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Introduction

This volume contains papers describing the CoNLL-2015 Shared Task and the participating systems.
This year, we continue the tradition of the Conference on Computational Natural Language Learning
(CoNLL) of having a high profile shared task in Natural Language Processing (NLP), focusing on
Shallow Discourse Parsing, which involves identifying individual discourse relations that are present
in a natural language text. A discourse relation can be expressed explicitly or implicitly, and takes two
arguments realized as sentences, clauses, or in some rare cases, phrases. Shallow Discourse Parsing is
a fundamental NLP task and can potentially benefit a range of natural language applications such as
Information Extraction, Text Summarization, Question Answering, Machine Translation, and Sentiment
Analysis.

A total of sixteen teams from three continents participated in this task, and fourteen of them submitted
system description papers. Many different approaches were adopted by the participants, and we hope
that these approaches help to advance the state of the art in Shallow Discourse Parsing. The training,
development, and test sets were adapted from the Penn Discourse TreeBank (PDTB). In addition, we
also annotated a blind test set following the PDTB guidelines solely for the shared task. The results on
the blind test set were used to rank the participating systems. The evaluation scorer, also developed for
this shared task, adopts an F1 based metric that takes into account the accuracy of identifying the senses
and arguments of discourse relations as well as explicit discourse connectives. We hope that the data
sets and the scorer, which are freely available upon the completion of the shared task, will be a useful
resource for researchers interested in discourse parsing.

For the first time in the history of the CoNLL shared tasks, participating teams, instead of running their
systems on the test set and submitting the output, were asked to deploy their systems on a remote virtual
machine and use a web-based evaluation platform to run their systems on the test set. This meant they
were unable to actually see the data set, thus preserving its integrity and ensuring its replicability. We
hope that the successful implementation of this new evaluation protocol in the shared task will encourage
its adoption in future NLP evaluation campaigns.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi Prasad, Christopher Bryant, and Attapol
Rutherford

Organizers of the CoNLL-2015 Shared Task
July 2015
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Abstract

The CoNLL-2015 Shared Task is on Shal-
low Discourse Parsing, a task focusing on
identifying individual discourse relations
that are present in a natural language text.
A discourse relation can be expressed ex-
plicitly or implicitly, and takes two argu-
ments realized as sentences, clauses, or in
some rare cases, phrases. Sixteen teams
from three continents participated in this
task. For the first time in the history of the
CoNLL shared tasks, participating teams,
instead of running their systems on the test
set and submitting the output, were asked
to deploy their systems on a remote virtual
machine and use a web-based evaluation
platform to run their systems on the test
set. This meant they were unable to ac-
tually see the data set, thus preserving its
integrity and ensuring its replicability. In
this paper, we present the task definition,
the training and test sets, and the evalua-
tion protocol and metric used during this
shared task. We also summarize the dif-
ferent approaches adopted by the partic-
ipating teams, and present the evaluation
results. The evaluation data sets and the
scorer will serve as a benchmark for future
research on shallow discourse parsing.

1 Introduction

The shared task for the Nineteenth Conference
on Computational Natural Language Learning
(CoNLL-2015) is on Shallow Discourse Parsing
(SDP). In the course of the sixteen CoNLL shared

tasks organized over the past two decades, pro-
gressing gradually to tackle phenomena at the
word and phrase level phenomena and then the
sentence and extra-sentential level, it was only
very recently that discourse level processing has
been addressed, with coreference resolution (Prad-
han et al., 2011; Pradhan et al., 2012). The 2015
shared task takes the community a step further in
that direction, with the potential to impact scores
of richer language applications (Webber et al.,
2012).

Given an English newswire text as input, the
goal of the shared task is to detect and categorize
discourse relations between discourse segments in
the text. Just as there are different grammati-
cal formalisms and representation frameworks in
syntactic parsing, there are also different concep-
tions of the discourse structure of a text, and
data sets annotated following these different the-
oretical frameworks (Stede, 2012; Webber et al.,
2012; Prasad and Bunt, 2015). For example, the
RST-DT Corpus (Carlson et al., 2003) is based
on the Rhetorical Structure Theory of Mann and
Thompson (1988) and produces a complete tree-
structured RST analysis of a text, whereas the
Penn Discourse TreeBank (PDTB) (Prasad et al.,
2008; Prasad et al., 2014) provides a shallow rep-
resentation of discourse structure, in that each dis-
course relation is annotated independently of other
discourse relations, leaving room for a high-level
analysis that may attempt to connect them. For
the CoNLL-2015 shared task, we chose to use the
PDTB, as it is currently the largest data set anno-
tated with discourse relations.1

1http://www.seas.upenn.edu/˜pdtb
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The necessary conditions are also in place for
such a task. The release of the RST-DT and PDTB
has attracted a significant amount of research on
discourse parsing (Pitler et al., 2008; Duverle and
Prendinger, 2009; Lin et al., 2009; Pitler et al.,
2009; Subba and Di Eugenio, 2009; Zhou et al.,
2010; Feng and Hirst, 2012; Ghosh et al., 2012;
Park and Cardie, 2012; Wang et al., 2012; Bi-
ran and McKeown, 2013; Lan et al., 2013; Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Li and
Nenkova, 2014; Li et al., 2014; Lin et al., 2014;
Rutherford and Xue, 2014), and the momentum
is building. Almost all of these recent attempts
at discourse parsing use machine learning tech-
niques, which is consistent with the theme of the
CoNLL conference. The resurgence of deep learn-
ing techniques opens the door for innovative ap-
proaches to this problem. A shared task on shal-
low discourse parsing provides an ideal platform
for the community to gain crucial insights on the
relative strengths and weaknesses of “standard”
feature-based learning techniques and “deep” rep-
resentation learning techniques.

The rest of this overview paper is structured as
follows. In Section 2, we provide a concise def-
inition of the shared task. We describe how the
training and test data are prepared in Section 3. In
Section 4, we present the evaluation protocol, met-
ric and scorer. The different approaches that par-
ticipants took in the shared task are summarized in
Section 5. In Section 6, we present the ranking of
participating systems and analyze the evaluation
results. We present our conclusions in Section 7.

2 Task Definition

The goal of the shared task on shallow discourse
parsing is to detect and categorize individual dis-
course relations. Specifically, given a newswire
article as input, a participating system is asked
to return a set of discourse relations contained in
the text. A discourse relation, as defined in the
PDTB, from which the training data for the shared
task is drawn, is a relation taking two abstract ob-
jects (events, states, facts, or propositions) as argu-
ments. Discourse relations may be expressed with
explicit connectives like because, however, but, or
implicitly inferred between abstract object units.
In the current version of the PDTB, non-explicit
relations are inferred only between adjacent units.
Each discourse relation is labeled with a sense se-
lected from a sense hierarchy, and its arguments

are generally in the form of sentences, clauses, or
in some rare cases, noun phrases. To detect a dis-
course relation, a participating system needs to:

1. Identify the text span of an explicit discourse
connective, if present;

2. Identify the spans of text that serve as the two
arguments for each relation;

3. Label the arguments as (Arg1 or Arg2) to in-
dicate the order of the arguments;

4. Predict the sense of the discourse relation
(e.g., “Cause”, “Condition”, “Contrast”).

3 Data

3.1 Training and Development
The training data for the CoNLL-2015 Shared
Task was adapted from the Penn Discourse Tree-
Bank 2.0. (PDTB-2.0.) (Prasad et al., 2008;
Prasad et al., 2014), annotated over the one mil-
lion word Wall Street Journal (WSJ) corpus that
has also been annotated with syntactic structures
(the Penn TreeBank) (Marcus et al., 1993) and
propositions (the Proposition Bank) (Palmer et al.,
2005). The PDTB annotates discourse relations
that hold between eventualities and propositions
mentioned in text. Following a lexically grounded
approach to annotation, the PDTB annotates rela-
tions realized explicitly by discourse connectives
drawn from syntactically well-defined classes, as
well as implicit relations between adjacent sen-
tences when no explicit connective exists to relate
the two. A limited but well-defined set of implicit
relations are also annotated within sentences. Ar-
guments of relations are annotated in each case,
following the minimality principle for selecting all
and only the material needed to interpret the rela-
tion. For explicit connectives, Arg2, which is de-
fined as the argument with which the connective is
syntactically associated, is in the same sentence as
the connective (though not necessarily string ad-
jacent), but Arg1, defined simply as the other ar-
gument, is unconstrained in terms of its distance
from the connective and can be found anywhere in
the text (Exs. 1-3). (All the following PDTB ex-
amples shown highlight Arg1 (in italics), Arg2 (in
boldface), expressions realizing the relation (un-
derlined), sense (in parentheses), and the WSJ file
number for the text with the example (in square
brackets)).

(1) GM officials want to get their strategy to reduce
capacity and the work force in place before those

2



talks begin. (Temporal.Asynchronous.Precedence)
[wsj 2338]

(2) But that ghost wouldn’t settle for words, he wanted
money and people – lots. So Mr. Carter formed
three new Army divisions and gave them to a
new bureaucracy in Tampa called the Rapid
Deployment Force. (Contingency.Cause.Result)
[wsj 2112]

(3) Big buyers like Procter & Gamble say there are
other spots on the globe, and in India, where the
seed could be grown. “It’s not a crop that can’t
be doubled or tripled,” says Mr. Krishnamurthy.
But no one has made a serious effort to trans-
plant the crop. (Comparison.Concession.Contra-
expectation) [wsj 0515]

Between adjacent sentences unrelated by any
explicit connective, four scenarios hold: (a) the
sentences may be related by a discourse relation
that has no lexical realization, in which case a con-
nective (called an Implicit connective) is inserted
to express the inferred relation (Ex. 4), (b) the sen-
tences may be related by a discourse relation that
is realized by some alternative non-connective ex-
pression (called AltLex), in which case these alter-
native lexicalizations are annotated as the carriers
of the relation (Ex. 5), (c) the sentences may be
related not by a discourse relation realizable by a
connective or AltLex, but by an entity-based co-
herence relation, in which case the presence of
such a relation is labeled EntRel (Ex 6), and (d)
the sentences may not be related at all, in which
case they are labeled NoRel. Relations annotated
in these four scenarios are collectively referred to
as Non-Explicit relations in this paper.

(4) The Arabs had merely oil. Implicit=while These
farmers may have a grip on the world’s very
heart. (Comparison.Contrast) [wsj 0515]

(5) Now, GM appears to be stepping up the pace
of its factory consolidation to get in shape for
the 1990s. One reason is mounting competition
from new Japanese car plants in the U.S. that
are pouring out more than one million vehicles a
year at costs lower than GM can match. (Contin-
gency.Cause.Reason) [wsj 2338]

(6) Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29. EntRel Mr. Vinken
is chairman of Elsevier N.V., the Dutch publish-
ing group. [wsj 0001]

In addition to the argument structure of rela-
tions, the PDTB provides sense annotation for
each discourse relation, capturing the polysemy of
connectives. Senses are organized in a three-level
hierarchy, with 4 top-level semantic classes. For
each class, a second level of types is defined, and
there are 16 such types. There is a third level of
subtype which provides further refinement to the

second level types. In the PDTB annotation, an-
notators are allowed back off to a higher level in
the sense hierarchy if they are not certain about
a lower level sense. That is, if they cannot dis-
tinguish between the subtypes under a type sense,
they can just annotate the type level sense, and if
there is further uncertainty in choosing among the
types under a class sense, they can just annotate
the class level sense. Most of the discourse rela-
tion instances in the PDTB are annotated with at
least a type level sense, but there are also a small
number annotated with only a class level sense.

The PDTB also provides annotations of attribu-
tion over all discourse relations and each of their
arguments, as well as of text spans considered as
supplementary to arguments of relations. How-
ever, both of these annotation types are excluded
from the shared task.

PDTB-2.0. contains annotations of 40,600 dis-
course relations, distributed into the following five
types: 18,459 Explicit relations, 16,053 Implicit
relations, 624 AltLex relations, 5,210 EntRel rela-
tions, and 254 NoRel relations. We provide Sec-
tions 2–21 of the PDTB 2.0 release as the training
set, and Section 22 as the development set.

3.2 Test Data

We provide two test sets for the shared task: Sec-
tion 23 of the PDTB, and a blind test set we pre-
pared especially for the shared task. The official
ranking of the systems is based on their perfor-
mance on the blind test set. In this section, we
provide a detailed description of how the blind test
set was prepared.

3.2.1 Data Selection and Post-processing

For the blind test data, 30,158 words of untok-
enized English newswire texts were selected from
a dump of English Wikinews2, accessed 22nd
October 2014, and annotated in accordance with
PDTB 2.0 guidelines.

The raw Wikinews data was pre-processed as
follows:

• News articles were extracted from the
Wikinews XML dump3 using the publicly
available WikiExtractor.py script.4

2
https://en.wikinews.org/

3
https://dumps.wikimedia.org/enwikinews/20141119/

enwikinews-20141119-pages-articles.xml.bz2
4
http://medialab.di.unipi.it/wiki/Wikipedia_

Extractor
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• Additional processing was done to remove
any remaining XML information and pro-
duce a raw text version of each article (in-
cluding its title).

• All paragraphs were double spaced to ease
paragraph boundary identification.

• Each article was named according to its
unique Wikinews ID such that it is accessible
online at http://en.wikinews.org/
wiki?curid=ID.

Initially, 30k words of text were selected from
this processed data at random. However, it soon
became apparent that some texts were too short
for PDTB-style annotation or otherwise still con-
tained remnant XML errors. Another issue was
that since Wikinews texts are written by members
of the public, rather than professionally trained
journalists, some articles were considered as not
up to the same standards of spelling and grammar
as the WSJ texts in the PDTB.

For these reasons, despite making the decision
to allow the correction of extremely minor errors
(such as obvious typos and occasional article or
preposition errors), just under half of the orig-
inal 30k word random selection was ultimately
deemed unsuitable for annotation. Consequently,
the remaining texts were selected manually from
Wikinews, with a slight preference for longer arti-
cles with many multi-sentence paragraphs that are
more consistent with WSJ-style texts.

3.2.2 Annotations
Annotation of the blind test set was carried out by
two of the shared task organizers, one of whom
(fifth author) was the main annotator (MA) while
the other (fourth author), a lead developer of the
PDTB, acted as the reviewing annotator (RA), re-
viewing each relation annotated by the MA and
recording agreement or disagreement. Annotation
involved marking the relation type (Explicit, Im-
plicit, AltLex, EntRel, NoRel), relation realiza-
tion (explicit connective, implicit connective, Al-
tLex expression), arguments (Arg1 and Arg2), and
sense of a discourse relation, using the PDTB an-
notation tool.5 Unlike the PDTB guidelines, we
did not allow back-off to the top class level dur-
ing annotation. Every relation was annotated with
a sense chosen from at least the second type level.

5
https://www.seas.upenn.edu/˜pdtb/tools.shtml#

annotator

Also different from the PDTB, attribution spans or
attribution features were not annotated.

Before commencing official annotation, MA
was trained in PDTB-2.0. style annotation by RA.
A review of the guidelines was followed by double
blind annotation (by MA and RA) of a small num-
ber of WSJ texts not previously annotated in the
PDTB, and differences were then compared and
discussed. MA then also underwent self-training
by first annotating some WSJ texts that were al-
ready annotated in the PDTB, and then comparing
these annotations, to further strengthen knowledge
of the guidelines.

After the training period, the entire blind test
data was annotated by MA over a period of a few
weeks, and then reviewed by RA. Disagreements
during the review were manually recorded using
a formal scheme addressing all aspects of the an-
notation, including relation type, explicit connec-
tive identification, senses, and each of the argu-
ments. This was done to verify the integrity of
the blind test data and keep a record of any confu-
sion or difficulty encountered during annotation.
Manual entry of disagreements was done within
the tool interface, through its commenting feature.
A recorded comment in the tool is unique to a re-
lation token and is recorded in a stand-off style.
Disagreements were later resolved by consensus
between MA and RA.

3.2.3 Inter-annotator Agreement
The record of disagreements was utilized to com-
pute inter-annotator agreement between MA and
RA. The overall agreement was 76.5%, which
represents the percentage of relations on which
there was complete agreement. Agreement on ex-
plicit connective identification was 96.0%, repre-
senting the percentage of explicit connectives that
both MA and RA identified as discourse connec-
tives. We note here that if a connective was identi-
fied in the blind test data, but was not annotated
in the PDTB despite its occurrence in the WSJ
(e.g.,“after which time”, “despite”), we did not
consider it a potential connective and hence did
not include it in the agreement calculation. When
the textual context allowed it, such expressions
were instead marked as AltLex.

We also did a more fine-grained assessment to
determine agreement on Arg1, Arg2, Arg1+Arg2
(i.e., the number of relations on which the anno-
tators agreed on both Arg1 and Arg2), and senses.
This was done for all the relation types considered

4



together, as well as for Explicit and Non-Explicit
relation types separately. Sense disagreement was
computed using the CoNLL sense classification
scheme (see Section 3.3), even though the anno-
tation was done using the full PDTB sense clas-
sification scheme (see Table 2). The agreement
percentages are shown in Table 1. When multi-
ple senses were provided for a relation, a disagree-
ment on any of the senses was counted as disagree-
ment for the relation; disagreement on more than
one of the senses was counted only once. Absence
of a second sense by one annotator when the other
did provide one was also counted as disagreement.

As the table shows, agreement on senses was
reasonably high overall (85.5%), with agreement
for Explicit relations expectedly higher (91.0%)
than for Non-Explicit relations (80.9%). Over-
all agreement on arguments was also high, but in
contrast to the senses, agreement was generally
higher for the Non-Explicit than for Explicit re-
lations. Agreement on the Arg1 of Explicit rela-
tions (89.6%) is, not surprisingly, lower than for
Arg2 (98.7%), because the Arg1 of Explicit rela-
tions can be non-adjacent to the connective’s sen-
tence or clause, and thus, harder to identify. For
the Non-Explicit relations, in contrast, but again
to be expected, because of the argument adjacency
constraint for such relations, agreement on Arg1
(95.0%) and Arg2 (96.4%) shows minimal differ-
ence. Table 1 also provides the percentage of re-
lations with agreement on both Arg1 and Arg2,
showing this to be higher for Non-Explicit rela-
tions (92.4%) than for Explicit relations (88.7%).

Compared to the agreement reported for the
PDTB (Prasad et al., 2008; Miltsakaki et al.,
2004), the results obtained here (See Table 1)
are slightly better. PDTB agreement on Arg1
and Arg2 of Explicit relations is reported to be
86.3% and 94.1%, respectively, whereas overall
agreement on arguments of Non-Explicit relations
is 85.1%. For the senses, although the CoNLL
senses do not exactly align with the PDTB senses,
a rough correspondence can be assumed between
the CoNLL classification as a whole and the type
and subtype levels of the PDTB classification, for
which PDTB reports 84% and 80%, respectively.

3.3 Adapting the PDTB Annotation for the
shared task

The discourse relations annotated in the PDTB
have many different elements, and it is impracti-

cal to predict all of them in the context of a shared
task where participants have a relatively short time
frame in which to complete the task. As a result,
we had to make a number of exclusions and sim-
plifications, which we describe below.

The core elements of a discourse relation are the
two abstract objects as its arguments. In addition
to this, some discourse relations include supple-
mentary information that is relevant but not neces-
sary (as per the minimality principle) to the inter-
pretation of a discourse relation. Supplementary
information is associated with arguments, and op-
tionally marked with the labels “Sup1”, for mate-
rial supplementary to Arg1, and “Sup2”, for mate-
rial supplementary to Arg2. An example of a Sup1
annotation is shown in (7). In the shared task, sup-
plementary information is excluded from evalua-
tion when computing argument spans.

(7) (Sup1 Average maturity was as short as 29
days at the start of this year), when short-
term interest rates were moving steadily up-
ward. Implicit=for example The average seven-
day compound yield of the funds reached
9.62% in late April . (Expansion.Instantiation)
[wsj 0982]

Also excluded from evaluation, to make the
shared task manageable, are attribution relations
annotated in PDTB. An example of an explicit at-
tribution is “he says” in (8), marked over Arg1.

(8) When Mr. Green won a $240,000 verdict in
a land condemnation case against the state in
June 1983 , he says Judge O’Kicki unexpect-
edly awarded him an additional $100,000 (Tempo-
ral.Synchrony) [wsj 0267]

The PDTB senses form a hierarchical sys-
tem of three levels, consisting of 4 classes, 16
types, and 23 subtypes. While all classes are
divided into multiple types, some types do not
have subtypes. Previous work on PDTB sense
classification has mostly focused on classes
(Pitler et al., 2009; Zhou et al., 2010; Park
and Cardie, 2012; Biran and McKeown, 2013;
Li and Nenkova, 2014; Rutherford and Xue,
2014). The senses that are the target of prediction
in the CoNLL-2015 shared task are primarily
based on the second-level types and a selected
number of third-level subtypes. We made a few
modifications to make the distinctions clearer
and their distributions more balanced, and these
changes are presented in Table 2. First, senses in
the PDTB that have distinctions that are too subtle
and thus too difficult to predict are collapsed.
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Arg1 agr Arg2 agr Arg1+Arg2 agr Sense agr
Explicit 89.6% 98.7% 88.7% 91.0%
Non-Explicit 95.0% 96.4% 92.4% 80.9%
Total 92.5% 97.4% 90.7% 85.5%

Table 1: Inter-annotator agreement on blind test data annotation in various conditions.

CoNLL senses PDTB senses
Temporal.Synchronous same
Temporal.Asynchronous.Precedence same
Temporal.Asynchronous.Succession same
∗ Contingency.Cause.Reason Contingency.Cause.Reason + Contingency.Pragmatic cause
Contingency.Cause.Result same
∗ Contingency.Condition Contingency.Condition + Contingency.Pragmatic condition +

Subtypes of Contingency.Condition + Subtypes of
Contingency.Pragmatic Condition

∗ Comparison.Contrast Comparison.Contrast + Comparison.Pragmatic contrast + Subtypes
of Comparison.Contrast

∗ Comparison.Concession Comparison.Concession + Comparison.Pragmatic concession +
Subtypes of Comparison.Concession

∗ Expansion.Conjunction Expansion.Conjunction + Expansion.List
Expansion.Instantiation same
∗Expansion.Restatement Expansion.Restatement + Subtypes of Expansion.Restatement
∗ Expansion.Alternative Expansion.Alternative.Conjunctive +

Expansion.Alternative.Disjunctive
Expansion.Alternative.Chosen
alternative

same

Expansion.Exception same
EntRel same

Table 2: Flat list of 15 sense categories used in CoNLL-2015, with correspondences to PDTB senses.
Senses that involve a change from the PDTB senses are marked ∗.

For example, “Contingency.Pragmatic cause” is
merged into “Contingency.Cause.Reason”, and
“Contingency.Pragmatic condition” is merged
into “Contingency.Condition”. Second, the
distinction between “Expansion.Conjunction” and
“Expansion.List” is not clear in the PDTB and
in fact, they seem very similar for the most part,
so the latter is merged into the former. Third,
while “Expansion.Alternative.Conjunctive”
and “Expansion.Alternative.Disjunctive” are
merged into “Expansion.Alternative”, a third
subtype of “Expansion.Alternative”, “Expan-
sion.Alternative.Chosen Alternative” is kept as a
separate category as its meaning involves more
than presentation of alternatives. Finally, while
“EntRel” relations are not treated as discourse
relations in the PDTB, we have included this cat-
egory as a sense for sense classification since they

are a kind of coherence relation and we require
systems to label these relations in the shared task.
In contrast, instances annotated with “NoRel”
are not treated as discourse relations and are
excluded from the training, development and test
data sets. This means that a system needs to treat
them as negative samples and not identify them as
discourse relations. These changes have resulted
in a flat list of 15 sense categories that need to be
predicted in the shared task. A comparison of the
PDTB senses and the senses used in the CoNLL
shared task is presented in Table 2.
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Relation Sense WSJ-Train WSJ-Dev WSJ-Test

Explicit Overall 14722 680 923
Expansion.Conjunction 4323 185 242
Comparison.Contrast 2956 160 271
Contingency.Condition 1148 50 63
Temporal.Synchrony 1133 68 71
Comparison.Concession 1080 12 27
Contingency.Cause.Reason 943 38 74
Temporal.Asynchronous.Succession 842 51 64
Temporal.Asynchronous.Precedence 770 49 36
Contingency.Cause.Result 487 19 38
Comparison 347 20 1
Expansion.Instantiation 236 9 21
Expansion.Alternative 195 6 5
Expansion.Restatement 121 6 7
Expansion.Alternative.Chosen-alternative 96 6 3
Expansion 24 0 0
Expansion.Exception 13 0 0
Temporal 4 1 0
Temporal.Asynchronous 3 0 0
Contingency 1 0 0

Implicit Overall 13156 522 769
Expansion.Conjunction 3227 120 141
Expansion.Restatement 2486 101 190
Contingency.Cause.Reason 2059 73 113
Comparison.Contrast 1614 82 127
Contingency.Cause.Result 1372 49 89
Expansion.Instantiation 1132 47 69
Temporal.Asynchronous.Precedence 418 25 7
Comparison.Concession 193 5 5
Temporal.Synchrony 153 8 5
Comparison 145 1 0
Expansion.Alternative.Chosen-alternative 142 2 15
Temporal.Asynchronous.Succession 125 3 5
Expansion 73 6 3
Expansion.Alternative 11 0 0
Contingency.Condition 2 0 0
Temporal 1 0 0
Expansion.Exception 1 0 0
Contingency.Cause 1 0 0
Contingency 1 0 0

EntRel Overall 4133 215 217
EntRel 4133 215 217

AltLex Overall 524 19 19
Contingency.Cause.Result 147 4 8
Expansion.Conjunction 94 3 8
Contingency.Cause.Reason 76 5 8
Expansion.Restatement 57 0 1
Temporal.Asynchronous.Precedence 42 2 2
Expansion.Instantiation 33 1 1
Comparison.Contrast 32 2 1
Temporal.Asynchronous.Succession 18 0 0
Temporal.Synchrony 16 1 0
Comparison.Concession 4 0 1
Expansion 2 0 0
Contingency.Condition 2 0 0
Expansion.Exception 1 0 0
Expansion.Restatement 0 1 0
Expansion.Alternative 0 0 0

Table 3: Distribution of senses across the four relation types in the WSJ PDTB data used for the shared
task. The total numbers of the relations here are less than in the complete PDTB release because some
sections (00, 01, and 24) are excluded for the shared task, following standard split of WSJ data in the
evaluation community. We are intentionally withholding distribution over the blind test set in case there
is a repeat of the SDP shared task using the same test set.
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Table 3 shows the distribution of the senses
across the four discourse relations within the WSJ
PDTB data6. We are intentionally withholding the
sense distribution across the blind test set in case
there is a repeat of the SDP shared task using the
same test set.

4 Evaluation

4.1 Closed and open tracks

In keeping with the CoNLL shared task tradition,
participating systems were evaluated in two tracks,
a closed track and an open track. A participat-
ing system in the closed track could only use the
provided PDTB training set but was allowed to
process the data using any publicly available (i.e.,
non-proprietary) natural language processing tools
such as syntactic parsers and semantic role label-
ers. In contrast, in the open track, a participating
system could not only use any publicly available
NLP tools to process the data, but also any pub-
licly available (i.e., non-proprietary) data for train-
ing. A participating team could choose to partici-
pate in the closed track or the open track, or both.

The motivation for having two tracks in CoNLL
shared tasks was to isolate the contribution of al-
gorithms and resources to a particular task. In the
closed track, the resources are held constant so that
the advantages of different algorithms and models
can be more meaningfully compared. In the open
track, the focus of the evaluation is on the overall
performance and the use of all possible means to
improve the performance of a task. This distinc-
tion was easier to maintain for early CoNLL tasks
such as noun phrase chunking and named entity
recognition, where competitive performance could
be achieved without having to use resources other
than the provided training set. However, this is
no longer true for a high-level task like discourse
parsing where external resources such as Brown
clusters have proved to be useful (Rutherford and
Xue, 2014). In addition, to be competitive in the
discourse parsing task, one also has to process the
data with syntactic and possibly semantic parsers,
which may also be trained on data that is outside
the training set. As a compromise, therefore, we
allowed participants to use the following linguistic
resources in the closed track, other than the train-

6There is a small number of instances in the PDTB train-
ing set that are only annotated with the class level sense. We
did not take them out of the training set for the sake of com-
pleteness.

ing set:

• Brown clusters
• VerbNet
• Sentiment lexicon
• Word embeddings (word2vec)

To make the task more manageable for partic-
ipants, we provided them with training and test
data with the following layers of automatic lin-
guistic annotation processed with state-of-the-art
NLP tools:

• Phrase structure parses (predicted using the
Berkeley parser (Petrov and Klein, 2007))
• Dependency parses (converted from phrase

structure parses using the Stanford converter
(Manning et al., 2014))

As it turned out, all of the teams this year chose
to participate in the closed track.

4.2 Evaluation Platform: TIRA

We use a new web service called TIRA as the plat-
form for system evaluation (Gollub et al., 2012;
Potthast et al., 2014). Traditionally, participating
teams were asked to manually run their system on
the blind test set without the gold standard labels,
and submit the output for evaluation. This year,
however, we shifted this evaluation paradigm, ask-
ing participants to deploy their systems on a re-
mote virtual machine, and to use the TIRA web
platform (tira.io) to run their systems on the test
sets without actually seeing the test sets. The or-
ganizers would then inspect the evaluation results,
and verify that participating systems yielded ac-
ceptable output.

This evaluation protocol allowed us to maintain
the integrity of the blind test set and reduce the
organizational overhead. On TIRA, the blind test
set can only be accessed in the evaluation envi-
ronment, and the evaluation results are automati-
cally collected. Participants cannot see any part of
the test sets and hence cannot do iterative devel-
opment based on the test set performance, which
preserves the integrity of the evaluation. Most im-
portantly, this evaluation platform promotes repli-
cability, which is very crucial for proper evalu-
ation of scientific progress. Reproducing all of
the results is just a matter of a button click on
TIRA. All of the results presented in this paper,
along with the trained models and the software,
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are archived and available for distribution upon re-
quest to the organizers and upon the permission of
the participating team, who holds the copyrights
to the software. Replicability also helps speed up
the research and development in discourse pars-
ing. Anyone wanting to extend or apply any of
the approaches proposed by a shared task partic-
ipant does not have to re-implement the model
from scratch. They can request a clone of the vir-
tual machine where the participating system is de-
ployed, and then implement their extension based
off the original source code. Any extension ef-
fort also benefits from the precise evaluation of
the progress and improvement since the system is
based off the exact same implementation.

4.3 Evaluation metrics and scorer
A shallow discourse parser is evaluated based on
the end-to-end F1 score on a per-discourse relation
basis. The input to the system consists of docu-
ments with gold-standard word tokens along with
their automatic parses. We do not pre-identify
the discourse connectives or any other elements of
the discourse annotation. The shallow discourse
parser must output a list of discourse relations that
consist of the argument spans and their labels, ex-
plicit discourse connectives where applicable, and
the senses. The F1 score is computed based on the
number of predicted relations that match a gold
standard relation exactly. A relation is correctly
predicted if (a) the discourse connective is cor-
rectly detected (for Explicit discourse relations),
(b) the sense of the discourse connective is cor-
rectly predicted, and (c) the text spans of its two ar-
guments are correctly predicted (Arg1 and Arg2).

Although the submissions are ranked based on
the relation F1 score, the scorer also provides
component-wise evaluation with error propaga-
tion. The scorer computes the precision, recall,
and F1 for the following7:

• Explicit discourse connective identification.
• Arg1 identification.
• Arg2 identification.
• Arg1 and Arg2 identification.
• Sense classification with error propagation

from discourse connective and argument
identification.

For purposes of evaluation, an explicit discourse
connective predicted by the parser is considered

7Available at: http://www.github.com/attapol/conll15st

correct if and only if the predicted raw connective
includes the gold raw connective head, while al-
lowing for the tokens of the predicted connective
to be a subset of the tokens in the gold raw connec-
tive. We provide a function that maps discourse
connectives to their corresponding heads. The no-
tion of discourse connective head is not the same
as its syntactic head. Rather, it is thought of as the
part of the connective conveying its core meaning.
For example, the head of the discourse connective
“At least not when” is “when”, and the head of
“five minutes before” is “before”. The non-head
part of the connective serves to semantically re-
strict the interpretation of the connective.

Although Implicit discourse relations are anno-
tated with an implicit connective inserted between
adjacent sentences, participants are not required to
provide the inserted connective. They only need
to output the sense of the discourse relation. Sim-
ilarly, for AltLex relations, which are also anno-
tated between adjacent sentences, participants are
not required to output the text span of the AltLex
expression, but only the sense. The EntRel rela-
tion is included as a sense in the shared task, and
here, systems are required to correctly label the
EntRel relation between adjacent sentence pairs.

An argument is considered correctly identified
if and only if it matches the corresponding gold
standard argument span exactly, and is also cor-
rectly labeled (Arg1 or Arg2). Systems are not
given any credit for partial match on argument
spans.

Sense classification evaluation is less straight-
forward, since senses are sometimes annotated
partially or annotated with two senses. To be con-
sidered correct, the predicted sense for a relation
must match one of the two senses if there is more
than one sense. If the gold standard is partially
annotated, the sense must match with the partially
annotated sense.

Additionally, the scorer provides a breakdown
of the discourse parser performance for Explicit
and Non-Explicit discourse relations.

5 Approaches

The Shallow Discourse Parsing (SDP) task this
year requires the development of an end-to-end
system that potentially involves many compo-
nents. All participating systems adopt some vari-
ation of the pipeline architecture proposed by Lin
et al (2014), which has components for identify-
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System learning methods resources used extra resources
ECNU Naive Bayes, maxent Brown clusters, MPQA

subjectivity lexicon
no

Trento CRF++, AdaBoost Brown clusters,
dependency/phrase structure
parses

no

Soochow Maxent in Open NLP VerbNet, MPQA subjectivity
lexicon, Brown clusters

no

JAIST CRF++, LibSVM (SMO) syntactic parses, Brown
clusters

no

UIUC Liblinear Brown clusters, MPQA
lexicon

no

Concordia C4.5 (Weka) ClearTK, syntactic parse no
∗UT Dallas - - -
NTT Rule-based argument

extraction and SVM based
sense classification

Brown clusters, dependency
trees

no

AU KBC CRF++ for both arguments
and sense, and rules

MPQA, VerbNet, Brown
clusters

no

CAS OpenNLP maxent phrase structure trees no
Dublin 1 RNN (Theano) for argument

extraction, Maxent for others
syntactic features, skip-gram
word embeddings

no

Dublin 2 LibSVM, Theano, word2vec Brown clusters no
Goethe
University
Frankfurt

SVM, rule-based Brown clusters, word
embeddings

no

IIT Naive Bayes, Maxent syntactic parses, Boxer no
SJTU Maxent no external resource used no
∗PKU - - -

Table 4: Approaches of participating systems. Teams that have not submitted a system description paper
are marked with ∗.

ing discourse connectives and extracting their ar-
guments, for determining the presence or absence
of discourse relations in a particular context, and
for predicting the senses of the discourse rela-
tions. Most participating systems cast discourse
connective identification and argument extraction
as token-level sequence labeling tasks, while a
few systems use rule-based approaches to extract
the arguments. Sense determination is cast as a
straightforward multi-category classification task.
Most systems use machine learning techniques to
determine the senses, but there are also systems
that, due to lack of time, adopt a simple base-
line approach that detects the most frequent sense
based on the training data.

In terms of learning techniques, all participat-
ing systems except the two systems submitted by
the Dublin team use standard “shallow” learning

models that take binary features as input. For se-
quence labeling subtasks such as discourse con-
nective identification and argument extraction, the
preferred learning method is Conditional Random
Fields (CRF). For sense determination, a variety of
learning methods have been used, including Max-
imum Entropy, Support Vector Machines, and de-
cision trees. In the last couple of years, neural
networks have experienced a resurgence and have
been shown to be effective in many natural lan-
guage processing tasks. Neural network based
models on discourse parsing have also started to
appear (Ji and Eisenstein, 2014). The use of neu-
ral networks for the SDP task this year represents
a minority, presumably because researchers are
still less familiar with neural network based tech-
niques, compared with standard “shallow” learn-
ing techniques, and it is difficult to use a new
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learning technique to good effect within a short
time window. In this shared task, only the Dublin
University team attempted to use neural networks
as a learning approach in their system compo-
nents. In their first submission (Dublin I), Recur-
rent Neural Networks (RNN) are used for token
level sequence labeling in the argument extraction
task. In their second submission, paragraph em-
beddings are used in a neural network model to
determine the senses of discourse relations.

The discussion of learning techniques cannot be
entirely separated from the use of features and the
linguistic resources that are used to extract them.
Standard “shallow” architectures typically make
use of discrete features while neural networks gen-
erally use continuous real-valued features such as
word and paragraph embeddings. For discourse
connective and argument extraction, token level
features extracted from a fixed window centered
on the target word token are generally used, and so
are features extracted from syntactic parses. Dis-
tributional representations such as Brown clusters
have generally been used to determine the senses
(Chiarcos and Schenk, 2015; Devi et al., 2015;
Kong et al., 2015; Song et al., 2015; Stepanov
et al., 2015; Wang and Lan, 2015; Wang et al.,
2015; Yoshida et al., 2015), although one team
also used them in the sequence labeling task for
argument extraction (Nguyen et al., 2015). Addi-
tional resources used by some systems for sense
determination include word embeddings (Chiar-
cos and Schenk, 2015; Wang et al., 2015), Verb-
Net classes (Devi et al., 2015; Kong et al., 2015),
and the MPQA polarity lexicon (Devi et al., 2015;
Kong et al., 2015; Wang and Lan, 2015). Table 4
provides a summary of the different approaches.

6 Results

Table 5 shows the performance of all participat-
ing systems across the three test evaluation sets: i)
(Official) Blind test set; ii) Standard WSJ test set;
iii) Standard WSJ development set. The official
rankings are based on the blind test set annotated
specifically for this shared task. The top-ranked
system is the submission by East China Normal
University (Wang and Lan, 2015). As discussed in
Section 4, the evaluation metric is very strict, and
is based on exact match for the extraction of ar-
gument spans. For the detection of discourse con-
nectives, only the head of a discourse connective
has to be correctly detected. Errors in the begin-

ning of the pipeline will propagate to the end, and
other than word tokenization, all input to the par-
ticipating systems is automatically generated, so
the overall accuracy reflects results in realistic sit-
uations. The scores are very low, with the top sys-
tem achieving an overall parsing score of 24.00%
(F1) on the blind test set and 29.69% (F1) on the
Wall Street Journal (WSJ) test set. For compar-
ison purposes, the National University of Singa-
pore team re-implemented the state-of-the-art end-
to-end parser described in (Lin et al., 2014), and
this system achieves an F1 of 19.98% on the WSJ
test set. This shows that a fair amount of progress
has been made against the Lin et al baseline.

The rankings are generally consistent across the
two test sets, with the largest change in ranking
from the NTT team and the Goethe University
team. This is perhaps not a coincidence: both
teams used rule-based approaches to extract argu-
ments. The rules worked well on the WSJ test set
which draws from the same source as the devel-
opment set, but might not adapt well to the blind
test set, which is drawn from a different source.
Machine-learning based approaches generally can
better adapt to new data sets.

Due to the short time frame participants had
to complete an end-to-end task, teams chose to
focus on either argument extraction components
or the sense classification components, or in the
case of sense classification, either focus on the
classification of senses for Explicit relations or
senses for Non-Explicit relations. A detailed
breakdown of the performance for Explicit ver-
sus Non-Explicit discourse relations is presented
in Table 6. In general, parser performance for
Explicit discourse relations is much higher than
that of Non-Explicit discourse relations. The dif-
ficulty for Non-Explicit discourse relations mostly
stems from Non-Explicit sense classification. This
is evidenced by the fact that even for systems that
achieve higher argument extraction accuracy for
Non-Explicit discourse relations than Explicit dis-
course relations, the overall parser accuracy is still
lower for Non-Explicit relations. The lower ac-
curacy in sense classification thus drags down the
overall parser accuracy for Non-Explicit discourse
relations.

7 Conclusions

Sixteen teams from three continents participated
in the CoNLL-2015 Shared Task on shallow dis-
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Rank Participant Argument Connective Parser

O L Organization ID F P R F P R F P R

Blind Test
1 1 East China Normal University wangj 46.37 45.77 46.98 91.86 93.48 90.29 24.00 23.69 24.32
2 2 University of Trento stepanov 38.86 37.25 40.61 89.92 92.57 87.41 21.84 20.94 22.83
3 3 Soochow University kong 33.23 35.57 31.18 91.62 92.80 90.47 18.51 19.81 17.37
4 4 Japan Advanced Institute of Science and Tech. nguyen 32.11 42.72 25.72 61.66 88.55 47.30 18.28 24.31 14.64
5 5 UIUC Cognitive Computing Group song 41.31 40.48 42.18 87.98 89.11 86.87 17.98 17.62 18.36
6 6 Concordia University laali 23.29 35.67 17.29 90.19 87.88 92.63 17.38 26.62 12.90
7 7 University of Texas Dallas xue 30.22 31.70 28.87 89.90 92.73 87.23 17.06 17.89 16.29
8 8 Nippon Telegraph and Telephone Lab Japan yoshida 35.55 52.16 26.96 51.04 92.45 35.25 15.70 23.04 11.91
9 9 AU KBC Research Center devi 33.17 35.12 31.43 84.49 92.32 77.88 15.02 15.90 14.23

10 10 Chinese Academy of Sciences xu15 21.95 28.88 17.70 82.60 93.02 74.28 12.62 16.60 10.17
11 11 Dublin City University 1 wangl 22.09 19.26 25.89 79.43 84.87 74.64 11.15 9.72 13.07
12 12 Dublin City University 2 okita 21.52 18.77 25.23 79.43 84.87 74.64 10.66 9.29 12.49
13 13 Goethe University Frankfurt chiarcos 29.21 26.00 33.33 51.18 59.38 44.96 9.13 8.13 10.42
14 14 India Institute of Tech. mukherjee 21.71 18.14 27.05 89.30 91.67 87.05 7.64 6.38 9.51
15 15 Shanghai Jiao Tong University 1 chen 4.70 4.53 4.88 81.68 81.17 82.19 3.58 3.46 3.72
16 16 Peking University xu15b 12.70 10.54 15.96 59.11 58.69 59.53 0.92 0.76 1.16

Standard WSJ Test (Section 23)
1 1 East China Normal University wangj 49.42 48.72 50.13 94.21 94.94 93.50 29.69 29.27 30.12
2 2 University of Trento stepanov 40.71 39.71 41.77 92.77 93.80 91.77 25.33 24.71 25.99
8 3 Nippon Telegraph and Telephone Lab Japan yoshida 43.77 48.83 39.66 89.12 91.84 86.57 24.99 27.87 22.64
7 4 University of Texas Dallas xue 30.26 31.78 28.88 89.33 91.20 87.54 21.72 22.81 20.73
6 5 Concordia University laali 24.81 36.98 18.67 91.38 88.76 94.15 21.25 31.66 15.99
3 6 Soochow University kong 37.01 34.69 39.66 94.77 95.39 94.15 20.64 19.35 22.12
5 7 UIUC Cognitive Computing Group song 38.18 35.73 41.00 91.83 92.33 91.33 20.27 18.97 21.76
4 8 Japan Advanced Institute of Science and Tech. nguyen 35.43 52.98 26.61 63.89 91.87 48.97 20.25 30.29 15.21

13 9 Goethe University Frankfurt chiarcos 36.78 36.58 36.98 68.19 71.96 64.79 15.23 15.15 15.32
10 10 Chinese Academy of Sciences xu15 23.36 28.05 20.01 90.64 95.12 86.57 15.05 18.08 12.89
9 11 AU KBC Research Center devi 31.26 31.76 30.79 86.44 94.36 79.74 14.61 14.84 14.39

11 12 Dublin City University 1 wangl 25.46 21.74 30.74 87.99 90.40 85.70 12.73 10.87 15.37
12 13 Dublin City University 2 okita 24.55 20.95 29.65 88.06 90.32 85.92 12.30 10.49 14.85
14 14 India Institute of Tech. mukherjee 22.52 18.19 29.55 93.06 93.93 92.20 7.15 5.78 9.39
15 15 Shanghai Jiao Tong University 1 chen 4.57 4.24 4.95 78.67 77.84 79.52 4.43 4.11 4.80
16 16 Peking University xu15b 13.24 10.65 17.48 58.04 57.28 58.83 2.11 1.70 2.78

Development
1 1 East China Normal University wangj 57.21 56.84 57.59 95.14 95.28 95.00 37.84 37.59 38.09
8 2 Nippon Telegraph and Telephone Lab Japan yoshida 51.42 56.56 47.14 88.94 92.39 85.74 31.60 34.75 28.97
2 3 University of Trento stepanov 45.34 44.99 45.68 93.79 94.35 93.24 30.27 30.04 30.50
3 4 Soochow University kong 43.12 41.06 45.40 94.22 94.93 93.53 26.32 25.06 27.72
4 5 Japan Advanced Institute of Science and Tech. nguyen 40.07 58.92 30.36 65.53 91.56 51.03 26.10 38.38 19.78
9 6 AU KBC Research Center devi 42.96 42.28 43.66 92.63 98.03 87.79 25.76 25.35 26.18
6 7 Concordia University laali 29.87 44.43 22.49 92.25 89.27 95.44 25.71 38.24 19.36
5 8 UIUC Cognitive Computing Group song 43.44 41.24 45.89 91.45 93.27 89.71 25.12 23.84 26.53
7 9 University of Texas Dallas xue 35.78 37.77 33.98 93.43 94.85 92.06 24.19 25.54 22.98

10 10 Chinese Academy of Sciences xu15 26.68 32.06 22.84 91.52 95.23 88.09 18.14 21.80 15.53
13 11 Goethe University Frankfurt chiarcos 41.58 42.08 41.09 63.17 67.45 59.41 17.12 17.33 16.92
11 12 Dublin City University 1 wangl 29.75 25.59 35.52 85.65 90.10 81.62 16.51 14.20 19.71
12 13 Dublin City University 2 okita 29.09 24.98 34.82 86.33 90.35 82.65 15.36 13.19 18.38
14 14 India Institute of Technology mukherjee 26.78 21.89 34.47 93.55 95.41 91.76 8.82 7.21 11.35
15 15 Shanghai Jiao Tong University 1 chen 6.81 6.43 7.24 86.09 85.28 86.91 6.55 6.18 6.96
16 16 Peking University xu15b 12.64 9.00 21.24 51.54 42.64 65.15 1.49 1.06 2.51

Table 5: Scoreboard for the CoNLL-2015 shared task showing performance across the tasks and the
three data partitions—blind test, standard test (WSJ-23) and development. The Column O and L refer
to official and local ranks. The red highlighted rows indicate a system (JAIST) that performed poorly
on the WSJ test set, but did much better on the blind test set. The blue highlighted rows indicate the
opposite phenomena for a system (NTT) that ranked higher on the WSJ development and test partitions,
but dropped in rank on the blind test set.
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Rank Participant Explicit Non-Explicit

O E I Organization ID A12 A1 A2 Conn. Parser A12 A1 A2 Parser

Blind Test
7 1 11 University of Texas Dallas xue 40.04 49.68 70.06 89.90 30.58 21.61 25.02 34.77 5.20
1 2 1 East China Normal University wangj 41.35 48.31 74.29 91.86 30.38 50.41 60.87 74.58 18.87
2 3 2 University of Trento stepanov 39.59 49.03 70.68 89.92 29.97 38.31 43.29 56.57 15.77
6 4 15 Concordia University laali 36.60 45.18 69.18 90.19 27.32 0.00 0.00 0.00 0.00
4 5 8 Japan Advanced Institute of Science and Tech. nguyen 34.23 44.08 51.35 61.66 27.20 30.44 36.90 46.13 11.25
9 6 10 AU KBC Research Center devi 34.73 44.49 64.20 84.49 26.73 31.91 35.70 46.60 5.53
5 7 5 UIUC Cognitive Computing Group song 30.05 37.89 60.11 87.98 23.32 50.18 59.52 74.40 13.57
3 8 4 Soochow University kong 30.42 36.43 73.04 91.62 22.95 35.87 49.87 51.07 14.35

10 9 13 Chinese Academy of Sciences xu15 27.20 36.40 61.00 82.60 22.20 16.42 19.79 27.16 2.53
8 10 3 Nippon Telegraph and Telephone Lab Japan yoshida 21.61 28.13 38.02 51.04 16.93 45.59 53.66 62.29 14.82

13 11 9 Goethe University Frankfurt chiarcos 19.04 26.41 36.85 51.18 13.51 34.79 44.33 53.54 6.73
14 12 12 India Institute of Technology mukherjee 13.65 22.32 61.99 89.30 12.36 26.24 37.03 41.49 4.98
11 13 6 Dublin City University 1 wangl 12.47 18.05 36.65 87.81 9.12 27.84 39.46 44.27 12.74
15 14 16 Shanghai Jiao Tong University 1 chen 10.55 13.94 48.97 81.68 8.04 0.00
12 15 7 Dublin City University 2 okita 11.10 16.65 28.13 79.43 7.85 27.61 39.24 44.05 12.30
16 16 14 Peking University xu15b 3.57 6.07 20.89 59.11 2.32 18.02 26.46 28.85 0.10

Standard WSJ Test (Section 23)
1 1 1 East China Normal University wangj 45.20 50.66 77.40 94.21 39.96 53.09 67.17 68.41 20.74
2 2 5 University of Trento stepanov 44.58 50.05 76.23 92.77 39.54 37.44 44.50 47.56 13.28
7 3 10 University of Texas Dallas xue 41.57 49.75 68.55 89.33 37.59 19.45 24.74 25.37 6.55
8 4 3 Nippon Telegraph and Telephone Lab Japan yoshida 38.82 46.07 68.38 89.12 34.47 48.81 57.99 60.08 15.11
4 5 9 Japan Advanced Institute of Science and Tech. nguyen 38.16 43.82 56.25 63.89 33.22 32.44 38.85 38.85 8.01
6 6 15 Concordia University laali 38.07 44.69 72.34 91.38 32.60 0.00 0.00 0.00 0.00
5 7 4 UIUC Cognitive Computing Group song 30.39 37.25 66.67 91.83 27.02 44.33 57.13 60.14 14.95
9 8 11 AU KBC Research Center devi 30.77 36.64 49.68 86.44 26.78 31.66 38.28 43.29 4.82

10 9 13 Chinese Academy of Sciences xu15 28.70 36.07 63.53 90.64 25.75 17.32 23.35 23.48 2.95
3 10 2 Soochow University kong 30.21 34.02 74.48 94.77 25.30 42.38 57.71 54.95 16.97

13 11 8 Goethe University Frankfurt chiarcos 25.20 30.79 50.74 68.19 21.89 46.25 62.84 63.50 9.79
11 12 7 Dublin City University 1 wangl 19.36 24.42 46.20 93.18 17.38 30.70 43.04 40.75 11.50
12 13 6 Dublin City University 2 okita 14.66 21.10 38.20 88.06 13.21 30.73 43.01 40.72 11.72
14 14 12 India Institute of Technology mukherjee 13.78 20.34 59.38 93.06 12.90 27.42 38.47 36.44 3.93
15 15 16 Shanghai Jiao Tong University 1 chen 10.29 14.68 48.77 78.67 9.97 0.09 0.00
16 16 14 Peking University xu15b 4.28 6.31 24.05 58.04 3.53 18.40 25.60 24.25 1.29

Development
9 1 10 AU KBC Research Center devi 54.69 62.90 75.91 92.80 49.11 35.03 40.89 45.10 7.64
1 2 1 East China Normal University wangj 54.05 61.56 80.56 95.14 48.16 60.01 70.32 74.23 28.70
2 3 6 University of Trento stepanov 51.33 57.10 78.70 93.79 46.89 40.08 45.91 49.42 15.69
8 4 3 Nippon Telegraph and Telephone Lab Japan yoshida 47.90 55.68 72.16 88.94 43.02 54.92 62.48 67.47 20.27
7 5 11 University of Texas Dallas xue 48.51 57.46 72.24 93.43 41.49 23.49 27.67 29.83 7.49
4 6 8 Japan Advanced Institute of Science and Tech. nguyen 45.14 51.56 57.79 65.53 41.17 35.09 40.29 40.29 11.82
6 7 15 Concordia University laali 45.91 53.16 75.34 92.25 39.52 0.00 0.00 0.00 0.00
5 8 4 UIUC Cognitive Computing Group song 34.78 43.18 65.97 91.45 31.18 49.88 60.59 64.47 20.00

10 9 13 Chinese Academy of Sciences xu15 33.16 41.71 67.99 91.52 30.25 19.30 23.13 23.83 4.35
3 10 2 Soochow University kong 34.67 38.67 74.37 94.22 29.78 49.94 62.13 62.37 23.54

13 11 9 Goethe University Frankfurt chiarcos 27.37 33.93 48.32 63.17 23.77 53.24 66.71 70.69 11.67
11 12 5 Dublin City University 1 wangl 20.52 28.55 41.78 93.23 17.70 35.49 45.26 45.16 15.96
12 13 7 Dublin City University 2 okita 18.59 26.27 37.33 86.33 15.82 35.49 45.32 45.13 15.07
14 14 12 India Institute of Technology mukherjee 17.09 25.94 65.52 93.55 15.59 32.25 41.22 40.96 4.99
15 15 16 Shanghai Jiao Tong University 1 chen 15.15 18.35 58.27 86.09 14.57 0.36 0.00
16 16 14 Peking University xu15b 3.14 4.77 19.08 51.54 2.79 17.90 22.92 23.76 0.77

Table 6: Scoreboard for the CoNLL-2015 shared task showing performance split across Explicit and
Non-Explicit subtasks on the three data partitions—blind test, standard test (WSJ-23) and development.
The rows are sorted by the parser performance of the participating systems on the Explicit task. The
Column O, E, I refer to official, Explicit and Non-Explicit task ranks respectively. The blue highlighted
rows indicate participants that did not attempt the Non-Explicit relation subtask. The green highlighted
row shows a team that probably overfitted the development set. Finally, the red highlighted row indicates
a team that possibly focused on the Explicit relations task and even though their overall rank was lower,
they did very well on the Explicit relations subtask. This is also the system that did not submit a paper,
so we do not know more details.
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course parsing. The shared task required the de-
velopment of an end-to-end system, and the best
system achieved an F1 score of 24.0% on the blind
test set, reflecting the serious error propagation
problem in such a system. The shared task ex-
posed the most challenging aspect of shallow dis-
course parsing as a research problem, helping fu-
ture research better calibrate their efforts. The
evaluation data sets and the scorer we prepared for
the shared task will be a useful benchmark for fu-
ture research on shallow discourse parsing.
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Abstract

The CoNLL-2015 shared task focuses on shal-
low discourse parsing, which takes a piece of
newswire text as input and returns the dis-
course relations in a PDTB style. In this paper,
we describe our discourse parser that partici-
pated in the shared task. We use 9 components
to construct the whole parser to identify dis-
course connectives, label arguments and clas-
sify the sense of Explicit or Non-Explicit re-
lations in free texts. Compared to previous
discourse parser, new components and fea-
tures are added in our system, which further
improves the overall performance of the dis-
course parser. Our parser ranks the first on
two test datasets, i.e., PDTB Section 23 and
a blind test dataset.

1 Introduction

An end-to-end discourse parser is given free texts
as input and returns discourse relations in a PDTB
style, where a connective acts as a predicate that
takes two text spans as its arguments. It can ben-
efit many downstream NLP applications, such as
information retrieval, question answering and auto-
matic summarization, etc. The extraction of exact
argument spans and Non-Explicit sense identifica-
tion have been shown to be the main challenges of
the discourse parsing (Lin et al., 2014).

Since the release of Penn Discourse Treebank
(PDTB) (Prasad et al., 2008), much research has
been carried out on PDTB to perform the subtasks
of a full end-to-end parser, such as identifying dis-
course connectives, labeling arguments and classi-

fying Explicit or Implicit relations. To identify dis-
course connectives from non-discourse ones and to
classify the Explicit relations, (Pitler and Nenkova,
2009) extracted syntactic features of connectives
from the constituent parses, and showed that syn-
tactic features improved performance in both sub-
tasks. For the argument labeling subtask, (Ghosh et
al., 2011) regarded it as a token-level sequence la-
beling task using conditional random fields (CRFs).
(Lin et al., 2014) proposed a tree subtraction algo-
rithm to extract the arguments. (Kong et al., 2014)
adopted a constituent-based approach to label argu-
ments. As for Implicit sense classification, (Pitler
et al., 2009), (Lin et al., 2009) and (Rutherford and
Xue, 2014) performed the classification using sev-
eral linguistically-informed features, such as verb
classes, production rules and Brown cluster pair.
(Lan et al., 2013) presented a multi-task learning
framework with the use of the prediction of explicit
discourse connective as auxiliary learning tasks to
improve the performance.

All of these research focus on the subtasks of the
PDTB, and can be viewed as isolated components
of a full parser. (Lin et al., 2014) constructed a full
parser on the top of these subtasks, which contained
multiple components joined in a sequential pipeline
architecture including a connective classifier, argu-
ment labeler, explicit classifier, non-explicit classi-
fier, and attribution span labeler. In this paper, we
followed the framework of (Lin et al., 2014) to con-
struct a discourse parser. However, our work differs
from that of Lin’s in that our system introduces new
components and features to improve the overall per-
formance. Specifically, (1) we build two different
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extractors for Arg1 and Arg2 respectively for label-
ing Explicit arguments in the case of PS (i.e., Arg1
is located in some previous sentences of the connec-
tive); (2) we add new features to capture more infor-
mation for classification or recognition; (3) we build
two different argument extractors for Non-EntRel
relations in Non-Explicit; (4) we use the refined ar-
guments to improve the Non-Explicit sense classifi-
cation.

The organization of this work is as follows. Sec-
tion 2 gives a sketch description of our parser in a
flow chart and the function of every component in
this architecture. Section 3 describes the compo-
nents and features in detail. Section 4 reports the
preliminary experimental results on the training and
development dataset, and the final results on two test
datasets are shown in Section 5. Section 6 concludes
this work.

2 System Overview
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Figure 1: System pipeline for the discourse parser

We design the discourse parser as a sequential
pipeline, shown in Figure 1, and the 9 components
of our parser are listed as follows.

First, for texts with Explicit connective words:
(1) Connective Classifier is to identify the dis-

course connectives from non-discourse ones.
(2) Arg1 Position Classifier is to decide the rel-

ative position of Arg1 – whether it is located within
the same sentence as the connective (SS) or in some
previous sentence of the connective (PS).

(3) SS Arguments Extractor is to extract the
spans of Arg1 and Arg2 in the SS case.

In the PS case, we build two extractors to identify
the text spans for PS Arg1 and PS Arg2 respectively.

(4) PS Arg1 Extractor is to extract Arg1 for PS.
(5) PS Arg2 Extractor is to extract Arg2 for PS.
(6) Explicit Sense Classifier is to identify the

sense that this Explicit connective conveys.
Second, for all adjacent sentence pairs within

each paragraph, but not identified in any Explicit re-
lation:

(7) Non-Explicit Sense Classifier is to classify
the sense of each sentence pair into one of the Non-
Explicit relation senses.

Since attribution is not annotated for EntRel rela-
tions, if the output of the above Non-Explict sense
classifier is EntRel, we regard the previous sentence
as Arg1 and the next one as Arg2. Otherwise, we
build the following two argument extractors to label
Arg1 and Arg2.

(8) Implicit Arg1 Extractor and (9) Implicit
Arg2 Extractor extract Arg1 and Arg2 for Non-
EntRel relations in Non-explicit, respectively.

3 Components and Features

Generally, our parser consists of 9 components,
which compose an Explicit parser and a Non-
Explicit parser. Most of features used in our parser
are borrowed from previous work (Kong et al., 2014;
Lin et al., 2014; Pitler et al., 2009; Pitler and
Nenkova, 2009; Rutherford and Xue, 2014).

3.1 Explicit Parser

3.1.1 Connective Classifier
Since the input of the discourse parser is free text,

the first thing we need to do is to identify all con-
nective occurrences in text, and then to use the con-
nective classifier to decide whether they function as
discourse connectives or not.

For each connective occurrence C, we extract fea-
tures from its context, part-of-speech (POS) and the
parse tree of the connective’s sentence. Note that
prev1 and next1 indicate the first previous word and
the first next word of connective C respectively. For
a node in the parse tree, we use the POS combina-
tions of the node, its parent, its children to represent
the linked context.

The features we used for connective classsifi-
cation consist of the following: (1) Pitler’s: C
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string (case-sensitive), self-category (the highest
node in the parse tree that covers only the connec-
tive words), parent-category (the parent of the self-
category), left-sibling-category (the left sibling of
the self-category), right-sibling-category (the right
sibling of the self-category), C-Syn interaction (the
pairwise interaction features between the connec-
tive C and each category feature (i.e., self-category,
parent-category, left-sibling-category, right-sibling-
category)) , Syn-Syn interaction (the interaction fea-
tures between pairs of category features); (2) Lin’s:
C POS, prev1 + C string, prev1 POS, prev1 POS
+ C POS, C string + next1, next1 POS, C POS +
next1 POS, path of C’s parent→ root, compressed
path of C’s parent→ root; (3) our new proposed fea-
tures: the POS tags of nodes from C’s parent →
root, parent-category linked context, right-sibling-
category linked context. Our three new features are
considered to capture more syntactic context infor-
mation of the connective C for connective classifica-
tion.

3.1.2 Arg1 Position Classifier

After identifying the discourse connectives from
the texts, we come to locate the positions of Arg1
and Arg2 of the connective C. Since Arg2 is defined
as the argument with which the connective is syn-
tactically associated, its position is fixed once we lo-
cate the discourse connective C. So we only need to
identify the relative position of Arg1 as whether it is
located within the same sentence as the connective
(SS) or in some previous sentences of the connec-
tive (PS). We do not identify the case which Arg2
is located in some sentences following the sentence
containing the connective (FS), because the statisti-
cal distribution of (Prasad et al., 2008) shows that
less than 0.1% are FS for Explicit relations.

The features consist of the following: (1) Lin’s:
C string, C position (the position of connective C in
the sentence: start, middle, or end), C POS, prev1,
prev1 POS, prev1 + C, prev1 POS + C POS, prev2,
prev2 POS, prev2 + C, prev2 POS + C POS; (2)
our newly-proposed features: C POS + next1 POS,
next2, path of C→ root. Note that prev2 and next2
indicate the second previous word and the second
next word of connective C, respectively.

3.1.3 Argument Extractor

After the relative position of Arg1 is classified
as SS or PS in previous component, the argument
extractor is to extract the spans of Arg1 and Arg2
for the identified discourse connectives. Accord-
ing to (Kong et al., 2014), Kong’s constituent-based
approach outperforms Lin’s tree subtraction algo-
rithm for the Explicit arguments extraction. How-
ever, Lin only focused on the SS case, and Kong
treated the immediately preceding sentence as a spe-
cial constituent for PS, which means that they just
viewed the immediately preceding sentence as Arg1
and only extracted Arg2 for PS. So we only follow
Kong’s constituent-based approach to extract Arg1
and Arg2 for SS. However, for PS, we build two
different extractors for Arg1 and Arg2 separately.
Our intuition is that the two arguments have differ-
ent syntactic and discourse properties and a unified
model with the same feature set used for both may
not have enough discriminating power.

SS Arguments Extractor: In the case of SS,
we adopt (Kong et al., 2014)’s constituent-based ap-
proach without Joint Inference to extract Arg1 and
Arg2.

For PS, we build two argument extractors for
Arg1 and Arg2, respectively, as follows.

PS Arg1 Extractor: We consider the immedi-
ately previous sentence of connective C as the text
span where Arg1 occurs and then build a extractor to
label the Arg1 in it. Similar to Lin’s Attribution span
labeler, this extractor consists of two steps: split-
ting the sentence into clauses, and deciding, for each
clause, whether it belongs to Arg1 or not. First we
use nine punctuation symbols (...,.:;?!-∼) to split the
sentence into several parts and use the SBAR tag in
its parse tree to split each part into clauses. Second,
we build a classifier to decide each clause whether it
belongs to Arg1 or not.

On the one hand, the attribution relation is anno-
tated in PDTB, which expresses the “ownership” re-
lationship between abstract objects and individuals
or agents. However, the attribution annotation is ex-
cluded in CoNLL-2015 (Xue et al., 2015). There-
fore we borrow several attribution features from (Lin
et al., 2014) in order to distinguish the attribution-
related span from others. On the other hand, accord-
ing to the minimality principle of PDTB, the argu-
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ment annotation includes the minimal span of text
that is sufficient for the interpretation of the relation.
Since connectives have very close relationship with
discourse relation, we consider to adopt connective-
related features to capture text span for relation. We
choose the following features: (1) attribution-related
features from (Lin et al., 2014): lemmatized verbs
in curr, the first term of curr, the last term of curr,
the last term of prev + the first term of curr, and
(2) our proposed connective-related features: low-
ercased C string and C category (the syntactic cate-
gory of the connective: subordinating, coordinating,
or discourse adverbial), where curr and prev indicate
the current and previous clause respectively and the
corresponding category for the connective C is ob-
tained from the list provided in (Knott, 1996).

PS Arg2 Extractor: The PS Arg2 Extractor is
similar to the PS Arg1 Extractor. However, they dif-
fer as follows: (1) in the first step, we consider the
sentence containing connective C as the text span
where Arg2 occurs and besides the previous nine
punctuation symbols, we also use the connective C
to split the sentence; (2) we adopt different features
to build classifier: lowercased verbs in curr, lemma-
tized verbs in curr, the first term of curr, the last
term of curr, the last term of prev, the first term of
next, the last term of prev + the first term of curr, the
last term of curr + the first term of next, production
rules extracted from curr, curr position (i.e., the po-
sition of curr in the sentence: start, middle or end),
C string, lowercased C string, C position, C cate-
gory, path of C’s parent→ root, compressed path of
C’s parent→ root.

3.1.4 Explicit Sense Classifier
From previous components, we have identified all

discourse connectives and their arguments from the
texts. Here, we move to decide what Explicit rela-
tion each of them conveys.

The features for this classifier consist of the
following: (1) Lin’s features: C string, C POS,
prev1 + C (2) Pitler’s features: self-category,
parent-category, left-sibling-category, right-sibling-
category, C-Syn interaction, Syn-Syn interaction.
(3) our five newly proposed features: parent-
category linked context, previous connective and its
POS of as and previous connective and its POS of
when. The first parent-category linked context fea-

ture is to provide more syntactic context informa-
tion for the classification. The last four features
are specially designed to disambiguate the relation
senses of the connective as or when, since the two
connectives often have ambiguity between Contin-
gency.Cause.Reason and Temporal.Synchrony. As
shown in Example 1, the previous connective of
the discourse connective as is But, therefore the
discourse connective as usually carries the Con-
tingency.Cause.Reason sense rather than Tempo-
ral.Synchrony.

(1) But the gains in Treasury bonds were pared as
stocks staged a partial recovery.

(Contingency.Cause.Reason – WSJ-1213)

3.2 Non-Explicit Parser

In this section, we discuss the identification of the
Non-Explicit relations.

Since the Non-Explicit relations are only anno-
tated for adjacent sentence pairs within paragraphs,
we first collect all adjacent sentence pairs within
each paragraph, but not identified in any Explicit re-
lation. We assume the previous sentence as Arg1
and the next sentence as Arg2, and then identify the
sense by the features extracted from (Arg1, Arg2).
After that, we use Implicit Arg1 Extractor and Im-
plicit Arg2 Extractor to label Arg1 and Arg2 for
Non-EntRel relations in Non-Explicit, and for En-
tRel relations, we simply label the previous sentence
as Arg1 and the next as Arg2.

Moreover, as shown in Figure 1, we use the Non-
Explicit sense classifier again to identify the sense
on the refined arguments (extracted arguments from
Implicit Arg1&Arg2 Extractor) rather than the adja-
cent sentence pairs (i.e., previous sentence as Arg1,
the next sentence as Arg2 ). Our expectation is that
the overall parser performance might be improved if
we extract features on refined argument spans rather
than original argument spans.

3.2.1 Non-Explicit Sense Classifier
According to previous work, this component is

the most difficult one in the discourse parser. And
the features we adopted in this component are cho-
sen from (Lin et al., 2009; Pitler et al., 2009; Ruther-
ford and Xue, 2014), including: production rules,
dependency rules, first-last, first3, modality, verbs,
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Inquirer, polarity, immediately preceding discourse
connective of current sentence pair, Brown cluster
pairs. For the collection of production rules, de-
pendency rules, and Brown cluster pairs, we used a
frequency cutoff of 5 to remove infrequent features,
and for Brown cluster, we choose 3,200 classes, as
in (Rutherford and Xue, 2014).

3.2.2 Implicit Arg1 Extractor
The implicit Arg1 Extractor is performed to ex-

tract Arg1 for Non-EntRel relations in Non-Explicit,
which is done similarly to the PS Arg1 Extractor.
We first split the sentence into clauses and then de-
cide each clause whether it belongs to Arg1 or not.
The features extracted from the current and previous
clauses (curr and prev) are: the first term of curr,
the last term of prev, the cross product of the prev
and curr production rules, the path of the first term
of curr→ the last term of prev, number of words of
curr.

3.2.3 Implicit Arg2 Extractor
The implicit Arg2 Extractor is similar to that of

Arg1, but different features are extracted from the
current, previous, and next clauses (curr, prev, and
next), including: lowercased verbs in curr, the first
term of curr, the last term of prev, the last term of
prev + the first term of curr, the last term of curr +
the first term of next, curr position, the cross prod-
uct of the prev and curr production rules, the cross
product of the curr and next production rules, the
path of the first term of curr→ the last term of prev,
number of words of curr.

4 Experiments on Training Data

To implement the 9 components described above,
we compared two supervised machine learning al-
gorithms, i.e., MaxEnt and Naive Bayes, imple-
mented in MALLET toolkit1. For each compo-
nent, we chose the algorithm with better perfor-
mance. Specifically, we use Naive Bayes to build
Non-Explicit Sense Classifier, and MaxEnt for the
other 8 components.

We use PDTB Section 02-21 for training and Sec-
tion 22 for development, which are provided by
CoNLL-2015 with parse trees along with POS tags

1mallet.cs.umass.edu

produced by the Berkeley Parser. And we partici-
pate in the closed tracks, that is, only two resources
(i.e., Brown Clusters and MPQA Subjectivity Lexi-
con) are used in our discourse parser.

According to the requirement, a relation is con-
sidered to be correct if and only if: (1) the dis-
course connective is correctly detected (for explicit
discourse relations); (2) the sense of a discourse re-
lation is correctly predicted; (3) the text spans of
the two arguments as well as their labels (Arg1 and
Arg2) are correctly predicted. We use the official
measure F1 (harmonic mean of Precision and Re-
call) to evaluate performance.

4.1 Results of Explicit Parser

Table 1 reports the results of the explicit discourse
parser on development data set of three components
(i.e., Connective classifier, Arg1 position classifier
and Explicit sense classifier) without error propa-
gation (EP), where our new features are introduced.
We find that the F1 scores of all these classifiers are
increased by adding our new features (+new).

Component P&N and Lin + new
P R F1 (%) P R F1 (%)

Connective Classifier 94.80 93.97 94.38 95.28 95.00 95.14
Arg1 Position Classifier 97.82 98.88 98.35 99.77 99.57 99.69
Explicit Sense Classifier 89.11 89.11 89.11 90.14 90.14 90.14

Table 1: Results for three components which add in our
new features, no EP

To evaluate the performance of Explicit argu-
ments extraction, we build the PS baseline by label-
ing the previous sentence of the connective as Arg1,
and the text span between the connective and the be-
ginning of the next sentence as Arg2. Table 2 sum-
marizes the results of Explicit arguments extraction
with exact matching and without error propagation,
and the corresponding PS baseline is shown within
parentheses. Note that we removed the leading or
tailing punctuation from all text spans before eval-
uation. We see that the F1 of PS is improved by a
large margin for Arg1, Arg2 and Both by using two
separate PS argument extractors, and the overall F1

of Explicit arguments extraction is also increased by
2.51%.

4.2 Results of Non-Explicit Parser

Table 3 reports the results for Non-Explicit sense
classification without error propagation, where we

21



Arg1 F1 (%) Arg2 F1 (%) Both F1 (%)
SS 70.56 88.54 64.72
PS 50.64(44.20) 75.10(66.09) 39.91(32.61)
All 64.15(61.93) 84.25(81.15) 56.61(54.10)

Table 2: Results for Explicit arguments extraction, where
“All” indicates the arguments extraction for all the Ex-
plicit relations, and “Both” indicates Arg1 and Arg2 of a
relation are both exactly matched, no EP

P R F1 (%)
EntRel sense 58.54 66.98 62.47
All Non-Explicit Senses 43.12 42.72 42.92

Table 3: Results for Non-Explicit sense classification, no
EP

extract features on gold standard arguments of the
Non-Explicit relations. The first row gives the re-
sult of the EntRel identification. Since we only ex-
tract arguments for Non-EntRel relations in Non-
Explicit, the performance on EntRel identification is
important, since it affects the performance of argu-
ments extraction on Non-Explicit relations.

Table 4 reports the results for arguments extrac-
tion on Non-EntRel relations in Non-Explicit with-
out error propagation, where the first row shows the
result of the baseline system by labeling the pre-
vious sentence as Arg1 and the next sentence as
Arg2, and the second row shows the result when us-
ing two Implicit extractors. As we expected, using
two separate Implicit extractors achieves much bet-
ter performance than the baseline. Table 5 reports
the comparison results for the overall arguments ex-
traction of parser with error propagation, where the
first row indicates the performance when simply us-
ing the previous sentence as Arg1 and the next sen-
tence as Arg2 for all Non-Explicit relations, and the
second shows the results of using two Implicit ar-
gument extractors for Non-EntRel relations. We see
that the performance of the arguments extraction in-
creases, but not too much, due to the error propaga-
tion from the EntRel identification (P: 39.32%, R:
64.19%, F1: 48.76%; EP).

Table 6 shows the overall results, where the first
row is the overall performance of the parser when
identify Non-Explicit sense on original arguments
(i.e., adjacent sentence pairs), and the second row
is the results on refined arguments. We find that the

overall F1 of the parser is improved 0.41% by ex-
tracting features on the refined arguments.

Arg1 F1 Arg2 F1 Both F1

w/o Impl extractors 61.80 69.92 48.56
with Impl extractors 70.02 77.42 55.85

Table 4: Results for using Implicit Arg1&Arg2 extractors
on Non-EntRel relations in Non-Explicit, no EP

Arg1 F1 Arg2 F1 Both F1

w/o Impl extractors 66.06 77.06 56.31
with Impl extractors 66.97 77.21 57.21

Table 5: Results for overall argument extraction of the
parser, EP

P R F1 (%)
on original arguments 37.18 37.67 37.43
on refined arguments 37.59 38.09 37.84

Table 6: Results of overall parser performance using
Non-Explicit sense classifier on original and refined ar-
guments

5 Results on Test Data Sets

The above described discourse parser system is eval-
uated on two test datasets provided by the shared
task: (1) Section 23 in PDTB; (2) blind test set
drawn from a similar source and domain in terms of
F1. The officially released results are shown in Ta-
ble 7. Our parser ranks the first on both test datasets.
Although the two test datasets are both from news
wire domain and in PDTB style, there are difference
between the two datasets. For example, not all dis-
course connectives in blind test dataset are listed in
PDTB, e.g., “upon” is annotated as discourse con-
nective in blind test dataset while it is not in PDTB.

We compare our discourse parser with Lin’s on
PDTB Section 23. We find that new features pro-
posed in this work do help increase F1 of Explicit
connective classification by 0.54%. And for the
Explicit arguments extraction, our parser achieves
better performance as well. However, since the
sense labels of Explicit and Non-Explicit relations
in CoNLL-2015 differ from Lin’s, i.e., Lin used par-
tial sense labels of the second level (Type) by ex-
cluding several small categories while CoNLL-2015
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on PDTB Section 23 on blind test data set
our parser Lin’s parser our parser 2nd rank parser

P R F1 (%) P R F1 (%) P R F1 (%) P R F1 (%)
Explicit connective 94.83 93.49 94.16 - - 93.62 93.48 90.29 91.86 92.57 87.41 89.92
Explicit Arg1 extraction 51.05 50.33 50.68 - - 47.68 49.16 47.48 48.31 50.48 47.66 49.03
Explicit Arg2 extraction 77.89 76.79 77.33 - - 70.27 75.61 73.02 74.29 72.76 68.71 70.68
Explicit Both extraction 45.54 44.90 45.22 - - 40.37 42.09 40.65 41.35 40.76 38.49 39.59
Explicit only sense 35.52 34.69 34.93 - - - 29.69 26.24 25.91 33.15 24.81 25.22
Non-Explicit Arg1 extraction 64.83 69.50 67.08 - - - 58.66 63.25 60.87 39.47 47.93 43.29
Non-Explicit Arg2 extraction 66.02 70.78 68.32 - - - 71.88 77.49 74.58 51.58 62.63 56.57
Non-Explicit Both extraction 51.20 54.89 52.98 - - - 48.58 52.37 50.41 34.93 42.42 38.31
Non-Explicit only sense 53.18 10.45 9.06 - - - 44.74 8.64 7.69 37.08 7.83 6.81
All Arg1 extraction 59.20 61.03 60.10 - - - 55.12 56.58 55.84 44.61 48.64 46.54
All Arg2 extraction 71.43 73.64 72.52 - - - 73.49 75.43 74.45 60.02 65.43 62.60
All Both extraction 48.62 50.13 49.36 - - - 45.77 46.98 46.37 37.25 40.61 38.86
Sense (Expicit+Non-Explicit) 31.44 30.42 29.83 - - - 25.07 22.13 21.82 25.00 19.60 18.87
Overall Parser 29.27 30.08 29.72 - - 20.64 23.69 24.32 24.00 20.94 22.83 21.84

Table 7: Results of our parser on PDTB Section 23 and the blind test dataset, Lin’s parser on PDTB Section 23 and the
2nd rank parser on blind test dataset, “All” indicates all relations (Explicit and Non-Explicit relations), “-” indicates
not available

used different sense labels (partial of the three sense
levels with excluding and/or merging several small
categories), the direct comparison on sense classifi-
cation as well as the parser performance is not pos-
sible.

Table 7 also shows the results of our parser and
the 2nd rank parser on blind test dataset, we see that
our parser achieves better performance, especially
on the arguments extraction.

6 Conclusion

In this work, we have implemented a refined dis-
course parser by adding new components and fea-
tures based on Lin’s system. Specifically, we (1)
build two PS arguments extractors (i.e., PS Arg1 Ex-
tractor and PS Arg2 Extractor ) to improve perfor-
mance of Explicit arguments extraction, (2) propose
new features for building three classifiers (i.e, Con-
nective Classifier, Arg1 Position Classifier, Explicit
Sense Classifier), (3) construct two Implicit argu-
ments extractors (i.e., Implicit Arg1 Extractor and
Implicit Arg2 Extractor) for Non-EntRel relations,
and (4) perform Non-Explicit sense classification on
refined arguments. Our system ranks the first on
both test data sets, i.e. PDTB Section 23 and a blind
test dataset.
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Abstract

Penn Discourse Treebank style discourse
parsing is a composite task of identify-
ing discourse relations (explicit or non-
explicit), their connective and argument
spans, and assigning a sense to these rela-
tions from the hierarchy of senses. In this
paper we describe University of Trento
parser submitted to CoNLL 2015 Shared
Task on Shallow Discourse Parsing. The
span detection tasks for explicit relations
are cast as token-level sequence labeling.
The argument span decisions are condi-
tioned on relations’ being intra- or inter-
sentential. Non-explicit relation detection
and sense assignment tasks are cast as
classification. In the end-to-end closed-
track evaluation, the parser ranked second
with a global F-measure of 0.2184

1 Introduction

Discourse parsing is a challenging Natural Lan-
guage Processing (NLP) task that has utility for
many other NLP tasks such as summarization,
opinion mining, etc. (Webber et al., 2011). With
the release of Penn Discourse Treebank (PDTB)
(Prasad et al., 2008), the researchers have de-
veloped discourse parsers for all (e.g. (Lin et
al., 2014) or some (e.g. (Ghosh et al., 2011))
discourse relation types in the PDTB definition,
or addressed particular discourse parsing subtasks
(Pitler and Nenkova, 2009).

PDTB adopts non-hierarchical binary view on
discourse relations: a discourse connective and
its two arguments – Argument 1 and Argument 2,
which is syntactically attached to the connective.
And, a relation is assigned particular sense from
the sense hierarchy. It was identified that pars-
ing Explicit discourse relations, that are signaled
by a presence of a discourse connective (a closed

class), is much easier task than detection and clas-
sification of Implicit discourse relations, where a
discourse connective is implied, rather than lex-
ically realized. Since Explicit and Implicit dis-
course relations in a document do not differ much
in relative frequency, the low performance on one
of the relation types limits the utility of discourse
parsing for downstream applications.

In this paper we describe the University of
Trento discourse parser for both explicit and non-
explicit – implicit, alternatively lexicalized (Al-
tLex), and entity (EntRel) relations – that was
submitted to the CoNLL 2015 Shared Task on
Shallow Discourse Parsing (Xue et al., 2015) and
ranked 2nd. The parser makes use of token-
level sequence labeling with Conditional Random
Fields (Lafferty et al., 2001) for identification of
connective and argument spans; and classification
for identification of relation senses and argument
configurations.

The parser architecture is described in Section
2. The features and individual model details are
described in Sections 3 and 4, respectively. In
Section 5 we describe official evaluation results.
Section 6 discusses the lessons learned from the
shared task and provides concluding remarks.

2 System Architecture

The discourse parser submitted for the CoNLL
2015 Shared Task is the extension of the parser de-
scribed in (Stepanov and Riccardi, 2013; Stepanov
and Riccardi, 2014). The overall architecture of
the parser is depicted in Figure 1. The approach
structures discourse parsing into a pipeline of sev-
eral subtasks, mimicking the Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008) annotation pro-
cedure as in (Lin et al., 2014).

The first step is Discourse Connective Detec-
tion (DCD) that identifies explicit discourse con-
nectives and their spans. Then Connective Sense
Classification (CSC) is used to classify these con-
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Figure 1: Discourse parser architecture. CRF modules are in bold; classification modules are in italic.

nectives into the PDTB hierarchy of senses; and
Argument Position Classification (APC) to clas-
sify the connectives as requiring their Argument
1 in the previous (PS) or the same sentence as Ar-
gument 2 (i.e. classify relations as inter- and intra-
sentential). With respect to the decision of the step
an Argument Span Extraction (ASE) model is ap-
plied to label the spans of both arguments.

Separate Argument Span Extraction models are
trained for each of the arguments of intra- and
inter-sentential explicit discourse relations. Iden-
tification of Argument 2 is much easier, since it
is the argument syntactically attached to the dis-
course connective. Thus, for the intra-sentential
(SS) relations, models are applied in a cascade
such that the output of Argument 2 span extrac-
tion in the input for Argument 1 span extraction.
For the inter-sentential (PS) relations, a sentence
containing the connective is selected as Argument
2, and the sentence immediately preceding it as
a candidate for Argument 1. Even though in 9%
of all inter-sentential relations Argument 1 is lo-
cated in non-adjacent previous sentence (Prasad et
al., 2008), this heuristic is widely used (Lin et al.,
2014; Stepanov and Riccardi, 2013), and is known
as Previous Sentence Heuristic.

In PDTB, the Non-Explicit discourse relations
– Implicit, AltLex, and EntRel – are annotated for
pairs of adjacent sentences except the pairs that
were already annotated as explicit discourse re-
lations (Prasad et al., 2007). Thus, in the Non-
Explicit Pair Generation (NPG) step a list of ad-
jacent sentence pairs is generated omitting the
inter-sentential explicit relations identified in the
APC step. In the Non-Explicit Relation Detection
(NRD) step the candidate pairs are classified as
holding a relation or not. The pairs identified as

a relation are then classified into relation senses in
the Relation Sense Classification (RSC) step.

Since the goal of Discourse Connective Detec-
tion and Argument Span Extraction tasks is to la-
bel the spans of a connective and its arguments,
they are cast as token-level sequence labeling with
CRFs using CRF++ (Kudo, 2013). The Non-
Explicit Relation Detection and Sense and Argu-
ment Position classification tasks are cast as su-
pervised classification using AdaBoost algorithm
(Freund and Schapire, 1997) implemented in icsi-
boost (Favre et al., 2007). In Section 3 we describe
the features used for token-level sequence labeling
and classification tasks; and in Section 4 models
for each of the subtasks in more detail.

3 Features

Besides tokens, the PDTB corpus distributed to
the participants contains Part-of-Speech tags, con-
stituency and dependency parses. These resources
are used to extract and generate both token-level
and argument/relation-level features. Addition-
ally, for argument/relation-level features Brown
Clusters (Turian et al., 2010) are used.

3.1 Token-level Features
Discourse Connective Detection and Argument
Span Extraction tasks of discourse parsing are cast
as token-level sequence labeling with CRFs. The
list of features used for the models is given in Ta-
ble 1. Besides tokens and POS-tags, the rest of the
features is described below.

Chunk-tag is the syntactic chunk prefixed with
the information whether a token is at the begin-
ning (B-), inside (I-) or outside (O) of the con-
stituent (i.e. IOB format) (e.g. ‘B-NP’ indicates
that a token is at the beginning of Noun Phrase
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Feature DCD ASE: SS ASE: PS
A1 A2 A1 A2

Token Y Y Y Y Y
POS-tag Y Y Y Y
Chunk-tag Y
IOB-chain Y Y Y Y Y
Dependency chain Y Y
Connective Head Y
Connective Label Y Y Y
Argument 2 Label Y

Table 1: Token-level features for Discourse Con-
nective Detection (DCD) and Argument Span Ex-
traction (ASE) for intra-sentential (SS) and inter-
sentential (PS) explicit discourse relations.

chunk). The information is extracted from con-
stituency parse trees using chunklink script (Buch-
holz, 2000).

IOB-chain is the path string of the syntactic tree
nodes from the root node to the token, similar to
Chunk-tag, it is prefixed with the IOB informa-
tion. For example, the IOB-chain ‘I-S/B-VP’ in-
dicates that a token is the first word of the verb
phrase (B-VP) of the main clause (I-S).The feature
is also extracted using the chunklink script (Buch-
holz, 2000).

Dependency chain is a feature inspired by IOB-
chain and is the path string of the functions of the
parents of a token, starting from root of a depen-
dency parse. For example, the dependency chain
‘root/nsubj/det’ indicates that a token is a deter-
miner of the subject of a sentence.

Connective Head is a binary feature that indi-
cates whether a token is in the list of 100 PDTB
discourse connectives. For example, all ‘and’ to-
kens will have this feature value ‘1’.

Connective Label and Argument 2 Label are the
output labels of the Discourse Connective Detec-
tion and Argument 2 Span Extraction models re-
spectively. The outputs are the IOB-tagged strings
‘CONN’ and ‘ARG2’. Using these labels as fea-
tures for Argument Span Extraction is useful for
constraining the search space, since the Connec-
tive, Argument 1 and Argument 2 spans are not
supposed to overlap.

Besides the features mentioned above, we have
experimented with other token-level features: (1)
morphological: lemma and inflection; (2) depen-
dency: main verb of a sentence (i.e. root of the
dependency parse) as a string and binary feature;

(3) Connective Head as string. Even though previ-
ous work on discourse parsing (e.g. (Ghosh et al.,
2011; Stepanov and Riccardi, 2013) found these
features useful in token-level sequence labeling
approach to Argument Span Extraction using gold
parse trees, they were excluded from the submitted
models since in greedy hill climbing their contri-
butions were negative.

Using templates of CRF++ the token-level fea-
tures are enriched with ngrams (2 & 3-grams) in
the window of ±2 tokens. That is, for each token
there are 12 features per feature type: 5 unigrams,
4 bigrams and 3 trigrams. All features are condi-
tioned on the output label independently of each
other. Additionally, CRFs consider the previous
token’s output label as a feature.

3.2 Argument & Relation-level Features
In this section we describe features used for de-
tecting non-explicit discourse relations and their
sense classification. Since in these tasks the unit of
classification is a relation rather than token, these
features are extracted per argument of a relation
and a relation as a whole.

Previous work on the topic makes use of wide
range of features ranging from first and last tokens
of arguments to a Cartesian product of all tokens
in both arguments, which leads to a very sparse
feature set. To reduce the sparseness in (Ruther-
ford and Xue, 2014) the authors map the tokens to
Brown Clusters (Turian et al., 2010) and improve
the classification into top-level senses.

Inspired by the previous research, we have ex-
perimented with the following features that are ex-
tracted from both arguments:

1. Bag-of-Words;

2. Bag-of-Words prefixed with the argument ID
(Arg1 or Arg2);

3. Cartesian product of all the tokens from both
arguments;

4. Set of unique pairs from Cartesian product of
Brown Clusters of all the tokens from both
arguments (inspired by (Rutherford and Xue,
2014));

5. First, last, and first 3 words of each argu-
ment (from (Pitler et al., 2009; Rutherford
and Xue, 2014));

6. Predicate, subject (both passive and active),
direct and indirect objects, extracted from de-
pendency parses (8 features);
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7. Ternary features for pairs from 6 to indicate
matches (1, 0) or NULL, if one of the argu-
ments misses the feature (extension of ‘sim-
ilar subjects or main predicates’ feature of
(Rutherford and Xue, 2014)) (16 features);

8. Cartesian product of Brown Clusters of 6 (16
features);

These features are used for Non-Explicit Dis-
course Relation Detection and Sense Classifica-
tion tasks, which are described in the next section.

4 Discourse Parsing Components

In this section we describe individual discourse
parsing subtasks discussing features and models.

4.1 Discourse Connective Detection
Discourse Connective Detection is the first step in
discourse parsing. The CRF model makes use of
all the features in Table 3 (except Connective La-
bel – its own output – and Argument 2 Label –
the output of downstream component). Using just
cased token features (i.e. 1, 2, 3-grams in the win-
dow of ±2 tokens already has F-measure above
0.85. Adding other features gradually increases
the performance on the development set to 0.9379.
Other than the token itself, the feature that con-
tributes the most to the performance is IOB-chain.

4.2 Connective Sense Classification
Connective Sense Classification takes the output
of Discourse Connective Detection and classi-
fies identified connectives into the hierarchy of
PDTB senses. We have experimented with two
approaches: (1) flat – directly classifying into full
spectrum of senses including class, type and sub-
type (Prasad et al., 2008); and (2) hierarchical –
first classifying into 4 top level senses (Compar-
ison, Contingency, Expansion and Temporal) and
then into the rest of the levels. For the purposes
of the Shared Task partial senses (e.g. just class)
were disallowed; thus, for the flat classification,
instances having partial senses were removed from
both training and development sets.

The flat classification into 14 senses using just
cased token strings as bag-of-words yields the
best performance and has accuracy of 0.8968 on
the filtered development set using gold connec-
tive spans. The 4-way classification into top-level
senses on a full development set using just connec-
tive tokens has accuracy of 0.9426. Adding POS-
tags increases accuracy to 0.9456. Due to the error

propagation, going to the second level of the hi-
erarchy drops the performance slightly below the
flat classification. None of the other features listed
in Table 1 has a positive effect on classification.
Adding argument spans lowered the performance
as well.

4.3 Argument Position Classification
Argument Position Classification is an easy task,
since explicit discourse connectives have a strong
preference on the positions of its arguments, de-
pending on whether they appear at the beginning
or in the middle of a sentence. In the literature
the task was reported as having a very high base-
line (e.g. (Stepanov and Riccardi, 2013), 95% for
whole PDTB). The features used for classification
are cased connective token string (case here carries
the information about connective’s position in the
sentence), POS-tags and IOB-chains. The accu-
racy on the development set given gold connective
spans is 0.9868.

4.4 Argument Span Extraction
Argument Span Extraction models that make use
of the Connective and Argument 2 Labels are
trained on reference annotation. Even though,
the performance of the upstream models (Dis-
course Connective Detection and Argument Posi-
tion Classification) is relatively high compared to
the Argument Span Extraction models, there is still
error propagation.

For the Argument Span Extraction of explicit
relations the search space is limited to a single
sentence; thus, all multi sentence arguments are
missed. This constraint has a little effect on Argu-
ment 2 spans. However, since as a candidate for
inter-sentential Argument 1 we use only immedi-
ately preceding sentence, together with this con-
straint we miss 12% of relations. Thus, detection
of Argument 1 spans of inter-sentential relations is
a hard task, additionally due to the fact that there
is no other span (connective or Argument 2) to de-
limit it. Even though we have trained CRF models
for the task, previous sentence heuristic was per-
forming with insignificant difference. Thus, the
heuristic was selected for the submitted version,
and it was augmented with the removal of sen-
tence initial and final punctuation. For Argument
2 of inter-sentential relations performance of CRF
models is acceptably high (≈ 0.80).

The span of Argument 2 of intra-sentential re-
lations is the easiest to detect, since it is syntacti-
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cally attached to the connective; and performances
are high (≈ 0.89 on the development set using the
features in Table 1). Thus, its output is used as a
feature for Argument 1 extraction. Interesting fact
is that POS-tags have a negative effect on the Ar-
gument 1 Span Extraction.

4.5 Non-Explicit Relation Detection
Based on the output of Argument Position Classi-
fication a set of adjacent sentence pairs is gener-
ated as candidates for non-explicit discourse rela-
tions: Implicit, AltLex, and EntRel. For training
the classification models we have generated No-
Relation pairs using reference annotation, exclud-
ing all the sentences involved in inter-sentential re-
lations (some relations have multiple sentence ar-
guments). Additionally, since arguments of non-
explicit relations are stripped of leading and trail-
ing punctuation, the No-Relation pairs were pre-
processed. The task of detecting relations proved
to be hard.

Similar to Connective Sense Classification we
attempted (1) flat classification into all PDTB
senses + No-Relation (i.e. merging the task with
Relation Sense Classification described in Section
4.6) and (2) hierarchical – first detect the pres-
ence of a relation then classify it into the hier-
archy of senses. For the hierarchical detection
of Non-Explicit relations we tried (1) Relation
vs. No-Relation classification and (2) classifica-
tion into relation types (Implicit, AltLex, EntRel)
+ No-Relation. The model that has the high-
est F-measure for actual relations turned out to
be binary Relation vs. No-Relation classification
(0.6988). However, since in the testing mode we
don’t have access to argument span information
the performance is expected to drop significantly.
The most robust feature combination for the task is
Cartesian product of Brown Clusters of all the to-
kens from both arguments and Cartesian product
of Brown Clusters of predicate, subject and direct
and indirect objects (4 and 8 from Section 3.2).

4.6 Relation Sense Classification
After a sentence pair is classified as a relation, it is
further classified into the hierarchy of senses. The
models are trained on all the features from Section
3.2, excluding prefixed Bag-of-Words and Carte-
sian product of all tokens. Relations are classified
directly into 14 PDTB senses + EntRel.

The task is extremely hard, the classification ac-
curacy is 0.3899 and the model misses infrequent

Sense % F1

Expansion.Conjunction 19.0 0.4247
Expansion.Restatement 14.4 0.3212
Contingency.Cause.Reason 12.2 0.2945
Comparison.Contrast 9.5 0.0980
Contingency.Cause.Result 8.6 0.0563
Expansion.Instantiation 6.5 0.1918
Temporal.Asynchronous.Precedence 2.7 0.1290
Less Frequent and Partial Senses 4.1 0.0000
EntRel 23.1 0.5730
All (micro-average) – 0.3899

Table 2: F-measures of non-explicit relation sense
classification per sense, ordered by frequency in
the training set.

senses. Table 2 lists the captured senses with their
percentages in training data and F-measures on the
development set. The distribution of senses has a
direct effect on its F-measure.

The performances reported so far are on a spe-
cific task without error propagation from the up-
stream tasks. In the next section we report official
Shared Task evaluation results.

5 Official Evaluation Metrics and Results

The official evaluation of CoNLL 2015 Shared
Task on Shallow Discourse Parsing is done on a
per-discourse relation basis. A relation is con-
sidered to be predicted correctly if the parser
correctly identifies (1) discourse connective span
(head), (2) spans and labels of both arguments, and
(3) sense of a relation. The predicted connective
and arguments spans have to match the reference
spans exactly. Consequently, to get a true positive
for a relation the parser has to get true positive on
all the subtasks.

The task organizers also provided the evalu-
ation script that reported precision, recall and
F-measures for Discourse Connective Detection,
joint Sense Classification scores for explicit and
non-explicit relations, and joint Argument Span
Extraction score for explicit and non-explicit re-
lations. For argument spans three scores were re-
ported: Argument 1 and Argument 2 individually
and jointly. For Sense Classification the script re-
ported performance on each of the senses and their
macro-average. Later, performances for explicit
and non-explicit relations were split. The partici-
pants had to evaluate their systems on 3 data sets:
(1) Development (WSJ Section 22), (2) Test (WSJ
Section 23), and the blind test set annotated specif-
ically for the Shared Task.

The performance of our parser on each of the
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Explicit
Task Dev Test Blind
Connective 0.9219 0.9271 0.8992
Arg1 0.5646 0.5008 0.4903
Arg2 0.7748 0.7616 0.7068
Arg1&2 0.5075 0.4460 0.3959
Sense 0.4573 0.3260 0.2522
Parser 0.4760 0.3956 0.2997

Non-Explicit
Dev Test Blind

– – –
0.4586 0.4437 0.4329
0.4912 0.4744 0.5657
0.4000 0.3730 0.3831
0.0601 0.0678 0.0681
0.1577 0.1330 0.1577

All Relations
Dev Test Blind

0.9219 0.9271 0.8992
0.5225 0.4775 0.4654
0.6230 0.6068 0.6260
0.4499 0.4065 0.3886
0.3121 0.2526 0.1887
0.3055 0.2536 0.2184

Table 3: Task-level and parser-level F-measures of the parser on the development, test, and blind test sets
for explicit and non-explicit relations individually and jointly. The Sense values are macro-averages.

Team P R F1
lan15 0.2369 0.2432 0.2400
stepanov15 0.2094 0.2283 0.2184
li15b 0.1981 0.1737 0.1851

Table 4: Parser-level precision (P), recall (R), and
F-measures (F1) of the submitted system on the
blind test set. UniTN system is in bold.

metrics (tasks) per evaluation set is reported indi-
vidually and jointly for explicit and non-explicit
relations in Table 3. From the results, it is clear
that non-explicit Relation Sense Classification is
the hardest task. The next hardest task is inter-
sentential Argument 1 Span Extraction. According
to the organizers, the development, test and blind
test sets are coming from the same domain. How-
ever, we observe a gradual decline in performance
from development to test and from test to the blind
test sets for each of the tasks on explicit relations.
For non-explicit relations, on the other hand, per-
formances vary and in some cases the performance
on the blind test set is the highest (Argument 2
spans).

The parser ranked the second on the test and
the blind test sets and the third on the develop-
ment set. For the comparison we also report per-
formances of the systems ranked the first and the
third in Table 4. The global F-measure of our
parser on the blind test set is 0.2184, which is
0.0219 points lower than the first ranked system
and 0.0333 points higher than the next best sys-
tem. Comparing the performance with all the par-
ticipants, we have observed that our parser main-
tains higher recall across the subtasks.

6 Conclusion

In this paper we have presented University of
Trento parser submitted to CoNLL 2015 Shared

Task on Shallow Discourse Parsing. We have
described the discourse parsing architecture and
models for each of the subtasks. The subtasks are
categorized into span detection and classification.
The span detection tasks are for explicit relations –
Discourse Relation Detection and Argument Span
Extraction; they are cast as token-level sequence
labeling using Conditional Random Fields and ar-
gument span decisions are conditioned on rela-
tions’ being intra- or inter-sentential. Classifica-
tion tasks – Connective Sense Classification, Ar-
gument Position Classification, Non-Explicit Re-
lation Detection, and Non-Explicit Relation Sense
Classification – employ AdaBoost algorithm.

Participation in the CoNLL 2015 Shared Task
on Shallow Discourse Parsing gave the teams a
unique opportunity to compare their discourse
parsing approaches on the same training and test-
ing splits and the same automatic features. Even
though the ranking of submitted systems depends
on performances of all the modules, we can con-
clude that token-level sequence labeling for Argu-
ment Span Extraction of explicit discourse rela-
tions is a viable approach.

Participation additionally allowed us to identify
potential points of improvement for our parser.
For example, even though Discourse Connective
Detection as sequence labeling has an F-measure
of 0.8992 on the blind test set, it ranks 4th. Since
it is the first step in the pipeline, increasing the ro-
bustness of the model is essential.
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Abstract

This paper describes the submitted dis-
course parsing system of the natural
language group of Soochow University
(SoNLP-DP) to the CoNLL 2015 shared
task. Our System classifies discourse re-
lations into explicit and non-explicit re-
lations and uses a pipeline platform to
conduct every subtask to form an end-to-
end shallow discourse parser in the Penn
Discourse Treebank (PDTB). Our system
is evaluated on the CoNLL-2015 Shared
Task closed track and achieves the 18.51%
in F1-measure on the official blind test set.

1 Introduction

Discourse parsing determines the internal struc-
ture of a text via identifying the discourse relations
between its text units and plays an important role
in natural language understanding that benefits a
wide range of downstream natural language ap-
plications, such as coherence modeling (Barzilay
and Lapata, 2005; Lin et al., 2011), text summa-
rization (Lin et al., 2012), and statistical machine
translation (Meyer and Webber, 2013).

As the largest discourse corpus, the Penn Dis-
course TreeBank (PDTB) corpus (Prasad et al.,
2008) adds a layer of discourse annotations on
the top of the Penn TreeBank (PTB) corpus (Mar-
cus et al., 1993) and has been attracting more
and more attention recently (Elwell and Baldridge,
2008; Pitler and Nenkova, 2009; Prasad et al.,
2010; Ghosh et al., 2011; Kong et al., 2014;
Lin et al., 2014). Different from another famous
discourse corpus, the Rhetorical Structure The-
ory(RST) Treebank corpus(Carlson et al., 2001),
the PDTB focuses on shallow discourse relations
either lexically grounded in explicit discourse con-
nectives or associated with sentential adjacency.
This theory-neutral way makes no commitment to

any kind of higher-level discourse structure and
can work jointly with high-level topic and func-
tional structuring (Webber et al., 2012) or hierar-
chial structuring (Asher and Lascarides, 2003).

Although much research work has been con-
ducted for certain subtasks since the release of
the PDTB corpus, there is still little work on con-
structing an end-to-end shallow discourse parser.
The CoNLL 2015 shared task (Xue et al., 2015)
evaluates end-to-end shallow discourse parsing
systems for determining and classifying both ex-
plicit and non-explicit discourse relations. A par-
ticipant system needs to (1)locate all explicit (e.g.,
”because”, ”however”, ”and”.) discourse connec-
tives in the text, (2)identify the spans of text that
serve as the two arguments for each discourse con-
nective, and (3) predict the sense of the discourse
relations (e.g., ”Cause”, ”Condition”, ”Contrast”).

In this paper, we describe the system submis-
sion from the NLP group of Soochow university
(SoNLP-DP). Our shallow discourse parser con-
sists of multiple components in a pipeline archi-
tecture, including a connective classifier, argu-
ment labeler, explicit classifier, non-explicit clas-
sifier. Our system is evaluated on the CoNLL-
2015 Shared Task closed track and achieves the
18.51% in F1-measure on the official blind test set.

The remainder of this paper is organized as fol-
lows. Section 2 presents our shallow discourse
parsing system. The experimental results are de-
scribed in Section 3. Section 4 concludes the pa-
per.

2 System Architecture

In this section, after a quick overview of our sys-
tem, we describe the details involved in imple-
menting the end-to-end shallow discourse parser.

2.1 System Overview

A typical text consists of sentences glued together
in a systematic way to form a coherent discourse.
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Referring to the PDTB, shallow discourse parsing
focus on shallow discourse relations either lexi-
cally grounded in explicit discourse connectives
or associated with sentential adjacency. Differ-
ent from full discourse parsing, shallow discourse
parsing transforms a piece of text into a set of
discourse relations between two adjacent or non-
adjacent discourse units, instead of connecting the
relations hierarchically to one another to form a
connected structure in the form of tree or graph.

Specifically, given a piece of text, the end-to-
end shallow discourse parser returns a set of dis-
course relations in the form of a discourse con-
nective (explicit or implicit) taking two arguments
(clauses or sentences) with a discourse sense. That
is, a complete end-to-end shallow discourse parser
includes:

• connective identification, which identifies all
connective candidates and labels them as
whether they function as discourse connec-
tives or not,

• argument labeling, which identifies the spans
of text that serve as the two arguments for
each discourse connective,

• explicit sense classification, which predicts
the sense of the explicit discourse relations
after achieving the connective and its argu-
ments,

• non-explicit sense classification, for all ad-
jacent sentence pairs within each paragraph
without explicit discourse relations, which
classify the given pair into EntRel, NoRel, or
one of the Implicit/AltLex relation senses.

Figure 1 shows the components and the rela-
tions among them. Different from the traditional
approach (i.e., Lin et al. (2014)), considering the
interaction between argument labeler and explicit
sense classifier, co-occurrence relation between
explicit and non-explicit discourse relations in a
text, our system does not employ a complete se-
quential pipeline framework.

2.2 Connective Identification

Our connective identifier works in two steps.
First, the connective candidates are extracted from
the given text referring to the PDTB. There are
100 types of discourse connectives defined in
the PDTB. Then every connective candidate is

Figure 1: Framework of our end-to-end shallow
discourse parser

checked whether it functions as a discourse con-
nective.

Pitler and Nenkova (2009) showed that syntac-
tic features extracted from constituent parse trees
are very useful in disambiguating discourse con-
nectives. Followed their work, Lin et al. (2014)
found that a connective’s context and part-of-
speech (POS) are also helpful. Motivated by their
work, we get a set of effective features, includes:

• Lexical: connective itself, POS of the con-
nective, connective with its previous word,
connective with its next word, the location of
the connective in the sentence, i.e., start, mid-
dle and end of the sentence.

• Syntactic: the highest node in the parse
tree that covers only the connective words
(dominate node), the context of the dominate
node 1, whether the right sibling contains a
VP, the path from the parent node of the con-
nective to the root of the parse tree.

Besides, we observed that the syntactic class of
the connective2 and connective modifier (such as

1We use POS combination of the parent, left sibling and
right sibling of the dominate node to represent the context.
When no parent or siblings, it is marked NULL.

2All the connectives are classified into four well-defined
syntactic classes: subordinating conjunctions, coordinating
conjunctions, prepositional phrases and adverbs.
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apparently, in large part, etc.) give a very strong
indication of its discourse usage. So we introduce
both as two additional features.

2.3 Argument Labeling
The argument labeler needs to label the Arg1 and
Arg2 spans for every connective determined by
connective identifier. Following the work of Kong
et al. (2014), we employ the constituent-based ap-
proach to argument labeling by first extracting the
constituents from a parse tree are casted as argu-
ment candidates, then determining the role of ev-
ery constituent as part of Arg1, Arg2, or NULL,
and finally, merging all the constituents for Arg1
and Arg2 to obtain the Arg1 and Arg2 text spans
respectively.

Specifically, similar to semantic role labeling
(SRL), we use a simple algorithm to prune out
those constituents that are clearly not arguments to
the connective in question. The pruning algorithm
works recursively in preprocessing, starting from
the target connective node, i.e. the lowest node
dominating the connective. First, all the siblings
of the connective node are collected as candidates.
Then we move on to the parent of the connective
node and collect its siblings. This progress goes
on until we reach the root of the parse tree.

After extracting the argument candidates, a
multi-category classifier is employed to determine
the role of every argument candidate (i.e., Arg1,
Arg2, or NULL) with features reflecting the prop-
erties of the connective, the candidate constituent
and relationship between them. Features include,

• Connective related features: connective it-
self, its syntactic category, its sense class.3

• Number of left/right siblings of the connec-
tive.

• The context of the constituent. We use POS
combination of the constituent, its parent, left
sibling and right sibling to represent the con-
text. When there is no parent or siblings, it is
marked NULL.

• The path from the parent node of the connec-
tive to the node of the constituent.

• The position of the constituent relative to the
connective: left, right, or previous.

3In training stage, we extract the gold sense class from the
annotated corpus. And in testing stage, the sense classifica-
tion will be employed to get the automatic sense.

2.4 Explicit sense classification

After a discourse connective and its two arguments
are identified, the sense classifier is proved to de-
cide the sense that the relation conveys.

Although the same connective may carry differ-
ent semantics under different contexts, only a few
connectives are ambiguous (Pitler and Nenkova,
2009). Following the work of Lin et al. (2014),
we introduce three features to train a sense classi-
fier: the connective itself, its POS and the previous
word of the connective.

Besides, since we observed that various relative
positions (i.e., Arg1 precedes Arg2, Arg2 precedes
Arg1, Arg2 is embedded within Arg1, or Arg1 is
embedded within Arg2) are helpful for sense clas-
sification, we includes the relative position as an
additional feature.

2.5 Non-explicit sense Classification

Referring to the PDTB, the non-explicit relations4

are annotated for all adjacent sentence pairs within
paragraphs. So non-explicit sense classification
only considers the sense of every adjacent sen-
tence pair within a paragraph without explicit dis-
course relations.

Our non-explicit sense classifier includes seven
traditional features:

Verbs: Following the work of Pitler et
al. (2009), we extract the pairs of verbs from the
given adjacent sentence pair (i.e., Arg1 and Arg2).
Besides that, the number of verb pairs which have
the same highest VerbNet verb class (Kipper et al.,
2006) is included as a feature. the average length
of verb phrases in each argument, and the POS of
main verbs are also included.

Polarity: This set of features record the number
of positive, negated positive, negative and neutral
words in both arguments and their cross-product.
The polarity of every word in arguments is de-
rived from Multi-perspective Question Answering
Opinion Corpus(MPQA) (Wilson et al., 2005). In-
tuitively, polarity features would help recognize
Comparison relations.

Modality: We include a set of features to record
the presence or absence of specific modal words
(i.e., can, may, will, shall, must, need) in Arg1
and Arg2, and their cross-product. The intuition

4The PDTB provides annotation for Implicit relations, Al-
tLex relations, entity transition (EntRel), and otherwise no
relation (NoRel), which are lumped together as Non-Explicit
relations.
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behind this feature set is that the Contingency re-
lations seem to have more modal words.

Production rules: According to Lin et
al. (2009), the syntactic structure of one argument
may constrain the relation type and the syntactic
structure of the other argument. Three features are
introduced to denote the presence of syntactic pro-
ductions in Arg1, Arg2 or both. Here, these pro-
duction rules are extracted from the training data
and the rules with frequency less than 5 are ig-
nored.

Dependency rules: Similar with Production
rules, three features denoting the presence of de-
pendency productions in Arg1, Arg2 or both are
also introduced in our system.

Fisrt/Last and First 3 words: This set of fea-
tures include the first and last words of Arg1, the
first and last words of Arg2, the pair of the first
words of Arg1 and Arg2, the pair of the last words
as features, and the first three words of each argu-
ment.

Brown cluster pairs: We include the Cartesian
product of the Brown cluster values of the words in
Arg1 and Arg2. In our system, we simply take 100
Brown clusters provided by CoNLL shared task.

Besides, we introduce two features which de-
scribe the automatic determined connective list
contained by Arg1 and Arg2, respectively, to cap-
ture the co-occurrence relationship between non-
explicit and explicit discourse relations.

3 Experimentation

We train our system on the corpora provided in the
CoNLL-2015 Shared Task and evaluate our sys-
tem on the CoNLL-2015 Shared Task closed track.
All our classifiers are trained using the OpenNLP
maximum entropy package5 with the default pa-
rameters (i.e. without smoothing and with 100 it-
erations). We firstly report the official score on
the CoNLL-2015 shared task on development, test
and blind test sets. Then, the supplementary re-
sults provided by the shared task organizes are re-
ported.

In Table 1, we present the official results of our
system performances on the CoNLL-2015 devel-
opment, test and blind test sets, respectively. From
the results, we can find that,

• For Connective identification, our system
achieved satisfactory results.

5http://maxent.sourceforge.net/

Development Test Blind Test
Arg1&2 43.12 37.01 33.23

Arg1 57.28 52.45 46.28
Arg2 67.72 63.57 61.70

Connective 94.22 94.77 91.62
Sense 17.80 18.38 16.93
Parser 26.32 20.64 18.51

Table 1: the official F1 score of our system.

• For argument labeling, the performance of
Arg2 is better than Arg1 and the performance
gaps are more than 10% in F1-measure. And
the combined results of Arg1 and Arg2 ex-
tractor reduced so much in comparison with
the performance of Arg1 or Arg2.

• For sense classification, there is a lot of room
to improve.

• For the overall parser performance, obvi-
ously, a lot of work is needed for end-to-
end discourse parsing before practical appli-
cation.

Arg1&2 Arg1 Arg2 Sense Parser

Dev Exp 34.67 38.67 74.37 20.18 29.78
nonExp 49.94 62.13 62.37 7.37 23.54

Test Exp 30.21 34.02 74.48 20.59 25.30
nonExp 42.38 57.71 54.95 6.77 16.97

Blind Exp 30.42 36.43 73.04 17.36 22.95
nonExp 35.87 49.87 51.07 5.24 14.35

Table 2: the supplementary F1 score of our sys-
tem.

In Table 2, we reported the supplementary re-
sults provided by the shared task organizes on the
development, test and blind test sets. These ad-
ditional experiments investigate the performance
of our shallow discourse parsing for explicit and
non-explicit relations separately. From the results,
we can find that the sense classification for both
explicit and non-explicit discourse relations are
the biggest obstacles to the overall performance of
discourse parsing.

4 Conclusion

We have presented the SoNLP-DP system from
the NLP group of Soochow university that par-
ticipated in the CoNLL-2015 shared task. Our
system is evaluated on the CoNLL-2015 Shared
Task closed track and achieves the 18.51% in F1-
measure on the official blind test set.
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Abstract

This paper describes our system in the
closed track of the shared task of CoNLL-
2015. We formulize the discourse pars-
ing work into a series of classification sub-
tasks. The official evaluation shows that
the proposed framework can give compet-
itive results and we give a few discussions
over latent improvement as well.

1 System Overview

We design our shallow discourse parser as a se-
quential pipeline to mimic the annotation proce-
dure as the Penn Discourse Treebank (we will use
PDTB instead in the rest of this paper) annotator
(Lin et al., 2014). Figure 1 gives the pipeline of
the system. The system can be roughly split into
two parts: the explicit and the non-explicit. The
first part consists of three steps, which sequen-
tially are Explicit Classifier, Explicit Argument
Labeler, and Explicit Sense Classifier. While the
non-explicit part consists of Filter, Non-explicit
and Non-explicit Sense Classifiers. Non-explicit
relations include ‘Implicit’, ‘AltLex’, ‘EntRel’, but
not ‘NoRel’.

We adopt an adapted maximum entropy model
as the classification algorithm for every steps. Our
system only exploits resources provided by the or-
ganizer.

∗This work of C. Chen, P. Wang, and H. Zhao was
supported in part by the National Natural Science Foun-
dation of China under Grants 60903119, 61170114, and
61272248, the National Basic Research Program of China
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13511500200, the European Union Seventh Framework Pro-
gram under Grant 247619, the Cai Yuanpei Program (CSC
fund 201304490199, 201304490171, and the art and sci-
ence interdiscipline funds of Shanghai Jiao Tong University
(a study on mobilization mechanism and alerting threshold
setting for online community, and media image and psychol-
ogy evaluation: a computational intelligence approach under
Grant 14X190040031(14JCRZ04).

†Corresponding author

Figure 1: Pipeline of the system

Explicit connectives in train set 14722
Level-order Scan 13911

Table 1: Performance of level-order scan

We first give a brief introduction over each step
of the entire system as the following. After the
Explicit Classifier detects explicit connectives, the
Explicit Argument Labeler then prunes and clas-
sifies the ‘Arg1’ and ‘Arg2’ of the detected con-
nective. Then, Explicit Sense Classifier integrates
results of previous two steps when trying to dis-
tinguish different senses. The second part of the
system starts with filtering out obvious false cases.
Then the Non-explicit classifier classifies the non-
relations into three classes, i.e., ‘Implicit’, ‘Al-
tLex’, ‘EntRel’. Finally, the Non-explicit Sense
classifier determines the sense of the non-explicit
relation. In the last two steps, we take the ‘En-
tRel’ as a sense of implicit relation, which we will
explain later.
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Tag P R F
Arg1 0.7748 0.7544 0.7645
Arg2 0.8102 0.9658 0.8812
NULL 0.9922 0.9781 0.9851

Table 2: Performance of Argument Labler

2 System Modules

2.1 Explicit Part

In this part, our parser extracts the explicit rela-
tions. An explicit example is given below.

He added that ”having just one firm do this
isn’t going to mean a hill of beans. But if this
prompts others to consider the same thing,
then it may become much more important.

‘Arg1’ is shown in italic, and ‘Arg2’ is shown
in bold. The discourse connective is underlined
and the sense of this explicit relation is ‘Compari-
son.Concession’.

2.1.1 Explicit Classifier
There are 100 explicit connectives in PDTB anno-
tation (Prasad et al., 2008). However, some con-
nectives, e.g., ‘and’, do not express a discourse re-
lation. We use a level-order traverse to scan every
node in the constituent parse tree to select the con-
nective candidates. This method gives us a high
recall in the train set as shown in Table 1.

Seven features are considered (Pitler and
Nenkova, 2009):
a) Self Category The highest dominated node
which covers the connective.
b) Parent Caterogy The category of the parent of
the self category.
c) Left Sibling Category The syntactic category
of immediate left sibling of the self-category. It
would be ‘NONE’ if the connective is the leftmost
node.
d) Right Sibling Category The immediate right
sibling of the self category. It also would be as-
signed ‘NONE’ if the self-category has been the
rightmost node.
e) VP Existence We set a binary feature to indi-
cate whether the right sibling contains a VP.
f) Connective In addition to those features pro-
posed by Pilter and Nenvoda, we introduce con-
nective feature. The potential connective itself
would be a strong sign of its function. A few of
discourse connectives that are deterministic. For

example, ’in addition’ will always be ’Expan-
sion.Conjunction’.

Maximum Entropy classifier has shown good
performance in various previous works (Wang et
al., 2014; Jia et al., 2013; Zhao and Kit, 2008).
Based on these features, we trained a Maximum
Entropy classifier. In order to check the perfor-
mance of the classifier only, we evaluate the clas-
sifier on connective candidates that selected by a
level-order traverse. This gives 93.87% accuracy
and 90.1% F1 score on dev set.

2.1.2 Explicit Argument Labeler
With all explicit connectives detected, we exploit
a constituent-based approach to perform argument
labeling (Kong et al., 2014). Along the path from
the connective node to the root node in the con-
stituent parse tree, all the siblings of every node
on the path are selected as candidates for ‘Arg1’
and ‘Arg2’. For these candidates, we compare
them with PDTB to label them as ‘Arg1’, ‘Arg2’,
or ‘NULL’. However, this argument prune strategy
focuses on intra sentence. In addition, Kong et al.
unified the intra- and inter-sentence cases by treat-
ing the immediate preceding sentence as a spe-
cial constituent. Based on our empirical results,
the inter-sentences only contribute to the augment
candidate Arg1. Kong et al. also reported a very
high recalls (80-90%) on ‘Arg1’ and ‘Arg2’ ex-
traction, though our re-implementation only re-
ceive recalls 37.5% and 51.3% of the ‘Arg1’ and
‘Arg2’, respectively. And about 87.75% of all the
pruning out constituents are labeled as ‘NULL’.
Similar to treating the immediate preceding sen-
tence as ‘Arg1’ candidate, we take the remaining
part of the sentence that is adjacent to the connec-
tive as ‘Arg2’ candidate. This approach gives a
boost in ‘Arg2’ recall, as high as 93.1%.

We extract features from constituent parser tree
(Zhao and Kit, 2008; Zhao et al., 2009). The ex-
tracted features can be divided into two parts. The
first part captures information about the connec-
tive itself:
a) Con-str Case-sensitive string of the given con-
nective.
b) Con-Lstr The lowercase string of the connec-
tive.
c) Con-iLSib Number of left sibling of the con-
nective.
d) Con-iRSib Number of right sibling of the con-
nective.

The second part consists of features from the
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syntactic constituent:
e) NT-CtxContext of the constituent. We use POS
combination of the constituent, its parent, left sib-
ling and right sibling to represent the context.
f) Con-NT-Path The path from the parent of the
connective to the node of the constituent.
g) Con-NT-Position The positive of the con-
stituent relative to the connective: left, right, or
previous.

After the parser categories all the candidates
constituent into ‘Arg1’, ‘Arg2’, and ’NULL’, Kong
et al. adopted a Linear Integer Programming to
impose constraints that the number of ‘Arg1’ and
‘Arg2’ should no less than one, The extracted
arguments should not overlap with the connec-
tive. Our experiments also show that some con-
straints are useless. For example, constraint that
the pruned out candidates should not overlap with
the connective. The pruning algorithm considers
the siblings of the node along the path, there is no
chance that the pruned out candidate would over-
lap with the connective node.

Without considering the error propagated by the
pruning process, the argument labeler gives results
as Table 2.

2.1.3 Explicit Sense Classifier
In this part we only take a naive approach that take
the most frequent sense of the detected explicit
connective. A better approach needs to build a
sense classifier with syntactic features of the con-
nective such as POS, and position and length of
arguments.

2.2 Non-Explicit Part
This part is based on the result of explicit part.
We assume that Explicit and Non-explicit relations
cannot exist in the same sentence simultaneously.
So we take out sentences which have been labeled
as Explicit in the first part. Then, we take all the
adjacent sentences left in the article as candidate
implicit relations. There are 13,155 implicit rela-
tions given in the train set.

2.2.1 Filter
Apart form filtering out the explicit connective, we
also discard sentences between two paragraphs.
After these two filtering steps we get 8,728 non-
explicit relations.

2.2.2 Non-explicit Classifier
At first glance, we should build a classifier that can
distinguish the relations ‘Implicit’, ‘AltLex’, and

‘EntRel’. We give the distribution of each relations
in the train set in Table 3.

Implicit AltLex EntRel
# 13,155 524 4,133
% 73.85 2.94 23.2

Table 3: Distribution of Non-Explicit Relations in
train set

Sense # %
*Ent Rel 4,133 23.2
*Expn..Conj. 3,321 18.64
*Expn..Rest. 2,543 14.28
*Cont. Cause. Reason 2,135 11.99
*Comp..Cont. 1,646 9.24
*Cont..Cause.Result 1,519 8.53
* Expn..Inst. 1,165 6.54
*Temp..Asyn..Prec. 460 2.58
*Comp..Conc. 197 1.11
*Temp..Sync. 169 0.95
Comparison 145 0.81

*Temp..Asyn..Suc. 143 0.8
*Expn..Alt..Chosen alt. 142 0.8
Expn. 75 0.42

*Expn.Alt. 11 0.06
*Cont.Cond. 4 0.02
*Expn..Exc. 2 0.01
Cont..Cause 1 0.00
Temp. 1 0.00
Cont. 1 0.00

Table 4: Distribution of Non-explicit Senses in
train set.∗

We can see the ‘AltLex’ only covers about
2.94%, which is relatively negligible comparing
with ‘Implicit’( 73.85%) and ‘EntRel’(23.2%). So
we decide to focus only on the latter two relations,
and the classifier only works on these two rela-
tions. Instead of building a single classifier, we set
all the non-explicit relations as ‘Implicit’ here, and
view ‘EntRel’ as a sense of implicit relation.

2.2.3 Non-explicit Sense Classifier
The distribution of all senses in the train set is
given in Table 4. The current shared task only asks

∗Abbreviations: Expansionz(Expn.), Conjunc-
tion(Conj.), Restatement(Rest.), Contingency(Cont.), In-
stantiation(Inst.), Temporal(Temp.), Asynchronous(Asyn.),
Precedence(Prec.), Comparison(Comp.),Concession(Conc.),
Synchrony(Sync.), Asynchronous(Asyn.), Succession(Suc.),
alternative(alt.), Condition(Cond.), Exception(Exc.)
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Blind Test Dev
Explicit Conn. F 0.8168 0.7867 0.8609
Explicit Conn. P 0.8117 0.7784 0.8528
Explicit Conn. R 0.8219 0.7952 0.8691
Arg1 Arg2 Ext. F 0.047 0.0457 0.0681
Arg1 Arg2 Ext. P 0.0453 0.0424 0.0643
Arg1 Arg2 Ext. R 0.0488 0.0495 0.0724
Arg1 Ext. F 0.0629 0.0657 0.0845
Arg1 Ext. P 0.0607 0.061 0.0798
Arg1 Ext. R 0.0653 0.0712 0.0898
Arg2 Ext. F 0.2182 0.2166 0.264
Arg2 Ext. P 0.2104 0.2011 0.2492
Arg2 Ext. R 0.2266 0.2347 0.2806
Parser F 0.0358 0.0443 0.0655
Parser P 0.0346 0.0411 0.0618
Parser R 0.0372 0.048 0.0696

Table 5: Detailed Results

us to detect 15 senses, which are marked by star.
We can see that senses below the double line ac-
count less than 1%. Based on this observation, we
decide only consider those significant sense.

What’s more, we can see that the most frequent
sense is ‘EntRel’. This leads to our another strat-
egy: At first we set all the candidate non-explicit
senses as ‘Implicit’ and view ‘EntRel’ as a sense.
Then when the Non-explicit Sense Classifier la-
bels the sense as ‘EntRel’, the Non-explicit Sense
Classifier re-labels the type of corresponding rela-
tion as ‘EntRel’.

Previous studies attempt to predict the missing
connective of implicit relations (Zhou et al., 2010;
Pitler et al., 2009) . It has been shown that con-
nective is very predictive for the sense of the rela-
tion (Kong et al., 2014). Consequently, we can get
the intuition that features for predicting the miss-
ing connective are also useful for predicting the
implicit sense. Thus we use word-pair features to
train our Non-explicit Sense Classifier:
b) Arg1Last The last word of ‘Arg1’.
a) Arg1First The first word of ‘Arg1’.
c) Arg2First The first word of ‘Arg2’.
d) Arg2Last The last word of ‘Arg2’.
e) FirstS Arg1First + Arg2First.
f) LastS Arg1Last + Arg2Last.
g) Arg1First3 The first three words of ‘Arg1’.
h) Arg1Last3 The last three words of ‘Arg2’.
i) Arg2First3 The first three words of ‘Arg2’.

3 Evaluation

A comprehensive evaluation towards our parser
has been given in Table 5. We can see that the first
step of our parser, i.e., Explicit Classifier, does a
moderate job. However, our work to extract the
‘Arg1’ and ‘Arg2’ cannot be regarded as success.
Since our parser is in a sequential mode, all steps
after that receive negative impacts.

4 Conclusion and Future Work

In this paper, a sequential system is proposed to do
shallow discourse parsing. We demonstrate that
the whole task can be worked out by a pipeline
consists of several subtasks.

In future, we will tune our Argument Labeler in
order to gain a better result in the explicit part .
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Abstract

We describe a minimalist approach to
shallow discourse parsing in the con-
text of the CoNLL 2015 Shared Task.1

Our parser integrates a rule-based compo-
nent for argument identification and data-
driven models for the classification of ex-
plicit and implicit relations. We place spe-
cial emphasis on the evaluation of implicit
sense labeling, we present different feature
sets and show that (i) word embeddings
are competitive with traditional word-level
features, and (ii) that they can be used to
considerably reduce the total number of
features. Despite its simplicity, our parser
is competitive with other systems in terms
of sense recognition and thus provides a
solid ground for further refinement.

1 Introduction

Comprehending sentences and other textual units
requires capabilities beyond capturing the lexical
semantics of their components. Contextual in-
formation is needed, i.e., a semantically coher-
ent representation of the logical structure of a
text—be it written or spoken discourse, unidirec-
tional or bidirectional communication, etc. Dif-
ferent formalisms have been proposed to model
these assumptions in frameworks of coherence re-
lations and discourse structure (Mann and Thomp-
son, 1988; Lascarides and Asher, 1993; Webber,
2004). In a more applied NLP context, the goal
of shallow discourse parsing (SDP) is to automat-
ically detect relevant discourse units and to label
the relations that hold between them. Unlike deep
discourse parsing, a stringent logical formaliza-
tion or the establishment of a global data structure,
say, a tree, is not required.

1http://www.cs.brandeis.edu/˜clp/
conll15st/index.html

With the release of the Penn Discourse Tree-
bank (Prasad et al., 2008, PDTB), annotated train-
ing data for SDP has become available and, as a
consequence, the field has considerably attracted
researchers from the NLP and IR community. In-
formally, the PDTB annotation scheme describes
a discourse unit as a syntactically motivated char-
acter span in the text, and augments with rela-
tions pointing from argument 2 (Arg2, prototypi-
cally, a discourse unit associated with an explicit
discourse marker) to its antecedent, i.e., the dis-
course unit Arg1. Relations are labeled with a re-
lation type (its sense) and the associated discourse
marker (either as found in the text or as inferred
by the annotator). PDTB distinguishes explicit
and implicit relations depending on whether such a
connector or cue phrase (e.g., because) is present,
or not.2 As an illustration, consider the following
example from the PDTB:

Arg1: Solo woodwind players have to be creative
if they want to work a lot
Connector: because
Arg2: their repertoire and audience appeal are
limited

In this explicit relation, Arg1 and Arg2 are directly
connected by the cue word; the relation type is
Contingency.Cause.Reason—one out of roughly
20 three-level senses marking the relation sense
between any given argument pair in the PDTB.

We participate in the CoNLL 2015 Shared Task
(Xue et al., 2015) with a minimalist end-to-end
shallow discourse parser developed from scratch.
It was, however, originally not specifically devel-
oped for this purpose, but created in preparation
of more elaborate experiments on implicit inter-
sentential relations in discourse, an aspect not ex-
plicitly addressed by the evaluation of the Shared
Task.

2The set of relation types is completed by alternative lex-
icalization (AltLex, discourse marker rephrased), entity rela-
tion (EntRel, i.e., anaphoric coherence), resp. the absence of
any relation (NoRel).
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The remainder of the paper describes the ar-
chitecture and functionality of our system: A
rule-based component identifies explicit and im-
plicit argument-pairs and two statistical, data-
driven models classify senses. Our system suf-
fers from the surface-based definition of argument
spans and their evaluation as string ranges, but
with respect to sense disambiguation (in particu-
lar, in terms of precision), it is competitive with
other systems in the task. Inspired by the diver-
sity of different approaches to handle the more
challenging—and more interesting—non-explicit
relations, our description focuses on inferring im-
plicit senses and benefits from abstracting from
traditional surface-based features in favor of dis-
tributional representations of the argument spans.

2 Related Work

At the moment, few full-fledged end-to-end dis-
course parsers exist, but they use different theo-
ries of discourse, e.g., PDTB (Lin et al., 2010),
or RST (duVerle and Prendinger, 2009; Feng and
Hirst, 2012). Most of the literature on automated
discourse analysis has focused on specialized sub-
tasks:

Argument identification is approached by, e.g.,
Ghosh et al. (2012) on the word and inter-
sentential level, using a CRF-based approach in-
cluding local and global features. Kong et al.
(2014) tackle argument span detection on the
constituent-level with features for subtrees and
special constraints.

Explicit relation classification Classifying the
senses of explicit relations is rather straightfor-
ward, given the cue phrase. Pitler and Nenkova
(2009) introduce a refinement using syntactic fea-
tures to disambiguate explicit connectives which
increases performance close to a human baseline.

Implicit relation classification In the early at-
tempt by Marcu and Echihabi (2002), implicit
relation classification was grounded on synthetic
training data (relation patterns with explicit cue
phrases removed) and a Naive Bayes model
trained on word-pair features. Aggregation over
such word-pairs was described by Biran and McK-
eown (2013), while Park and Cardie (2012) opti-
mized feature sets through feature selection, pre-
processing and special binning techniques.

Out of these, implicit relation classification re-
mains the most problematic subtask, and attracted

Figure 1: Our three-component SDP pipeline.

considerable interest: Pitler et al. (2009) present
an extensive evaluation of mostly linguistically
motivated features for implicit sense labeling in
a 4-way classification experiment. Useful indica-
tors, among others, are verb information, polarity
labels and the first and last three words of an ar-
gument. Lin et al. (2009) refine their work by in-
troducing contextual and dependency information
from the argument pairs and show that syntactic
phrase-structure features help in level-2 relation
type classifications. Moreover, Zhou et al. (2010)
use a language model to “predict” explicit connec-
tives from implicit relations. Our approach is most
similar to the one by Rutherford and Xue (2014),
who successfully integrate distributional represen-
tations to substitute word-pair features.

3 Approach

Our SDP system participates in the closed track
of the Shared Task.3 Its components are illus-
trated in Figure 1. Input is tokenized text in the
provided JSON format including meta information
about parts-of-speech and sentence boundaries.

3.1 Argument Identification

The SDP pipeline processes the documents sen-
tence by sentence. Due to the strict time con-
straints of the Shared Task, we have set up a rule-
based detector for both Arg1 and Arg2 spans as
follows:

• Extract an explicit Arg1–Arg2 pair, where
Arg2 is a complete sentence starting with an
explicit connective.4 The previous sentence
serves as Arg1.

3http://www.cs.brandeis.edu/˜clp/
conll15st/dataset.html

4An exhaustive list of explicit cue words was obtained
from the training section of the PDTB, ranging from uni-
grams to 7-grams.
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• Refining step 1, we extract sentence-
internal explicit Arg1–Arg2 pairs by
applying the pattern BOS-Arg1-cue
word-punctuation-Arg2-EOS.5 Note
that we require a punctuation symbol be-
tween both arguments to prevent the template
from extracting, e.g., coordinated NPs such
as chairman and chief executive.

• We take special care of explicit tem-
poral Arg1–Arg2 relations and ex-
tract patterns of the form BOS-cue
word-Arg2-comma-Arg1-EOS. Cue
words are, e.g., while, although, unless.

• More complicated explicit patterns split the
second argument into two parts by the cue
word as with however in: Argument identi-
fication is tough. Writing patterns, however,
is easy.

• Finally, we extract all relations between adja-
cent, complete sentences as Arg1 and Arg2
spans as implicit, iff Arg1–Arg2 is not al-
ready an explicit relation and Arg1–Arg2
does not cross a paragraph boundary.

• EntRel and AltLex relations are beyond the
scope of our current parser as both taken to-
gether make up only 14.3% of all relations in
the training section of the PDTB.

Post processing A rule-based post-processor is
applied on top of the previous component. Its pur-
pose is to fix token lists for argument spans ac-
cording to the guidelines of the Shared Task as no
partial credit is given for non-exact matches. For
example, a leading or trailing punctuation, quote
or attribution spans must not be part of any of the
arguments.

This rule-based model had specifically to be de-
veloped for the Shared Task; it replaced a more
elaborate argument identifier based on structured
representations rather than character spans to rep-
resent the arguments of discourse relations.

3.2 Labeling Explicit Senses

Given two argument spans and an explicit connec-
tive, we aim to predict the correct relation type

5BOS and EOS mark the beginning and the end of sen-
tence, respectively.

(sense). To this end, we trained a simple statis-
tical model6 in a supervised setting on all explicit
relations whose only feature is the cue word itself.
An exhaustive list of cue words (features) was ob-
tained from the training section of the PDTB data.
Moreover, we restricted the set of labels to those
eight senses that appear only frequently enough,
i.e. we excluded those whose proportion is less
than 5% of all explicit senses in the training sec-
tion.

3.3 Labeling Implicit Senses
A third component handles the classification of
implicit senses for any implicit Arg1–Arg2 pair.
Similar to the previous subtask, we restrict the
label set (here to six senses). We trained vari-
ous models only on implicit relations. Inspired
by the previous literature on implicit sense clas-
sification, we experimented with different surface-
based word-pair feature sets for Arg1 and Arg2, as
well as more abstract representations for the word
forms, such as embeddings and word vectors:7

1. Word-pair (WP) token features of Arg1 and
Arg2: (i) normal-case (N ) as encountered in
the text and (ii) after lower-case normaliza-
tion (l), both with frequency thresholds.

2. Similar to (1.) but using word stems (Porter,
1980) instead.

3. Similar to (1.) but using a Brown cluster 3200
representation (Turian et al., 2010) for each
word form if it exists. Otherwise, we use the
word form as feature.

A subsequent experiment is concerned with find-
ing a more compact representation of both Arg1
and Arg2 spans: For each argument pair, we com-
puted two real-valued vectors (600 features in to-
tal), in which each argument is represented by
a 300-dimensional feature vector. These were
obtained by summing over all skip-gram neural
word embeddings (Mikolov et al., 2013) present
in each argument weighted by the respective num-
ber of elements (embeddings) found in each argu-
ment. The normalization is necessary to handle
sentences of different lengths.

6In all our experiments, we made use of the JAVA imple-
mentation of libsvm (Chang and Lin, 2011) with linear kernel
and default parameters.

7A word-pair is defined as the cross product of any combi-
nation of words in both Arg1 and Arg2. Punctuation symbols
were removed before processing. All features are treated as
boolean if present (true) or absent (false).
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Testing the effect of both Brown clusters and
neural word embeddings, a final experiment com-
bines them into one feature set for each implicit
argument pair.

4 Evaluation

4.1 Argument Identification

In the overall task (based on the blind test set),
our system is ranked at position 13 – rather poorly
compared to 17 submitted systems in total (includ-
ing a baseline). This is due to the imperfect argu-
ment identification, and in particular due to the er-
roneous recognition of explicit cue phrases. The
system suffers from low overall recall of the iden-
tified explicit argument spans, including the con-
nective.8 A simple error analysis reveals that pat-
terns in which cue phrases do not directly start
the second argument are hard to identify by our
rule-based system. Moreover, punctuation sym-
bols pose problems to the system as well (cf.
our discussion in Section 4.3). A separate eval-
uation shows that post-processing argument pairs
improves F-score by 2%.

Despite these obvious drawbacks, we would
like to draw special attention to our statistical com-
ponents for sense classification: for the argument
pairs which were correctly recognized, our system
is ranked at position 4 for sense precision, even
outperforming the best three systems. We will
elaborate more on these models in the next sub-
section.

4.2 Explicit and Implicit Senses

The classification of explicit senses with only
the connector word as single feature reaches an
accuracy of 80.48% using the PDTB training–
development split. This is still below state-of-the
art (94% in Pitler and Nenkova, 2009)9—yet sat-
isfying for our lightweight system with its original
emphasis on implicit relations.

Table 1 shows the results for implicit sense clas-
sification (472 instances in total) using different
feature sets.10 First, models trained on any of the
feature sets significantly outperform the majority

8Ranks for expl. Arg1-Arg2 prec., recall, F1: 12, 10, 11.
Ranks for expl. connective prec., recall, F1: 15, 16, 15.

9Note, however, that this is 4-way sense classification.
10We also tested a broad band-width of sentiment and

phrase-structure features, but with the resulting accuracies
not outperforming the current experiments, these are omitted
for reasons of brevity.

class baseline (25.4%, Expansion.Conjunction).11

Applying lower-case normalization to the input
tends to improve classifier performance, but using
a frequency threshold on the minimum number of
occurrences of a feature does not: This is an inter-
esting observation and not in line with the previ-
ous literature on implicit sense classification; Lin
et al. (2009), for example, use a frequency cutoff
of 5 for feature selection. Also, stemming as an-
other type of normalization seems not to be useful
either and yields slightly lower accuracies.

Noticeably, substituting surface-level word-pair
features by the Brown Cluster 3200 embeddings
yields a better performance. The difference is,
however, not statistically significant.12 More im-
portant, however, may be the positive side effect
of a smaller feature space (≈1.4 million) which is
reduced by 23%.

We expect the skip-gram neural word embed-
dings (word vectors) to perform even better than
Brown clusters: They are comparable in their con-
textual features but preserve the topology of the
original feature space. Indeed, these are competi-
tive with the low-frequency word-pair features and
even significantly better than the configurations l3,
l4, l5. Their greatest benefit can be seen in the
overall number of real-valued features per instance
(which is only 600 in our setting). Finally, a com-
bination of Brown clusters and skip-gram embed-
dings yields the best results for the classification
of implicit senses. This gain over using the em-
beddings alone may possibly be attributed to non-
linearities in the feature space which may be par-
tially captured in the Brown clusters, but not with
embeddings in a SVM.13 We report detailed scores
for this best-performing classifier in Table 2.

4.3 Discussion & Open Issues

4.3.1 Argument Span Identification
Exact argument identification is a crucial prepro-
cessing step for any SDP pipeline. Our shallow

11In all experiments, we applied the χ2 test statistic to as-
sess significance.

12We have tested the other Brown cluster representations
provided, as well, but 100, 320 and 1000 cluster sets yielded
lower accuracies.

13All results reported above were obtained with linear ker-
nels. These experiments have also been conducted with RBF
and polynomial kernels, whose performance was not reported
here, as it did not yield an improvement. However, truly non-
linear models would be possible with multi-layered neural
networks. While this may yield better results for word em-
beddings as features, such an experiment is left for future re-
search.
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N0/l0 N1/l1 N2/l2 N3/l3 N4/l4 N5/l5

WP / Tokens 36.65/38.14 36.23/34.53 33.68/32.84 32.84/33.05 31.57/32.63 30.08/32.63

WP / Stems – /36.23 – /33.89 – /32.84 – /31.99 – /33.05 – /30.72

WP / Brown Cluster 3200 36.86/38.77 35.38/35.17 33.90/36.07 35.38/34.11 34.96/33.47 32.63/33.89

Word Vectors 36.23/37.28

WP / Brown Cluster + Word Vectors 37.28/39.41

Table 1: Accuracies for 6-way implicit sense labeling and different feature sets when tokens are treated
in normal-case (N ) or after lower-case preprocessing (l). Subscripts indicate frequency thresholds for
feature selection (0 means no threshold applied). Majority class baseline: 25.4%.

Prec Rec F1

Expansion.Conjunction 43.09 67.50 52.59

Expansion.Restatement 32.68 49.50 39.37

Comparison.Contrast 42.85 18.29 25.64

Contingency.Cause.Reason 41.26 35.61 38.23

Contingency.Cause.Result 40.00 16.32 23.18

Expansion.Instantiation 46.15 12.76 20.00

Table 2: Detailed classification scores for the best-
performing classifier combining Brown Cluster
3200 and skip-gram embeddings.

discourse parser suffers from low overall recall
of the correctly recognized (explicit) spans, which
we see as the main source of poor performance in
the task evaluation.

Even though a system description may not be
the right place for a general discussion about the
appropriate representation of how arguments of
discourse relations are to be defined and repre-
sented, we would like to point out that we see a po-
tential issue in the rather strict evaluation of exact
matches within the Shared Task (which does not
allow for partial matches). Likewise problematic
is an arguable definition of gold spans for Arg1
and Arg2 in the provided training data. As an il-
lustration consider the following example:14

Gold:
Arg1: At any rate India needs the sugar
Arg2: it will be in sooner or later to buy it

Our System Output:
Arg1: At any rate, she added, “India needs the
sugar
Arg2: it will be in sooner or later to buy it.

At least on a general basis, both argument spans
are correctly identified by our system. The only

14Document ID: wsj 2265, Relation ID: 36896.

difference is that punctuation symbols and attribu-
tion spans (she added) are not present in the gold
data. Note, however, that a rule-based removal of
such patterns is far from trivial, as syntactic pat-
terns are complex and the PDTB gold data reveals
many inconsistencies, especially regarding lead-
ing and trailing punctuation symbols. In this par-
ticular example, our system is capable of

(i) identifying the correct explicit connective
(so), and

(ii) classifying its correct sense
(Contingency.Cause.Result).

Nevertheless, it is not given any credit, as the sys-
tem’s token lists do not match the gold data. Very
much related to the span identification problem
sketched above is the detection of discontinuous
argument spans and cases in which our system
adds a subordinate clause to the argument, which
is not present in the gold data. We believe that—in
line with the annotation guidelines of the PDTB—
these are relevant factors to consider when imple-
menting a SDP, but that it should not affect the
overall evaluation in such a strict and rigid manner.
We would therefore encourage future evaluations
to

• either employ additional metrics permitting
partial matches, e.g., using sliding-window
metrics such as Pevzner and Hearst (2002),

• or to ground argument definitions in psy-
cholinguistically more plausible models of
propositions, cf. Lascarides and Asher
(1993) or Kintsch (1998), resp.—their more
operationalizable approximation in terms of,
say, frame semantics as previously annotated
for the PDTB data in the context of PropBank
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and NomBank (Palmer et al., 2005; Meyers et
al., 2004).

The latter idea may be challenging, as it involves
efficient handling of multi-layer annotations for
different major annotation projects, yet, experi-
ments in this direction have successfully been con-
ducted (Pustejovsky et al., 2005). This integrative
direction of research has been the original focus of
our system.

4.3.2 Frequency Cutoffs for Word-Pair
Feature Selection

Our experiments indicate that frequency cutoffs
to select word-pair features for implicit relation
recognition do not seem to improve classifier per-
formance. While some previous approaches (most
notably Lin et al., 2009) incorporate cutoffs in
their experiments, others do not. But if a fre-
quency filter is applied, the specific value for the
threshold is usually not motivated.

We see a possible explanation for the negative
impact of cutoffs in the extremely sparse feature
space: Many word-pair features which are present
in the training section of the PDTB are not found
in the development set and vice versa, and with
frequency cutoffs applied, sparsity even grows fur-
ther. Closely related to our observation are ear-
lier findings that using even a small stop word list
has adverse effects on performance, which seems
implausible at first sight (Blair-Goldensohn et al.,
2007).

Biran and McKeown (2013) address this is-
sue in closer detail by replacing the sparse lexi-
cal word-pair features by more dense, aggregated
score features. Based on their experiments, the
authors argue that the most powerful features are
mainly function words. Yet, their lack of seman-
tic content whatsoever still calls for an explanation
why they are useful in distinguishing the different
types of implicit relations—except through over-
fitting the data.

As a side experiment, we performed 10-fold
cross validation on the PDTB, and again trained
implicit relations by varying the cutoff. The re-
sults are in line with our experiments reported in
Table 1 showing the same trend, which reinforces
the aforementioned sparsity issue.

Overall, we believe that more aggregated types
of features have advantages over sparse features
and that they are better in representing the underly-
ing semantic relationship between argument pairs.

We elaborate on this in our final subsection.

4.3.3 Abstracting from Surface-Level
Features

Our experiments for implicit relation classification
have shown that is is beneficial to abstract from
surface-level (token) features for two reasons:

(i) word embeddings seem to express a more
general, semantic representation of the un-
derlying relationship between two arguments
in the discourse and

(ii) the number of features involved in a classifi-
cation can be significantly reduced which has
a positive effect on the computational side.

Future research should be concerned with a closer
inspection of how combinations of word embed-
dings can be used to increase classification results,
especially when no explicit connectives are avail-
able. Instead of vector addition, as applied in our
setting, we think that traditional vector-based sim-
ilarity measures comparing both arguments spans
seem to be highly promising in approaching their
underlying semantic relationship.

5 Conclusion

In the context of the CoNLL 2015 Shared Task, we
have described a minimalist approach to shallow
discourse parsing with an emphasis on implicit re-
lation recognition.

Our system combines task-specific adaptations,
i.e., rule-based discourse unit identification via
templates, with data-driven models to infer senses
of (esp. implicit) discourse relations.

We described the system architecture and exper-
iments conducted on implicit sense labeling. In
this context, we motivated the need to model the
relationship between arguments in a more abstract
way using distributional representations instead of
surface-based features. Our experiments are in
line with previous work (most notably by Ruther-
ford and Xue, 2014), while having shown that
more abstract representations are at least equally
powerful in predicting the correct senses and, also,
that sparsity issues can be overcome. A slight im-
provement in performance has yielded a combina-
tion of distributional profiles for argument spans
(Brown clusters and skip-gram neural word em-
beddings) which is promising and should be ad-
dressed in closer detail in future work.
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Abstract 

The work presented here describes our 

participation in CoNLL 2015 shared task 

in the closed track. Here we have used a 

hybrid approach, where Machine Learn-

ing (ML) technique and linguistic rules 

are used to identify the discourse rela-

tions. We have developed this system 

with a view that it consistently works 

across all domains and all types of text 

corpus. We have obtained encouraging 

results. The performance on blind test da-

ta and test data were similar.  

1 Introduction 

This paper describes our system, used in 

CoNLL-2015 shared task “Shallow Discourse 

Parsing”. The goal of this task is to parse a piece 

of text into a set of discourse relations that exist 

between two adjacent or non-adjacent discourse 

units. Discourse relations are the coherence rela-

tions between two sentences that can be realized 

explicitly or implicitly in a text. Discourse con-

nectives play a role in signaling the relations in a 

discourse. They connect two discourse units, 

which may be a sentence, clause or multiple sen-

tences. These units are called arguments. Hence 

a discourse relation includes the connective and 

its arguments. The relations can be intra senten-

tial or inter sentential i.e. it can occur within a 

sentence or across sentences. 

Penn Discourse Tree Bank (PDTB) is used as the 

shared task data set for training and develop-

ment. For the testing the shared task organizers 

have provided a blind set data, which is not from 

PDTB. PDTB is a richly annotated resource for 

discourse relations and their arguments. To de-

velop PDTB, 1 million words Wall Street Journal 

is used as a corpus. It is annotated with five types 

of relations, Explicit, Implicit, EntRel, AltLex 

and NoRel. Discourse relations in PDTB are 

broadly classified into two types based on how 

the relations are realized in the text. When the 

relation is realized explicitly by a lexical item 

that belongs to syntactically well defined classes, 

those connectives are classified as “Explicit con-

nectives”. If a relation exists between adjacent 

sentences in the absence of explicit markers, 

“Implicit relation” can be inferred.  

The main objective of the work presented here is 

to develop a system for identifying different 

types of discourse relations automatically. We 

have followed a hybrid approach, where we first 

use Machine Learning (ML) technique to identi-

fy the discourse relations and then enhance the 

results using a rule based approach. In the fol-

lowing sections, we give a detailed description of 

our system. 

2 Explicit Relation Identification 

Discourse relation is realized by Explicit connec-

tives between two discourse units. The discourse 

units can be a clause, sentence or multiple sen-

tences. The units they connect are referred as 

argument 1 and argument 2. Explicit connectives 

mainly belong to three syntactic classes, which 

include Subordinating conjunction, Coordinating 

conjunction and Discourse adverbials. PDTB 

provides sense classification for Explicit, Impli-

cit and AltLex relations. Discourse connectives 

are broadly classified into four classes based on 

science.  

a) Expansion b) Contingency c) Temporal, d). 

Comparison. 

In order to refine the sense classification further, 

each class is defined with further types and sub-

types. In this paper, we present a hybrid system 

for automatic identification of connectives and 

their arguments from parse text, developed using 

graph based machine learning technique CRFs 

and linguistic rules.  
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CRFs is a finite state model with un-normalized 

transition probability. It solves label bias prob-

lem efficiently. It has a single exponential model 

for joint probability of the entire sequence of la-

bels when an observation sequence is given (Laf-

ferty et al, 2001). The true power of graphical 

models lies in their ability to model many va-

riables that are independent of each other (Sutton 

et al, 2011). For our work we have used the 

CRF++, which is a simple and customizable tool 

(Kudo, 2005). 

The identification of explicit relations includes 

two subtasks, 1. Connective identification and 

classification 2. Argument identification and ex-

traction. The discourse relations occur as inter-

sentential or intra-sentential in a text. First, our 

system identifies whether a connective exist as 

discourse connective in the context. Consider the 

below example, 

Example [1] 

Morgan Stanley and Kidder Peabody, the two 

biggest program trading firms, staunchly defend 

their strategies. 

 

In Example [1], the lexical item “and” is not a 

discourse connective but acts as conjunction 

joining two nouns Morgan Stanley and Kidder 

Peabody. Hence it is important to identify 

whether the connective acts as discourse connec-

tive or not in a context.  

After identifying the discourse connective, the 

system predicts its sense. One connective can 

have multiple senses. 

Example [2] 

Several big securities firms backed off from pro-

gram trading a few months after the 1987 crash . 

But most of them, led by Morgan Stanley & Co., 

moved back in earlier this year. (“But” Sense: 

Comparison.Contrast) 

 

Example [3] 

Just the thing for the Vivaldi-at-brunch set, the 

yuppie audience that has embraced New Age as 

its very own easy listening. But you can't dismiss 

Mr. Stoltzman's music or his motives as merely 

commercial and lightweight. (“But” Sense: 

Comparison.Concession) 

 

In above Examples [2] & [3], “But” acts as an 

inter sentential connective. Although “But” in 

the above examples is syntactically similar, it has 

a different sense. 

In these examples “But” acts as comparitive 

connective, but vary in its type. In the CoNLL 

version of PDTB data “but” with the sense 

“Comparison.Contrast” occurred in 70.48% cas-

es. In some cases, the sense for a connective may 

vary even at class level.  

After identifying and predicting the sense of a 

connective, the span of arguments they connect 

needs to be identified. It is not necessary that the 

relation should occur between adjacent sen-

tences. It may span across sentences. However, 

PDTB follows a minimality principle for anno-

tating the arguments. The minimal information 

required to complete the interpretation of the ar-

guments is annotated. 

2.1 System description 

Motivated by the work of Lin et al (2009), we 

have designed our system as a pipeline, where 

the relations are identified in sequential order. 

First, the system identifies and predicts the dis-

course connectives and their sense. Then, using 

the identified connectives argument 1 and argu-

ment 2 spans are identified and extracted. Then, 

the system examines all sentence pairs. The pair 

that is not identified in explicit relation is then 

classified into Implicit, Entrel or Altlex relation 

by the system.  

2.2 System description Connective Identifi-

cation and Sense Prediction 

In the task of connective identification, the sys-

tem is first trained to identify the connectives 

syntactically i.e. to identify whether the connec-

tive functions as a discourse connective or not. 

Then, the connectives are classified based on its 

sense. We have extracted the word and other 

syntactic features such as POS, chunk and Claus-

al information from PDTB parse text. In the task 

of identifying the discourse connectives, the sys-

tem is trained using lexico-syntactic features like 

Word, Parts-of-speech (POS), Chunk, Combina-

tion of word, POS and chunk and Clause in a 

window size of 3. The lexicon itself acts as a 

good feature to identify the discourse connec-

tives. POS, chunk and clausal information help 

in disambiguating the connectives. 

 

Example [4] 

after IN B-PP Tempor-

al.Asynchronous.Succession 

interviewing VBG B-VP o 

 

Generally, “after” exists as connective and also 

as preposition or adverbs in a corpus. But when 

“after” is followed by a gerund, it acts as dis-

course connective. The POS for a gerund is 

“VBG” and hence plays an important role in dis-
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course connective identification. The clausal in-

formation also helps in identifying a lexical unit 

as discourse connective because when a dis-

course connective exists in a sentence, then it 

will be mostly succeeded or preceded by a 

clause. In addition to these features, we have 

used dictionary inside the CRFs. We have devel-

oped the dictionary based on connectives that are 

not ambiguous. After identifying the connec-

tives, we analysed the errors generated by the 

system. We found the system has tagged the 

connectives that are not discourse connectives. 

Hence it resulted in false positives. 

 

Example[5] 

Our offer is to buy any and all shares tentered at 

$18 a share. 

 

In the above example “and” is not a discourse 

connective, but the system tagged wrongly dis-

course connective.  

 

Example [6] 

A spokesman for Dow Jones said he hadn't seen 

the group's filing, but added, ``obviously Dow 

Jones disagrees with their conclusions. 

 

In the above example the connective “but” was 

not identified by the system. Hence, we used post 

processing rules to improve the connective iden-

tification.  

Once the discourse connectives are identified, 

the system predicts the sense of the connectives. 

Using the above mentioned lexico-syntactic fea-

tures and connectives, we developed individual 

models for each type of sense. In the case of 

sense identification, connective itself is a good 

feature, as only few connectives are ambiguous. 

To solve the ambiguity in the case of sense clas-

sification, the preceding and succeeding POS and 

words were useful to some extent. Using these 

models, senses of connectives are identified sep-

arately. Then we merged the output based on the 

confidence scores.  

Error analysis on sense classification showed that 

the sense is wrongly predicted by the system. 

Consider the below example [7], where “until” is 

predicted as “Contingency.Condition” by the 

system, but the sense of the connective “until” is 

“Temporal.Asynchronous.Precedence” 

 

Example [7] 

He's an ex-hurler who's one of the leading gurus 

of the fashionable delivery, which looks like a 

fastball until it dives beneath the lunging bat.  

Heuristic based post processing rules were used 

to correct and improve the sense prediction.  

2.3 Argument identification 

In the next phase, the system is trained to identi-

fy the arguments and their text spans. We have 

followed the method used by Menaka et al 

(2011) for identification of causal relations from 

Tamil data. In their work, instead of identifying 

the whole argument, the boundaries of the argu-

ments were identified. Similarly, we created in-

dividual model for each boundary, i.e. for Argu-

ment 1 start, Argument 1 end, Argument 2 start 

and Argument 2 end. The connective tagged in-

put is given for argument extraction. For argu-

ment identification we have developed separate 

models for inter and intra sentential relation. 

Each connective is processed separately and is 

given as input to inter sentential and intra senten-

tial models. We have used the following features 

for identifying the argument boundaries.  

a. Word , POS, Chunk 

b. Combination of word, POS, Chunk  

c. Clausal boundaries 

d. Sentence boundaries 

e. Connective. 

We have used connectives as features, as the ar-

gument 2 start and argument 1 end are syntacti-

cally associated with the connective in most of 

the cases. Hence, when the connective is identi-

fied, the position of Argument 2 start and Argu-

ment 1 end boundary can be located. In most of 

the cases the Argument 1 start is present at the 

initial position of a sentence or clause and Ar-

gument 2 end at the final position of a sentence 

or clause. In the case of inter sentential relation, 

the previous sentence to the connective acts as 

Argument 1. Here, the sentence final position 

acts as Argument 1 end. Therefore, sentence and 

clausal boundaries are used as features for argu-

ment identification in our work. After identifying 

the argument boundaries separately, we merged 

the output from four language models. In order 

to improve the system's performance for argu-

ment extraction further, we used linguistic and 

heuristic rules. In the following paragraph, we 

describe some of the linguistic and heuristic 

rules.  

Rules Description 

Example [8] 

At Shearson Lehman, executives created poten-

tial new commercials Friday night and through-

out the weekend, then had to regroup yesterday 

afternoon. 
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In the above example Argument 2 end was not 

marked by the system. In such case we used heu-

ristic rule to identify the Argument 2 end boun-

dary. 

 

Example [9] 

The agency has already spent roughly $ 19 biol-

lion selling 34 insolvent S&Ls, and it is likely to 

sell or merge 600 by the time the bailout con-

cludes. 

 

The above Example [9] is a simple discourse re-

lation that exists in the corpus. Using simple lin-

guistic rules, such relations can be identified. In 

this case, when punctuation mark “,” (comma) is 

followed by a connective; the span above comma 

is marked as Argument 1 and the span below 

connective is marked as Argument 2. 

3 Non-Explicit Relation Identification 

In the task of Non-Explicit relation identifica-

tion, we identify the sentences which can possi-

bly have implicit relations, AltLex and EntRel 

relations. And then the sense of the Implicit con-

nective and AltLex is identified. The identifica-

tion of implicit relation between a pair of sen-

tences is done using a machine learning tech-

nique, CRFs. From the input data we look for 

sentences without Explicit connectives and form 

pair of sentences by considering its previous sen-

tence. Features extracted from this pair of sen-

tences are given to the CRFs engine to identify 

the presence of implicit relation. We use the fol-

lowing features: 

i. Presence of common words: The count 

of commonly occurring words in the ar-

gument 1 and argument 2 is taken. Here 

we remove the stop words. 

ii. Difference in the polarity: The average 

polarity of each sentence is calculated. 

First each word is marked with its polari-

ty score as obtained from the MPQA po-

larity lexicon provided by the task orga-

nizers. The average score of each sen-

tence in the pair is calculated by aggre-

gating the individual word scores. If the 

polarities are same in both sentences, 

then the feature is given the value of 0:0, 

if sentence 1 has positive score and sen-

tence two has negative score, then fea-

ture is given a value of 1:-1, else vice-

versa. 

iii. Commonality of the words in the initial 

and terminal positions of the sentences 

iv. Presence of common brown cluster IDs 

v. Presence of common bigrams and tri-

grams 

 

The output obtained from the machine learning 

engine is given the secondary engine. In the sec-

ondary engine, we check the coreference be-

tween the pair of sentence using anaphora resolu-

tion system. Those pair of sentences which have 

common coreference mentions we consider this 

pair of sentences to have implicit relations. 

We have used an in-house developed anaphora 

resolution system (Sobha, 2011), which uses sa-

lience measure based approach. 

Thus we identify the sentence pairs which have 

the implicit relations in them. The next task is to 

identify the sense of the Implicit connective be-

tween this pair of sentences. For the purpose of 

identifying the sense (i.e., sense classification), 

we first identify or learn common patterns from 

the Implicit and Explicit sense annotated training 

data. And these patterns are given as features to 

the CRFs machine learning, which would finally 

mark the sense of the implicit relation. In the 

previous reported works we observe that most of 

the sense classification was restricted to four top 

level senses i.e., Expansion, Contingency, Com-

parison and Temporal, whereas in our present 

work we need to identify the senses to finer gra-

nularity levels; such as “Expan-

sion.Alternative.Chosen alternative”, “Contin-

gency.Cause.Result”. Thus, this leads to the 14 

different senses.  

The common patterns in the Explicit and Implicit 

training data are learned based on the two factors 

Polarity scores and the verb clusters obtained 

from the VerbNet. The patterns are formed by 

considering two factors from argument 1 and 

argument 2 and a tuple is formed. This tuple con-

sists <Verb_class of argument 1, Polarity of ar-

gument 1, Verb_class of argument 2, Polarity of 

argument 2, Associated sense> The number of 

common patterns learned from the Explicit and 

Implicit annotated training data is observed to be 

535 unique patterns. And it has been observed in 

the data that also majority of these patterns is 

majorly associated with the senses “Expan-

sion.Conjunction” (48.03%), “Expan-

sion.Restatement” (17.19%), “Compari-

son.Contrast” (15.14%). 

When we used these learned patterns on the de-

velopment data to identify the similarities of the 

patterns, we obtained only a similarity of 35% of 

the patterns. This showed that sense classifica-

tion in implicit relations is very much subjective 
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and depends on the semantics of the arguments 

argument 1 and argument 2. But in this work we 

have restricted ourselves with syntactic features 

and patterns as described earlier for developing a 

CRFs machine learning system for sense classifi-

cation. The other syntactic features used are Part-

of-speech (POS tags), First-Last-First three 

words of the arguments, bigrams and trigrams of 

POS tags, count of common brown cluster IDs. 

The features of First-last-first three words, count 

of common brown clusters, polarity score are 

used as described in (Pitler et al., 2009; Lin et al., 

2009; Louis et al., 2010; Zhou et al., 2010). For 

the pair of sentences for which the sense has 

been identified, the first sentence is tagged as 

Argument 1 and the second sentence is tagged as 

Argument 2.  

4 Results 

In the table 1, we show the results obtained for 

our system for Explicit and Non-Explicit rela-

tions and overall. 

We can observe from the results identifying im-

plicit relation has been a harder task.  

In the argument identification sub task we ob-

serve that identification of argument boundaries 

which are farther from the connective had been 

tough. Since the PDTB follows the principle of 

minimality, identifying the minimal span by sys-

tem was not possible in 30% of the cases. This 

was due to the fact that we were only using syn-

tactic features for learning. Since argument 2 was 

syntactically bound to the connective in most of 

the cases, the system could learn the argument 2 

span better than the argument 1 span. 

The system failed to identify correct Argument 1 

span in cases where coordinating conjunction is 

the connective and Argument 1 span crosses 

more than two clauses or sentences. Especially 

for the connectives “and” and “or” identifying 

Argument 1 span has been ambiguous. 

In this work we have restricted or assumed that 

in inter-sentential connective Argument 1 and 

Argument 2 spans are within the current and pre-

vious sentences and does not cross (n-1)
th
 sen-

tence. Though in reality, there are more than 5% 

cases which have an argument span of more than 

n and (n-1)
th 

sentence. This assumption was 

made because more than 90% of the connectives 

which are inter sentential have a span of only 

two sentences and was also computationally 

simple. 

5 Conclusion 

This paper describes our participation in CoNLL 

2015 shared task of Shallow discourse parsing. 

We have developed an automatic system which 

identifies different discourse relations along with 

their senses. Our main objective was to develop a 

system which works consistently across any giv-

en corpus or text. And we find that our system 

has performed consistently with same perfor-

mance metrics for both PDTB test section and 

blind test set provided by the task organizers. We 

have obtained an overall F1 score for the dis-

course parser as 0.1502, precision of 0.159 

and recall of 0.1423. The scores are encour-

aging.  
 

 Blind Test Data PDTB Test Data Development Data 

Details F1 Precision Recall F1 Precision Recall F1 Precision Recall 

All Arg 1 Argument 2 extraction 0.3317 0.3512 0.3143 0.3126 0.3176 0.3079 0.439 0.4407 0.4373 

All Argument 1 extraction 0.3998 0.4233 0.3788 0.3807 0.3867 0.3749 0.5173 0.5193 0.5153 

All Argument 2 extraction 0.5447 0.5767 0.5161 0.4624 0.4697 0.4554 0.59 0.5923 0.5877 

All Explicit connective 0.8449 0.9232 0.7788 0.8644 0.9436 0.7974 0.928 0.9804 0.8809 

All Sense 0.1232 0.1357 0.1253 0.132 0.2579 0.1284 0.213 0.4087 0.203 

All Parser 0.1502 0.159 0.1423 0.1461 0.1484 0.1439 0.2635 0.2646 0.2625 

CoNLL Baseline – All Parser 0.0386 0.0376 0.0397 0.0306 0.0285 0.033 - - - 

Explicit only Arg 1 Argument 2 

extraction 
0.3473 0.3795 0.3201 0.3077 0.3359 0.2839 0.5469 0.5777 0.5191 

Explicit only Argument 1 extrac-

tion 
0.4449 0.4861 0.4101 0.3664 0.4 0.338 0.629 0.6645 0.5971 

Explicit only Argument 2 extrac-

tion 
0.642 0.7015 0.5917 0.4968 0.5423 0.4583 0.7591 0.802 0.7206 

Explicit only Explicit connective 0.8449 0.9232 0.7788 0.8644 0.9436 0.7974 0.928 0.9804 0.8809 

Explicit only Sense 0.2175 0.2639 0.2028 0.1924 0.347 0.1779 0.3745 0.5425 0.3494 

Explicit only Parser 0.2673 0.2921 0.2464 0.2678 0.2923 0.247 0.4911 0.5188 0.4662 

CoNLL Baseline – Explicit only 

Parser 
0.0 1.0 0.0 0.0 1.0 0.0 - - - 

Non-Explicit only Arg 1 Argu-

ment 2 extraction 
0.3191 0.3295 0.3093 0.3166 0.3045 0.3297 0.3503 0.3378 0.3638 

Non-Explicit only Argument 1 

extraction 
0.357 0.3687 0.3461 0.3828 0.3682 0.3986 0.4089 0.3943 0.4246 

Non-Explicit only Argument 2 0.466 0.4812 0.4518 0.4329 0.4164 0.4508 0.4683 0.4349 0.4683 
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extraction 

Non-Explicit only Sense 0.0393 0.2081 0.043 0.0301 0.1015 0.0334 0.0643 0.2122 0.0647 

Non-Explicit only Parser 0.0553 0.0571 0.0536 0.0482 0.0464 0.0502 0.0764 0.0737 0.0794 

CoNLL Baseline – Non-Explicit 

only Parser 
0.0498 0.0376 0.0735 0.0393 0.0285 0.063 - - - 

Table 1. System Results for Blind Test Data, PDTB Test Data and Development data – This shows the results 

for all three different types of text corpora. Also, this shows the results for Explicit and Non Explicit relations 

separately. 
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Abstract

This paper describes our submission (kos-
seim15) to the CoNLL-2015 shared task
on shallow discourse parsing. We used the
UIMA framework to develop our parser
and used ClearTK to add machine learn-
ing functionality to the UIMA framework.
Overall, our parser achieves a result of
17.3 F1 on the identification of discourse
relations on the blind CoNLL-2015 test
set, ranking in sixth place.

1 Introduction

Today, discourse parsers typically consist of sev-
eral independent components that address the fol-
lowing problems:

1. Discourse Connective Classification: The
concern of this problem is the identification
of discourse usage of discourse connectives
within a text.

2. Argument Labeling: This problem focuses on
labeling the text spans of the two discourse
arguments, namely ARG1 and ARG2.

3. Explicit Sense Classification: This problem
can be reduced to the sense disambiguation
of the discourse connective in an explicit dis-
course relation.

4. Non-Explicit Sense Classification: The target
of this problem is the identification of im-
plicit discourse relations between two con-
secutive sentences.

To illustrate these tasks, consider Example (1):

(1) We would stop index arbitrage when the
market is under stress.1

1The example is taken from the CoNLL 2015 trial dataset.

The task of Discourse Connective Classification
is to determine if the marker “when” is used to
mark a discourse relation or not. Argument La-
beling should segment the two arguments ARG1
and ARG2 (in this example, ARG1 is italicized
while ARG2 is bolded). Finally, Explicit Sense
Classification should identify which discourse re-
lation is signaled by “when” - in this case CON-
TINGENCY.CONDITION.

In this paper, we report on the development
and results of our discourse parser for the CoNLL
2015 shared task. Our parser, named CLaC Dis-
course Parser, was built from scratch and took
about 3 person-month to code. The focus of the
CLaC Discourse Parser is the treatment of explicit
discourse relations (i.e. problem 1 to 3 above).

2 Architecture of the CLaC Discourse
Parser

We developed our parser based on the UIMA
framework (Ferrucci and Lally, 2004) and we used
ClearTK (Bethard et al., 2014) to add machine
learning functionality to the UIMA framework.
The parser was written in Java and its source code
is distributed under the BSD license2.

Figure 1 shows the architecture of the CLaC
Discourse Parser. Motivated by Lin et al. (2014),
the architecture of the CLaC Discourse Parser is a
pipeline that consists in five components: CoNLL
Syntax Reader, Discourse Connective Annotator,
Argument Labeler, Discourse Sense Annotator
and CoNLL JSON Exporter. Due to lack of time,
we did not implement a Non-Explicit Classifica-
tion in our pipeline and only focused on explicit
discourse relations.

The CoNLL Syntax Reader and the CoNLL
JSON Exporter were added to the CLaC Dis-
course Parser in order for the input and the output
of the parser to be compatible with the CoNLL

2All the source codes can be downloaded from
https://github.com/mjlaali/CLaCDiscourseParser.git
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Figure 1: Components of the CLaC Discourse Parser

2015 Shared Task specifications. The CoNLL
Syntax Reader parses syntactic information (i.e.
POS tags, constituent parse trees and dependency
parses). CoNLL organisers and adds this syntac-
tic information to the documents in the UIMA
framework. To create a stand-alone parser, the
CoNLL Syntax Reader can be easily replaced with
the cleartk-berkeleyparser component
in the CLaC discourse Parser pipeline. This com-
ponent is a wrapper around the Berkeley syntac-
tic parser (Petrov and Klein, 2007) and distributed
with ClearTK. The Berkeley syntactic parser was
actually used in the CoNLL shared task to parse
texts and generate the syntactic information.

The CoNLL JSON Exporter reads the output
discourse relations annotated in the UIMA doc-
uments and generates a JSON file in the format
required for the CoNLL shared task. We will dis-
cuss the other components in details in the next
sections.

2.1 Discourse Connective Annotator

To annotate discourse connectives, the Discourse
Connective Annotator first searches the input texts
for terms that match a pre-defined list of discourse
connectives. This list of discourse connectives was
built solely from the CoNLL training dataset of
around 30K explicit discourse relations and con-
tains 100 discourse connectives. Each match of
discourse connective is then checked to see if it
occurs in discourse usage or not.

Inspired by (Pitler et al., 2009), we built a bi-
nary classifier with six local syntactic and lexical-
ized features of discourse connectives to classify
discourse connectives as discourse usage or non-
discourse usage. These features are listed in Ta-
ble 1 in the row labeled Connective Features.

2.2 Argument Labeler

When ARG1 and ARG2 appear in the same sen-
tence, we can exploit the syntactic tree to label
boundaries of the discourse arguments. Motivated
by (Lin et al., 2014), we first classify each con-
stituent in the parse tree into to three categories:
part of ARG1, part of ARG2 or NON (i.e. is not

part of any discourse argument). Then, all con-
stituents which were tagged as part of ARG1 or
as part of ARG2 are merged to obtain the actual
boundaries of ARG1 and ARG2.

Previous studies have shown that learning an ar-
gument labeler classifier when all syntactic con-
stituents are considered suffers from many in-
stances being labeled as NON (Kong et al., 2014).
In order to avoid this, we used the approach pro-
posed by Kong et al. (2014) to prune constituents
with a NON label. This approach uses only the
nodes in the path from the discourse connective
(or SelfCat see Table 1) to the root of the sentence
(Connective-Root path nodes) to limit the number
of the candidate constituents. More formally, only
constituents that are directly connected to one of
the Connective-Root path nodes are considered for
the classification.

For example, consider the parse tree of Exam-
ple (1) shown in Figure 2. The path from the dis-
course connective “when” to the root of the sen-
tence contains these nodes: {WRB, WHADVP,
SBAR, VP2, VP1, S1}. Therefore, we only con-
sider {S2, NP2, VB, MD, NP1} for obtaining dis-
course arguments.

If the classifier does not classify any constituent
as a part of ARG1, we assume that the ARG1 is
not in the same sentence as ARG2. In such a sce-
nario, we consider the whole text of the previous
sentence as ARG1.

In the current implementation, we made the
assumption that discourse connectives cannot be
multiword expressions. Therefore, the Argument
Labeler cannot identify the arguments of paral-
lel discourse connectives (e.g. either..or, on one
hand..on the other hand, etc.)

We used a sub-set of 9 features proposed by
Kong et al. (2014) for the Argument Labeler clas-
sifier. The complete list of features is listed in Ta-
ble 1.

2.3 Discourse Sense Annotator

Although some discourse connectives can signal
different discourse relations, the naı̈ve approach
that labels each discourse connective with its most
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Figure 2: The Parse Tree Provided by CoNLL 2015 for Example (1)

Category Description Example

Connective
Features

1. The discourse connective text in lowercase. when
2. The categorization of the case of the connective:
all lowercase, all uppercase and initial uppercase

all lowercase

3. The highest node in the parse tree that covers the
connective words but nothing more

WRB

4. The parent of SelfCat WHADVP
5. The left sibling of SelfCat null
6. The right sibling of SelfCat S

Syntactic
Node
Features

7. The path from the node to the SelfCat node in the
parser tree

S ↑ SBAR ↓
WHADV P

8. The context of the node in the parse tree. The
context of a node is defined by its label the label of
its parent, the label of left and right sibling in the
parse tree.

S-SBAR-
WHADVP-null

9. The position of the node relative to the SelfCat
node: left or right

left

Table 1: Features Used in the CLaC Discourse Parser

frequent relation performs rather well. Accord-
ing to Pitler et al. (2009), such an approach can
achieve an accuracy of 85.86%. Due to lack of
time, we implemented this naı̈ve approach for the
Discourse Sense Annotator, using the 100 con-
nectives mined from the dataset (see Section 2.1)
and their most frequent relation as mined from the
CoNLL training dataset.

3 Experiments and Results

As explained in Section 2, the CLaC Discourse
Parser contains two main classifiers, one for the
Discourse Connective Annotator and one for the
Argument Labeler. We used the off-the-shelf im-
plementation of the C4.5 decision tree classifier
(Quinlan, 1993) available in WEKA (Hall et al.,
2009) for the two classifiers and trained them us-
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Discourse
Connective
Classifier

Argument
Labeler

Discourse Parsing
(explicit only)

Discourse Parsing
(explicit and
implicit)

Best Result 91.86% 41.35% 30.58% 24.00%
CLaC Parser 90.19% 36.60% 27.32% 17.38%
Average 74.20% 23.89% 18.28% 13.25%
Standard deviation 23.24% 13.01% 9.93% 6.41%

Table 2: Summary of the Results of the CLaC Discourse Parser in the CoNLL 2015 Shared Task.

ing the CoNLL training dataset.
Although the CLaC discourse parser only con-

siders explicit discourse relations (which only ac-
counts for about half of the relations), the parser
ranked 6th among the 17 submitted discourse
parsers. The overall F1 score of the parser and
the individual performance of the Discourse Con-
nective Classifier and the Argument Labeler in the
blind CoNLL test data are shown in Table 2. As
Table 2 shows, the performance of the parser is
consistently above the average. In addition, the
performance of the Discourse Connective Classi-
fier is very close to the best result.

Note that all numbers presented in Table 2
were obtained when errors propagate through the
pipeline. That is to say, if a discourse connective is
not correctly identified by the Discourse Connec-
tive Classifier for example, the arguments of this
discourse connective will not be identified. Thus,
the recall of the Argument Labeler will be affected.

The CoNLL 2015 results of the submitted
parsers show that the identification of ARG1 is
more difficult than ARG2. In line with this,
the CLaC Discourse Parser performed better on
the identification of ARG2 (with the F1 score
of 69.18%) than ARG1 (with the F1 score of
45.18%). Table 3 provides a summary of the re-
sults for the identification of Arg1 and Arg2. An
important source of errors in the identification of
ARG1 is that attribute spans are contained within
ARG1. For example in (2), the CLaC Discourse
Parser incorrectly includes the text “But the RTC
also requires “working” capital” within ARG1.

Arg1 Arg2
Best Result 49.68% 74.29%
CLaC Parser 45.18% 69.18%
Average 30.77% 50.91%
Std. deviation 15.31% 20.58%

Table 3: Results of the Identification of ARG1 and
ARG2.

(2) But the RTC also requires “working” capi-
tal to maintain the bad assets of thrifts that
are sold until the assets can be sold sepa-
rately.3

With regards to the identification of ARG2, we ob-
served that subordinate and coordinate clauses are
an important source of errors. For example in (3),
the subordinate clause “before we can move for-
ward” is erroneously included in the ARG2 span
when the CLaC Discourse Parser parses the text.
The cause of such errors are usually rooted in
an incorrect syntax parse tree that was fed to the
parser. For instance in (3), the text “we have col-
lected on those assets before we can move for-
ward” was incorrectly parsed as a single clause
covered by an S node with the subordinate “before
we can move forward” as a child of this S node.
However, in the correct parse tree the subordinate
clause should be a sibling of the S node.

(3) We would have to wait until we have col-
lected on those assets before we can move
forward.3

4 Conclusion

In this paper, we described the CLaC Discourse
Parser which was developed from scratch for the
CoNLL 2015 shared task. This 3 person-month
effort focused on the task of the Discourse Con-
nective Classification and Argument Labeler. We
used a naı̈ve approach for sense labelling and
consider only explicit relations. Yet, the parser
achieves an overall F1 measure of 17.38%, rank-
ing in 6th place out of the 17 parsers submitted to
the CoNLL 2015 shared task.
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Abstract

Discourse parsing is a challenging task
and is crucial for discourse analysis. In
this paper, we focus on labelling argument
spans of discourse connectives and sense
identification in the CoNLL-2015 shared
task setting. We have used syntactic fea-
tures and have also tried a few semantic
features. We employ a pipeline of classi-
fiers, where the best features and parame-
ters were selected for each individual clas-
sifier, based on experimental evaluation.
We could only get results somewhat bet-
ter than of the baseline on the overall task,
but the results over some of the sub-tasks
are encouraging. Our initial efforts at us-
ing semantic features do not seem to help.

1 Introduction

Different natural language constructs are depen-
dent on each other to form a coherent discourse.
Extraction of discourse relations is a challeng-
ing task. Interest in discourse parsing has in-
creased after the release of the Penn Discourse
TreeBank (PDTB) (Miltsakaki et al., 2004). Shal-
low discourse parsing involves classifying con-
nectives, relation classification and labelling ar-
gument spans, the last of which is considerably
harder.

Previously, an end-to-end model by Lin et
al. (2014) was developed which used only syn-
tactic features from parse trees and improved the
discourse parser performance. In our paper, we
have constructed an analogous pipeline of classi-
fiers which extracts the shallow discourse informa-
tion based on the PDTB based annotation scheme.
However, since discourse relations directly affect
the semantic understanding of the text, the use of
semantic features can prove useful if explored. We
tried to use a few such features, though without

much success. Implicit relations were handled us-
ing a heuristic-based baseline parser.

2 Resources and Corpus

For our purposes, we needed syntactic parse
trees for the extraction of syntactic features, for
which we used the PDTB corpus. These features
were used for training each classifier stage of the
pipeline.

The PDTB is the first large-scale corpus includ-
ing a million words taken from the Wall Street
Journal (Miltsakaki et al., 2004) and is based on
the observation that no discourse relations in any
language have been identified with more than two
arguments. It uses the connective as the predicate,
and the two text spans as the predicate’s argument.
Specifically, the span syntactically attached to the
connective is Arg1 and the second span is Arg2.

The relative position of the Arg1 and Arg2 can
appear in any order, at any distance to each other,
although the position of Arg2 is fixed once the
connective is identified in case of explicit rela-
tions. There are distribution statistics from (Milt-
sakaki et al., 2004) which will prove beneficial in
our algorithm. For example, in explicit relations,
Arg1 precedes Arg2 39.51% of times and lies in
the same sentence 60.38% of the times. Even
when Arg1 precedes Arg2, 79.9% of cases are
with adjacent sentences. Also, almost all (96.8%)
of the implicit cases are where Arg1 precedes
Arg2.

For our experiments, we required syntactic fea-
tures derived from parse trees, along with semantic
features. Tokenisation was based on the gold stan-
dard PTB tree structure. The parsed trees, which
were provided by CoNLL-2015 shared task or-
ganisers, were created by the Berkeley parser and
were provided in the json format.

We did not use any other resources.
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3 Related Work

Argument labelling can be done by locating parts
within an argument, or by labelling the entire span,
the latter being the preferred method. Explicit
connective classification is usually done before-
hand. (Pitler and Nenkova, 2009) achieved an
F-Score of 94.19% which was extended by (Lin
et al., 2014) to get an F-score of 95.36%.

Various approaches have been used for argu-
ment span labelling. (Ghosh et al., 2014) used
a linear tagging approach based on Conditional
Random Fields. (Lin et al., 2014), however, used
a completely different approach using argument
node classification within the syntax tree. Our ap-
proach resembles the architecture used by (Lin
et al., 2014), with the addition of a few semantic
features. Surprisingly, semantic features have not
been tried for this task.

A hybrid approach was explored by (Kong et
al., 2014) taking advantages of both the linear tag-
ging and sub-tree extraction by using a constituent
based approach. In contrast, we employ the idea of
integrating additional heuristic and semantic fea-
tures at different points in the pipeline.

For non-explicit relations, (Lin et al., 2009)
have used word-pair features, which was the
Cartesian product of all words from Arg1 and
Arg2. Simple heuristic-based approaches have
also shown reasonably high accuracy (Xue et al.,
2015).

4 An Overview of Our Approach

Similar to the Lin et. al. (2014) model, we em-
ployed use a pipeline of classifiers, namely Ex-
plicit Connective Classifier, Argument Position
Classifier, Argument Identifier and Sense Classi-
fier. We used a seperate but linked parser for non-
explicit cases. Given only the raw text of the sen-
tence(s) and their parse trees, we attempt to deter-
mine:

1. Whether the sentence(s) have discourse rela-
tion present. And if so, the location of the
connective in case of explicit relations.

2. The Argument span of the two arguments in
terms of token numbers.

3. The sense of the discourse relation.

For this purpose, we employed a modular ap-
proach, building classifiers for each stage of the

process. Each module effectively performs a clas-
sification task.

Each classifier was trained individually with the
inclusion of heuristics and a variety of features.
Evaluation after each modification enabled selec-
tion of better parameters for that particular mod-
ule. In particular, the methodology used for con-
nective matching and usage of the uncovered sets
is explained in sections 5.1 and 8, respectively.
We also explored the use of semantic features at
each stage.

5 Explicit Connective Classification

Explicit connective classification involves two
steps: (a) matching all the occurrences of the con-
nective and (b) disambiguating them as discourse
vs. non-discourse. We have used the set of 99 con-
nective heads from the PDTB Annotation Manual1

(2007) to match the connectives and then classi-
fied them based on the features extracted from the
connective.

5.1 Connective Matching

The PDTB Annotation Manual gives an exhaus-
tive list of 99 connective heads, based on which we
generated rules for extracting occurrences of each
of the connectives (such as and, or, therefore etc.).
As a prepossessing step in the training dataset, the
entire connective span was first mapped to the con-
nective heads using a mapper script for cases like
“either... or” and “if... then”, which had to be
treated separately by considering the entire seg-
ment as a whole. This method ensures that all con-
nectives are identified exhaustively and the train-
ing process improves.

5.2 Features Used

(Lin et al., 2014) used an extension of the syntac-
tic features used by (Pitler and Nenkova, 2009),
which resulted in a higher F-score of 95.36%.
They were extracted after generating appropriate
graphical representation of the parse tree2. We em-
ployed the same features, along with a few seman-
tic features (see section 7).

1http://www.seas.upenn.edu/˜pdtb/
PDTBAPI/pdtb-annotation-manual.pdf

2Python NLTK library was used for all syntax features in
every module.
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6 Argument Identification with
Additional Heuristics

Argument identification is directly dependent on
the relative position of the arguments as shown by
(Lin et al., 2014). For Arg1 occurring before Arg2
(the PS class), a baseline parser with the assump-
tion of adjacent sentences was used. This is mo-
tivated by the fact that 79.9% of cases within the
PS class lie in this category. Extension of the same
logic was used for non-explicit discourse relations
as described in section 8. Where both arguments
occur in the same sentence (the SS class) (Lin
et al., 2014) used node classification with syntac-
tic parse tree. In our system, we used additional
heuristics observed from manual observations of
incorrect cases.

After applying the implementation, we manu-
ally observed each case in the training set where
there was a mismatch between the expected and
predicted results. Observations showed that the
Arg1 node tends to appear towards the root of the
sentence encompassing the entire sentence. And
the Arg2 node often tends to appear towards the
leaf nodes.

Although in some cases the Arg1 node may in-
deed be the root of the syntax tree, but those cases
were infrequent. Hence, after altering the algo-
rithm to specifically avoid any of the above men-
tioned scenarios, the results showed marginal but
noticeable improvement in both arg1 and arg2 per-
formance. F-Score of the Arg1 node detection im-
proved by 2.14% and the corresponding score for
the Arg2 node improved by 0.1%.

7 Use of Semantic Features

All the related work referred to in this paper only
used syntactic features for every classifier. Intu-
itively speaking, there seems to be a good case
for using semantic features, in addition to syntac-
tic features. However, the extraction of semantic
features from raw text is comparatively hard.

Many semantic features also tend to be incon-
sistent or sparse. Features detected in one sentence
may be completely absent in a large majority of
sentences, leading to ineffective features.

7.1 The Boxer Tool
The C&C tool Boxer (Bos, 2014), developed by
Johan Bos, is a toolkit for creating the semantic
representation of sentences, developed by Johan
Bos. Boxer is capable of extracting features from

the majority of sentences, although it has some
limitations. Boxer works by chunking the sen-
tence into blocks or ‘boxes’ and then subsequently
identifying semantic relations between them. The
Boxer tool also marks the tokens of specific se-
mantic roles such as agent, patient etc. We only
used the features which were more commonly oc-
curring. These were: the POS tag of the agent’s
token, the theme’s token and the patient’s token.
We used the POS tags instead of the tokens them-
selves because tags are more general whereas to-
kens become too specific (with lower frequencies).
Based on results and on more reflection we realize
that this choice was not well motivated.

7.2 Application of Features

As mentioned in section 4, we tried the integra-
tion of semantic features at each feasible point in
the pipeline and tested the results. Since labelling
of Arg1 and Arg2 nodes is done through node-
wise feature extraction, semantic features, which
are extracted from a sentence as a whole, could
not be easily integrated. Semantic features were
included in two classifier stages: (a) the argument
position classifier and (b) the sense classifier. This
was the best combination we could get for seman-
tic features. However, the integration of these ad-
ditional features did not improve the overall per-
formance. Instead, there was a 1.1% decrease in
the overall parser F1 score. The inability of the
semantic features to improve the classifier perfor-
mance can be attributed to the fact that the particu-
lar features used had high correlation with syntac-
tic features.

8 Non-explicit Identification

We have used a simple heuristic-based baseline
parser as done by Lin et al. (2014) for implicit con-
nectives. The parser is based on the adjacent sen-
tence argument assumption mentioned in section
6. This is motivated by the fact that non-explicit
relation also have a majority of cases in this cate-
gory, akin to the PS case for explicit relations.

We used sets to mark the sentences in the same
sentence category for explicit relations as cov-
ered. The rest of the sentences were marked as
uncovered. Distinction between explicit and non-
explicit cases were made while marking the sen-
tences. The argument spans were then marked tak-
ing a pair of sentences as arguments, the sentence
occurring earlier being Arg1. The explicit relation
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Classifier Precision Recall F1 Score Type of Classifier
Connective Classifier 91.76% 91.70% 91.73% Maximum-Entropy
Argument Position 98.79% 97.11% 97.94% Maximum-Entropy
Argument Position + Semantic Features 97.61% 93.18% 95.34% Naive-Bayesian
Argument Extraction (Arg1 + Arg2) 21.89% 34.47% 26.78% Maximum-Entropy
Sense 29.95% 6.33% 5.95% Maximum-Entropy
Sense + Semantic Features 27.81% 5.39% 4.68% Naive-Bayesian

Table 1: Individual Classifier Analysis

Dev Set
Parameter Without Semantic Features With Semantic Features Blind Set Test Set
Arg 1 Arg2 extraction f1 26.78% 26.78% 21.71% 22.52%
Arg 1 Arg2 extraction precision 21.89% 21.89% 18.14% 18.19%
Arg 1 Arg2 extraction recall 34.46% 34.37% 27.05% 29.55%
Arg1 extraction f1 36.25% 36.25% 32.2% 32.7%
Arg1 extraction precision 29.63% 29.63% 26.9% 26.41%
Arg1 extraction recall 46.66% 46.66% 40.12% 42.91%
Arg2 extraction f1 49.82% 49.81% 48.87% 44.68%
Arg2 extraction precision 40.73% 40.73% 40.82% 36.1%
Arg2 extraction recall 64.14% 64.14% 60.88% 58.64%
Explicit connective f1 93.55% 93.55% 89.3% 93.06%
Explicit connective precision 95.41% 95.41% 91.67% 93.93%
Explicit connective recall 91.76% 91.76% 87.05% 92.2%
Sense f1 5.95% 4.68% 6.44% 7.17%
Sense precision 29.95% 27.81% 14.87% 25.67%
Sense recall 6.33% 5.39% 7.16% 8.05%
Overall Precision 7.21% 6.32% 6.38% 5.78%
Overall Recall 11.35% 9.96% 9.51% 9.39%
Overall F1 8.82% 7.74% 7.64% 7.15%

Table 2: Overall Parser Performance for Explicit Connectives

sentences among these were then sense classified,
along with the PS category explicit sentences.

9 Explicit Sense Classification

Sense classification is the final step in our model.
(Lin et al., 2014) reported an F-Score of 86.77%
using connective-based features over the PDTB
corpus. The integration of semantic features was
done as described in section 7. This degraded the
F-Score by 1.3%. Thus, the use of (the few) se-
mantic features with high correlation to syntactic
features decreases the performance.

10 Evaluation

The pipeline architecture which was used had sev-
eral classifiers, each of which was evaluated indi-
vidually on two kinds of training models: (a) the
Naive-Bayesian classifier and (b) the Maximum
Entropy classifier. For each of the individual clas-
sifiers, training and test sets were divided in a 4:1
ratio with a 5-fold cross-validation.

Table 1 presents the individual classifier results.
Each phase was tested on the Naive-Bayesian and
the Maximum Entropy classifiers. The better one
for each sub-task is displayed. It should be noted

that sense classification was computed only when
both Arg1 and Arg2 spans exactly matched. Sense
classification with incorrect argument spans would
not be a useful statistical measure.

The overall parser performance was also mea-
sured when the complete end-to-end pipeline was
implemented for sentences, accompanied by their
corresponding syntactic parse trees and feature
representations. Table 2 presents the overall best
performance on the blind set after multiple trials
on a sufficiently large subset of the PDTB cor-
pus. It further compares performance of the over-
all system with semantic features included vis-a-
vis without them. The overall parser performance
is only somewhat better (nearly double) than those
of the baseline, but the sense classification recall,
sense precision and Arg1 extraction precision are
bringing down the overall F1 score, as the perfor-
mance on other sub-tasks is relatively much better.
We are investigating the cause for this.

11 Conclusion

We used an end-to-end shallow discourse parser,
which is an extension of the work described in
(Lin et al., 2014), with the addition of some heuris-
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tics and a few semantic features obtained from the
Boxer tool. The core idea is using syntactic and
semantic features for classification and labelling.
However, we were not able to get better results
with the semantic features that we tried. We plan
to explore more sophisticated semantic features.
While our overall performance was relatively low,
we did get good results for some of the sub-tasks.
We will try to include more results in the final ver-
sion of the paper.
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Abstract 

In this paper, we present a machine learn-
ing approach for identifying shallow dis-
course relations in news wire text. Our 
approach has 2 phases. The arguments 
detection phase will identify arguments 
and explicit connectives by using the 
Conditional Random Fields 
(CRFs) learning algorithm with a set of 
features such as words, parts of speech 
(POS) and features extracted from the 
parsing tree of sentences. The second 
phase, the sense classification phase, will 
classify arguments and explicit connec-
tives into one of fifteen types of senses 
by using the SMO classifier with a sim-
ple feature set.  The performance of sys-
tem was evaluated three different data 
sets given by the CoNLL 2015 Shared 
Task. The parser of our system was 
ranked 4 of 16 participating systems on 
F-measure when evaluating on the blind 
data set (strict matching).  

1 Introduction 

The shallow discourse parsing task given by 
the CoNLL 2015 Shared Task proposed by Xue 
et al. (2015) aims to extract discourse relations in 
newswire texts. Each discourse relation is a set 
of four: two arguments, connective words and 
senses. However, the connective words may not 
be available in case of implicit discourses. Identi-
fying discourse relations is clearly an important 
part of natural language understanding that bene-
fits a wide range of natural language applica-
tions.  A number of applications of discourse 
information have been proposed for recent years. 
For example, in the task of identifying para-
phrase texts, Bach et al. (2014) has used dis-
course information to compute the similarity 

score between two sentences or Somasundaran et 
al. (2009) has used discourse relations to im-
prove the performance of the opinion polarity 
classification task.  

In the past, this task is solved at different lev-
els.  Lin et al. (2009) have used supervised learn-
ing method to build a maximum entropy classifi-
er to identify implicit relations.  Ghosh et al. 
(2011, 2012) have used CRFs with a set of local 
and global features to recognize arguments of 
discourses from texts. However, in contrast to 
the CoNLL 2015 SDP Shared Task, Ghosh et al. 
(2011, 2012) just considered explicit relations 
with explicit connectives have been provided.  

Our team approach for this shared task com-
poses two phases. In the first phase, we use 
CRFs and a set of features such as words, POS 
and pattern features based on parsing tree 
of sentences to build models for recognizing ar-
guments and connective words. In the second 
phase, we use the SMO algorithm, an optimiza-
tion of SVM, to build a classifier to predict the 
senses of discourse relations. 

The remainder of this paper is structured as 
follows: Section 2 describes the details of the 
proposed system for solving the task of identify-
ing shallow discourse relations given by CoNLL 
2015 Shared Task. We also describe the experi-
mental results and some analysis in Section 3. 
Finally, Section 4 presents our conclusions and 
future works.  

2 System description  

Our parser system is divided into 2 phases. First-
ly, documents without discourse information will 
be passed through the argument detection phase 
to recognize components of discourse relations 
such as both of arguments and explicit connec-
tives if it is possible. Secondly, the sense classi-
fication phase will identify the sense of discourse 
relation by using a SVM classifier then format 
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the results according to the expected output of 
evaluate system. 

2.1 Phase 1: detection of arguments  

 
Figure 1. Workflow of the arguments detection phase 
The workflow of the first phase consists of 

two stages. In the training stage, we use ma-
chine-learning algorithms to build models, which 
will be used to identify boundaries of compo-
nents in the parsing stage. In order to learn mod-
els by using machine learning (ML) algorithms, 
we use some popular features in such as words, 
parts of speech. Besides, we extract a set of pat-
tern features based on the parsing tree of sen-
tences.   

According to our analysis of discourse rela-
tions, two arguments of each discourse relation 
may be appeared at different positions:  in the 
same sentence, in two consecutive sentences or 
in far apart sentences. Based on the statistic of 
discourse relations in the training dataset, we see 
that the number of discourse relations which two 
arguments located in the same sentence or two 
consecutive sentences is in a large quantity 
(92.5%). Therefore, our system focus on identi-
fying these kinds of discourse relations by build-
ing two models: one for recognizing discourse 
relations in the same sentence (SS) and another 
model for recognizing discourse relations in two 
consecutive sentences (2CS). 

To build learning models using ML algo-
rithms, we need to extract the features from the 
data set for the input of the ML algorithm. Each 
type of discourse relation (SS-type or 2CS-type) 
has some common features and some reserved 
features. Table 1 describes all features that are 
used for machine learning approaches in our ex-
periments. 

 Table 1. List of all features using for identifying argu-
ments and connectives 
# Feature description 
Common features for both SS-type and 2CS-type   
A Word 
B POS 
C Stem 
D Belongs to connective list 
E Brown cluster 
F Noun phrase / verb phrase 
G CLAUSES_from_S 
Pattern features of SS discourse relations 
H S_CC_S  
I SBAR_CC_SBAR 
K SBAR_IN_S 
Pattern features of 2CS discourse relations 
L 1st sentence: RIGHTMOST_S 

2nd sentence: S_begin_with_CC 
M 1st sentence: RIGHTMOST_S 

2nd sentence: NP_ADVP_VP 
N 1st sentence: RIGHTMOST_S 

2nd sentence: S_begin_with_ADVP 
O 1st sentence: RIGHTMOST_S 

2nd sentence: S_ begin_with_PP 
After all required features are extracted, the 

training data and these extracted features will be 
formatted as the input format of the machine 
learning algorithm tool in which words of dis-
course relations are marked labels using IOB 
notations. We use CRF++ (Taku Kudo, 2005), an 
implementation of the Conditional Random 
Fields (John Lafferty et al, 2001) to train models 
from the training data sets. 

After models are built, they were used to pre-
dict the discourse labels of new documents  (in 
the parsing stage) then the result will be convert-
ed into expected format. 

Section 2.1.1 and 2.1.2 will describe the de-
tails of all features we used in our experiments. 

2.1.1 Common features: 

• Popular language features (A-C): includ-
ing words, their parts of speeches and their 
stems. 

• Connective features (D): The features 
show whether or not the words belong to a 
predefined connective list. Predefined 
connective lists are constructed from con-
nective words in the training data set. 
Then we use these lists to extract this fea-
ture for building the model. 

• Brown clusters features (E): Brown clus-
ters, introduced and prepared by Turian 
(2010), were successfully applied in some 
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named entity recognition tasks. In Brown 
clusters, the semantic similarities of words 
in the same cluster are higher than of 
words in different clusters. We use the 
Brown cluster index of words as a feature 
for the ML process.  

• Noun phrases, verb phrases and clauses 
features (F, G): all words of a noun 
phrase, verb phrase or clauses are often 
located entirely in arguments. Moreover, 
the beginning of arguments is often the 
same with the beginning of noun phrases, 
verb phrases or clauses.  We extract noun 
phrases, verb phrases and clause based on 
the syntactic parse tree of sentences.  

2.1.2 Pattern based features based on syn-
tactic parse trees 

Our analysis on the training corpus shows that 
the syntactic information based on the syntactic 
parse trees is very important for identify dis-
course relations. According to our analysis, sen-
tences that express discourse relations are usually 
follow some special syntax. Therefore, if we can 
extract features based on these special syntaxes, 
the system will recognize arguments of discourse 
relations more exactly. 

Due to the linguist characteristic of discourses 
in sentences, each kind of discourse relations 
(SS-type or 2CS-type) has different pattern fea-
ture sets. Below are patterns based on syntactic 
parse trees we have used to extract features for 
each of type: 

Pattern features for SS-type discourses 
recognition (H, I, K): We have three patterns 
that help to recognize boundaries of arguments 
of SS-type discourse relations. These patterns are 
based on the syntactic characteristic of discourse 
expressions using prepositions or conjunctions 
such as and, but, if, although, … For example, 
the pattern S_CC_S (feature H) and 
SBAR_CC_SBAR (feature I) indicate S nodes 
of which child nodes matched with the pattern 
S(.*)CC(.*)S(.*) or SBAR(.*)CC(.*)SBAR(.*). In 
this case, related S-nodes or SBAR-nodes may 
be the arguments of a discourse relation. Figure 2 
shows an example of sentences which matches 
with pattern S_CC_S. In this example, the 
matched left S node and the right S node are ar-
guments of a discourse relation in the training 
data set. Another pattern is SBAR_IN_S (Feature 
K). This pattern matched with sentences of 
which SBAR node has an IN node (“if”, “alt-
hough”, “before”, “after”, “though”) follow by 

an S node.  If a sentence match with this pattern, 
the S node is often the first arguments and the 
rest is often the second argument of a discourse 
relation. Figure 3 shows an example of sentences 
matched with the pattern SBAR_IN_S.  

 
Figure 2. The matching of a discourse relation with the 
pattern S_CC_S 

 
Figure 3. The matching of a discourse relation with the 
IN_SBAR pattern  

Pattern features for 2CS-type discourses 
recognition (L, M, N, O): When arguments of 
discourse relations are not located in the same 
sentence the task is more difficult. To build the 
model for identifying 2CS discourses, we will 
extract pattern-based features of each pair of sen-
tences in the training data set based on parsing 
tree of sentences.  Our analysis on the training 
corpus shows that if a pair of sentence in which 
the second sentence begins with a conjunction, 
an adverb, and a preposition (e.g. “for exam-
ple”, “by comparison” and so on) or a noun 
phrase followed by an adverb (e.g., “also”), the 
right most clauses of first sentence and the left 
most sentence in the second sentence may be 
arguments of a discourse relation. We use pat-
terns from L-O to extract these features. 
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2.2 Phase 2: Sense classification 

After arguments and explicit connectives of 
discourses are identified, we need to identify the 
sense of these discourses. These discourses with-
out sense information are passed through a clas-
sifier with a model trained in the training stage to 
identify the correct senses of discourse relations.  

This model used in the above step are built by 
using the Sequential Minimal Optimization algo-
rithm (SMO), a fast algorithm for training sup-
port vector machines (John Platt, 1998), with 
some simple features such as: connective words; 
type of discourses (SS or 2CS); does the first 
character of connective words capital or not? The 
workflow of sense classification phase is shown 
in Figure 4. 

 
Figure 4. Workflow of the sense classification phase 

We use LIBSVM (Chang and Lin. 2011) – a 
library that implemented SMO algorithm to build 
the model and classify discourses into the senses 
category. The trained model for sense classifica-
tion task achieves an F-score of 79.8% (Preci-
sion=80.9%, R=81.6%) when evaluate using 
cross validation 10-fold method.      

One limitation of our sense classification step 
is that it just takes into account discourses with 
explicit connectives, so the sense recognition of 
non-implicit discourses still has not been solved 
yet. 

3 Experimental results  

Table 2 shows the evaluation result of our system 
on the three data sets provided by the CONLL 
Shared task 2015, the rank column is the rank of 
our system when compare with other participat-
ing systems.  In general, this task is a difficult 
task, so the result is not as high as our expecta-
tion.  Moreover, due to the usage of special syn-
tactic patterns extracted from parse trees, the 
precision scores of our system is higher than oth-
er teams. However, these patterns just cover sev-
eral special cases, so the recall score of our sys-
tem is low. 

Table 2. The evaluation result of our system on the 
blind, test and dev data sets 
 BLIND data set TEST data set DEV data set 
 score rank score rank score  rank 

Arg 1 Arg2 extraction (%) 
F1 32.11 7 35.43 7 40.07 8 
P 42.72 3 52.98 1 58.92 1 
R 25.72 11 26.61 12 30.36 12 

Arg1 extraction (%) 
F1 40.99 6 42.43 7 46.60 8 
P 54.53 3 63.45 1 68.51 1 
R 32.84 12 31.87 12 35.31 12 

Arg2 extraction (%) 
F1 48.53 9 47.99 7 48.99 11 
P 64.56 6 71.77 2 72.03 4 
R 38.88 12 36.05 13 37.12 13 

Explicit connective (%) 
F1 61.66 12 63.89 15 65.53 14 
P 88.55 10 91.87 8 91.56 10 
R 47.30 13 48.97 16 51.03 16 

Overall parser performance (%) 
F1 18.28 4 20.25 8 26.10 5 
P 24.31 2 30.29 2 38.38 1 
R 14.64 6 15.21 10 19.78 8 

Sense (%) 
F1 15.61 6 13.61 8 19.93 5 
P 40.55 1 49.34 1 63.15 1 
R 12.44 8 10.73 12 15.01 9 

The comparison of the evaluation result be-
tween explicit discourses and non-explicit dis-
courses are shown in Table 3. With the help of 
special patterns based on explicit connectives 
and parse trees, the result of explicit discourses 
recognition is higher than the result of non-
explicit discourses recognition for both of preci-
sion and recall scores. 
Table 3. Comparison result between explicit discourses 
and non-explicit discourses  
 BLIND set TEST data set 
 ALL Ex-

plicit 
Non-
Exp. 

ALL Ex-
plicit 

Non-
Exp. 

Arg 1 Arg2 extraction (%) 
F1 32.11 34.23 30.44 35.43 38.16 32.44 
P 42.72 49.16 38.28 52.98 54.88 50.41 
R 25.72 26.26 25.27 26.61 29.25 23.92 

Arg1 extraction (%) 
F1 40.99 44.08 36.9 42.43 43.82 38.85 
P 54.53 63.3 46.4 63.45 63.01 60.37 
R 32.84 33.81 30.63 31.87 33.59 28.64 

Arg2 extraction (%) 
F1 48.53 51.35 46.13 47.99 56.25 38.85 
P 64.56 73.74 58 71.77 80.89 60.37 
R 38.88 39.39 38.28 36.05 43.12 28.64 

Explicit connective (%) 
F1 61.66 61.66 0 63.89 63.89 0 
P 88.55 88.55 0 91.87 91.87 0 
R 47.3 47.3 0 48.97 48.97 0 
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Overall parser performance 
F1 18.28 27.2 11.25 20.25 33.22 8.01 
P 24.31 39.06 14.15 30.29 47.76 12.45 
R 14.64 20.86 9.34 15.21 25.46 5.91 

Sense (%) 
F1 15.61 22.89 1.61 13.61 19.14 1.23 
P 40.55 42.58 84.51 49.34 48.43 86.6 
R 12.44 17.88 2.54 10.73 14.66 1.97 

The feature set based on the syntactic parse 
tree is very important for our system. Table 4 
shows the comparison between two different fea-
ture set on the development data set. The FULL 
feature set consists of all feature including lexi-
cal, part of speeches, and pattern features based 
on syntactic parse trees and so on. However, in 
the SHORT feature set, we remove all pattern fea-
tures based on syntactic parse trees to evaluate 
the importance of these features. The result, 
which just considered discourse relations in the 
same sentences, showed that there is a significant 
improvement when we use the FULL feature set 
instead of the SHORT feature set. 

Table 4. The comparison between FULL and SHORT 
feature set  

  FULL   SHORT  FULL  SHORT  

Arg 1 Arg2 extraction   Explicit connective 
F1 0.505 0.315  0.670 0.512 
P  0.684 0.559  0.886 0.885 
R  0.401 0.219  0.539 0.360 

Arg1 extraction  Overall parser  

F1 0.567 0.382  0.452 0.270 
P 0.766 0.677  0.612 0.479 
R 0.449 0.266  0.359 0.188 

Arg2 extraction  Sense  
F1 0.612 0.433  0.232 0.159 
P 0.827 0.769  0.665 0.612 
R 0.485 0.302  0.184 0.109 

4 Conclusion  

Our approach to the Shallow Discourse Pars-
ing at CONLL 2015 Shared task was to create a 
2-phase system that identifies discourse relations 
in newswire text. Results show that our approach 
achieves the high precision of all systems and 
was ranked 4th in terms of F1-measure when 
strict matching is used. 

In the future we would like to improve the re-
call of our approach by exploring the use of a 
wider range of features.  
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Abstract

This paper describes the discourse parsing
system developed at Dublin City Univer-
sity for participation in the CoNLL 2015
shared task. We participated in two tasks:
a connective and argument identification
task and a sense classification task. This
paper focuses on the latter task and espe-
cially the sense classification for implicit
connectives.

1 Introduction

This paper describes the discourse parsing system
developed at Dublin City University for participa-
tion in the CoNLL 2015 shared task (Xue et al.,
2015). We participated in two tasks: a connec-
tive and argument identification task and a sense
classification task. This paper focuses on the latter
task.

We divide the whole process into two stages:
the first stage concerns an identification of triples
(Arg1, Conn, Arg2) and pairs (Arg1, Arg2)
while the second stage concerns a sense classifica-
tion of the identified individual triples and pairs.
The first phase of the identification of connec-
tive and arguments are described in (Wang et al.,
2015), which bases on the framework of (Lin et al.,
2009) and is also presented in this shared task as
a different paper. Hence, we omit the detailed de-
scription of the first stage (See (Wang et al., 2015)
for identification of connectives and arguments).
This paper focuses on the second stage which con-
cerns sense classification.

2 Sense Classification

We use off-the-shelf classifiers with four kinds of
features: relational phrase embedding, production,
word-pair and heuristic features. Among them,
we test the method which incorporates relational
phrase embedding features for Arg1 and Arg2 for

Rel Prod Word Heuristic
phrase pair feat
(2.1) (2.2) (2.3) (2.4)

Implicit yes yes/no1 yes/no2 no
Explicit yes no no yes

Table 1: Overview of features used for im-
plicit/explicit classification.

discourse parsing. Production features are pro-
posed in (Lin et al., 2014) and word-pair features
are reported in (Lin et al., 2014; Rutherford and
Xue, 2015). Heuristic features, which is specific
for explicit sense classification, are described in
(Lin et al., 2014).

We consider the embedding models which lead
to two different types of intermediate represen-
tations. The relational phrase embedding model
considers the dependency within words uniformly
without considering the second-order effect. The
word-pair embedding model considers the second-
order effect of specific combinations within the
word-pairs in Arg1 and Arg2. If we plug in a
paragraph vector model for the relational phrase
embedding model, the model considers the effect
of uni-gram within a sentence as a sequence. If
we plug in a RNN-LSTM model (Le and Zuidema,
2015), the model considers the effect of uni-gram
within a sentence as a tree.

2.1 Relational Phrase Embedding Features

Phrase embeddings (or sentence embeddings) are
distributed representation in a higher level than a
word level. We used a paragraph vector model to
obtain these phrase embeddings (Le and Mikolov,
2014). Upon obtained the phrase embeddings for

2For the official score, we did not use production features
due to the timing constraint. We write the result for the de-
velopment set.

3For the official score, we did not use the word-pair fea-
ture due to the timing constraint. We write the result for the
development set.
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Arg1, Arg2 (and Connectives), we used the re-
lational phrase embedding from these triples (or
pairs) based on their phrase embeddings (Bordes
et al., 2013).

The first type of embedding we used in this
paper is a combination of paragraph vector (Le
and Mikolov, 2014) and translational embeddings
(Bordes et al., 2013). First, the abstraction of each
variable Arg1 and Arg2 was built independently
in a vertical way, and then the relation among
these (Arg1,Conn,Arg2) and (Arg1,Arg2) are
examined in a collective way. This is shown in
Figure 3. This model has two intermediate em-
beddings: paragraph vector embeddings of Arg1,
Arg2, and Conn, and translational embedding of
(Arg1,Conn,Arg2) and (Arg1,Arg2).

word vectors word vectors word vectors

word vectors

word vectors

word vectors word vectors word vectors

word vectors

word vectors

the satcat
paragraph

ID

connective

word vectors word vectors word vectors

word vectors

word vectors

triple = (Arg1, connective, Arg2)

Contingency, Comparison, Temporal

Relational phrase embedding model

sense classification

a taste of foreign stocks without the
hard research of seeking out individual
companies

the satcat

on

paragraph
ID

Arg1

on on

But

country funds offer an easy way to get 
it doesn’t take much to get
burned

the satcat
paragraph

ID

Arg2

relational phrase embeddings

word level

intermediate level

Figure 1: Figure shows relational paragraph em-
beddings.

We use a paragraph vector model to obtain
the feature for Arg1 and Arg2 (Le and Mikolov,
2014). The paragraph vector model is an idea to
obtain a real-valued vector in the similar construc-
tion with the word vector model (or word2vec)
(Mikolov et al., 2013b) where the detailed expla-
nation can be obtained.

In implicit/explicit sense classification, the par-
ticipated items related to this classification are
two for implicit relations of a pair (Arg1, Arg2)
and three for explicit relations of a triple
(Arg1, Conn, Arg2). This is by nature a
multiple-instance learning setting (Dietterich et
al., 1997), which receives a set of instances which

6www.psych.ualberta.ca/ westburylab.
7www.statmt.org/wmt14.

Figure 2: Figure shows a scalability of implicit
classification performance based on the size of ad-
ditional training data. We used dev set and used re-
sources from WestBurry version of wikipedia cor-
pus6and WMT147.

are labeled collectively instead of individually la-
beled where each contains many instances. All the
more, linguistic characteristics of discourse rela-
tions support this: meaning/sense is attached not
to a single argument Arg1 or Arg2 but to a pair
(Arg1, Arg2) or a triple (Arg1, Conn, Arg2).

Followed by Bordes et al. (Bordes et al., 2011;
Bordes et al., 2013), we minimized a margin-
based ranking criterion over the pair of embed-
dings:

L =
∑

(Arg1,Arg2)∈S

∑
(Arg1,Arg2)∈S′

[γ +

d(Arg1′, Arg2)− d(Arg1, Arg2′)]+

where [x]+ denotes the positive part of x, γ > 0
is a margin hyperparameter. S′ denotes a set of
corrupted pair where Arg1 or Arg2 is replaced by
a random entity (but not both at the same time).
Readers should see the detailed explanation in
(Bordes et al., 2013).

It is noted that we tried indicator function (al-
ternatively called discrete-valued vector, bucket
function (Bansal et al., 2014), binarization of
embeddings (Guo et al., 2014)) for embeddings
which are converted from real-valued vector. Al-
though we have not tested sufficiently due to the
timing constraint, we did not include this method
in our experiments since we could not have any
gain.

2.2 Production Features for Constituent
Parsing

(Lin et al., 2014) describes the method using the
production features based on the parsing results.
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Subtree extract extracted not extracted
Exact match 16582 0.347 31265 0.653
+-1 position 39096 0.817 8751 0.183
Combi 2 elem 43031 0.899 4816 0.101
Combi 3 elem 45102 0.943 2745 0.057
Combi 4 elem 45872 0.959 1975 0.041

Table 2: Extraction of production features for con-
stituent parsing results.

In this paper, we further process and treat these as
the phrase embeddings. The algorithm is as fol-
lows. First, the subset of (constituent) parsing re-
sults which correspond to Arg1 and Arg2 are ex-
tracted. Then, all the production rules for these
subtrees are derived. Third, we apply these pro-
duction rules into the relational phrase embedding
model that we described in 2.1. We replace all the
words in 2.1 with production rules.

2.3 Word-Pair Features

Word-pair features in discourse parsing indicate
the Cartesian products of all the combinations of
words in Arg1 and Arg2. This feature is used
in (Lin et al., 2014; Rutherford and Xue, 2015).
(Rutherford and Xue, 2015) further developed this
method combined with Brown clustering (Brown
et al., 1992). We use this by word-pair embedding.

The second type of embedding we used in this
paper is an abstraction of word-pair embedding in
Arg1, Arg2 (and Conn) in a horizontal way. This
is shown in Figure 4. The word grows their bi-
gram in terms of Cartesian product of elements in
different Arg1 and Arg2 which has a order from
Arg1 to Arg2 where this bi-gram is embedded
in the word embedding. Followed by Pitler et al.
(Pitler et al., 2008) we use the 100 frequent word-
pairs in training set for each category of relation.
We did not delete function words/stop-words.

2.4 Heuristic Features for Explicit
Connectives

Heuristic features in this paper indicate the spe-
cific features used in the explicit sense classifica-
tion: (1) connective, (2) POS of connective, and
(3) connective + previous word (Lin et al., 2014).
These three features are employed in order to re-
solve the ambiguity in discourse connectives, and
practically work fairly efficiently.

Figure 3: Figure shows the variation of the thresh-
old in top X of word-pairs in each category. Most
of the frequent word-pairs are functional word
pairs, such as the-the, but we did not remove them.

word vectorsword vectors

word vectors

paragraph

ID

it

country

country−it

word−pair

word vectorsword vectors

word vectors

paragraph

ID

it

country

country−it

word−pair

word vectorsword vectors

word vectors

paragraph

ID

it

country

country−it

word−pair

country−it country−doesn easy−take way−much

Arg1

country
funds

offer
an

way
doesn

it

’t
take

much
to

Arg2

offer−it
funds−it

easy

an−it

country−doesn

country−it

Contingency, Comparison, Temporal

sense classification

word−pair embeddings
X

Figure 4: Figure show word-pair embeddings.

3 Experimental Settings

For the dataset, we used the CoNLL 2015 Shared
task data set, i.e. LDC2015E21 (Xue et al., 2015)
and Skip-gram neural word embeddings (Mikolov
et al., 2013a)8). For the unofficial run, we used
westbury version of English wikipedia dump (such
as Figure 2) and WMT14 data set.9

We choose python as the language to develop
our discourse parser. We use external tools such
as libSVM (Chang and Lin, 2011), liblinear (Fan
et al., 2008), wapiti (Lavergne et al., 2010), and
maximum entropy model10 for a classification task
described as Section 2. Among these off-the-shelf
classifiers, we used libSVM for the official re-

8https://code.google.com/p/word2vec
9www.statmt.org/wmt14.

10http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
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Overall Task Sense Classification
dev test blind dev test
f1 pr rec f1 pr rec f1 pr rec f1 pr rec f1 pr rec

Overall
Arg12 .291 .250 .348 .246 .210 .297 .215 .188 .252 1 1 1 1 1 1
Arg1 .392 .336 .469 .357 .304 .431 .317 .276 .371 1 1 1 1 1 1
Arg2 .422 .362 .505 .398 .339 .480 .382 .333 .448 1 1 1 1 1 1
conn .863 .904 .827 .881 .903 .859 .794 .849 .746 1 1 1 1 1 1
parser .154 .132 .184 .123 .105 .149 .107 .093 .125 .492 .812 .474 .466 .804 .458
sense .081 .270 .099 .083 .207 .112 .041 .047 .065 .546 .546 .546 .531 .531 .531

Explicit Only
Arg12 .186 .195 .178 .147 .150 .143 .111 .119 .104 1 1 1 1 1 1
Arg1 .263 .275 .252 .211 .216 .206 .167 .178 .157 1 1 1 1 1 1
Arg2 .373 .391 .357 .382 .392 .373 .281 .301 .264 1 1 1 1 1 1
conn .863 .904 .827 .881 .903 .859 .794 .849 .746 1 1 1 1 1 1
parser .158 .166 .152 .132 .136 .129 .079 .084 .074 .707 .882 .694 .727 .726 .838
sense .138 .263 .142 .108 .175 .110 .077 .077 .084 .838 .838 .838 .873 .873 .873

Implicit Only
Arg12 .355 .275 .501 .307 .237 .436 .276 .217 .378 1 1 1 1 1 1
Arg1 .453 .351 .640 .430 .332 .610 .392 .309 .538 1 1 1 1 1 1
Arg2 .451 .349 .638 .407 .314 .578 .441 .347 .603 1 1 1 1 1 1
conn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
parser .151 .117 .213 .117 .091 .166 .123 .097 .169 .283 .283 .283 .221 .221 .221
sense .019 .699 .052 .025 .667 .061 .016 .598 .046 .105 .803 .136 .112 .891 .149

Table 3: Official results for task of identification of connectives and arguments. Table shows the results
for dev set, test set and blind test set.

sults. Additionally we use word2vec (Mikolov et
al., 2013b) and Theano (Bastien et al., 2012)11 in
the pipeline.

One bottleneck of our system was in a training
procedure. Since a paragraph vector is currently
not incrementally trainable, we were not able to
separate training and test phases. Hence, we need
to run it all on TIRA,12 whose computing resource
is powerless which took a considerable time such
as 15 to 30 minutes where most of other partici-
pants only finish their run in 30 seconds or so.

4 Experimental Results

Table 3 shows our results. There are fifteen
columns where the nine columns in the left show
the overall task while the six columns in the right
shows the supplementary task.13

In terms of the evaluation for explicit connec-
tives, we obtained F score of 0.138, 0.108, and

11http://deeplearning.net/tutorial/rnnslu.html
12http://www.tira.io
13Due to the unforeseen errors occurred on TIRA, we

could not obtain the results for blind test set.

0.077 for dev/test/blind sets for overall task (the
lowest low in the second group) while we ob-
tained F score of 0.707 for sense classification
task. For the connectives, F score was 0.863
while Arg 1-2 was 0.186 which was fairly low.
This may be result in the policy of the evalu-
ation script which checks the correct classifica-
tion results together with the correct identification
of triples (Arg1, Conn, Arg2). Hence, even if
the classification results were correct if the triples
(Arg1, Conn, Arg2) were not correctly identi-
fied, the results were not correct. Thus, this ex-
plains why there is a big difference between the
overall task (left nine columns) and the sense clas-
sification task (right three columns), as well as the
low scores of 0.138, 0.108 and 0.077.

For the implicit only evaluation, on contrast, we
obtained F score of 0.019, 0.025, and 0.016 (the
lowest row in the third group) for overall task and
0.105 for sense classification task. Here, precision
was high (precision of these which were 0.699,
0.667, and 0.598) for overall task and 0.803 and
0.891 for sense classification task; while recall
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dev set (official results) dev set (unofficial results)
Explicit Implicit Implicit(30m) Implicit (prod) Implicit (wp)
pr rec f1 pr rec f1 pr rec f1 pr rec f1 pr rec f1

1 Comp 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
2 Comp.Conc .13 .17 .14 1 0 0 1 0 1 0 0 0 0 0 0
3 Comp.Cont .79 .84 .82 1 0 0 1 0 0 .05 .02 .03 .16 .2 .18
4 Cont.Cau.Rea .96 .58 .72 1 0 0 1 0 0 .09 .10 .03 .24 .10 .14
5 Cont.Cau.Res 1 .84 .91 1 0 0 1 0 0 .08 .08 .08 .15 .08 .10
6 EntRel – – – .28 .95 .44 .29 .98 .45 .24 .91 .43 .36 .69 .47
7 Exp – – – 1 0 0 1 0 0 1 0 0 1 0 0
8 Cont.Cond 1 .89 .94 – – – – – – – – – – – –
9 Exp.Alt .86 1 .92 1 0 0 1 0 0 1 0 0 1 0 0
10 Exp.Alt.C alt 1 .83 .91 1 0 0 1 0 0 0 0 0 1 0 0
11 Exp.Conj .96 .96 .96 .26 .04 .07 .54 .11 .18 .17 .15 .16 .35 .26 .30
12 Exp.Inst .90 1 .95 0 0 0 .75 .06 .12 .09 .23 .13 .43 .06 .11
13 Exp.Rest 1 .33 .50 .50 .04 .07 .33 .01 .02 .14 .16 .15 .11 .06 .08
14 Temp.As.Pr .94 .96 .95 1 0 0 1 0 0 .13 .04 .06 0 0 0
15 Temp.As.Su .95 .73 .82 1 0 0 1 0 0 0 0 0 1 0 0
16 Temp.Syn .62 .97 .76 1 0 0 1 0 0 .08 .10 .09 0 0 0
17 Average .88 .69 .71 .80 .14 .11 .86 .14 .11 .21 .14 .07 .39 .16 .09
18 Overall .84 .84 .84 .28 .28 .28 .30 .30 .30 .16 .16 .16 .29 .29 .29

Table 4: Results for devset (Official and unofficial results). Implicit only includes Implicit, EntRel, and
AltLex. This experiment uses the development set. The right most column Implicit only(30m) shows the
results with additional data of 30M sentence pairs using the same setting of Figure 2.

was very low.

Table 5 shows the detailed results for sense
classification under the setting that identification
of connectives and arguments are correct. The
first group (the left three columns) show the re-
sults for explicit classification. On contrast to
implicit classification all the figures are consid-
erably good except Comp.Conc whose F score
was 0.14. The second group to the fifth group
(the rightmost three columns) show four config-
urations of implicit classification. The third group
shows the 30 million additional sentence pairs for
training, the fourth group uses production fea-
ture, and the fifth group uses word-pair feature.
These three groups exposed each characteristics
quite clearly. Relational phrase embeddings (Im-
plicit and Implicit(30m)) works for Expansion
group (Exp.Conj, Exp.Inst, Exp.Rest), the produc-
tion feature (marked as Implicit(prod)) worked for
Temporal group (Temp.As.Pr and TempSyn), and
the word-pair feature (marked as Implicit(wp))
worked for Comparison/Contingency groups. The
effect of additional data was shown in the third
group (marked as Implicit(30m)). This group was
given additional data of 30M sentence pairs which

improved the performance on Exp.Conj (from F
score 0.07 to 0.18), and Exp.Inst (from F score
0.00 to 0.12) while Exp.Rest was down from fi
score 0.07 to 0.02. The effect was limited to these
categories.

It is easily observed that if the surface form of
connective does not share multiple senses, such
as if (67%) in Cont.Cond and instead (87%) in
Exp.Alt.C, the results of sense classification per-
formed good where Cont.Cond was F score of 0.94
and Exp.Alt.C was F score of 0.91. If the surface
form of connective share multiple senses, they
tend to be classified unbalancedly and one sense
tends to be collected many votes. (For example,
But has multiple senses, including Comp.Conc,
Comp, and Comp.Cont. Comp.Cont collected
many votes. As a result, the classification results
for Comp.Cont was good but for others they were
bad).

5 Discussion

A paragraph vector is proven useful for the senti-
ment analysis-typed task (Le and Mikolov, 2014).
The word embedding is propagated towards the
parent node and averaged. Our intension was that
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test set
Explicit Implicit
pr rec f1 pr rec f1

1 1 0 0 – – –
2 .41 .59 .48 1 0 0
3 .91 .83 .87 1 0 0
4 1 .75 .86 1 0 0
5 1 .97 .99 1 0 0
6 – – – .22 .96 .35
7 – – – 1 0 0
8 1 .81 .89 – – –
9 .83 1 .91 – – –
10 1 1 1 1 0 0
11 .98 .98 .98 .25 .09 .13
12 1 1 1 1 .04 .08
13 1 .29 .44 1 0 0
14 .92 1 .96 1 0 0
15 .94 .69 .79 1 0 0
16 .58 .98 .73 1 0 0
17 .84 .73 .73 .89 .15 .11
18 .87 .87 .87 .22 .22 .22

Table 5: Official results for explicit/implicit sense
classification for test set.

the averaged embedding in a sentence will per-
form meaning establishment in the intermediate
representation which capture the characteristics of
Arg1, Arg2, and Conn. First, Comp.Cont or
Comp.Conc may include sentence polarity with
some additional condition that these polarities
may be reversed. Against our expectation only a
handful of examples were classified in these cat-
egories. However, if they are classified in these
categories they were correct, i.e. precision 1.
Second, if Arg1 and Arg2 are required to ex-
pose the causal relation such as Cont.Cau.Rea
and Cont.Cau.Res this may be beyond the frame-
work of a paragraph vector. Third, our im-
plicit classification tried to classify Exp.Conj and
Exp.Rest. Both of these categories of relation
can be found some similarities with sentiment
analysis/polarities, which can be reasonable that
it worked for these categories. Four, interest-
ingly, the word-pair feature works for Compari-
son/Contingency sense group while the production
feature works (only slightly though) for Temporal
sense group.

We used a margin-based ranking criteria to ob-
tain relations over a paragraph vectors. First,
(Mikolov et al., 2013b) observed a linear relation

on two word embeddings. However, it might be
too heavy expectation for two paragraph embed-
dings which can capture the similar phenomenon.
Even if Arg1 consists of many words, a paragraph
vector will average their word embeddings. In this
sense this approach may have a crucial limit to-
gether with the fact that this is unsupervised learn-
ing. Second, we do not know yet but some small
trick may improve the relation of Comp.Cont or
Comp.Conc since these relations are quite simi-
lar relations with Exp.Conj, Exp.Instantiation, and
Exp.Rest except that these relations are the polari-
ties reversed.

6 Conclusion

This paper describes the discourse parsing system
developed at Dublin City University for participa-
tion in the CoNLL 2015 shared task. We take an
approach based on a paragraph vector. One short-
coming was that our classifier was effective only
Exp.Conj, Exp.Inst and Exp.Rest despite our ex-
pectation that this model will work for Comp.Cont
and Comp.Conc as well. The relation of the latter
is in an opposite direction. We provided the word-
pair model which works for these categories but in
a different perspective.

Further work includes the mechanism how to
make it work for Comp.Cont and Comp.Conc.
Although a paragraph vector did not work effi-
ciently, our model has a tentative model which
does not have interaction between relational, para-
graph, and word embeddings such as in (Denil
et al., 2015), which is one immediate challenge.
Then, other challenge includes replacement of a
paragraph vector model with a convolutional sen-
tence vector model (Kalchbrenner et al., 2014) and
RNN-LSTM model (Le and Zuidema, 2015). The
former approach is related to the supervised learn-
ing instead of unsupervised learning. The latter
approach is to employ the structure of tree instead
of a sequence.
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Abstract

We present a system that implements an
end-to-end discourse parser. The system
uses a pipeline architecture with seven
stages: preprocessing, recognizing ex-
plicit connectives, identifying argument
positions, identifying and labeling argu-
ments, classifying explicit and implicit
connectives, and identifying attribution
structures. The discourse structure of a
document is inferred based on these com-
ponents. For NLP analysis, we use Illinois
NLP software1 and the Stanford Parser.
We use lexical and semantic features based
on function words, sentiment lexicons,
brown clusters, and polarity features. Our
system achieves an F1 score of 0.2492 in
overall performance on the development
set and 0.1798 on the blind test set.

1 Introduction

The Illinois discourse parsing system builds on ex-
isting approaches, using a series of classifiers to
identify different elements of discourse structures
such as argument boundaries and types along with
discourse connectives and senses. In developing
the components of this pipeline, we investigated
different kinds of features to try to improve ab-
straction while retaining sufficient expressivity. To
that end, we investigated a combination of parse
and lexical (function word) features; brown clus-
ters; and relations between verb-argument struc-
tures in consecutive sentences.

2 System Description

In this section, we describe the system we de-
veloped, and introduce the features we used in

1http://cogcomp.cs.illinois.edu/page/
software

each component. For our starting point, we im-
plemented a pipeline architecture based on the de-
scription in Lin et al. (2014), then investigated
features and inference approaches to improve the
system. The pipeline includes seven components.
After a preprocessing step, the system identifies
explicit connectives, determines the positions of
the arguments relative to the connective, identifies
and labels arguments, classifies explicit and im-
plicit connectives, and identifies attribution struc-
tures. The system architecture is presented in Fig-
ure 1. All the classifiers are built based on LibLin-
ear (Fan et al., 2008) via the interface of Learning
Based Java (LBJava) (Rizzolo and Roth, 2010).

2.1 Preprocessing

The preprocessing stage identifies tokens,
sentences, part-of-speech (Roth and Zelenko,
1998), shallow parse chunks (Punyakanok and
Roth, 2001), lemmas2, syntactic constituency
parse (Klein and Manning, 2003), and depen-
dency parse (de Marneffe et al., 2006). This stage
also generates a mapping from our own token
indexes to those provided in the gold standard
data, to allow evaluation with the official shared
task scoring code.

2.2 Recognizing Explicit Connectives

To recognize explicit connectives, we construct
a list of existing connectives labeled in the Penn
Discourse Treebank (Prasad et al., 2008a). Since
not all the words of the connective list are neces-
sarily true connectives when they appear in text,
we build a binary classifier to determine when a
word matching an entry in the list represents an
actual connective. We only focus on the con-
nectives with consecutive tokens and ignore the
non-consecutive connectives. We generate lexico-
syntactic and path features associated with the

2http://cogcomp.cs.illinois.edu/page/
software_view/illinois-lemmatizer
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Figure 1: System architecture

connectives following Lin et al. (2014).

2.3 Identifying Arguments and Argument
Positions

For each explicit connective, we first identify the
relevant argument positions – whether Arg1 is in
the previous sentence relative to the connective or
in the same sentence. We build a classifier incor-
porating the contextual lexico-syntactic features.
We then detect the spans of Arg1 and Arg2 based
on these two decisions. The features used are sim-
iliar to those of Lin et al. (2014).

To generate candidate arguments, we enumer-
ate all subtrees in the parse tree of each sentence.
We then classify the subtrees to be Arg1, Arg2, or
None. In addition to the features used by Lin et al.
(2014), we also add function words to the path fea-
tures. If we detect a word which is in the lexicon
of function words, we replace the corresponding
tag used in the path with the word’s surface string.

2.4 Classifying Explicit Connectives

To classify explicit connectives, we build a multi-
class classifier to identify the senses. In addition
to the features used by Lin et al. (2014), we also
incorporate Brown cluster (Brown et al., 1992)
features generated by Liang (2005). The Brown

clustering algorithm produces a binary tree, where
each word can be uniquely identified by its path
from the root, and this path can be compactly rep-
resented with a bit string. Different lengths of
the prefix of this root-to-leaf path provide different
levels of word abstraction. In this implementation,
we set the length of the prefix to 6.

2.5 Classifying Implicit Connectives

We classify the sense of implicit connectives based
on four sets of features. We follow Lin et al.
(2014) to generate the product rules of both con-
stituent parse and dependency parse features, and
to generate the word pair features to enumerate all
the word pairs in each pair of sentences. In ad-
dition, similar to Rutherford and Xue (2014), we
incorporate Brown cluster pairs by replacing each
word with its Brown cluster prefixes (length of 4)
in the way described in Section 2.4. We also use
another rich source of information - the polarity
of context, which has been previously shown to
be useful for coreference problems (Peng et al.,
2015). We extract polarity information using the
data provided by Wilson et al. (2005) given the
predicates of two discourse arguments. The data
contains 8221 words, each of which is labeled with
a polarity of positive, negative, or neutral. We use
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the extracted polarity values to construct three fea-
tures: Two individual polarities of the two predi-
cates and the conjuction of them. We also imple-
ment feature selection to remove the features that
are active in the corpus less than five times. As a
result, we have 16,989 parse tree features, 4,335
dependency tree features, 77,677 word pair fea-
tures, and 67,204 Brown cluster features.

2.6 Identifying Attribution Structures
We train two classifiers for attribution identifica-
tion based on the original PDTB data (sections 2-
21). The first classifier is similar to that developed
by Lin et al. (2014). We use the patterns proposed
by Skadhauge and Hardt (2005) to enumerate all
the candidate attribution spans. The coverage of
our implementation is 59.8%, which means that
we can only enumerate the candidates that con-
tain the attribution covering 59.8% of the annota-
tion. We then build a classifier following Lin et al.
(2014) to decide whether the candidate is a valid
attribution or not. Using the sentences that con-
tain the attribution(s), we also train a tagger. The
tagger is designed following the features used in
Illinois Chunker (Punyakanok and Roth, 2001).

3 Evaluation and Results

In this section, we present the data we used and
results of the evaluation based on both cross-
validation on the training data (computed within
our software) and using the official CoNLL 2015
Shared Task evaluation framework of Xue et al.
(2015).

3.1 Data
The data we used is provided through the CoNLL-
2015 shared task (Xue et al., 2015), which
is a modification of Penn Discourse Treebank
(PDTB) (Prasad et al., 2008b) sections 2 through
21. The training data for attribution identification
is obtained from the original PDTB release, also
sections 2 through 21.

3.2 Cross-Validation Results
We first present the cross validation results for
each component using the training data (Table 1).
All the results are averaged over 10-fold cross val-
idation of all the examples we generated, using
our own predicted features and our own evaluation
code. Each component is evaluated in isolation,
assuming the inputs are from gold data (for ex-
ample: for connective classification, it is assumed

we have the correct connective and arguments pro-
vided as input). This means that these results are
higher than they would be if evaluated using in-
puts generated by previous stages of the system,
although in this evaluation they still use the pre-
dicted part-of-speech, chunk, and parse informa-
tion.

Table 1: Cross validation results of all the compo-
nents.

P R F1
Explicit Connectives 92.97 93.91 93.44
Argument Positions 98.15 98.15 98.15

Exact Arg1 64.41 64.95 64.68
Exact Arg2 87.06 86.06 86.56
Partial Arg1 77.02 77.66 77.34
Partial Arg2 94.74 93.65 94.19

Explicit Sense 83.18 83.18 83.18
Implicit Sense 34.58 34.58 34.58

Attribution Identification 82.94 58.02 68.27
Attribution Tagger 59.75 56.49 58.08

3.3 CoNLL Results

We also present the results evaluated by the
CoNLL-2015 shared task scorer on dev, test, and
blind sets in Tables 2, 3, and 4. The results are
consistent with the cross validation results, al-
lowing for the fact that components are working
with predicted inputs rather than gold annotations.
The sense performance reported here is the macro-
average of explicit and implicit senses.

Compared with the best results on the blind set,
which is shown in Table 5, our main weaknesses
lie in the sense classifier and argument detector.
Since we presently ignore the disjoint connectives,
our results can be improved if we incorporate
those missing connectives. We do not presently in-
corporate the argument information in connective
detection and sense classification for the explicit
parser. Connective detection and classification can
be improved if we also incorporate more features
from arguments or perform joint learning.

4 Discussion

In this section we point to some types of errors in
our system’s predictions and the complications of
working on the provided corpus.
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Table 2: CoNLL results on dev set.
P R F1

Explicit connective 93.27 89.71 91.45
Exact Arg1 50.88 56.62 53.59
Exact Arg2 62.27 69.29 65.59

Exact Arg1 & Arg2 41.24 45.89 43.44
Sense 33.88 17.87 21.27
Parser 23.65 26.32 24.92

Table 3: CoNLL results on test set.
P R F1

Explicit connective 92.33 91.33 91.83
Exact Arg1 45.93 52.71 49.09
Exact Arg2 58.97 67.66 63.02

Exact Arg1 & Arg2 35.73 41.00 38.18
Sense 27.01 17.54 15.72
Parser 18.97 21.76 20.27

4.1 Error Analysis

We provide examples of the errors in the systems’s
predictions that show where the system can be im-
proved, but also some that may indicate possible
improvements in the task annotations themselves.

The argument boundaries in our system are pre-
dicted based on parse tree constituents. Some mis-
takes occur when an argument is non-contiguous,
and some extraneous content is included. How-
ever, the UI-CCG system also generated correct
arguments with erroneous token offsets due to to-
kenization differences.

Predicted Argument:
Golden West Financial Corp. , riding above the turbu-
lence that has troubled most of the thrift industry , posted
a 16 % increase of third-quarter earnings to $41.8 millon
, or 66 cents a share .
Gold Argument:
Golden West Financial Corp posted a 16% increase of
third-quarter earnings to $41.8 millon, or 66 cents a share

Although the shared task specification indicates
that attribution detection is not evaluated, our re-
sults suggest that it is helpful for some cases in
order to obtain the correct argument boundaries.

Predicted Argument:
In savings activity , Mr. Sandler said consumer deposits
have enjoyed a steady increase throughout 1989 , and
topped $11 billion at quarter ’s end for the first time in
the company ’s history .
Gold Argument:
consumer deposits have enjoyed a steady increase
throughout 1989, and topped $11 billion at quarter’s end
for the first time in the company’s history

In some cases, there seems to be a legitimate

Table 4: CoNLL results on blind set.
P R F1

Explicit connective 89.11 86.87 87.98
Exact Arg1 49.52 51.61 50.55
Exact Arg2 66.83 69.64 68.21

Exact Arg1 & Arg2 40.48 42.18 41.31
Sense 21.02 16.81 16.49
Parser 17.62 18.36 17.98

Table 5: CoNLL best results on blind set.
P R F1

Explicit connective 93.48 90.29 91.86
Exact Arg1 55.12 56.58 55.84
Exact Arg2 73.49 75.43 74.45

Exact Arg1 & Arg2 45.77 46.98 46.37
Sense 23.29 20.56 20.27
Parser 23.69 24.32 24.00

alternative explanation. The issue of whether con-
nectives should be included in arguments seems
somewhat hard to pin down.

Prediction:
argument1 then giving up some of its gains
connective/sense as (Contingency.Cause.Reason)
argument2 the dollar recovered
Gold:
argument1 and then giving up some of its gains
connective/sense as (Temporal.Synchrony)
argument2 the dollar recovered

We also found examples where it is hard to
make sense of the gold token offsets.

Prediction – argument 1:
text: The more active December delivery gold settled
with a gain of $3.90 an ounce at $371.20
tokens: 267, 268, 269, 270, 271, 272, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282
Gold – argument 1:
text: The more active December delivery gold settled
with a gain of $3.90 an ounce at $371.20
tokens: 267, 268, 269, 270, 271, 272, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282, 283, 284

4.2 Task-specific Complications

Since we wanted to use our own NLP software
and to build a general-purpose system that will
process raw text from new sources, we parsed the
raw text files provided for the PDTB data. How-
ever, the shared task formulation requires outputs
to be specified in terms of token indexes. We
must therefore align our tokenization to that of the
task-provided parse files, which were based on the
gold tokenization of the Penn Treebank. We found
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some disagreements in tokenization decisions by
our NLP tools with the gold standard which intro-
duced unwelcome complications and consequent
errors. Possibly, character spans from the original
text might provide an accurate but less constrain-
ing basis for evaluating system outputs, although
the gold standard tokenization appears to omit ter-
minal periods from abbreviated words.

5 Extending the Submitted System

Comparing the experimental results of other par-
ticipating systems in the shared task to our model,
it seems that sense disambiguation is the critical
step in our pipeline that requires further improve-
ments. We designed an initial model for making
global decisions for the sequence of senses that
can occur in a paragraph. The idea is to con-
sider the label of the neighboring senses when
predicting the sense of any implicit or explicit
discourse relation candidate. To implement this
idea we designed a constrained conditional model
(CCM) (Chang et al., 2012) in LBJava. In this
model two basic classifiers are trained. A first
classifier, C1, is trained to predict the sense of
each candidate explicit/implicit relation and a sec-
ond classifier C2 is trained to predict the cooccur-
rence of the senses of any neighboring pair of can-
didate explicit/implicit relations. These classifiers
are trained independently using features similar to
those in the previous pipeline model. At predic-
tion time, using C1 and C2 we make a global de-
cision for the whole paragraph by modeling the
component decisions as a sequence tagging task
formulated as a CCM. In this model, the sequen-
tial joint prediction is made by adding two global
constraints on the predictions made by C1 and C2:
a) C2 is applied on all pairs of neighboring rela-
tion candidates contained in a paragraph and the
label assignments to any pair should be consistent
with the label assignments made by C1 to the re-
lations in that pair. b) For any two neighboring
pairs in a paragraph that share a relation, the la-
bel assignments should be consistent; that is, if a
pair p1 contains relation i and relation i + 1 and
the next pair p2 contains relation i+1 and relation
i + 2 then the assignments to the shared relation,
i + 1, should be the same. This constraint should
hold for the whole paragraph. Using this model,
we consider both emission and transition factors in
making a global decision for the whole sequence
of senses in a paragraph. However, this initial ex-

periment on joint inference did not yield a signif-
icant improvement when tested on the sense pre-
diction layer given all ground-truth labels of the
previous layers in the pipeline.

6 Conclusions and Future Work

We have built a reasonably effective discourse
parser using a pipeline architecture, and identified
some features that improve performance over the
previous reported state-of-the-art, including fea-
tures based on Brown Clusters and on argument
polarity information. We have also begun inves-
tigating the use of constrained conditional models
for global inference.

Two natural extensions are: a) Improved fea-
tures for sense classification. Our sense classifi-
cation accuracy is relatively low. We need to im-
prove the features we extract from the candidate
arguments, and ideally these will reflect a higher
level of semantic abstraction than the brown clus-
ter features we used here. b) Global inference over
multiple component decisions using Constrained
Conditional Models.
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Abstract

This paper describes our system for Shal-
low Discourse Parsing - the CoNLL 2015
Shared Task. We regard this as a classi-
fication task and build a cascaded system
based on Maximum Entropy to identify
the discourse connective, the spans of two
arguments and the sense of the discourse
connective. We trained the cascaded mod-
els with a variety of features such as lexi-
cal and syntactic features. We also report
the results achieved by our team.

1 Introduction

Discourse parsing is one of the most challenging
tasks in natural language processing (NLP) field.
It focuses on parsing the structure of a piece of
text into a set of discourse relations between in-
ter sentences. There is considerable interest in
discourse parsing, both as an end in itself and as
an intermediate step in a variety of NLP appli-
cations like question answering (Verberne et al.,
2007), text summarization (Louis et al., 2010),
sentiment analysis and opinion mining (Somasun-
daran, 2010).

There are many approaches working on identi-
fying the discourse relations and data-driven ap-
proaches are dominated. A number of pioneers
take the discourse relations identification as a clas-
sification task (Marcu and Echihabi, 2002; Pitler
et al., 2009; Duverle and Prendinger, 2009) by the
construction of features like lexical, syntactic and
constituent features. Some take the argument seg-
mentation task as a semantic role detection task
(Wellner and Pustejovsky, 2007) and a sequence
labeling task (Ghosh et al., 2011). However, some
of the previous research is based on different cor-
pus, lacking an common evaluation data set. This
has been addressed with the release of Penn Dis-
course Treebank (PDTB) 2.0 corpus (Prasad et al.,

2008) which provides detailed annotations about
the discourse relations and argument spans ad-
dresses this problem. Besides, much research
about discourse parsing working on the PDTB ap-
pears (Prasad et al., 2010; Lin et al., 2009) and
they put more attention on the “harder” part - la-
belling the arguments. Lin (Lin et al., 2014) de-
signed an end-to-end discourse parser with the
PDTB including the explicit, implicit sense and
the argument spans identification.

Shallow Discourse Parsing (Xue et al., 2015)
is the CoNLL shared task this year1 which takes
a piece of newswire text as input and returns all
the discourse relations in the form of a discourse
connective (explicit or implicit) taking two argu-
ments (which can be clauses, sentences, or multi-
sentence segments) in JSON format. A relation
will be parsed as correct if the explicit discourse
connective (e.g., “because”, “however”) once it
has, the spans of text that serve as the two argu-
ments for each discourse connective and the sense
(e.g., “Comparison”) are all correct. The F1 score
of the parser’s performance is the evaluation met-
ric.

In this paper, we describe our system details in
Section 2, the evaluation result and subsequent ex-
periments in Section 3. Finally, we draw some
conclusions in Section 4.

2 Our System

2.1 Resources

The resources used in our system are as follows:
Labeled training and development data: The
training and development (dev) data is derived
from the PDTB 2.0 Section 2-21 and Section 22
in JSON format . There are 32535 relations and
1436 relations annotated in the training data and
the dev data respectively. Table 1 shows the dis-
tribution of the four types in the data. There are

1http://www.cs.brandeis.edu/ clp/conll15st/
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Type Train data Dev data
Explicit 14,727 680
Implicit 13,163 522
EntRel 4,133 215
AltLex 524 19

all 32,535 1,436

Table 1: Distribution of the four discourse relation
types in the data sets.

Sense level 1 Sense level 2or3 Train Dev

Temporal
A.P 1,277 78
A.S 1,014 55
Synchrony 499 100

Contingency
Cause.Reason 3,344 147
Cause.Result 2,137 81
Condition 1,197 52

Comparison
Contrast 4,714 257
Concession 1,293 17

Expansion

Conjunction 7,817 310
Instantiation 1,403 58
Restatement 2,699 110
Alternative 210 6
A.C 241 6
Exception 15 0
EntRel 4,133 215

Table 2: Distribution of the 15 senses from the
different data sets. A.P, A.S, A.C are the abbre-
viations of “Asynchronous.Precedence”, “Asyn-
chronous.Succession”, “Alternative.Chosen alter-
native” respectively .

15 valid senses including the second-level “types”
as well as a selected number of third-level “sub-
types”. Table 2 shows the distribution of the 15
senses in the data.

Test data: There are two test data sets. One
is the blind set which contains 20,000 to 30,000
words of newswire text annotated following the
PDTB annotation guidelines. The other test set is
Section 23 of the PDTB which is used for compar-
ison with previous work.

The connectives list: A list contains 100 dis-
course connectives in the PDTB and three syntac-
tic categories form (Knott, 1996).

Opennlp-maxent: We used the open source
package Opennlp-maxent2 to construct the classi-
fication models.

2http://sourceforge.net/projects/maxent/files/

Figure 1: The structure of the system.

2.2 System overview and Features

Our system mainly follows the work of (Lin et
al., 2014), which consists of two parts: the ex-
plicit relation parser and the non-explicit relation
parser. The explicit relation parser is composed
of the connective classifier, the argument posi-
tion classifier, the argument extractor and the ex-
plicit sense classifier while the non-Explicit rela-
tion parser contains the AltLex classifier and the
implicit classifier. The structure of our system is
shown in Figure 1.

The set of features used in our system are listed
in Table 3. All the features fall into four classes:
lexical features, part-of-speech (POS) features,
syntactic features and positional features.

• Lexical features: The lexical features (F1-
F10) contain the connectives C, their contex-
tual words and word-pair features (i.e., F7
(wi,wj) where wi is a word from Arg1 and
wj is a word from Arg2) .

• POS features: F11-F17 belong to the POS
features .

• Syntactic features: The syntactic features
(F18-F26) include the connectives’ syntactic
category (F18): subordinating, coordinating,
or discourse adverbial, the path of syntactic
trees (F19, F20, F23), the number of siblings
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Feature Description
F1. C string
F2. the first word before C
F3. the second word before C
F4. F2 + C
F5. F3 + C
F6. C + the next word after C
F7. word-pair
F8. the first word of Arg2
F9. the second word of Arg2
F10. the third word of Arg2
F11. the POS of C
F12. the POS of F2
F13. F11 + F12
F14. the POS of the word after C
F15. F11 + F14
F16. the POS of F3
F17. F11 + F16
F18. the syntactic category of C
F19. the path of C’s parent to root
F20. the compressed path of F19
F21. the number of left siblings of C
F22. the number of right siblings of C
F23. the path of C’s parent to N

F24.
whether the C’s left sibling number
is greater than 1

F25. the constituent rules
F26. the dependency rules
F27. the relative position of N to C
F28. the position of C in the sentence

Table 3: The features used in our system. “C” de-
notes the connectives. N means a current node in
the constituent tree used in Section 2.3.2.

(F21, F22, F24), constituent rules (F25) and
dependency rules (F26).

• Position features: F27 is the relative posi-
tion in the syntactic tree structure (left, mid-
dle or right), while F28 is the connectives’
positions in the sentence (start, middle or
end).

2.3 Training
2.3.1 The Connective Classifier
All the 100 connectives that appeared in one dis-
course were extracted whether it functioned as a
connective or not. We converted all upper case let-
ters in connective to lower case ones.

The connective classifier decides whether a con-
nective is functioned as a discourse connective.

The features used were F4, F6, F11-F15, F19-F20
in Table 3.

2.3.2 The Argument Labeller
Once the connective is identified, the argument la-
beller identifies the Arg1 and Arg2 spans of this
instance. This is accomplished in two steps: (1)
Classifying the locations of Arg1 by the Argument
Position Classifier. (2) Labelling the spans of Arg1
and Arg2 by the Argument Extrator.

The Argument Position Classifier: Normally
Arg2 immediately follows the connective while
the position of Arg1 is uncertain. In this model,
we classified the Arg1’s locations into two classes:
Arg1 was located within the same sentence of the
connective (SS) or in the previous sentence of con-
nective (PS) (Prasad et al., 2008).

We implemented this as a binary classification
task. In this step, features F1-F5, F11, F13, F16-
F17, F28 in Table 3 were adopted to train the
model. After the position label of Arg1 was de-
termined, the result was passed to the argument
extractor.

The Argument Extractor: In this module, our
classifier labelled the previous sentence as Arg1
immediately for the PS case. The argument spans
for the SS case were extracted described as below.

• Classify each internal node N in the con-
stituent tree as Arg1-node, Arg2-node, or
None with features F1, F18, F21-F24, F27 in
Table 3.

• Label a node as Arg1-node once its Arg1-
node predicted probability is greater than 0.1
(which is tuned on the dev data set).

• Select only one Arg1-node and one Arg2-
node in one instance with the maximal prob-
ability of the respective label.

• Extract the Arg1 and Arg2 spans by tree sub-
traction. If the Arg1 node is the ancestor
of the Arg2 node, the span of Arg1 should
be subtracted from the Arg2 span, and vice
versa.

• Remove punctuation tokens and connectives
out of the exact argument spans.

2.3.3 The Explicit Sense Classifier
After recognizing the discourse connective and its
two arguments spans, the next step is to decide the
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Data Connective Span Sense Parser
Dev 0.9152 0.2668 0.1367 0.1814
Test 0.9064 0.2336 0.1191 0.1505

Blind 0.826 0.2195 0.1232 0.1262

Table 4: The results F1 score obtained by our team

sense of the connective. We trained this model us-
ing features F1, F4, F11 in Table 3. We picked the
output whose maximal sense probability is greater
than 0.45 which was experientially determined on
dev data set.

2.3.4 The AltLex classifier

We extracted all adjacent sentence pairs within
each paragraph and removed the pairs that were
identified by the explicit relation parser. Then
we trained the AltLex Classifier which decided
whether the pairs were AltLex pairs and classified
the senses with features F8-F10 in Table 3. The
pairs labelled as non-AltLex relations were passed
to the next implicit relation classifier.

2.3.5 The Implicit relation classifier

The implicit relation classifier classified the sense
of each pair into one of the 15 valid senses or
NoRel with F7, F25-F26 in Table 3. After predict-
ing, we kept the implicit discourse relations whose
maximal sense probability were greater than a
threshold (0.25 in our case) which was determined
on the dev data set .

3 Experiments and Results

There are two test data sets this year as described
in Section 2.1 and the organizers reported the re-
sults on the two test data sets and the dev data set.
The results of our system obtained are shown in
Table 4. We ranked the 10th on every data set.

After the deadline of evaluation, we made some
improvements in the module of implicit relation
classifier inspired by (Lin et al., 2009). We se-
lected the word-pair features (F7) while the ex-
periments showed a little degradation in F1 score
through selecting the constituent rules and the de-
pendency rules (F25, F26) on the dev data set.

We computed the mutual information between
each word-pair feature and the 15 valid senses and
then selected the top N as the features. Table 5
shows the improvement of different N.

N Non-Explicit Overall
50 0.0683 0.1876
100 0.0683 0.1876
200 0.0614 0.1870
300 0.0603 0.1870

Baseline 0.0435 0.1814

Table 5: The F1 score in non-explict and overall
parser when selecting features F7 using different
N on dev data set.

4 Conclusion

We divided the complex task of discourse pars-
ing into a set of classification subtasks and glued
them together. A variety of features, including lex-
ical, part-of-speech, syntactic and positional fea-
ture were employed to train the baseline with open
Maximum Entropy package, then the system was
improved by setting probability-output threshold.
We did not utilize any additional resources and
only used the annotations the official provided.
Our system ranked the 10th among seventeenth
teams on the two test data sets.
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Abstract

This paper describes our submission to
the CoNLL-2015 shared task on discourse
parsing. We factor the pipeline into sub-
components which are then used to form
the final sequential architecture. Focusing
on achieving good performance when in-
ferring explicit discourse relations, we ap-
ply maximum entropy and recurrent neu-
ral networks to different sub-tasks such
as connective identification, argument ex-
traction, and sense classification. The our
final system achieves 16.51%, 12.73% and
11.15% overall F1 scores on the dev, WSJ
and blind test sets, respectively.

1 Introduction

The task of discourse parsing is generally con-
ceived as a pipeline of steps, corresponding to: i)
locating explicit discourse connectives, ii) identi-
fying the spans of text that serve as the two argu-
ments for each discourse connective, and iii) pre-
dicting the sense for both explicit and implicit re-
lations. Understanding such discourse information
is clearly an important component of natural lan-
guage understanding that impacts a wide range of
downstream natural language applications.

Since Penn Discourse Treebank was released,
a number of data driven approaches have been
proposed to deal with different challenging sub-
tasks of discourse parsing. As explicit arguments
may be intra-sentential or inter-sentential, Lin et
al. (2012), Xu et al. (2012), Stepanov and Ric-
cardi (2012) propose to employ argument posi-
tion classification as heuristic and then apply sepa-
rated models for argument extraction. Ghosh et al.
(2011) regarded argument extraction as a token-
level sequence labeling task, applying conditional
random fields (CRFs) to label each token in a sen-
tence. Following on this work, Ghosh et al. (2012)

designed many global features to help distinguish
Argument1 and Argument2 within the same sen-
tence. Lin et al. (2014) formulated the task as
finding the nodes in the constituent parse that are
Argument1 or Argument2. However, the perfor-
mance of this approach is heavily dependent upon
the quality of the input parse trees. The different
characteristic of implicit and explicit discourse re-
lations are another important consideration. Lin et
al. (2009) apply three feature classes: the con-
stituent parse, the dependency parse and word-
pair features for implicit relation classification.
Rutherford and Xue (2014) exploit Brown cluster
pairs to represent discourse relations in naturally
occurring text. Considering the whole task, Lin
et al. (2014) introduce a pipeline framework in-
cluding several sub-tasks (connective classifier, ar-
gument labeler, explicit classifier and non-explicit
classifier) to handle both explicit and non-explicit
relations based on the PDTB corpus using maxi-
mum entropy.

In our work, we design the framework of our
system based on Lin et al. (2014). The task is
split the into seven components: connective clas-
sifier, argument positions classifier, three argu-
ment extractors, explicit sense classifier and im-
plicit sense classifier. We approach argument ex-
traction as a sequence labelling task, employing
recurrent neural network (RNN) to classify each
candidate token. We use distributional representa-
tions via word embeddings to decrease the out-of-
vocabulary words (OOVs) problem which result
from the scarcity of training data. After a post-
precessing step which resolves label conflicts, we
extract the spans of arguments. For other com-
ponents, we use a classification via maximum en-
tropy, and explore diverse features. In this sys-
tem, we mainly focus on explicit relations, thus
we only apply a simple majority function for the
non-explicit component.

The remainder of this paper is organized as fol-
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lows: Section 2 describes the framework and each
component of our proposed system. Then we dis-
cuss the results, including the official results and
post-task results, in Section 3. Finally, we sum-
marize our conclusions in Section 4.

2 Proposed System

The framework of our system is shown in Figure 1.
In the first step, the connective classifier is used to
identify connectives according to the occurrences
of the predefined connectives. Once a candidate
is labelled as a connective, an explicit relation is
created. The next step is then to find the argument
positions (arg1 and arg2) for each explicit rela-
tion. Here we use a classifier to label two cases:
1, arg1 and arg2 are in the same sentence (SS),
or 2, arg1 and arg2 are not in the same sentence
(OT). Then we train and apply different argument
extraction models for these two cases. After la-
belling the argument span, we use a sense classi-
fication component to classify them to predefined
sense types.

After processing the explicit relations, the non-
explicit part extracts all the adjacent sentence pairs
which are not explicit relations and then infers im-
plicit relations. As we mainly focus on explicit
relations, in this part, we only apply a simple ma-
jority function to give all candidate pairs the same
results.

2.1 Connective Classifier

As words which can be discourse connectives do
not always function as discourse connectives, we
need to identify if an instance of a connective
candidate is a functional connective each time it
occurs. Pilter and Nenkova (2009) showed that
syntactic features extracted from constituent parse
trees are very useful in disambiguating discourse
connectives from other functions. Lin et al. (2014)
tackled this problem by first using the connec-
tive list to identify the candidates and then us-
ing a combination of simple POS-based features
and tree-based features, an approach which also
achieved good performance. To model the syntac-
tic relation, they also propose a path feature, which
is the combined tags of sub-tree nodes from con-
nective to the root. Compressed path means the
adjacent identical tags are combined (e.g., -NP-
NP- is combined into -NP-).

Based on above work, we extract the 99 types of
connectives defined in the PDTB training corpus.

As shown in Table 1, we use three feature classes:
lexical, syntactic and others. Especially, we em-
ploy the position of connection as a new feature
(i.e., beginning or not), because we observe that
the candidates occurring at the beginning are al-
ways the connectives. Then a ME model is applied
to classify each connective candidate as a connec-
tive or not. After exploring 14 features and com-
binations, we finally found that the feature set {2-
10,13, 14} which yields the best performance on
dev set. The final score is shown in Section 3.

2.2 Argument Position Classification

arg2 is the argument with which the connective is
syntactically associated, and its position is fixed
once we have located the connective from the pre-
vious component (Section 2.1). Thus, the chal-
lenging step for this task is to identify the location
of arg1.

Prasad et al. (2008) show that arg1 may be lo-
cated in various positions to the connective, such
as within the same sentence (SS), before (PS),
or after (FS) the sentence containing the connec-
tive. Furthermore, arg1 may be adjacent or non-
adjacent with connective sentence. arg1 may also
contain one or more sentences. Table 2 shows the
statistics of each of above scenarios.

Relative Position 1 Sent n Sents
SS 60.38% -
FS 0.01% 0.03%
PS 27.93% 1.89%

Other Scenarios 9.79%

Table 2: Statistics of arg1’s Positions. (Percent-
age (%) is computed as the number of the scenario
divided by the total relations; n>1)

As SS and PS constitute 90.20% of all explicit
relations, our system mainly focus on these two
cases. Therefore, we use a argument position clas-
sifier to classify a relation as SS or PS. In our ex-
periment, we compared 17 features and their com-
binations, which are shown in Table 3. Finally, we
use the feature set {1-3, 5, 7, 9, 11-14, 17} since
it achieves the highest accuracy (97.78%) on dev
set.

2.3 Argument Extraction

One of the key problems in discourse parsing is
the task of extraction of argument spans of dis-
course relation. In the light of the recent success
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Figure 1: Framework of Our System

Type ID Features

Lexical Features

1 Connective Word
2 Connective POS
3 1st Previous Word of Connective
4 1st Next Word of Connective
5 1st Previous Word + Connective Word
6 Connective Word + 1st Next Word
7 1st Previous POS + Connective POS
8 Connective POS + 1st Next POS
9 1st Previous Word + Connective Word + 1st Next Word
10 1st Previous POS + Connective POS + 1st Next POS

Syntactic Features
11 Path of Connective to the Root
12 Path of Connective’s Parent to the Root
13 Compressed Path of Connective’s Parent to the Root

Others 14 Low-Cased Connective Word

Table 1: Features for Connective Classification

Type ID Features

Lexical Features

1 Connective Word
2 Connective POS
3 1st Previous Word of Connective
4 1st Next Word of Connective
5 1st Previous POS of Connective
6 1st Next POS of Connective
7 1st Previous Word + Connective Word
8 Connective Word + 1st Next Word
9 1st Previous POS + Connective POS
10 Connective POS + 1st Next POS
11 2nd Previous POS of Connective
12 2nd Previous Word of Connective
13 2nd Previous POS + Connective POS
14 2nd Previous Word + Connective Word
15 1st Previous Word + Connective Word + 1st Next Word
16 1st Previous POS + Connective POS + 1st Next POS

Others 17 Position of Connective

Table 3: Features for Argument Position Classification
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of applying deep neural network technologies in
natural language processing, we carried out an in-
vestigation of the use of recurrent neural network
(RNN) for this difficult task (Mesnil et al., 2013;
Raymond and Riccardi, 2007).

After determining the likely position of arg1,
we split the explicit relations into two sets: SS
and OT. We apply token-level sequence labeling
approach with the separate models for arguments
of intra-sentential and inter-sentential explicit dis-
course relations (Ghosh et al. 2011; Stepanov and
Riccardi, 2012). As shown in Figure 1, we apply
two components to deal with these two cases. Be-
sides, in OT, we also train separated models to deal
with Arg1 and Arg2 extraction.

Since for sequence labeling we use IOBE (In-
side, Out, Begin, End) notation as the labels for
both Arg1 and Arg2. For example, the set of
classes for the SS case is {arg1-B, arg1-I, arg1-
E, arg2-B, arg2-I, arg2-E and None}. The sets
of classes for OT are {arg1-B, arg1-I, arg1-E and
None} and {arg2-B, arg2-I, arg2-E and None}.

As input features, we use the word embeddings
for Arg1 and Arg2 in order to infer the argument
labels. We use RNNs to learn a word embedding
on the part of training data. As the official scorer
will give points only when the whole argument
span is right, we employ this scorer to calculate the
performance in each iteration of training. Further-
more, we compare the performance with different
parameters: number of context windows, hidden
layers, iterations and word embeddings. Finally,
we set number of context windows as 5, hidden
layers as 300, iterations as 10 and word embed-
dings as 100 to achieve the highest performance.

Besides, we only extract the relations in the
corresponding scenario as the training data, thus
OOVs may harm the models. We use distri-
butional representations via word embeddings to
alleviate the problem, which results from the
scarcity of training data.

2.4 Explicit Sense Classification

One method that has previously been employed
to resolve the ambiguity in discourse connectives
is to build a classifier with some very simple
features. They are the connective (one or more
words), the connectives POS, and the connective +
its previous word (Lin et al., 2014). This approach
achieves an F1 score of 86.77, which is quite im-
pressive compared the human agreement score of

84%.
Therefore, for this component, we still employ

the similar feature set, which is shown in Table
4. Finally, we apply the feature set {1-3, 5-6} to
obtain the best scores on dev set.

2.5 Non-Explicit Relations
The non-explicit relation includes Implicit , Al-
tLex, EntRel and NoRel relations.

The non-explicit relations are annotated for all
adjacent sentence pairs within paragraphs. If there
is already an explicit relation from the previous
step between two adjacent sentences, they are ex-
empt from this step. In our system, we just apply
a majority classifier, labeling all non-explicit rela-
tion candidates as EntRel.

3 Experiments and Results

3.1 System Setup
All available training data, development set, test
sets from CoNLL 2015 (LDC2015E21)1 are used
in this study. Besides, we use the Skip-gram Neu-
ral Word Embeddings2 for RNNs. All the used
syntactic information are automatically predicted
by the Berkeley Parser3.

We use Maxent toolkit4 for the ME method.
And we apply Theano5 (Bastien et al., 2012;
Bergstra et al., 2010) for the RNNs. We use the
Python programming language to develop all the
compontents and divided each component into two
parts: one is training which is processed in our
CPU and GPU servers and the other is decoding
which is run on TIRA server6.

3.2 Official Results
The official results are shown in Table 5. The per-
formance of connective classifier is around 80%,
which is not good enough. There are two reasons:
1, we skip some separated connectives such as ei-
ther or, neither nor etc. and 2, the current fea-
ture set missed some syntactic information. For
argument extraction, the reasonable scores show
our proposed method can really work for this part.
However, it does not work well for OT case, be-
cause the span is always located the whole sen-
tence. It may be helpful by adding structure fea-

1Available at https://www.ldc.upenn.edu
2Available at https://code.google.com/p/word2vec
3Description at http://www.cs.brandeis.edu/ clp/conll15st/rules.html
4Available at https://github.com/lzhang10/maxent
5Available at http://deeplearning.net/tutorial/rnnslu.html
6Available at http://www.tira.io

92



Type of Feature ID Features

Lexical Features

1 Connective Word
2 Connective POS
3 Connective + 1st Previous Word
4 Connective + 2st Previous Word
5 Connective + 1st Previous POS

Others 6 Low-Cased Connective

Table 4: Features for Explicit Sense Classification.

tures into RNNs. The sense classifier is the worst
component, which only obtained about 8% F1
scores. It is because 1, the errors from previous
components are propagated, which is also the lim-
itation of the pipeline architecture; 2, we apply
a simple non-explicit component and miss a lot
implicit relations, which result in the low recall.
On the whole, our system can still be improved in
many ways.

4 Conclusions and Further Work

This paper describes the discourse parsing sys-
tem we implemented for the CoNLL-2015 shared
task. We build a pipeline system which focuses
on achieving good performance when inferring ex-
plicit discourse relations. We apply maximum en-
tropy and recurrent neural networks to different
sub-tasks.

This is our ongoing work, and we will keep on
improving the system by employing novel neural
network methods.
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Abstract

This paper describes our end-to-end
PDTB-styled discourse parser for the
CoNLL-2015 shared task. We employed a
machine learning-based approach to iden-
tify discourse relation between text spans
for both explicit and implicit relations and
employed a rule-based approach to ex-
tract arguments of the discourse relations.
In particular, we focus on improving the
implicit discourse relation identification.
First, we extract adjacent pairs of sen-
tences that have some discourse relation-
ships by exploiting a two-class classifier
from an entire document. Second, we
assign sense labels for them by utilizing
a multiple-class classifier. Our system
achieved a 0.316 overall F-score for the
development set, 0.249 for the testset and
0.157 for the blind testset.

1 Introduction

In this paper, we describe our end-to-end PDTB-
styled discourse parsing system for CoNLL-2015.
Our system is an extension of Ziheng et al.’s dis-
course parser (Ziheng et al., 2014). Our explicit
connective-argument structure parser consists of
three modules: (1) a connective classifier that clas-
sifies connective candidates into discourse con-
nective or not, (2) an argument position classi-
fier that classifies whether Arg1 and the discourse
connective co-occur in the same sentence or not.
(3) a rule-based argument extraction that extracts
both Arg1 and Arg2 using rules derived from
a syntactic tree. The implicit parser consists of
two modules: (1) argument pair identification that
finds the pair of adjacent sentences that have some
discourse relation, (2) sense labeler assigning the
role of the discourse relation between the sen-
tences.

In addition, we introduce a new evaluation mea-
sure for argument extraction. Since exact match-
ing between arguments used in “scorer.py” pro-
vided by the organizers of CoNLL-2015 is too
strict, we introduce relaxed matching for the task.
The evaluation metric measures how close argu-
ments provided by the system are to the gold argu-
ments.

The evaluation results provided by the CoNLL-
2015 official scorer show that our system achieved
5th rank in the Arg1 extractor, 6th rank in the
Arg2 extractor, 4th rank in the Arg1&Arg2 ex-
tractor, and 8th rank in overall performance.

2 Explicit Connective-Argument
Identification

The explicit connective-argument parser consists
of three steps. First, we identify discourse con-
nectives for an entire document. Second, we de-
termine whether Arg1 is contained in the same
sentence that includes the discourse connective.
Third, we assign a sense label for each discourse
connective.

2.1 Connective Classification

The connective classifier classifies ambiguous
connective candidates such as “and” into discourse
connective or not. We exploit lexical features and
features obtained from parse trees by extending
(Ziheng et al., 2014). Note that connective can-
didates were extracted from the PYTHON script
“conn head mapper.py” provided by the organiz-
ers of CoNLL-2015. Features that we utilized are
shown in Table 1.

We trained the classifier by using SVM with
second-order polynomial kernel.

2.2 Argument Position Classification

By following (Ziheng et al., 2014), we imple-
mented an argument position classifier that clas-
sifies the location of the arguments of arbitrary
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Type Features
Context Cs, POSs, {Wordu}, {POSu}
Parse Tree Path(Cs,root), Parent(Cs), depth(Cs),

RightSib(Cs), LeftSib(Cs)
u = s− 5, . . . , s− 1, s + 1, . . . , s + 5

Table 1: Features used in connective classifier

discourse connective into “same sentence” (SS)
or “previous sentence” (PS). SS indicates both
Arg1 and Arg2 are located in the same sentence
that contains the discourse connective. PS indi-
cates Arg1 is located in the sentence previous to
that containing both the discourse connective and
Arg2. We utilized context features in Table 1 and
the position of the connective Cs: start, middle, or
end.

We also trained the classifier by using SVM
with second-order polynomial kernel.

2.3 Sense Classification

We assign majority sense ℓ∗ for each discourse
connective Cs as follows:

ℓ∗ = arg maxℓ∈Lfreq(Cs, ℓ). (1)

L is a set of sense labels used in training data
and freq returns the frequency of co-occurrences
of the discourse connective and sense label.

3 Implicit Connective-Argument
Relationship Identification

The implicit parser consists of two steps. First is
the argument identification step. In this step, we
examine whether an adjacent sentence pair in the
same paragraph has a discourse relation or not.
Second is the sense classification step. Given a
pair of sentences, we classify it into a predefined
sense label.

3.1 Argument Position Identification

In the argument identification step, following
Ghosh et al. (2011), the identifier examines all ad-
jacent sentence pairs within each paragraph. For
each pair of sentences (Si, Si+1), we identify the
existence of a discourse relation. To identify the
existence of the relation (binary classification), we
used SVM with the following features.

• First unigram, last unigram, and first trigram
of Si and Si+1.

• Si (or Si+1) contains modality words or not.

• Word pairs (wi, wi+1) ∈ Si × Si+1

• Brown cluster pairs feature defined in Ruther-
ford and Xue (2014)

• Sentence-to-sentence discourse dependency
tree features including existence of depen-
dency edges and rhetorical relation labels.
Discourse dependency trees are defined in Li
et al. (Li et al., 2014).

If the identifier identifies that a pair of sentences
(Si, Si+1) has the discourse relation, we heuristi-
cally regard Si as Arg1 and Si+1 as Arg2.

3.2 Sense Classification
In the sense classification step, we classify the
discourse relation between a pair of sentences
(Si, Si+1) into five senses: “Expansion”, “Con-
tingency”, “Temporal”, “Comparison”, and “En-
tRel”. To classify the sense of a pair of sentences,
we used multi-class SVM. We used the same fea-
tures described in the argument position identifi-
cation step. To increase the number of training
data, we used the (inter-sentential) explicit train-
ing data as the additional training data (Ruther-
ford and Xue, 2015). We removed a connective
from each instance in the explicit training data and
treated them as implicit training data. The accu-
racy of classification into five senses is still low be-
cause the distribution of the senses is imbalanced.
Following Rutherford and Xue (2014), we resam-
pled the instances in the training data of sense clas-
sification to balance the distribution of the senses.

4 Argument Extractor

We utilized two rule-based argument extractors.
One extracts both Arg1 and Arg2 from the same
sentence (SS). The other extracts Arg1 and Arg2
from adjacent sentences respectively (PS).

4.1 SS Cases
4.1.1 Subordinating Conjunctions
We adopted Dinesh et al. (2005)’s tree subtrac-
tion method for subordinating conjunctions. This
method takes a constituent parse tree as an input
and detects argument spans as follows:

(1) set a node variable x to the last word of the
target connective,

(2) set x to the parent node of x and repeat until
x has label SBAR or S and set a node variable
Arg2 to the node of x,
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Dev Test Blind
P R F P R F P R F

Con. .924 .857 .889 .918 .866 .891 .925 .353 .510
Arg1 .658 .549 .599 .719 .584 .644 .638 .330 .435
Arg2 .768 .640 .698 .587 .477 .526 .765 .395 .521
Arg1&Arg2 .566 .471 .514 .488 .397 .438 .522 .269 .356
Overall .348 .290 .316 .279 .226 .249 .230 .119 .157

Table 2: Official evaluation results.

(3) set x to the parent node of x and repeat again
until x has label SBAR or S and set a node
variable Arg1 to the current node of x,

(4) consider span(Arg2) as the span of argu-
ment2 and span(Arg1)\span(Arg2) as that
of argument1, where span(·) is a function
mapping a node · to a set of words dominated
by the node.

4.1.2 Coordinating Conjunctions
For coordinating conjunctions, we also define a
rule-based method that works on a constituent
tree:

(1) set a node variable x to the last word of the
target connective,

(2) set a node variable y to x and x to the parent
node of x, and repeat while the leftmost word
in span(x) is equal to that in span(y), and
after the process, add y and the more right
child nodes of x into a set Arg2 set,

(3-1) if a node labeled with S or SBAR is contained
in the set of the more right child nodes of x
than y, set a node variable Arg1 to the node,

(3-2) otherwise, set x to the parent node x and re-
peat until x has label SBAR or S, and set a
node variable Arg1 to the node of x,

(4) consider union span(Arg2 set)
as the span of argument2 and
span(Arg1) \ union span(Arg2 set)
as that of argument1, where union span(·)
is a function mapping a node set · to the
union of each word set span(Arg2) for
Arg2 ∈ Arg2 set.

4.1.3 Discourse Adverbials & Implicit
Argument Structures

We did not treat the discourse adverbial
connective-argument and inter-sentential implicit

argument structures because their frequencies are
not high in the training data.

4.2 PS Cases

In the PS cases, our rule-based extraction method
is very simple and has only two processes: (1) re-
move sentence end symbols such as . ! ?. and
(2) remove brace expressions enclosed in sentence
start and end brackets like “”. This method repeats
(1) and (2) until unchanged.

5 Evaluation Results

Table 2 shows the official evaluation results. From
the results, explicit connective identification and
the Arg2 extractor performed well, but perfor-
mance of the Arg1 extractor and sense classifi-
cation was not very good. Thus, the overall per-
formance is significantly degraded. Table 3 shows
the official evaluation results for explicit relations.
Compared with the testset, the accuracies for the
blind testset drastically dropped. This is because
our programs might failed to identify some con-
nectives. Table 4 shows the official evaluation
results for implicit relations. Among the partici-
pants, our implicit parser performed well (1st rank
in the Arg1&Arg2 extractor and 2nd rank in the
overall performance). Previous study like Ghosh
et al. (2011) jointly extracted the argument and
classified the sense with a single classifier. Our
system performed well since we split our system
into the argument extractor and the sense classi-
fier.

“scorer.py” employs exact matching for argu-
ment extraction, and when the span of the ar-
gument provided by systems exactly matches
the span of the human annotated argument, the
scorer evaluates the system’s tuples. However,
the boundaries of human annotated arguments are
blurry. The span of the argument may differ
from the span annotated by another human. Thus,
we evaluate our argument extractor with relaxed
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Dev Test Blind
P R F P R F P R F

Con. .924 .857 .889 .918 .866 .891 .924 .353 .510
Arg1 .578 .537 .557 .475 .448 .461 .509 .194 .281
Arg2 .749 .696 .722 .705 .664 .684 .689 .263 .380
Arg1&Arg2 .498 .462 .479 .400 .377 .388 .392 .149 .216
Overall .447 .415 .430 .355 .335 .345 .307 .117 .169

Table 3: Official evaluation results for explicit relations.

Dev Test Blind
P R F P R F P R F

Arg1 .729 .546 .625 .708 .491 .579 .692 .438 .537
Arg2 .788 .589 .675 .733 .509 .601 .804 .508 .623
Arg1&Arg2 .641 .480 .549 .596 .413 .488 .588 .372 .456
Overall .237 .177 .203 .184 .128 .151 .191 .121 .148

Table 4: Official evaluation results for implicit relations.
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Figure 1: Evaluation results with relaxed match-
ing.

matching. We compute token-based arg-Fscore
between the system argument and the gold argu-
ment that is defined as follows:

Prec. =
|As ∩ Ag|

|As| , (2)

Rec. =
|As ∩ Ag|

|Ag| , (3)

arg-Fscore =
2 ∗ Prec. ∗ Rec.

Prec. + Rec.
. (4)

As indicates a set of tokenIDs obtained from
the system argument. Ag indicates a set of to-
kenIDs obtained from the gold argument. Then,
we regard the system argument that has a cer-
tain threshold arg-Fscore as the correct argument.

Figure 1 shows evaluation results with thresholds
from 1.0 to 0.5. When we set the threshold to
0.5, Arg1&Arg2 Fscore achieved 0.7. This im-
plies that our system can detect most of the correct
positions of both explicit and implicit connectives
but can not extract the correct span of the argu-
ments. Moreover, overall performance is still low
because of error caused by the sense classification
modules.

6 Conclusion

In this paper, we presented our PDTB-styled full
discourse parser for CoNLL-2015. We extended
the work by (Ziheng et al., 2014). The experi-
mental resulted show that our performed well on
explicit connective identification and Arg1 extrac-
tion, but not on Arg2 extraction and sense classi-
fication.
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