpus. S: source

document, T: target summary, O: system output. Although

we displayed equal number of good quality and poor quality

summaries in the table, the good ones are far more prevalent

than the poor ones.

Figure 4: Sample output from switching generator/pointer

networks. An arrow indicates that a pointer to the source po-

sition was used to generate the corresponding summary word.

It is apparent from the examples that the model
learns to use pointers very accurately not only for
named entities, but also for multi-word phrases.
Despite its accuracy, the performance improve-
ment of the overall model is not significant. We
believe the impact of this model may be more pro-
nounced in other settings with a heavier tail distri-
bution of rare words. We intend to carry out more
experiments with this model in the future.

On CNN/Daily Mail data, although our models
are able to produce good quality multi-sentence
summaries, we notice that the same sentence or
phrase often gets repeated in the summary. We be-
lieve models that incorporate intra-attention such
as Cheng et al. (2016) can fix this problem by en-
couraging the model to ‘remember’ the words it
has already produced in the past.

6 Conclusion

In this work, we apply the attentional encoder-
decoder for the task of abstractive summarization
with very promising results, outperforming state-
of-the-art results significantly on two different
datasets. Each of our proposed novel models ad-
dresses a specific problem in abstractive summa-
rization, yielding further improvement in perfor-
mance. We also propose a new dataset for multi-
sentence summarization and establish benchmark
numbers on it. As part of our future work, we plan
to focus our efforts on this data and build more ro-
bust models for summaries consisting of multiple
sentences.
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Abstract

Neural Machine Translation (NMT), like
many other deep learning domains, typ-
ically suffers from over-parameterization,
resulting in large storage sizes. This paper
examines three simple magnitude-based
pruning schemes to compress NMT mod-
els, namely class-blind, class-uniform,
and class-distribution, which differ in
terms of how pruning thresholds are com-
puted for the different classes of weights in
the NMT architecture. We demonstrate the
efficacy of weight pruning as a compres-
sion technique for a state-of-the-art NMT
system. We show that an NMT model with
over 200 million parameters can be pruned
by 40% with very little performance loss
as measured on the WMT’14 English-
German translation task. This sheds light
on the distribution of redundancy in the
NMT architecture. Our main result is that
with retraining, we can recover and even
surpass the original performance with an
80%-pruned model.

1 Introduction

Neural Machine Translation (NMT) is a simple
new architecture for translating texts from one lan-
guage into another (Sutskever et al., 2014; Cho et
al., 2014). NMT is a single deep neural network
that is trained end-to-end, holding several advan-
tages such as the ability to capture long-range de-
pendencies in sentences, and generalization to un-
seen texts. Despite being relatively new, NMT has
already achieved state-of-the-art translation re-
sults for several language pairs including English-
French (Luong et al., 2015b), English-German
(Jean et al., 2015a; Luong et al., 2015a; Luong and

∗Both authors contributed equally.

student	  a	  am	  I	   Je	  

Je	   suis	  

suis	   étudiant	  	  

étudiant	  	   _	  

_	  

source	  language	  input	   target	  language	  input	  

target	  language	  output	  

Figure 1: A simplified diagram of NMT.

Manning, 2015; Sennrich et al., 2016), English-
Turkish (Sennrich et al., 2016), and English-Czech
(Jean et al., 2015b; Luong and Manning, 2016).
Figure 1 gives an example of an NMT system.

While NMT has a significantly smaller memory
footprint than traditional phrase-based approaches
(which need to store gigantic phrase-tables and
language models), the model size of NMT is still
prohibitively large for mobile devices. For exam-
ple, a recent state-of-the-art NMT system requires
over 200 million parameters, resulting in a stor-
age size of hundreds of megabytes (Luong et al.,
2015a). Though the trend for bigger and deeper
neural networks has brought great progress, it has
also introduced over-parameterization, resulting in
long running times, overfitting, and the storage
size issue discussed above. A solution to the over-
parameterization problem could potentially aid all
three issues, though the first (long running times)
is outside the scope of this paper.

Our contribution. In this paper we investi-
gate the efficacy of weight pruning for NMT as
a means of compression. We show that despite
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its simplicity, magnitude-based pruning with re-
training is highly effective, and we compare three
magnitude-based pruning schemes — class-blind,
class-uniform and class-distribution. Though re-
cent work has chosen to use the latter two, we
find the first and simplest scheme — class-blind
— the most successful. We are able to prune 40%
of the weights of a state-of-the-art NMT system
with negligible performance loss, and by adding a
retraining phase after pruning, we can prune 80%
with no performance loss. Our pruning experi-
ments also reveal some patterns in the distribution
of redundancy in NMT. In particular we find that
higher layers, attention and softmax weights are
the most important, while lower layers and the em-
bedding weights hold a lot of redundancy. For the
Long Short-Term Memory (LSTM) architecture,
we find that at lower layers the parameters for the
input are most crucial, but at higher layers the pa-
rameters for the gates also become important.

2 Related Work

Pruning the parameters from a neural network,
referred to as weight pruning or network prun-
ing, is a well-established idea though it can be
implemented in many ways. Among the most
popular are the Optimal Brain Damage (OBD)
(Le Cun et al., 1989) and Optimal Brain Sur-
geon (OBS) (Hassibi and Stork, 1993) techniques,
which involve computing the Hessian matrix of
the loss function with respect to the parameters,
in order to assess the saliency of each parame-
ter. Parameters with low saliency are then pruned
from the network and the remaining sparse net-
work is retrained. Both OBD and OBS were
shown to perform better than the so-called ‘naive
magnitude-based approach’, which prunes param-
eters according to their magnitude (deleting pa-
rameters close to zero). However, the high com-
putational complexity of OBD and OBS compare
unfavorably to the computational simplicity of the
magnitude-based approach, especially for large
networks (Augasta and Kathirvalavakumar, 2013).

In recent years, the deep learning renaissance
has prompted a re-investigation of network prun-
ing for modern models and tasks. Magnitude-
based pruning with iterative retraining has yielded
strong results for Convolutional Neural Networks
(CNN) performing visual tasks. (Collins and
Kohli, 2014) prune 75% of AlexNet parameters
with small accuracy loss on the ImageNet task,

while (Han et al., 2015b) prune 89% of AlexNet
parameters with no accuracy loss on the ImageNet
task.

Other approaches focus on pruning neurons
rather than parameters, via sparsity-inducing regu-
larizers (Murray and Chiang, 2015) or ‘wiring to-
gether’ pairs of neurons with similar input weights
(Srinivas and Babu, 2015). These approaches
are much more constrained than weight-pruning
schemes; they necessitate finding entire zero rows
of weight matrices, or near-identical pairs of rows,
in order to prune a single neuron. By contrast
weight-pruning approaches allow weights to be
pruned freely and independently of each other.
The neuron-pruning approach of (Srinivas and
Babu, 2015) was shown to perform poorly (it suf-
fered performance loss after removing only 35%
of AlexNet parameters) compared to the weight-
pruning approach of (Han et al., 2015b). Though
(Murray and Chiang, 2015) demonstrates neuron-
pruning for language modeling as part of a (non-
neural) Machine Translation pipeline, their ap-
proach is more geared towards architecture selec-
tion than compression.

There are many other compression techniques
for neural networks, including approaches based
on on low-rank approximations for weight matri-
ces (Jaderberg et al., 2014; Denton et al., 2014),
or weight sharing via hash functions (Chen et al.,
2015). Several methods involve reducing the pre-
cision of the weights or activations (Courbariaux
et al., 2015), sometimes in conjunction with spe-
cialized hardware (Gupta et al., 2015), or even us-
ing binary weights (Lin et al., 2016). The ‘knowl-
edge distillation’ technique of (Hinton et al., 2015)
involves training a small ‘student’ network on the
soft outputs of a large ‘teacher’ network. Some
approaches use a sophisticated pipeline of several
techniques to achieve impressive feats of compres-
sion (Han et al., 2015a; Iandola et al., 2016).

Most of the above work has focused on com-
pressing CNNs for vision tasks. We extend the
magnitude-based pruning approach of (Han et al.,
2015b) to recurrent neural networks (RNN), in
particular LSTM architectures for NMT, and to
our knowledge we are the first to do so. There
has been some recent work on compression for
RNNs (Lu et al., 2016; Prabhavalkar et al., 2016),
but it focuses on other, non-pruning compression
techniques. Nonetheless, our general observations
on the distribution of redundancy in a LSTM, de-
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Figure 2: NMT architecture. This example has two layers, but our system has four. The different weight
classes are indicated by arrows of different color (the black arrows in the top right represent simply
choosing the highest-scoring word, and thus require no parameters). Best viewed in color.

tailed in Section 4.5, are corroborated by (Lu et
al., 2016).

3 Our Approach

We first give a brief overview of Neural Ma-
chine Translation before describing the model ar-
chitecture of interest, the deep multi-layer recur-
rent model with LSTM. We then explain the dif-
ferent types of NMT weights together with our ap-
proaches to pruning and retraining.

3.1 Neural Machine Translation
Neural machine translation aims to directly model
the conditional probability p(y|x) of translating a
source sentence, x1, . . . , xn, to a target sentence,
y1, . . . , ym. It accomplishes this goal through an
encoder-decoder framework (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014). The encoder computes a representation s
for each source sentence. Based on that source
representation, the decoder generates a transla-
tion, one target word at a time, and hence, decom-
poses the log conditional probability as:

log p(y|x) =
∑m

t=1
log p (yt|y<t, s) (1)

Most NMT work uses RNNs, but approaches
differ in terms of: (a) architecture, which can

be unidirectional, bidirectional, or deep multi-
layer RNN; and (b) RNN type, which can be
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or the Gated Recurrent
Unit (Cho et al., 2014).

In this work, we specifically consider the deep
multi-layer recurrent architecture with LSTM as
the hidden unit type. Figure 1 illustrates an in-
stance of that architecture during training in which
the source and target sentence pair are input for su-
pervised learning. During testing, the target sen-
tence is not known in advance; instead, the most
probable target words predicted by the model are
fed as inputs into the next timestep. The network
stops when it emits the end-of-sentence symbol —
a special ‘word’ in the vocabulary, represented by
a dash in Figure 1.

3.2 Understanding NMT Weights

Figure 2 shows the same system in more detail,
highlighting the different types of parameters, or
weights, in the model. We will go through the
architecture from bottom to top. First, a vocab-
ulary is chosen for each language, assuming that
the top V frequent words are selected. Thus, ev-
ery word in the source or target vocabulary can
be represented by a one-hot vector of length V .
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The source input sentence and target input sen-
tence, represented as a sequence of one-hot vec-
tors, are transformed into a sequence of word em-
beddings by the embedding weights. These em-
bedding weights, which are learned during train-
ing, are different for the source words and the tar-
get words. The word embeddings and all hidden
layers are vectors of length n (a chosen hyperpa-
rameter).

The word embeddings are then fed as input into
the main network, which consists of two multi-
layer RNNs ‘stuck together’ — an encoder for the
source language and a decoder for the target lan-
guage, each with their own weights. The feed-
forward (vertical) weights connect the hidden unit
from the layer below to the upper RNN block, and
the recurrent (horizontal) weights connect the hid-
den unit from the previous time-step RNN block to
the current time-step RNN block.

The hidden state at the top layer of the decoder
is fed through an attention layer, which guides the
translation by ‘paying attention’ to relevant parts
of the source sentence; for more information see
(Bahdanau et al., 2015) or Section 3 of (Luong
et al., 2015a). Finally, for each target word, the
top layer hidden unit is transformed by the soft-
max weights into a score vector of length V . The
target word with the highest score is selected as
the output translation.

Weight Subgroups in LSTM – For the afore-
mentioned RNN block, we choose to use LSTM as
the hidden unit type. To facilitate our later discus-
sion on the different subgroups of weights within
LSTM, we first review the details of LSTM as for-
mulated by Zaremba et al. (2014) as follows:

i
f
o

ĥ

 =


sigm
sigm
sigm
tanh

T4n,2n

(
hl−1

t

hl
t−1

)
(2)

clt = f ◦ clt−1 + i ◦ ĥ (3)

hl
t = o ◦ tanh(clt) (4)

Here, each LSTM block at time t and layer l com-
putes as output a pair of hidden and memory vec-
tors (hl

t, c
l
t) given the previous pair (hl

t−1, clt−1)
and an input vector hl−1

t (either from the LSTM
block below or the embedding weights if l = 1).
All of these vectors have length n.

The core of a LSTM block is the weight matrix
T4n,2n of size 4n×2n. This matrix can be decom-
posed into 8 subgroups that are responsible for the

interactions between {input gate i, forget gate f ,
output gate o, input signal ĥ} × {feed-forward in-
put hl−1

t , recurrent input hl
t−1}.

3.3 Pruning Schemes

We follow the general magnitude-based approach
of (Han et al., 2015b), which consists of pruning
weights with smallest absolute value. However,
we question the authors’ pruning scheme with re-
spect to the different weight classes, and exper-
iment with three pruning schemes. Suppose we
wish to prune x% of the total parameters in the
model. How do we distribute the pruning over the
different weight classes (illustrated in Figure 2) of
our model? We propose to examine three different
pruning schemes:

1. Class-blind: Take all parameters, sort them
by magnitude and prune the x% with smallest
magnitude, regardless of weight class. (So
some classes are pruned proportionally more
than others).

2. Class-uniform: Within each class, sort the
weights by magnitude and prune the x% with
smallest magnitude. (So all classes have ex-
actly x% of their parameters pruned).

3. Class-distribution: For each class c, weights
with magnitude less than λσc are pruned.
Here, σc is the standard deviation of that class
and λ is a universal parameter chosen such
that in total, x% of all parameters are pruned.
This is used by (Han et al., 2015b).

All these schemes have their seeming advantages.
Class-blind pruning is the simplest and adheres to
the principle that pruning weights (or equivalently,
setting them to zero) is least damaging when those
weights are small, regardless of their locations in
the architecture. Class-uniform pruning and class-
distribution pruning both seek to prune proportion-
ally within each weight class, either absolutely,
or relative to the standard deviation of that class.
We find that class-blind pruning outperforms both
other schemes (see Section 4.1).

3.4 Retraining

In order to prune NMT models aggressively with-
out performance loss, we retrain our pruned net-
works. That is, we continue to train the remaining
weights, but maintain the sparse structure intro-
duced by pruning. In our implementation, pruned
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Figure 3: Effects of different pruning schemes.

weights are represented by zeros in the weight ma-
trices, and we use binary ‘mask’ matrices, which
represent the sparse structure of a network, to ig-
nore updates to weights at pruned locations. This
implementation has the advantage of simplicity
as it requires minimal changes to the training
and deployment code, but we note that a more
complex implementation utilizing sparse matrices
and sparse matrix multiplication could potentially
yield speed improvements. However, such an im-
plementation is beyond the scope of this paper.

4 Experiments

We evaluate the effectiveness of our pruning
approaches on a state-of-the-art NMT model.1

Specifically, an attention-based English-German
NMT system from (Luong et al., 2015a) is consid-
ered. Training data was obtained from WMT’14
consisting of 4.5M sentence pairs (116M English
words, 110M German words). For more details
on training hyperparameters, we refer readers to
Section 4.1 of (Luong et al., 2015a). All models
are tested on newstest2014 (2737 sentences). The
model achieves a perplexity of 6.1 and a BLEU
score of 20.5 (after unknown word replacement).2

When retraining pruned NMT systems, we use
the following settings: (a) we start with a smaller
learning rate of 0.5 (the original model uses a
learning rate of 1.0), (b) we train for fewer epochs,
4 instead of 12, using plain SGD, (c) a simple
learning rate schedule is employed; after 2 epochs,
we begin to halve the learning rate every half an
epoch, and (d) all other hyperparameters are the

1We thank the authors of (Luong et al., 2015a) for provid-
ing their trained models and assistance in using the codebase
at https://github.com/lmthang/nmt.matlab.

2The performance of this model is reported under row
global (dot) in Table 4 of (Luong et al., 2015a).

same, such as mini-batch size 128, maximum gra-
dient norm 5, and dropout with probability 0.2.

4.1 Comparing pruning schemes
Despite its simplicity, we observe in Figure 3
that class-blind pruning outperforms both other
schemes in terms of translation quality at all prun-
ing percentages. In order to understand this result,
for each of the three pruning schemes, we pruned
each class separately and recorded the effect on
performance (as measured by perplexity). Figure
4 shows that with class-uniform pruning, the over-
all performance loss is caused disproportionately
by a few classes: target layer 4, attention and soft-
max weights. Looking at Figure 5, we see that
the most damaging classes to prune also tend to be
those with weights of greater magnitude — these
classes have much larger weights than others at the
same percentile, so pruning them under the class-
uniform pruning scheme is more damaging. The
situation is similar for class-distribution pruning.

By contrast, Figure 4 shows that under class-
blind pruning, the damage caused by pruning soft-
max, attention and target layer 4 weights is greatly
decreased, and the contribution of each class to-
wards the performance loss is overall more uni-
form. In fact, the distribution begins to reflect
the number of parameters in each class — for ex-
ample, the source and target embedding classes
have larger contributions because they have more
weights. We use only class-blind pruning for the
rest of the experiments.

Figure 4 also reveals some interesting informa-
tion about the distribution of redundancy in NMT
architectures — namely it seems that higher lay-
ers are more important than lower layers, and that
attention and softmax weights are crucial. We will
explore the distribution of redundancy further in
Section 4.5.

4.2 Pruning and retraining
Pruning has an immediate negative impact on per-
formance (as measured by BLEU) that is exponen-
tial in pruning percentage; this is demonstrated by
the blue line in Figure 6. However we find that up
to about 40% pruning, performance is mostly un-
affected, indicating a large amount of redundancy
and over-parameterization in NMT.

We now consider the effect of retraining pruned
models. The orange line in Figure 6 shows that af-
ter retraining the pruned models, baseline perfor-
mance (20.48 BLEU) is both recovered and im-
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90% of weights using each of the three pruning schemes. Each of the first eight classes have 8 million
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Figure 5: Magnitude of largest deleted weight
vs. perplexity change, for the 12 different weight
classes when pruning 90% of parameters by class-
uniform pruning.

proved upon, up to 80% pruning (20.91 BLEU),
with only a small performance loss at 90% pruning
(20.13 BLEU). This may seem surprising, as we
might not expect a sparse model to significantly
out-perform a model with five times as many pa-
rameters. There are several possible explanations,
two of which are given below.

Firstly, we found that the less-pruned models
perform better on the training set than the vali-
dation set, whereas the more-pruned models have
closer performance on the two sets. This indicates
that pruning has a regularizing effect on the re-
training phase, though clearly more is not always
better, as the 50% pruned and retrained model has
better validation set performance than the 90%

0 10 20 30 40 50 60 70 80 90
0

10

20

percentage pruned

B
L

E
U

sc
or

e

pruned
pruned and retrained
sparse from the beginning

Figure 6: Performance of pruned models (a) after
pruning, (b) after pruning and retraining, and (c)
when trained with sparsity structure from the out-
set (see Section 4.3).

pruned and retrained model. Nonetheless, this reg-
ularization effect may explain why the pruned and
retrained models outperform the baseline.

Alternatively, pruning may serve as a means to
escape a local optimum. Figure 7 shows the loss
function over time during the training, pruning and
retraining process. During the original training
process, the loss curve flattens out and seems to
converge (note that we use early stopping to ob-
tain our baseline model, so the original model was
trained for longer than shown in Figure 7). Prun-
ing causes an immediate increase in the loss func-
tion, but enables further gradient descent, allowing
the retraining process to find a new, better local
optimum. It seems that the disruption caused by
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pruning is beneficial in the long-run.

4.3 Starting with sparse models

The favorable performance of the pruned and re-
trained models raises the question: can we get
a shortcut to this performance by starting with
sparse models? That is, rather than train, prune,
and retrain, what if we simply prune then train?
To test this, we took the sparsity structure of our
50%–90% pruned models, and trained completely
new models with the same sparsity structure. The
purple line in Figure 6 shows that the ‘sparse from
the beginning’ models do not perform as well as
the pruned and retrained models, but they do come
close to the baseline performance. This shows that
while the sparsity structure alone contains useful
information about redundancy and can therefore
produce a competitive compressed model, it is im-
portant to interleave pruning with training.

Though our method involves just one pruning
stage, other pruning methods interleave pruning
with training more closely by including several
iterations (Collins and Kohli, 2014; Han et al.,
2015b). We expect that implementing this for
NMT would likely result in further compression
and performance improvements.

4.4 Storage size

The original unpruned model (a MATLAB file)
has size 782MB. The 80% pruned and retrained
model is 272MB, which is a 65.2% reduction. In
this work we focus on compression in terms of
number of parameters rather than storage size, be-

cause it is invariant across implementations.

4.5 Distribution of redundancy in NMT

We visualize in Figure 8 the redundancy struc-
tore of our NMT baseline model. Black pix-
els represent weights near to zero (those that can
be pruned); white pixels represent larger ones.
First we consider the embedding weight matrices,
whose columns correspond to words in the vocab-
ulary. Unsurprisingly, in Figure 8, we see that
the parameters corresponding to the less common
words are more dispensable. In fact, at the 80%
pruning rate, for 100 uncommon source words
and 1194 uncommon target words, we delete all
parameters corresponding to that word. This is
not quite the same as removing the word from
the vocabulary — true out-of-vocabulary words
are mapped to the embedding for the ‘unknown
word’ symbol, whereas these ‘pruned-out’ words
are mapped to a zero embedding. However in the
original unpruned model these uncommon words
already had near-zero embeddings, indicating that
the model was unable to learn sufficiently distinc-
tive representations.

Returning to Figure 8, now look at the eight
weight matrices for the source and target connec-
tions at each of the four layers. Each matrix corre-
sponds to the 4n × 2n matrix T4n,2n in Equation
(2). In all eight matrices, we observe — as does
(Lu et al., 2016) — that the weights connecting to
the input ĥ are most crucial, followed by the in-
put gate i, then the output gate o, then the forget
gate f . This is particularly true of the lower lay-
ers, which focus primarily on the input ĥ. How-
ever for higher layers, especially on the target side,
weights connecting to the gates are as important as
those connecting to the input ĥ. The gates repre-
sent the LSTM’s ability to add to, delete from or
retrieve information from the memory cell. Figure
8 therefore shows that these sophisticated memory
cell abilities are most important at the end of the
NMT pipeline (the top layer of the decoder). This
is reasonable, as we expect higher-level features to
be learned later in a deep learning pipeline.

We also observe that for lower layers, the feed-
forward input is much more important than the re-
current input, whereas for higher layers the recur-
rent input becomes more important. This makes
sense: lower layers concentrate on the low-level
information from the current word embedding (the
feed-forward input), whereas higher layers make
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target embedding weights

source embedding weights

least common wordmost common word

source layer 1 weights

recurrentfeed-forward

input gate

forget gate

output gate

input

source layer 2 weights source layer 3 weights source layer 4 weights

target layer 1 weights target layer 2 weights target layer 3 weights target layer 4 weights

Figure 8: Graphical representation of the location of small weights in various parts of the model. Black
pixels represent weights with absolute size in the bottom 80%; white pixels represent those with absolute
size in the top 20%. Equivalently, these pictures illustrate which parameters remain after pruning 80%
using our class-blind pruning scheme.
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use of the higher-level representation of the sen-
tence so far (the recurrent input).

Lastly, on close inspection, we notice several
white diagonals emerging within some subsquares
of the matrices in Figure 8, indicating that even
without initializing the weights to identity ma-
trices (as is sometimes done (Le et al., 2015)),
an identity-like weight matrix is learned. At
higher pruning percentages, these diagonals be-
come more pronounced.

5 Generalizability of our results

To test the generalizability of our results, we
also test our pruning approach on a smaller, non-
state-of-the-art NMT model trained on the WIT3
Vietnamese-English dataset (Cettolo et al., 2012),
which consists of 133,000 sentence pairs. This
model is effectively a scaled-down version of the
state-of-the-art model in (Luong et al., 2015a),
with fewer layers, smaller vocabulary size, smaller
hidden layer size, no attention mechanism, and
about 11% as many parameters in total. It achieves
a BLEU score of 9.61 on the validation set.

Although this model and its training set are on
a different scale to our main model, and the lan-
guage pair is different, we found very similar re-
sults. For this model, it is possible to prune 60% of
parameters with no immediate performance loss,
and with retraining it is possible to prune 90%, and
regain original performance. Our main observa-
tions from Sections 4.1 to 4.5 are also replicated;
in particular, class-blind pruning is most success-
ful, ‘sparse from the beginning’ models are less
successful than pruned and retrained models, and
we observe the same patterns as seen in Figure 8.

6 Future Work

As noted in Section 4.3, including several itera-
tions of pruning and retraining would likely im-
prove the compression and performance of our
pruning method. If possible it would be highly
valuable to exploit the sparsity of the pruned mod-
els to speed up training and runtime, perhaps
through sparse matrix representations and mul-
tiplications (see Section 3.4). Though we have
found magnitude-based pruning to perform very
well, it would be instructive to revisit the orig-
inal claim that other pruning methods (for ex-
ample Optimal Brain Damage and Optimal Brain
Surgery) are more principled, and perform a com-
parative study.

7 Conclusion

We have shown that weight pruning with retrain-
ing is a highly effective method of compression
and regularization on a state-of-the-art NMT sys-
tem, compressing the model to 20% of its size with
no loss of performance. Though we are the first to
apply compression techniques to NMT, we obtain
a similar degree of compression to other current
work on compressing state-of-the-art deep neural
networks, with an approach that is simpler than
most. We have found that the absolute size of pa-
rameters is of primary importance when choosing
which to prune, leading to an approach that is ex-
tremely simple to implement, and can be applied
to any neural network. Lastly, we have gained
insight into the distribution of redundancy in the
NMT architecture.
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Abstract

Discourse relations can either be implicit
or explicitly expressed by markers, such
as ’therefore’ and ’but’. How a speaker
makes this choice is a question that is
not well understood. We propose a psy-
cholinguistic model that predicts whether
a speaker will produce an explicit marker
given the discourse relation s/he wishes to
express. Based on the framework of the
Rational Speech Acts model, we quantify
the utility of producing a marker based
on the information-theoretic measure of
surprisal, the cost of production, and a
bias to maintain uniform information den-
sity throughout the utterance. Experiments
based on the Penn Discourse Treebank
show that our approach outperforms state-
of-the-art approaches, while giving an ex-
planatory account of the speaker’s choice.

1 Introduction

Speakers or authors1 produce informative utter-
ances, such that the listeners or readers can under-
stand his/her message. Grice’s Maxim of Quantity
states that human speakers communicate by being
as informative as required, but no more (Grice,
1975). If a speaker always tries to provide as
much information as possible, the resulting utter-
ance could become excessively long and tedious.
Such utterance is not only effort consuming for the
speaker to produce, but also contains redundant in-
formation that is not necessary for the listener.

1‘Speakers’ and ‘listeners’ are interchangeably used with
‘authors’ and ‘readers’ in this article

In this work, we model how speakers plan the
presentation of discourse structure optimally in
terms of informativeness. Specifically, we propose
a model that predicts whether the speaker will use
or omit a discourse connective, given the sense of
discourse relation s/he wants to convey.

Discourse relations are relations between unit of
texts (known as arguments) that make a document
coherent. These relations can be marked in the sur-
face text or inferred by the readers, as shown in the
below examples.

1. It was a great movie, but I did not like it.

2. It was a great movie, therefore I liked it.

3. It was a great movie. I liked it.

The word ‘but’ indicates a Concession relation in
Example (1), and ‘therefore’ indicates a Result re-
lation in Example (2). We call ‘but’ and ‘there-
fore’ explicit discourse connectives (DCs). In Ex-
ample (3), DCs are absent but a Result relation can
be inferred. We say the DC is implicit in this case.

Explicit DCs are highly informative cues to
identify discourse relations (Pitler et al., 2008)
while implicit DCs are more ambiguous. For ex-
ample, ‘I liked it’ can also be read as a Justification
for the first sentence in Example (3).

Marking a discourse relation or not is subject to
ambiguity and redundancy. On one hand, using an
explicit DC avoids ambiguity. For example, if the
DC ‘but’ is omitted in Example (1), readers may
have problems in inferring the Concession sense.
On the other hand, if the intended discourse sense
is highly predictable, it is verbose or redundant to
insert an explicit DC in the utterance, such as the
DC ‘therefore’ in Example (2).
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A model that predicts the markedness of dis-
course relations not only contributes to a better
understanding of the human language production
mechanism, but is also important in generating
natural, humanlike texts and dialogues. In partic-
ular, the degree of markedness in discourse rela-
tions differs cross-lingually. Yung et al. (2015)
analyze the manual alignments of explicit and im-
plicit DCs in a Chinese-English translation cor-
pus and find that 30% of implicit DCs in Chinese
are translated to explicit DCs in English. It re-
mains a challenge for machine translation systems
to explicitate or implicitate discourse relations in
the source texts as human translators do (Becher,
2011; Meyer and Webber, 2013; Zuffery and Car-
toni, 2014; Hoek and Zufferey, 2015; Hoek et al.,
2015), since the markedness of the translation is
subject to the discourse planning of the target text.

In order to explain how human speakers choose
the optimal level of markedness in his utterance,
we model how speakers rationally balance be-
tween ambiguity and redundancy. In particular,
we use the Rational Speech Acts (RSA) model
(Frank and Goodman, 2012) to predict how speak-
ers reason about the ambiguity of an utterance. In
addition, we model how speakers adjust the re-
dundancy of the utterance following the Uniform
Information Density (UID) principle (Levy and
Jaeger, 2006).

We apply the framework to predict whether an
explicit or implicit DC is used in corpus data,
given the two arguments of the discourse rela-
tions and the discourse sense to be conveyed. Our
model not only achieves higher accuracy com-
paring with previous work (Patterson and Kehler,
2013), but also provides an interpretable account
of various cognitive factors behind the predicted
decision.

We start by a review of related work in Section
2, followed by the descriptions of our model in
Section 3 and experiments in Section 4.

2 Related work

We first provide background information on RSA
and UID, which are used in our proposed method.
It is followed by introduction of previous work
about prediction of DC markedness in corpus data.

2.1 Rational Speech Acts model

The RSA model (Frank and Goodman, 2012) is a
variation of the game-theoretic approach in prag-

matics (Jäger, 2012). It explains the communica-
tive reasoning of a speaker and a listener in terms
of Bayesian probabilities.

A rational listener assumes the utterance s/he
hears contains the optimal amount of information.
S/he predicts the intended message of a speaker by
Bayesian inference (Equation 1).

Plistener(s|w,C) ∝ Pspeaker(w|s, C)P (s) (1)

where w is the utterance produced by the speaker;
s is the message of an utterance; and C is the
context. Pspeaker(w|s, C) represents the listener’s
predicted speaker’s model, and P (s) represents
the salience of the message, which is shared
knowledge between the speaker and listener.

A rational speaker chooses an utterance by soft-
max optimizing the expected utility (U(w; s, C))
of the utterance (Equation 2).

Pspeaker(w|s, C) ∝ eα·U(w;s,C) (2)

α is the decision noise parameter, which is set to
1 to represent a rational speaker 2. S/He emu-
lates the listener’s interpretation and chooses an
utterance s/he believes to be informative. Also,
an utterance that is easy to produce is preferred.

Utility is thus defined as the informativeness
(I(s;w,C)) of the utterance, deducted by the cost
(D(w)) to produce it (Equation 3).

U(w; s, C) = I(s;w,C)−D(w) (3)

Since utterances that are unconventional and sur-
prising are less useful, Informativeness is quanti-
fied as the negative surprisal of the utterance with
respect to the message to be conveyed (Equation
4).

I(s;w,C) = lnP (s|w,C) (4)

The RSA model has successfully simulated re-
sults of psycholinguistic experiments concerning
different aspects of human communication, such
as scalar implicature, referential expressions and
language acquisition (Frank and Goodman, 2012;
Goodman and Stuhlmüller, 2013; Smith et al.,
2013; Bergen et al., 2014; Kao et al., 2014; Potts
et al., 2015). Besides experimental data, Orita et
al.(2015) applies RSA model to predict the choice
of referring expressions in corpus data and Mon-
roe and Potts (2015) optimizes a classifier based

2α = 0 means the decision is totally unrelated to prag-
matic reasoning. α = 1 represents the Luce’s choice axiom
(Frank and Goodman, 2012), i.e. a rational decision without
bias. α > 1 suggests biased choices.
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on RSA by inducing the semantic lexicon from a
training corpus. These works focus on the prag-
matic use of language, where the informativeness
and lexicon of an utterance largely depends on the
context (e.g. ‘Red’ is not valid to be used to refer
to a blue ball).

In this work, we apply RSA to predict the usage
of DCs, which is more universal across different
contexts (i.e. A DC can be used or dropped given
various discourse senses and contexts). Our model
is built upon the speaker’s model of RSA to pre-
dict speaker’s choice of explicit or implicit DCs.

2.2 Uniform Information Density
The UID principle views language communication
as a form of information transmission through a
noisy channel and a constant rate of information
flow is optimal according to Shannon’s Informa-
tion Theory (Levy and Jaeger, 2006; Genzel and
Charniak, 2002; Shannon, 1948). It states that
speakers structure utterances by optimizing infor-
mation density, which is the quantity of informa-
tion (measured by surprisal3) transmitted per unit
of utterance, such as word.

Information density rises when the utterance is
‘surprising’ and drops when an utterance is highly
predictable. To smooth the peaks and troughs,
speakers adjust the ambiguity of an utterance by
including or reducing linguistic markers.

Following the UID principle, linguistic choices
made by speakers are predicted more accurately
by incorporating an information density predictor
on top of other constraints. The predictor mea-
sures how easily a candidate utterance can be pre-
dicted and the speaker adjusts information density
based on the expected predictability.

UID is applied to explain a variety of speaker’s
options, such as phonetic (Aylett and Turk, 2004),
morphological (Frank and Jaeger, 2008) and syn-
tactic (Jaeger, 2010) reductions, and also referring
expressions (Tily and Piantadosi, 2009).

2.3 Explicit vs. Implicit DCs
The choice of discourse marking strategies has
been studied in earlier works as a subtask for natu-
ral language generation (Scott and de Souza, 1990;
Moser and Moore, 1995; Grote and Stede, 1998;
Soria and Ferrari, 1998; Allbritton and Moore,
1999). In the absence of large-scale resources, in-
vestigations are based on manually derived rules

3This is opposite to ‘informativeness’ in RSA, which is
defined by negative surprisal (Equation 4).

and lexicons or psycholinguistic experiments.
More recently, Asr and Demberg (2012)

presents an analysis of the PDTB, showing that
‘causal’ and ‘continuous’ senses are more often
implicit, or marked by less specific DCs. Indeed
these senses are presupposed by listeners accord-
ing to linguistics theories (Segal et al., 1991; Mur-
ray, 1997; Levinson, 2000; Sanders, 2005; Kuper-
berg et al., 2011). On the other hand, Asr and
Demberg (2015) finds that DCs are more often
dropped for the discourse relation Chosen Alter-
native (the relation typically signalled by the DC
‘instead’), if the context contains negation words,
which are identified cues for this relation. Simi-
larly, contextual difference in explicit and implicit
discourse relations are reported in attempts to train
implicit DC classifiers based on explicit DC in-
stances (Sporleder and Lascarides, 2008; Webber,
2009).

Asr and Demberg (2012; 2015) attribute the
corpus statistics to the UID hypothesis, which ex-
plains that expected, predictable relations are more
likely to be conveyed implicitly, and thus more
ambiguously, to maintain steady information flow.
However, there are explicit ‘causal’ and ‘contin-
uous’ relations and some Chosen Alternative are
marked even argument 1 is negated. Although
markedness measures are proposed to rate the im-
plicitness of a relation sense (Asr and Demberg,
2013; Jin and de Marneffe, 2015), these measures
only quantify the general markedness of the sense
in the data, but not the speaker’s choice for each
particular instance. In contrast, this work specif-
ically measures the predictability of a given re-
lation; generalizes the approach to all discourse
senses instead of particular senses or cues; and
combines the markedness preference with other
language production factors, in order to model
each instance of relation.

Patterson and Kehler (2013) is the only study
we are aware of that predicts the choice of explicit
or implicit DCs of each instance of relation. They
argue that while the decision is related to the ease
to infer the relation, it may also depend on other
stylistic or textual factors. A classifier is trained to
predict whether a candidate DC (i.e. the DC that
actually occurs in the text as an explicit DC, or
annotated as an implicit DC) is actually present,
given the sense of the discourse relation and the
arguments. Relatively shallow linguistic features
are used, such as whether the relations are em-
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bedded or shared, the previous discourse relation,
argument lengths, and content word ratios. The
classifier is trained and tested on a subset of re-
lations from the PDTB, after screening away in-
frequent senses and DCs. An overall high classi-
fication accuracy is achieved. Relation-level and
discourse-level features are found to be more use-
ful than argument-level features.

However, this work does not target at explaining
why an utterance is preferred by the speaker. The
focus is a data-driven approach that replicates the
occurrence of DCs in the corpus data. Our work
differs in that we model the option of markedness
from the viewpoint of human language produc-
tion, explaining the factors behind the speaker’s
choice. For example, we do not make use of the
candidate DC as a feature, since it is the result of
the speaker’s choice, if an explicit DC is preferred.
Nonetheless, our model achieves higher accuracy
when evaluated on the same test set.

3 The markedness model

Our model is based on the speaker’s model of
RSA. We first explain how we adapt the RSA
model to discourse presentation, followed by the
details of each component.

3.1 RSA for discourse relation presentation
According to Equation (2), the probability for a
speaker to use utterance w to convey his intended
message s in context C is:

P (w|s, C) =
eU(w;s,C)∑

w′∈W eU(w′;s,C)
(5)

In the case of discourse connectives, the ut-
terance w comes from the set W = {(exp)licit,
(imp)licit}, if both explicit and implicit DCs are
grammatically valid to convey s, the sense of dis-
course relation. Our model thus predicts speaker’s
choice of DCs based on the following two proba-
bilities:

P (exp|s, C) =
eU(exp;s,C)

eU(exp;s,C) + eU(imp;s,C)

P (imp|s, C) =
eU(imp;s,C)

eU(exp;s,C) + eU(imp;s,C)

(6)

According to Equation (3), the utility U of an
explicit DC equals to its informativeness I de-
ducted by production cost D.

U(exp; s, C) = I(s; exp, C)−D(exp) (7)

I(s; exp, C) is the informativeness of using an
explicit DC to present the sense s in discourse-
level context C. Each discourse sense has its
salience within the discourse context. It means
C is also informative, but we want to quantify
the informativeness of the DC only. Therefore,
we define I(s; exp, C) by the difference between
the informativess of ‘the explicit DC in context C’
and the informativeness of ‘context C’, which are
quantified by negative surprisal.

I(s; exp, C) = lnP (s|exp, C)− lnP (s|C) (8)

High I(s; exp, C) means it is informative and not
surprising to use an explicit DC for this sense.
P (s|exp, C) and P (s|C) are extracted from cor-
pus data. Details are explained in Subsection 3.2.

The principle of UID is incorporated into the
RSA model as a bias on the utility of the DCs.
A discourse relation is presented not only by the
DCs but also the arguments, and the amount of
discourse information of the whole utterance (DC
+ arguments) is fixed. According to UID, infor-
mation should be transmitted uniformly across the
utterance. If the arguments has much information
about the sense, the sense is predictable from the
arguments and thus the surprisal is small. The in-
formation density drops and has to be smoothed
by using a more ambiguous, less predictable utter-
ance, which can be achieved by reduction of a DC
(Asr and Demberg, 2015).

Therefore, according to UID, an implicit DC is
preferred if the arguments are informative. We
thus raise the utility of an implicit DC by defining
the probability for a speaker to choose an implicit
DC to be proportional to the sum of the the utilities
of a null DC and the arguments (args)4.

eU(imp;s,C) = eU(null;s,C) + eU(args;s,C) (9)

U(null; s, C) = I(s;null, C)−D(null) (10)

U(args; s, C) = I(s; arg, C)−D(args) (11)

The amount of information that the null DC pro-
vides for the discourse relation is defined similarly
as in Equation (8):

I(s;null, C) = lnP (s|null, C)− lnP (s|C)
(12)

4In turn, an explicit DC is preferred if the arguments are
not informative. We could also penalize the utility of an ex-
plicit DC by the argument utility, but the result will be the
same since the decision is based on Equation 13.
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On the other hand, the informativeness of argu-
ments, I(s; arg, C) is quantified by negative sur-
prisal in RSA. However, arguments are clauses
and sentences. It is not applicable to extract
P (s|args, C) from the corpus. We thus approxi-
mate I(s; arg, C) by the confidence of a discourse
parser in predicting discourse senses from the ar-
guments. Details will be explained in Section 3.3.

Lastly, various psycholinguistically motivated
measures are explored to approximate the prod-
cution cost D(exp) in Subsection 3.4. In con-
trast, no effort is required to produce a null DC.
Also, we assume that the arguments have been
produced to convey other information irrespective
of their discourse informativeness, so no extra ef-
fort is needed. Therefore, D(null) and D(args)
both equal 0.

To summarize, the model predicts that the
speaker will use an explicit DC if:

eU(exp;s,C) > eU(null;s,C) + eU(args;s,C) (13)

and that s/he will use an implicit DC otherwise.

3.2 Informativeness of DCs
This section explains how we estimate the infor-
mativeness in Equations (8) and (12). In dis-
course production, the utterance lexicon, W =
{exp, imp} in Equation (5), and the set of
speaker’s intended messages (all possible dis-
course relation senses) are always valid5. Thus
P (s|C), P (s|exp, C), and P (s|null, C) are uni-
versal distributions and can be extracted from cor-
pus data based on the co-occurrences of senses,
DCs, and contexts. We extract these empirical dis-
tributions from the training portion of the corpus.

We define context C as the surrounding dis-
course relations. Specifically, the discourse con-
texts (and their abbreviation in Table 2) are: the
full discourse sense annotated in PDTB (S), the
4-way top level sense (TS), the form of discourse
presentation (F) such as ‘explicit’ or ‘implicit’6,
and the pair of sense and form (SF or TSF). The
contexts are taken from window sizes of 1 to 2:
previous one (10) , next one (01), previous two
(20), next two (02), previous one paired with next
one (11). We hypothesize that the speaker also

5In case of referring expressions, for example, the lists of
referents and grammatically correct pronouns differ case by
case, e.g. ‘she’ is not a valid pronoun for a male.

6We use the 5 forms of discourse presentation defined in
the PDTB: explicit DC, implicit DC, alternative lexicaliza-
tion, entity relation and ‘no relation’.

thinks ahead the coming discourse structures when
planning the current ones. Various discourse con-
texts are compared in the experiment.

3.3 Informativeness of arguments

I(s; arg, C) in Equation (11) refers to the amount
of information in the arguments that contributes to
the interpretation of the discourse sense. Accord-
ing to UID, information density drops when the
discourse sense is predictable from the arguments
alone, and an implicit DC is preferred.

Presence of features in the arguments that sig-
nal a particular sense makes the sense more pre-
dictable, and thus promote the reduction of a DC.
For example, the DC ‘instead’ is less used to
present the Chosen Alternative sense if the first ar-
gument is negated (Asr and Demberg, 2015).

Generalizing this idea to capture various cues
in the arguments for various senses, we approx-
imate I(s; arg, C) by the confidence of an auto-
matic discourse parser in predicting the discourse
sense. An implicit relation parser uses various fea-
tures in the arguments to identify the implicit rela-
tion sense (Pitler et al., 2009; Lin et al., 2009; Park
and Cardi, 2012; Rutherford and Xue, 2014). If
the arguments contain much informative features,
the parser will predict the sense more confidently.

We propose two methods, for comparison, to
measure the confidence of the parser prediction. A
confident prediction means the parser will assign
a high probability to the one output sense. There-
fore, we use the negative surprisal of the estimated
probability Pp of the parser output sense soutput
(Equation 14) to approximate I(s; arg, C).

I(s; arg, C) ≈ wa · lnPp(soutput) (14)

At the same time, the probability distribution
of all senses is less uniform if one sense is as-
signed a high probability. We thus alternatively
approximate I(s; arg, C) by the negative entropy
of the probability distribution estimated by the
parser (Equation 15)7.

I(s; arg, C) ≈ wa
∑
sp∈O

Pp(sp) logPp(sp) (15)

where O is the set of senses defined in the parser
and wa is a positive weight tuned on the dev set.

7Note that we use information-theoretic measures to ap-
proximate I(s; arg, C), but these approximations are not re-
lated to the formulation of RSA nor UID.
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We measure the general informativeness of the ar-
guments to imply any discourse senses, so soutput
does not necessarily equal s.

We employ the implicit sense classifier from the
winning parser of shared task 2015 (Wang and
Lan, 2015), which is designed to identify a subset
of 14 implicit senses plus the entity relation. The
two arguments of a relation instance, which can
actually be explicit or implicit, are passed to the
implicit DC classifier and I(s; arg, C) is approx-
imated based on the output probabilities 8. Al-
though the performance of this state-of-the-art im-
plicit DC classifier is still unsatisfactory (34.45%
on PDTB Section 239) , our method only makes
use of the probability estimation of the predic-
tion10.

Our motivation of using the implicit DC clas-
sifier is based on the hypothesis that the classifier
can better predict the sense of relations that are ac-
tually implicit, than those that are actually explicit,
since more features in the arguments are identi-
fiable. In fact, it is the case. The classification
accuracy of the originally explicit relations is sig-
nificantly lower. This supports our motivation to
use the parser estimation as an information den-
sity predictor.

3.4 Cost function

The cost function D(exp) models speaker’s
effort required to produce an explicit DC for the
intended discourse sense. We propose 5 versions
of the cost function that are inspired by existing
psycholinguistic findings.

Mean DC length: Production cost intuitively
increases with word length. We define the mean
DC length of a discourse relation as the mean
word length of all valid DCs for that sense,
normalized by the average word length of all
DCs. A lexicon of possible DC per each discourse
sense is derived from the whole corpus. For
multi-word DCs, a white space is simply counted

8The implicit DC classifier is trained by Naı̈ve Bayes
based on features including syntactic features, polarity, im-
mediately preceding DC, and Brown cluster pairs. Syntac-
tic features are based on automatic parsing using Stanford
CoreNLP (Manning et al., 2014). The parser is trained on
the same sections of the PDTB as the training set used in our
experiment.

9http://www.cs.brandeis.edu/˜clp/
conll15st/results.html

10We use the parser’s probability estimates as is; conceiv-
ably it may be improved by an additional probabilistic cali-
bration step (Nguyen and O’Connor, 2015).

as one character. We do not use the length of the
candidate DC (refer to Section 2.3), because we
view that speakers first decide to use an explicit
DC or not, then decide which DC best expresses
the relation.

DC/arg2 ratio: Similarly, we use the mean
word count normalized by the word count of
argument 2 as another version of cost function.

Prime frequency: Structural priming refers
to the tendency for human to process a linguistic
construction (the target) more easily if the con-
struction is used before. In terms of language
production, a speaker tends to repeat a previous
construction (the prime) since it consumes less
effort than to generate an alternative construction.
We use the reciprocal of the count of primes
(any explicit DC occurring before the current
position) as the production cost, since the strength
of priming effect is known to be increasing with
the frequency of the primes (Levelt and Kelter,
1982; Bock, 1986; Smith and Wheeldon, 2001).

Prime distance: We also use the prime-target
distance, normalized by the length of the article,
as another version of the production cost. Psy-
cholinguistic findings suggest that the priming
effect is more subtly affected by the prime-target
distance (Gries, 2005; Bock et al., 2007; Jaeger
and Snider, 2008).

Distance from start: We use the relative
position of the relation within the article as the
production cost. We hypothesize that more effort
is needed as the production proceeds.

The range of values of the cost function depends
on the cost definition. We thus adjust the values
with a constant weight wc that is tuned on the dev
set in the experiments:

D(exp) = wc · cost(exp) (16)

4 Experiment

We apply the model to simulate speaker’s choice
of explicit or implicit DC for discourse relations
in the PDTB corpus. The aim of the experiment
is to answer two questions: (1) Does the model
explain the factors affecting speaker’s choice of
DC markedness? If the hypotheses of the model is
appropriate, each component in the model should
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contribute to the prediction accuracy. (2) How
does the prediction performance compare with the
state-of-the-art, i.e. Patterson and Kelher (2013)?

We first describe the details of the data we use
in the experiments.

4.1 Data: The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) is the
largest available discourse-annotated corpus in
English (Prasad et al., 2008). The text are news ar-
ticles collected from the Wall Street Journals. Be-
low are 3 examples of the annotation.

1. The OTC market has only a hand-
ful of takeover-related stocks. But
(Explicit;Comparison-Contrast) they fell
sharply. (WSJ2379)

2. Japan’s Finance Ministry had set up mecha-
nisms ... to give market operators the author-
ity to suspend trading in futures at any time.
(Implicit: but; Comparison) Maybe it wasn’t
enough. (WSJ0097)

3. Before (Explicit; Temporal-Asynchronous-
Precedence) becoming a consultant in 1974,
Mr. Achenbaum was a senior executive at J.
Walter Thompson Co..(WSJ0295)

Explicit DCs are labelled with relation senses
(Example 1). If an explicit DC is absent between
two sentences within the same paragraph and an
implicit relation can be inferred, a candidate DC
and the relation sense are annotated (Example 2).

Our model is based on the assumption thatW =
{explicit, implicit} for all relations, yet it is no-
table that intra-sentential implicit DCs are not an-
notated in the PDTB (Prasad et al., 2014). We
thus exclude intra-sentential samples, such that
W = {explicit, implicit} is always true and free
of grammatical constraints. Also, as a result of the
annotation procedure, implicit DCs always occur
in between 2 arguments in their original order, i.e.
Arg1-DC-Arg2. To preserve the original order of
the discourse arguments, which is also part of the
communicative structure intended by the speaker
but out of the scope of this model, we only use
samples in the Arg1-DC-Arg2 order. For example,
Example (3) is excluded from our training data.
Finally, annotations of other forms of discourse
relations, such as entity relations and attributions,
are also excluded.

The screened data set contains 5,201 explicit

and 16,049 implicit relations11. Sections 2-22 are
used as the training set, from which probability
distributions are extracted. For easier comparison
with previous work, we select the dev set (sections
0-1) and test set (sections 23-24) in the same way
as in Patterson and Kehler (2013), where only re-
lations of infrequent DCs and senses are removed.
The resulting dev and test sets contain 1720 and
1878 relations respectively. Samples not included
in our screened dataset are classified as explicit by
default.

sense exp imp
1 Expansion.Conjunction 1,380 3,314
2 Comparison.Contrast 1,283 1,200
3 Expansion.Restatement.

Specification 75 2,406
4 Contingency.Cause.

Reason 28 2,295
5 Contingency.Cause.

Result 269 1,649
6 Expansion.Instantiation 119 1,383
7 Comparison.Contrast.

Juxtaposition 507 672
8 Comparison.Concession.

Contra-expectation 475 179
9 Temporal.Asynchronous.

Precedence 117 479
10 Expansion.List 84 374
... ... ... ...
17 Expansion.Conjunction.

–Temporal.Synchrony 74 114
... ... ... ...
50 Contingency.Pragmatic

cause.Justification
#Expansion.Instantiation 0 6

... ... ... ...
122 Contingency 0 1
Total 5,201 16,049

Table 1: Sense distribution of explicit and implicit
DCs in screened data set.

Senses in the PDTB are defined in a hierarchy of
2 to 3 levels. Some relations have multiple senses.
Up to 2 DCs can be annotated to an implicit re-
lation and in turn each (implicit or explicit) DC
can be labelled with up to 2 senses. Most exist-
ing works split a multi-sense sample into separated

114 cases of intra-sentential implicit relations, due to sen-
tence splitting errors of the PTB (single sentences wrongly
splitted into two), are removed.
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discourse arg. info. cost function Dev: Sections 0-1 Test: Sections 23-24
context C eU(args;s,C) D(exp) accuracy F1exp F1imp accuracy F1exp F1imp

BL constant 0 0 .849 .872 .817 .854 .875 .823
SOA (Patterson and Kehler, 2013) – – – .866 – –
(a) F10 0 0 .855 .876 .826 .855 .876 .826

SF10 0 0 .859 .877 .835 .855 .874 .829
F20 0 0 .854 .875 .825 .854 .875 .825
F11 0 0 .851 .872 .822 .854 .875 .825
TS10 0 0 .852 .872 .822 .854 .875 .824

(b) constant surprisal 0 .895++ .901 .887 .870 .881 .857
constant entropy 0 .895++ .902 .888 .870 .881 .856

(c) constant 0 mean DC length .894++ .897 .890 .876+ .886 .865
constant 0 DC/arg2 ratio .895++ .900 .889 .873 .882 .863
constant 0 prime frequency .886+ .888 .885 .873 .882 .862
constant 0 prime distance .892++ .902 .881 .875 .886 .862
constant 0 distance from start .893++ .894 .892 .877+ .879 .875

(d) F10 entropy DC/arg2 ratio .902++ .903 .901 .882+ .883 .881
TSF01 surprisal prime frequency .895++ .898 .892 .889++* .893 .885
TS01 entropy prime distance .895++ .900 .889 .890++* .892 .888

Table 2: Accuracies and F1 scores of predicted DC markedness. The best values are bolded.
+/++:significant improvement over baseline (BL) accuracy at p < 0.05 and p < 0.001 respectively;
*:significant improvement over state-of-the-art (SOA) accuracy at p < 0.03 (by Pearson’s χ2 test)
(refer to Section 3.2 for abbreviations of discourse context C.)

samples, each labelled with one of the senses.
However, it is notable that the individual senses of
a multi-sense relation are not disjoint12 and having
multiple senses is part of the sense (Asr and Dem-
berg, 2013; Prasad et al., 2014). Multi-sense is
an important factor of our DC production model:
a speaker could have chosen an explicit DC for
each sense, but if s/he has to express two senses at
the same time, an implicit DC could be more us-
able. Therefore, we treat all combination of senses
as individual senses, each containing 1 to 3 joint
sense labels13 This results in a total of 122 senses.

Table 1 is a summary of the distribution in de-
scending order of frequency. In fact, joint multi-
senses are not rare: the most frequent multi-sense
is the 17th most frequent sense.

4.2 Results

We apply the markedness model to predict the
speaker’s choice of DC markedness on the dev
and test sets. Table 2 shows the results under

12Similarly, certain level 2 senses, as in Example (2), are
backoffed from level 3 senses due to annotator disagreement.
This is also a kind of multi-sense.

13There is only 1 sample of 3 joint labels in our screened
dataset.

various settings, evaluated by accuracy and the
harmonic mean of precision and recall for explicit
and implicit relations respectively.

Row BL shows the results of the markedness
model without the cost function and argument
informativeness component, and with constant
context C. We consider this setting as the base-
line, in which the prediction is solely based on the
distributions of P (s|exp) and P (s|imp). Consid-
erably high accuracy is achieved, suggesting that
the speaker’s choice of markedness is strongly
related to the intended discourse sense.

Row (a) shows the prediction results based
on the distributions of P (s|exp, C) and
P (s|imp,C), where C is the discourse con-
text. The 5 best combinations of contexts and
window sizes are shown. Refining the utility of
DCs by these contextual constraints, in particular
previous contexts, improves the classification
accuracy, but the improvement is not significant.
This suggests that speaker’s choice of markedness
not only depends on surrounding discourse rela-
tions but also other contextual factors.

Row (b) shows the contribution of the argument
informativeness component, under constant dis-
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course context and production cost. Classification
accuracy increases (significantly for the dev set)
when the usability of explicit DC is deducted by
the estimated informativeness of the arguments,
supporting the UID principle. Predictions based
on the surprisal of the parser output sense and
the entropy of the parser output distribution are
similar. We also experiment by adjusting with the
estimated argument informativeness only if the
parser output sense is correct (matching at the top
level sense). Similar improvement is observed.

Row (c) shows the contribution of the cost
function, when discourse context is set as constant
and argument informativeness is not considered.
Adjusting the utility of explicit DCs by their pro-
duction cost increases the classification accuracy
most significantly. Among the various features to
model production cost, ‘DC length’ and ‘distance
from start’ features give the best results.

Row (d) shows the performance of predictions
based on the 3 best combinations of components.
The highest accuracies and F1 scores are achieved
for both explicit and implicit relations.

These results answer the first question of
the experiment purpose: the proposed model
explains the speaker’s choice of DC markedness
in terms of DC and argument informativeness,
and production cost, while contextual discourse
structure is a moderate constraint to the choice.

The answer to the second question is also
positive. Significant improvement above the
state-of-the-art (Row SOA) is achieved by the 2
best combinations (89.0%, 88.9% vs. 86.6%).

Lastly, we compare the results with a linear
classifier trained on the features specified in the
model, i.e. the discrete values of the intended
sense and various discourse context definitions,
and real values of various cost functions and argu-
ment informativeness estimates. Note that in the
proposed model, the training data is used to derive
the P (s|exp, C) and P (s|null, C) distributions
only, while the linear classifier learns from the
features and DC markedness of the training set14.
The classifier achieves accuracy of 88.3% on the
test set, which does not significantly outperform
previous work. This suggests the advantage of the

14When extracting the argument informativeness features
from the training set, using the automatic discourse parser, we
penalize the parser estimates of the implicit samples by a con-
stant ratio, since the discourse parser is also trained on these
samples. We use LIBLINEAR (Fan et al., 2008) to build the
classifiers.

information-theoretic configuration of our model.

5 Conclusion

We present a language production model that pre-
dicts a speaker’s choice of using an explicit DC
or not given the discourse relation s/he wants to
express. Our model gives an cognitive account of
the speaker’s choice and also outperforms previ-
ous work on the same task.

Our study shows that a speaker organizes the
discourse structure by balancing the pro (infor-
mativeness) and con (production cost and re-
dundancy) of using an explicit marker, although
the option is a subtle preference in the ab-
sence of other grammatical constraints. Using an
information-theoretic approach, our model tackles
the option as a rational preference by the speaker,
who wants to contribute to an informative speech
act. Furthermore, we take a logical step forward to
formalize the idea of the UID theory, that redun-
dant explicit markers are avoided if the discourse
relation is clear enough from the context.

As future work, we plan to improve the marked-
ness model by making fuller use of the training
data, such as learning a more expressive formu-
lation of the context governing the choice of ex-
plicit or implicit DCs. We also plan to evaluate
the effectiveness of the model in applications, such
as natural language generation or machine trans-
lation tasks. On the other hand, as discourse pre-
sentation differs across genres (Webber, 2009) and
mediums (Tonelli et al., 2010), the model can be
applied to predict the explicitation of discourse re-
lations from, for example, news articles to spoken
dialogues. Another direction is to apply the RSA
framework in the opposite direction - to build a
listener’s model that simulates a listener’s recog-
nition of a discourse sense given an utterance, as
proposed in Yung et al.(2016).
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Abstract

In this paper, we propose a method which
uses semi-supervised convolutional neu-
ral networks (CNNs) to select in-domain
training data for statistical machine trans-
lation. This approach is particularly effec-
tive when only tiny amounts of in-domain
data are available. The in-domain data
and randomly sampled general-domain
data are used to train a data selection
model with semi-supervised CNN, then
this model computes domain relevance
scores for all the sentences in the general-
domain data set. The sentence pairs with
top scores are selected to train the sys-
tem. We carry out experiments on 4 lan-
guage directions with three test domains.
Compared with strong baseline systems
trained with large amount of data, this
method can improve the performance up
to 3.1 BLEU. Its performances are signifi-
cant better than three state-of-the-art lan-
guage model based data selection meth-
ods. We also show that the in-domain data
used to train the selection model could be
as few as 100 sentences, which makes fine-
grained topic-dependent translation adap-
tation possible.

1 Introduction

Statistical machine translation (SMT) systems are
trained on bilingual parallel and monolingual data.
The training corpora typically come from different
sources, and vary across topics, genres, dialects,
authors’ written styles, etc., which are usually re-
ferred as “general domain” training data. Here
the word “domain” is often used to indicate some
combination of all above and other possible hid-
den factors (Chen et al., 2013). At run time, the

content to be translated may come from a different
domain. Due to the mismatch in “domains”, it is
possible to achieve better performance by adapting
the SMT system to the test domain (in-domain).

However, manually creating training data to
match the test domain is not a preferred solu-
tion, because 1) sometimes the test domain is
not known when training the model, and it could
change from sentence to sentence; 2) even if the
test domain is pre-determined, the resources re-
quired and slow turnaround in data collection pro-
cess will still delay the system development pro-
cess.

Therefore, training data selection is widely used
for domain adaptation in statistical machine trans-
lation (Zhao et al., 2004; Lü et al., 2007; Ya-
suda et al., 2008; Moore and Lewis, 2010; Ax-
elrod et al., 2011; Duh et al., 2013; Axelrod et
al., 2015). Data selection techniques select mono-
lingual or bilingual data that are similar to the in-
domain seed data based on some criteria, which
are incorporated into the training data. The most
successful data selection approaches (Moore and
Lewis, 2010; Axelrod et al., 2011) train n-gram
language models on in-domain text to select sim-
ilar sentences from the large general-domain cor-
pora according to the cross entropy. Furthermore,
(Duh et al., 2013) obtained some gains by extend-
ing these approaches from n-gram models to re-
current neural network language models (Mikolov
et al., 2010). To train the in-domain language
model, a reasonable size in-domain data set, which
typically includes several thousands of sentences,
is required. In (Axelrod et al., 2011; Duh et al.,
2013), the sizes of the in-domain data sets are 30K
and over 100K sentences respectively.

However, we do not always have access to
large or even medium amounts of in-domain data.
With the growth of social media, new domains
have emerged which need machine translation but
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which have very limited in-domain data, maybe
just a few hundred sentence pairs. What’s more,
if one wishes to build a large scale topic-specific
MT system with hundreds of topics, it is pro-
hibitively expensive to collect tens of thousands of
in-domain sentences for each topic.

In this paper, we try to address this challenge,
i.e., domain adaptation with very limited amounts
of in-domain data. Inspired by the success of con-
volutional neural networks applied to image and
text classification (Krizhevsky et al., 2012; Kim,
2014; Johnson and Zhang, 2015a; Johnson and
Zhang, 2015b), we propose to use CNN to clas-
sify training sentence pairs as in-domain or out-
of-domain sentences. To overcome the problem
of limited in-domain data, we propose to augment
the original model with semi-supervised convolu-
tional neural networks for domain classification.

Convolutional neural networks (LeCun and
Bengio, 1998) are feed-forward neural networks
that exploit the internal structure of data through
convolution layers; each computation unit pro-
cesses a small region of the input data. CNN
has been very successful on image classification.
When applying it to text input, the convolution
layers process small regions of a document, i.e.,
a sequence of sentences or words. CNN has
been gaining attention, and is now used in many
text classification tasks (Kalchbrenner et al., 2014;
Zeng et al., 2014; Johnson and Zhang, 2015b; Yin
and Schütze, 2015; Wang et al., 2015).

In many of these studies, the first layer of the
network converts words to word embeddings us-
ing table lookup. The word embeddings are ei-
ther trained as part of CNN training, or pre-trained
(thus fixed during model training time) on an ad-
ditional unlabled corpus. The later is termed
semi-supervised CNN. Given tiny amounts of in-
domain data, the information learned in these pre-
trained word embeddings is very helpful.

We use a small amount of in-domain data, such
as the development set, as the positive sample and
randomly select the same number of sentences
from the general-domain training data as the neg-
ative sample to form the training sample for train-
ing the CNN classification model. This is a typ-
ical supervised learning setting. To compensate
the limit of in-domain data size, we use word2vec
(Mikolov et al., 2013) to learn the word embed-
ding from a large amount of general-domain data.
Together with the labeled data, these word embed-

dings are fed to the convolution layer as additional
input to train the final classification model. This is
a semi-supervised framework. The learned mod-
els are then used to classify each sentence in the
general-domain training data based on their do-
main relevance score. The top N sentence pairs
are selected to train the SMT system. We carry
out experiments on 4 different language directions
with 9-15M sentence pairs in each direction. The
test domains include short message (sms), tweets,
and Facebook posts. The experimental results
show that our method is able to select a small
amount of training data that is used to create a sys-
tem which outperforms baseline systems trained
with all the general-domain data. For example,
we obtain over 3.1 BLEU improvement on the
Chinese-to-English sms task with around 3% of
the whole training data. Experiments also show
that we can reduce the size of the in-domain sam-
ple to around 100 sentences and still obtain a 2.1
BLEU improvement.

2 Related Work

2.1 SMT adaptation techniques

Domain adaptation to SMT systems has recently
received considerable attention. Based on the
availability of in-domain bilingual or monolingual
training data, there are several adaptation scenar-
ios. Different domain adaptation techniques, in-
cluding self-training, data selection, data weight-
ing, etc., have been developed for different scenar-
ios.

Self-training (Ueffing and Ney, 2007; Schwenk,
2008; Bertoldi and Federico, 2009) uses general-
domain bilingual parallel data and in-domain
monolingual data. An MT system is first trained
on bilingual general-domain data, then it is used to
translate in-domain monolingual data. The result-
ing target sentences or bilingual sentence pairs are
then used as additional training data for language
model or translation model training.

Some early data selection approaches (Zhao et
al., 2004; Lü et al., 2007; Moore and Lewis, 2010)
use in-domain monolingual data to select mono-
lingual or bilingual data that are similar to the
in-domain data according to some criterion. The
state-of-the-art data selection approaches (Axel-
rod et al., 2011; Duh et al., 2013; Axelrod et al.,
2015) search for bilingual parallel sentences using
the difference in language model perplexity be-
tween two language models trained on in-domain
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and out-domain data, respectively.
Data weighting approaches weight each data

item according to its relevance to the in-domain
data. Mixture model adaptation (Foster and Kuhn,
2007; Foster et al., 2010; Sennrich, 2012; Foster
et al., 2013) assumes that the general-domain data
can be clustered to several sub-corpora, with some
parts that are not too far from test domain. It com-
bines sub-models trained on different sub-corpus
data sets linearly or log-linearly with different
weights. Vector space model adaptation (Chen et
al., 2013) has the same assumption, and it weights
each phrase pair based on vector space model
(VSM). (Chen et al., 2014) improved the VSM
adaptation by extending it to distributed VSM and
grouped VSM. Instance weighting adopts a rich
set of features to compute weights for each in-
stance in the training data; it can be applied to sen-
tence pairs (Matsoukas et al., 2009) or phrase pairs
(Foster et al., 2010).

If in-domain comparable data are available,
(Daume III and Jagarlamudi, 2011; Irvine et al.,
2013) propose mining translations from the com-
parable data to translate out-of-vocabulary (OOV)
words and capture new senses for the new test do-
mains. (Dou and Knight, 2012; Zhang and Zong,
2013) learn bilingual lexical or phrase tables from
in-domain monolingual data with a decipherment
method, then incorporate them into the SMT sys-
tem.

All the above approaches assume that either
there is an in-domain (mono-lingual, parallel, or
comparable) data set with a reasonable size avail-
able, or that some sub-corpora are closer to the test
domain than others. There is no previous work
considering the scenario where only a tiny amount
of in-domain data is available: this is the scenario
we address in this paper.

2.2 CNNs for text classification

In a text classification task, key phrases (or n-
grams) can help in determining the class of the
text, regardless of their locations in the text. For
example, the word “desktop” in a sentence may
indicate this sentence has computers as its topic;
the phrase “not satisfactory” may indicate that the
sentiment of the entire sentence is negative. This
kind of strong local information about the class of
a text can appear in different regions in the input.
Convolutional neural networks are useful for text
classification because convolutional and pooling

layers allow the model to find such local indica-
tors, wherever they are in the text.

Recently, CNNs have shown promising results
on many text classification tasks, such as senti-
ment analysis (Kalchbrenner et al., 2014; Kim,
2014), topic and sentiment classification (Johnson
and Zhang, 2015a; Johnson and Zhang, 2015b),
paraphrase identification (Yin and Schütze, 2015),
entity relation type classification (Zeng et al.,
2014; dos Santos et al., 2015), short-text classi-
fication (Wang et al., 2015), event extraction and
detection (Chen et al., 2015; Nguyen and Grish-
man, 2015), question understanding and answer-
ing (Dong et al., 2015), and box-office prediction
based on reviews (Bitvai and Cohn, 2015).

Within the CNN architecture, people also use
word embeddings for text classification. (Kalch-
brenner et al., 2014) proposes a CNN frame-
work with multiple convolution layers, with la-
tent, dense and low-dimensional word embed-
dings as inputs. (Kim, 2014) defines a one-layer
CNN architecture with comparable performance
to (Kalchbrenner et al., 2014). The word em-
beddings input to the CNN can be pre-trained,
and treated as fixed input, or tuned for a specific
task. (Johnson and Zhang, 2015b) extends their
“one-hot” CNN in (Johnson and Zhang, 2015a)
to take region embeddings trained on unlabeled
data as CNN input. CNNs that input word em-
beddings trained on unlabeled data are considered
to be semi-supervised CNNs.

3 Semi-supervised CNN

A CNN is a feed-forward network consisting of
convolutional and pooling layers. Each neuron in
the convolutional layer of a CNN processes a seg-
ment of input signals, which could be a region in
an image or a window of words in a sentence. The
convolution layer consists of a set of kernels that
compute the dot product between different seg-
ments of the input. The kernel associated with the
l-th segment of the input x computes:

σ(W · wl(x) + b), (1)

where wl(x) ∈ Rq is the input window vector that
represents the l-th segment of data. Weight matrix
W ∈ Rm×q and bias vector b ∈ Rm are shared by
all the kernels in the same layer, and are learned
during the training process.

Because the convolution kernel allows interac-
tion between different parts of the input, it reduces
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the requirement to select features by hand. Im-
portant features in a sentence are automatically se-
lected with pooling, which is a form of non-linear
down-sampling. It takes the maximum or the av-
erage value observed in each of the d dimension
vectors over different windows. As a result, infor-
mation from multiple d dimension vectors is kept
in a single d dimensional vector. At training time,
both the weight vectors and the bias vectors are
learned with stochastic gradient ascent.

3.1 One-hot CNN

When applying CNN to NLP tasks, the first layer
of the network takes word embeddings as in-
put. Word embeddings can be pre-trained using
tools such as word2vec (Mikolov et al., 2013) or
GloV e (Pennington et al., 2014), in which case
a table lookup is enough. Alternatively, these
vectors can be learned from scratch as a step in
the network training process. When there are
enough in-domain data, training in-domain word
embeddings is meaningful. However, when the
in-domain data are limited, the word embeddings
learned from these data are unreliable. In this
case, the input sentence x can be represented
with one-hot vectors where each vector’s length
is the vocabulary size, value 1 at index i indi-
cates word i appears in the sentence, and 0 indi-
cates its absence. A CNN with one-hot vector in-
put is called “one-hot CNN” (Johnson and Zhang,
2015a). wl(x) can be either a concatenation of
one-hot vectors, in which the order of concatena-
tion is the same as the word order in the sentence,
or it can be a bag-of-word/n-gram vector. The
bag-of-word (BOW) representation loses word or-
der information but is more robust to data sparsity.
In (Johnson and Zhang, 2015a), a CNN whose in-
put being BOW representation is called bow-CNN
while input with concatenation of vectors is called
seq-CNN. The window size and stride (distance
between the window centers) are meta-parameters.
σ in Equation 1 is a component-wise non-linear
function such as ReLU. Thus, each kernel gener-
ates anm-dimensional vector wherem is the num-
ber of weight vectors or neurons. These vectors
from all the windows of each sentence are aggre-
gated by the pooling layer, by either component-
wise maximum (max pooling) or average (average
pooling), then used by the top layer as features for
classification.

3.2 Semi-supervised CNN
Although the size of the in-domain data is nor-
mally small, the unlabeled data from general do-
mains are much larger and easier to obtain. To
exploit large amounts of unlabeled data, we adopt
a semi-supervised learning framework similar to
(Johnson and Zhang, 2015b). It first learns word
embedding from unlabeled data, then generates
the text segment embedding based on these unsu-
pervised word embeddings. Both the one-hot vec-
tors from the labeled data and the segment embed-
dings from unlabeled data are combined to train
the CNN classifier.

The word embeddings map each word to a real-
valued, dense vector (Bengio et al., 2003). Word
embeddings are often learned with an unsuper-
vised learning paradigm: each dimension of the
continuous word embeddings aims at capturing a
latent feature, reflecting certain syntactic and se-
mantic meanings of the word. A widely used
approach for generating useful word embeddings
was proposed in (Mikolov et al., 2013). This
method learns the word embeddings such that the
likelihood of generating a word based on its con-
texts (or generating the context of a given word,
aka “skip-gram” model) is maximized. It speeds
up the training with the hierarchical softmax strat-
egy and a simplified learning objective, which
scales very well to very large training corpora.
We adopt the skip-gram model, which intuitively
learns a classifier that predicts words conditioned
on the central word’s vector representation. An
advantage of such distributed representations is
that words that have similar contexts, and there-
fore similar syntactic and semantic properties, will
tend to be near one another in the low-dimensional
vector space.

Given the word embeddings trained from unla-
beled data, a sentence is represented as a sequence
of d-dimensional vectors, which is the input to a
convolution network that generates feature vec-
tors for each text segment. The segment vectors
and one-hot vectors are fed into another convolu-
tion layer, which outputs the classification labels.
The second network is trained with the labeled in-
domain/out-domain data. Therefore, Equation 1 is
replaced with:

σ(W · wl(x) + V · ul(x) + b), (2)

where wl(x) is the one-hot vector obtained from
segment l in a sentence, and ul(x) is the embed-
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ding learned from the unlabeled data (general do-
main training data), applied to the same segment.
We train this model with the labeled data. We up-
date the weights W, V, bias b, and the top-layer
parameters so that the loss function is minimized
on the labeled training data.

4 Adaptation based on data selection

We use the in-domain data from the translation
task as positive samples, and randomly select the
same number of sentences from the general do-
main data as negative samples. We train the CNN
model on the positive and negative samples with
the one-hot CNN or semi-supervised CNN de-
scribed previously. The trained CNN model is
then used to classify the sentence pairs in the gen-
eral domain data. The sentence pairs with high
in-domain scores are selected to train the machine
translation system.

We classify the source sentence and target sen-
tences separately. The CNN model computes
two scores for each sentence pair. The sentence
pairs are selected based on the source scores, tar-
get scores or the sum of source and target scores
(Moore and Lewis, 2010). Experiments show that
selection based on the sum of the source and target
scores achieves the best performance. We empiri-
cally determine the number of selected in-domain
sentences for each MT system based on experi-
mental results on a separate validation set.

When selecting the negative samples, we either
randomly sample from the whole data pool, or se-
lect from the sentences which have been labeled
as negative in the first round classification. Addi-
tional experiments show that the results from these
two methods are very similar, so we sample the
negative samples from the whole general domain
for simplicity.

5 Experiments

Our goal is to adapt the MT system when only a
tiny amount of in-domain data is available. So in
our experiments, we did not consider any domain
information about the training data, such as the
source of each corpus. What we have is a small
development set (dev) and one or more test sets
(test) which are in the same domain.

5.1 Data setting

We carried out experiments in four different data
settings. All four have large amounts of bilin-

gual training data: 9-15M sentences. The first
two involve translation into English (en) from Chi-
nese (zh) and Arabic (ar), while the last two in-
volve translation from English to Spanish (es) and
Chinese. The training data are all publicly avail-
able, either from LDC,1 and transcriptions of TED
talks2 where the data are the mixture of newswire,
web crawl, UN proceedings and TED talks, etc.,
or from WMT,3 where the data are the mixture of
Europarl, web crawl, news-commentary, UN pro-
ceedings, etc. The dev and test sets are “short mes-
sages (sms)” for the first task, which are also avail-
able from LDC; “tweets” for the second task; pub-
licly available “Facebook post” for the remaining
two tasks. The last three tasks are from social me-
dia - an intriguing new area of application for MT -
where in-domain parallel training data are seldom
publicly available. Table 1 summarizes the statis-
tics of the training, dev, and test data for all the test
sets.

5.2 Experiment setup
We experiment with two CNN-based data selec-
tion strategies:

1. ohcnn: Data selection by supervised one-hot
CNN (Section 3.1)

2. sscnn: Data selection by semi-supervised
CNN (Section 3.2)

We employ the dev set as in-domain data.
All the supervised CNN models are trained with
the in-domain dev data as positive examples and
an equal number of randomly selected general-
domain sentences as negative examples. All the
meta-parameters of the CNN are tuned on held-
out data; we generate both bow-regions and seq-
regions and input them to the CNN. We set the
region size to 5 and stride size to 1. The non-
linear function we chose is “ReLU”, the number
of weight vectors or neurons is 500. The pooling
method is component-wise maximum (max pool-
ing). We use the online available CNN toolkit
conText.4 To train the general domain word em-
bedding, we used word2vec.5 The size of the
vector was set to 300. We also generate word-
embedding-based bow-regions and seq-regions as
additional input to the CNN.

1https://catalog.ldc.upenn.edu/
2https://wit3.fbk.eu/
3http://statmt.org/wmt15/
4http://riejohnson.com/cnn download.html
5https://code.google.com/archive/p/word2vec/
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language zh2en ar2en en2es en2zh
test domain sms tweets facebook facebook
train origin LDC&TED LDC&TED WMT LDC&TED

train size 12.20M 8.97M 15.23M 12.20M
dev size 6,016 1,000 800 650
test size 3,282 1,500 3,378 3,343

Table 1: Summary of the data. “sms” means “short message”. “facebook” means “Facebook post”. Data
is given as the number of sentence pairs, “M” represents “million”. The tasks “zh2en” and “en2zh” use
the same training data.

We compared with four baselines for each task.
The first baseline SMT system is trained using all
general-domain data. The other three systems are
trained with data selected with different LM-based
data selection methods as same as in (Duh et al.,
2013).6 The four baselines are:

1. alldata: All general-domain data.

2. ngram: Data selection by 3-gram LMs with
Witten-Bell 7 smoothing (Axelrod et al.,
2011)

3. rnnlm: Data selection by recurrent neural net-
work LM, with the RNNLM Toolkit (Duh et
al., 2013)

4. comblm: Data selection by the combined LM
using ngram & rnnlm (equal weight) (Duh et
al., 2013).

All systems are trained with a standard phrase-
based SMT system with standard settings, i.e.,
GIZA++ alignment, phrase table Kneser-Ney
smoothing, hierarchical reordering models, target
side 4-gram language model, “gigaword” 5-gram
language model for systems with English as the
target language, etc.

5.3 Experimental results
We evaluated the system using BLEU (Papineni
et al., 2002) score on the test set. Following
(Koehn, 2004), we use the bootstrap resampling
test to do significance testing. Table 2 summa-
rizes the results and numbers of the selected sen-
tences for each task. First, we can see that all
the data selection methods improved the perfor-
mance over the baseline “alldata” with much less

6The code and scripts for the three baselines are available
at http://cl.naist.jp/ kevinduh/a/acl2013/.

7For small amounts of data, Witten-Bell smoothing had
performed better than Kneser-Ney smoothing in our experi-
ments.

training data (only around 2.5% to 10% of the
whole training data). Consistent with (Duh et
al., 2013), the three LM based data selection all
got improvements, where “rnnlm” obtained better
performance than the “ngram” on average. It is
not clear that combining the two language model
methods (“comblm”) yields further improvement.
While the one-hot CNN method “ohcnn” obtained
similar improvement as the three LM-based meth-
ods on average. The semi-supervised CNN (sscnn)
achieved the best performance for all the tasks: its
improvements over the “alldata” baseline are 3.1,
1.4, 0.7 and 1.4 BLEU score respectively. It beats
“ohcnn” by about 0.5 BLEU point on average.

There are two results worth noticing. First,
task 1 (zh2en sms task) obtained very high BLEU
improvement through data selection. This is be-
cause in this task, there is a 120K in-domain sub-
set within the general-domain data. If we train
a system on this in-domain data set, we get 25.7
BLEU on the test set. The LM-based methods
did not beat this “in-domain data only (indata)”
baseline, while the semi-supervised CNN method
performed significantly better than this baseline at
p < 0.05 level. In the top 300K selected sentence
pairs, LM-based methods can select around 90K
out of 120K in-domain sentence pairs, while both
“ohcnn” and “sscnn” can select around 105K in-
domain sentence pairs. This demonstrates the ef-
fectiveness of the proposed approach. Second, for
the other three tasks, there is no in-domain data
component in the general-domain data (that we
know of). Even in this case, we achieved up to 1.4
BLEU improvement, which also demonstrates the
effectiveness of our method: it can select highly
suitable in-domain sentences, even when the in-
domain data is very limited.

In our second experiment, we examine how
many labeled samples are needed to train a strong
CNN classifier to select the MT training in-domain
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zh2en ar2en en2es en2zh
#sent BLEU #sent BLEU #sent BLEU #sent BLEU

alldata 12.2M 22.9 8.9M 17.6 15.2M 26.8 12.2M 10.0
ngram 300K 25.3** 800K 18.2** 1600K 26.9 400K 10.5*
rnnlm 300K 25.6** 800K 18.4** 1600K 27.0 400K 10.5*

comblm 400K 25.7** 800K 18.4** 1400K 27.0 500K 10.4*
ohcnn 300K 25.3** 700K 18.2* 1200K 27.1* 400K 11.0**+
sscnn 300K 26.0**+ 700K 19.0**++ 1300K 27.5**++ 300K 11.4**++

Table 2: Summary of the results. Data size is given as number of sentence pairs. The number of selected
in-domain sentences is determined by the performance on held-out data. “M” represents million, “K”
represents thousand. */** means result is significantly better than the “alldata” baseline at p < 0.05 or
p < 0.01 level, respectively. +/++ means result is significantly better than the best LM-based method at
p < 0.05 or p < 0.01 level, respectively.

Figure 1: The performance on zh2en sms task with different numbers of in-domain sentences to train
LM-based vs. CNN-based classifiers, which are then used to select 300K sentence pairs for MT system
training. X-axis is the number of in-domain sentences, Y-axis is BLEU score.
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data. Fixing the number of MT training sentence
pairs to 300K that will be selected by the CNN, we
reduce the CNN training data from 6,000 down to
100 sentence pairs in steps. The performance of
the resulting MT systems for all five data selection
methods is shown in Figure 1.

From Figure 1, we can see that all the data selec-
tion methods obtained improvement compared to
the “alldata” baseline. When the in-domain train-
ing sample is more than 1600 sentence pairs, all
the data selection methods obtain reasonable and
comparable improvement, while “sscnn” is better
than the best LM-based method by 0.3-0.5 BLEU.
However, when the in-domain training sample is
less than 800 sentence pairs, the difference be-
tween the “sscnn” and other methods gets bigger,
and CNN-based methods get more stable results
than the LM-based methods get. For instance,
when the in-domain set increases from 400 to 800,
the LM-based methods did not get an improve-
ment; “ngram” and “comblm” even got a small
loss on BLEU score. When the in-domain sam-
ple is reduced to 100 sentence pairs, the LM-based
methods only get a small improvement over the
baseline, while the “ohcnn” got a 1.2 BLEU score
improvement over the baseline and “sscnn” got a
2.1 BLEU improvement over the baseline. Thus,
even if we have no domain knowledge about the
training data, when we have only 100 sentences in
the test domain, the semi-supervised CNN classi-
fier can still select a good in-domain subset and
achieve good performance.

We obtained 2.1 BLEU improvement even
when we randomly select only 100 in-domain sen-
tence pairs to train the classification model. Is
this just because we luckily sampled a good part
of the in-domain data? We repeated the “100
in-domain sentence pairs experiment” three times
for our most effective method - “sscnn” - by
sampling three different in-domain sets from the
whole 6,016-sentence dev set. The average BLEU
score we got is 25.03, and the standard deviation is
0.12. This means that our algorithm is quite stable
even when the in-domain set is very small.

5.4 Discussion

Why do semi-supervised convolutional neural net-
works perform so well for data selection? We
think there are two main reasons. The first one
is that convolution captures the important domain
information of the words in the window, and

the max-pooling operation combines the vectors
which, as a result, focuses on the most important
“features” in the sentence. Even a highly domain-
specific sentence normally contains both domain-
specific words and general-domain words. For
example, in “I have a Dell desktop and a Mac-
book laptop”, the words “Dell, laptop, Macbook,
laptop” are from the computer domain, while the
words “I, have, a, and” are general. However, the
topic of this sentence is decided by the domain
specific words, not the general-domain words. If
the properties of the words “Dell, laptop, Mac-
book, laptop” are kept and highlighted, classifi-
cation will be more accurate for this sentence.
The second reason is the use of word embedding
learned from the whole general-domain data. A
very important advantage of word embedding is
that words that have similar meaning will tend to
be grouped together in the vector space. If the
word “Lenovo” in the test sentence is not seen
in the labeled data, it would be difficult for LM-
based models to classify sentences like “I prefer
choosing a Lenovo machine” as computer-domain
sentence. However, the word embeddings learned
from much larger unlabeled data ensure that the
word embedding of “Lenovo” is close to that of
“Dell”. According to the domain of its neighbor
words, the CNN model can still label this sentence
as belonging to the computer domain. This prop-
erty is particularly useful for fast or fine grained
adaptation, where obtaining large amount of in-
domain samples may be slow or too expensive.

6 Conclusions and future work

Domain adaptation with only a tiny amount of in-
domain data is a hard problem. In this paper, we
proposed to use a semi-supervised CNN to train
the domain classification model, then use the CNN
to select the data which is most similar to the
test domain. Experiments on large data condition
SMT tasks showed that this outperforms state-of-
the-art language-model-based data selection meth-
ods significantly. Particularly when the size of
the in-domain data is small, semi-supervised CNN
classifier can still select in-domain bilingual sen-
tences to train an adapted SMT system. In future
work, we plan to 1) apply this approach to select
the data from large size target language corpus for
language model training; 2) use the source sen-
tences of the test set to select the data for online
dynamic adaptation.
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