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Abstract

We present an approach for opinion role
induction for verbal predicates. Our model
rests on the assumption that opinion verbs
can be divided into three different types
where each type is associated with a char-
acteristic mapping between semantic roles
and opinion holders and targets. In sev-
eral experiments, we demonstrate the rel-
evance of those three categories for the
task. We show that verbs can easily be
categorized with semi-supervised graph-
based clustering and some appropriate
similarity metric. The seeds are obtained
through linguistic diagnostics. We evalu-
ate our approach against a new manually-
compiled opinion role lexicon and perform
in-context classification.

1 Introduction

While there has been much research in senti-
ment analysis on subjectivity detection and po-
larity classification, there has been less work on
the extraction of opinion roles, i.e. entities that
express an opinion (opinion holders), and enti-
ties or propositions at which sentiment is directed
(opinion targets). Previous research relies on large
amounts of labeled training data or leverages gen-
eral semantic resources which are expensive to
construct, e.g. FrameNet (Baker et al., 1998).

In this paper, we present an approach to induce
opinion roles of verbal predicates. The input is a
set of opinion verbs that can be found in a com-
mon sentiment lexicon. Our model rests on the
assumption that those verbs can be divided into
three different types. Each type has a character-
istic mapping between semantic roles and opinion
holders and targets. Thus, the problem of opinion
role induction is reduced to automatically catego-
rizing opinion verbs.

We frame the task of opinion role extraction as
a triple (pred , const , role) where pred is a predi-
cate evoking an opinion (we exclusively focus on
opinion verbs), const is some constituent bearing
a semantic role assigned by pred , and role is the
opinion role that is assigned to const .

Our work assumes the knowledge of opinion
words. We do not cover polarity classification.
Many lexicons with that kind of information al-
ready exist. Our sole interest is the assignment of
opinion holder and target given some opinion verb.
There does not exist any publicly available lexical
resource specially designed for this task.

For the induction of opinion verb types, we con-
sider semi-supervised graph clustering with some
appropriate similarity metric. We also propose an
effective method for deriving seeds automatically
by applying some linguistic diagnostics.

Our approach is evaluated in a supervised learn-
ing scenario on a set of sentences with annotated
opinion holders and targets. We employ differ-
ent kinds of features, including features derived
from a semantic parser based on FrameNet. We
also compare our proposed model based on the
three opinion verb types against a new manually-
compiled lexicon in which the semantic roles of
opinion holders and targets for each individual
verb have been explicitly enumerated.

We also evaluate our approach in the context of
cross-domain opinion holder extraction. Thus we
demonstrate the importance of our approach in the
context of previous datasets and classifiers.

This is the first work that proposes to induce
both opinion holders and targets evoked by opin-
ion verbs with data-driven methods. Unlike previ-
ous work, we are able to categorize all verbs of a
pre-specified set of opinion verbs. Our approach
is a low-resource approach that is also applicable
to languages other than English. We demonstrate
this on German. A by-product of our study are
new resources including a verb lexicon specifying
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semantic roles for holders and targets.

2 Lexicon-based Opinion Role
Extraction

Opinion holder and target extraction is a hard task
(Ruppenhofer et al., 2008). Conventional syntac-
tic or semantic levels of representation do not cap-
ture sufficient information that allows a reliable
prediction of opinion holders and targets. This is
illustrated by (1) and (2) which show that, even
with common semantic roles, i.e. agent and pa-
tient1, assigned to the entities, one may not be able
to discriminate between the opinion roles.

(1) Peteragent criticized Marypatient .
(criticize, Peter, holder) & (criticize, Mary, target)

(2) Peteragent disappoints Marypatient .
(disappoint, Peter, target) & (disappoint, Mary, holder)

We assume that it is lexical information that de-
cides what semantic role an opinion holder or
opinion target takes. As a consequence, we built a
gold-standard lexicon for verbs that encodes such
information. For example, it states that the target
of criticize is its patient, while for disappoint, the
target is its agent. This fine-grained lexicon also
accounts for the fact that a constituent can have
several roles given the same opinion verb. An ex-
treme case is:

(3) [Peter]1 persuades [Mary]2 [to accept his invitation]3 .

The sentence conveys that:
• Peter wants Mary to do something. (view1)
• Mary is influenced by Peter. (view2)
• Peter has some attitude towards Mary accepting his invitation. (view3)
• Mary has some attitude towards accepting Peter’s invitation. (view4)

This corresponds to the role assignments:
• view1: (persuade, [1], holder), (persuade, [2], target)

• view2: (persuade, [2], holder), (persuade, [1], target)

• view3: (persuade, [1], holder), (persuade, [3], target)

• view4: (persuade, [2], holder), (persuade, [3], target)

(in short: 2 opinion holders and 3 opinion targets).
Our lexicon also includes another dimension

neglected in many previous works. Many opinion
verbs predominantly express the sentiment of the
speaker of the utterance (or some nested source)
(4). This concept is also known as expressive sub-
jectivity (Wiebe et al., 2005) or speaker subjectiv-
ity (Maks and Vossen, 2012). In such opinions, the
opinion holder is not realized as a dependent of the
opinion verb.

(4) At my work, [they]1 are constantly gossiping.
(gossip, speaker,holder) & (gossip, [1], target)

1By agent and patient, we mean constituents labeled as
A0 and A1 in PropBank (Kingsbury and Palmer, 2002).

Our lexicon covers the 1175 verb lemmas con-
tained in the Subjectivity Lexicon (Wilson et al.,
2005). We annotated the semantic roles similar to
the format of PropBank (Kingsbury and Palmer,
2002). The basis of the annotation were online
dictionaries (e.g. Macmillan Dictionary) which
provide both a verb definition and example sen-
tences. We do not annotate implicature-related in-
formation about effects (Deng and Wiebe, 2014)
but inherent sentiment (the data release2 includes
more details regarding the annotation process and
our notion of holders and targets).

On a sample of 400 verbs, we measured an in-
terannotation agreement of Cohen’s κ = 60.8 for
opinion holders, κ = 62.3 for opinion targets and
κ = 59.9 for speaker views. This agreement is
mostly substantial (Landis and Koch, 1977).

3 The Three Verb Categories

Rather than induce the opinion roles for individ-
ual verbs, we group verbs that share similar opin-
ion role subcategorization. Thus, the main task for
induction is to decide which type an opinion verb
belongs to. Once the verb type has been estab-
lished, the typical semantic roles for opinion hold-
ers and targets can be derived from that type. The
verb categorization is motivated by the semantic
roles of the three common views (Table 1) that an
opinion holder can take. In our lexicon, all of the
opinion holders were observed with either of these
semantic roles. For facilitating induction, we as-
sume that those types are disjoint (see also §3.4).

3.1 Verbs with Agent View (AG)

Verbs with an agent view, such as criticize, love
and believe, convey the sentiment of its agent.
Therefore, those verbs take the agent as opinion
holder and the patient as opinion target. Table 1
also exemplifies semantic role labels as a suitable
basis to align opinion holders and targets within a
particular verb type. For example, targets of AG-
verbs align to the patient, yet the patient can take
the form of various phrase types (i.e. NPs, PPs or
infinitive/complement phrases3).

2available at: www.coli.uni-saarland.de/
˜miwieg/conll_2015_op_roles_data.tgz

3Note that infinitive and complement clauses may rep-
resent a semantic role other than patient (e.g. the infinitive
clause in (3)). As these types of clauses are fairly unambigu-
ous, we marked them as targets even if they are no patients.
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Type Example Holder Target

AG [They]agent like [the idea]patient . agent pat.
[The guests]agent complained [about noise]patient .
[They]agent argue [that this plan is infeasible]patient .

PT [The noise]agent irritated [the guests]patient . pat. agent
[That gift]agent pleased [her]patient very much.

SP [They]agent cheated [in the exam]adjunct . -N/A- agent,
[He]agent besmirched [the King’s name]patient . (pat.)

Table 1: Verb types for opinion role extraction.

3.2 Verbs with Patient View (PT)

Verbs with a patient view (irritate, upset and dis-
appoint) are opposite to AG-verbs in that those
verbs have the patient as opinion holder and the
agent as opinion target.

3.3 Verbs with Speaker View (SP)

The third type we consider comprises all verbs
whose perspective is that of the speaker. That is,
these are verbs whose sentiment is primarily that
of the speaker of the utterance rather than persons
involved in the action to which is referred. Typical
examples are gossip, improve or cheat.

While the agent is usually the target of the senti-
ment of the speaker, it depends on the specific verb
whether its patient is also a target or not (in Table
1, only the patient of the second SP-verb, i.e. be-
smirch, is considered a target4). Since we aim at a
precise induction approach, we will always (only)
mark the agent of an induced SP-verb as a target.

3.4 Relation to Fine-Grained Lexicon

Table 2 provides statistics as to how clear-cut the
three prototypical verb types are in the manually-
compiled fine-grained lexicon. These numbers
suggest that many verbs evoke several opinion
views (e.g. a verb with an AG-view may also
evoke a PT-view). While the fine-grained lexi-
con is fairly exhaustive in listing semantic roles
for opinion holders and targets, it may also oc-
casionally overgenerate. One major reason for
this is that we do not annotate on the sense-level
(word-sense disambiguation (Wiebe and Mihal-
cea, 2006) is still in its infancy) but on the lemma-
level. Accordingly, we attribute all views to all
senses, whereas actually certain views pertain only
to specific senses. However, we found that usually
one view is conveyed by most (if not all) senses of
a word. For example, the lexicon lists both an AG-
view and a PT-view for appease. This is correct

4We consider the patient a target since the speaker has a
positive (non-defeasible) sentiment towards that entity.

Type Freq Type Freq
verbs with AG-view 868 verbs with PT-view 392
verbs with exclusive AG-view 371 verbs with exclusive PT-view 117
verbs with AG- and SP-view 352 verbs with PT- and AG-view 226
verbs with AG- and PT-view 226 verbs with PT- and SP-view 139

verbs with SP-view 537
verbs with exclusive SP-view 134
verbs with SP- and AG-view 352
verbs with SP- and PT-view 139

Table 2: Verb types in the fine-grained lexicon.

Agent (AG) Patient (PT) Speaker (SP)
Freq Percent Freq Percent Freq Percent
450 38.3 188 16.0 537 45.7

Table 3: Verb types in the coarse-grained lexicon.

for (5) but wrong for (6). The AG-view is derived
from a definition to give your opponents what they
want. (6) does not convey an agent’s volitional ac-
tion. Here, the verb just conveys make someone
feel less angry. Similarly, the lexicon lists an SP-
view and an AG-view for degrade, which is right
for (7) but wrong for (8). The AG-view is derived
from a lexicon definition to treat someone in a way
that makes them stop respecting themselves. (8)
does not convey an agent’s volitional action. The
verb just conveys to make something worse. That
is, neither (6) nor (8) evoke an AG-view. We found
that these variations regularly occur. We adopt
the heuristic that verbs with an SP-view and AG-
or PT-view preserve the SP-view across their uses
(7)-(8). Verbs with both PT- and AG-view pre-
serve their PT-view (5)-(6). Following these ob-
servations, we converted our fine-grained lexicon
into a gold standard coarse-grained lexicon (only
3% of the verbs needed to be manually corrected
after the automatic conversion) in which a verb is
classified as AG, PT or SP according to its domi-
nant view. The final class distribution of this lexi-
con is shown in Table 3. In §5.2, we show through
an in-context evaluation that our coarse-grained
representation preserves most of the information
captured by the fine-grained representation.

(5) [Chamberlain]agent appeased [Hitler]patient .
(6) [The orange juice]agent appeased [him]patient for a while.
(7) [Mary]agent degrades [Henrietta]patient .
(8) [This technique]agent degrades [the local water supply]patient .

4 Induction of Verb Categories

The task is to categorize each verb as a predom-
inant AG-, PT-, or SP-verb. Our approach com-
prises two steps. In the first step, seeds for the dif-
ferent verb types are extracted (§4.1). In the sec-
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AG argue, contend, speculate, fear, doubt, complain, con-
sider, praise, recommend, view, acknowledge, hope

PT interest, surprise, please, excite, disappoint, delight, im-
press, shock, trouble, embarrass, annoy, distress

SP murder, plot, incite, blaspheme, bewitch, bungle, de-
spoil, plagiarize, prevaricate, instigate, molest, conspire

Table 4: The top 12 extracted verb seeds.

ond step, a similarity metric (§4.2) is employed in
order to propagate the verb type labels from the
seeds to the remaining opinion verbs (§4.3). The
North American News Text Corpus is used for seed
extraction and computation of verb similarities.

Wiegand and Klakow (2012) proposed methods
for extracting AG- and PT-verbs. We will re-use
these methods for generating seeds. A major con-
tribution of this paper is the introduction of the
third dimension, i.e. SP-verbs, in the context of
induction. We show that in combination with this
third dimension, one can categorize all opinion
verbs contained in a sentiment lexicon. Further-
more, given this three-way classification, we also
obtain better results on the detection of AG-verbs
and PT-verbs than by just detecting those verbs
in isolation without graph clustering (this will be
shown in Table 7 and discussed in §5.1).

A second major contribution of this work is that
we show that these methods are also equally im-
portant for opinion target extraction. So far, the
significance of AG- and PT-verbs has only been
demonstrated for opinion holder extraction.

In this work, we exclusively focus on the set of
1175 opinion verbs from the Subjectivity Lexicon.
However, this is owed solely to the effort required
to generate larger sets of evaluation data. In prin-
ciple, our induction approach is applicable to any
set of opinion verbs of arbitrary (e.g. larger) size.

4.1 Pattern-based Seed Initialization
For AG-verbs, we rely on the findings of Wiegand
and Klakow (2012) who suggest that verbs predic-
tive for opinion holders can be induced with the
help of prototypical opinion holders. These com-
mon nouns, e.g. opponents (9) or critics (10), act
like opinion holders and, therefore, can be seen
as a proxy. Verbs co-occurring with prototypical
opinion holders do not represent the entire range
of opinion verbs but coincide with AG-verbs.

(9) Opponents claim these arguments miss the point.
(10) Critics argued that the proposed limits were unconstitutional.

For PT-verbs, we make use of the adjective heuris-
tic proposed by Wiegand and Klakow (2012). The

authors make use of the observation that morpho-
logically related adjectives exist for PT-verbs, un-
like for AG- and SP-verbs. Therefore, in order
to extract PT-verbs, one needs to check whether
a verb in its past participle form, such as up-
set in (11), is identical to some predicate adjec-
tive (12).

(11) He had upsetverb me.
(12) I am upsetadj .

We are not aware of any previously published
approach effectively inducing SP-verbs. Noticing
that many of those verbs contain some form of re-
proach, we came up with the patterns accused of
XVBG and blamed for XVBG as in (13) and (14).

(13) He was accused of falsifying the documents.
(14) The UN was blamed for misinterpreting climate data.

Table 4 lists for each of the verb types the 12
seeds most frequently occurring with the respec-
tive patterns. We observed that the SP-verb seeds
are exclusively negative polar expressions. That
is why we also extracted seeds from an additional
pattern help to XVB producing prototypical posi-
tive SP-verbs, such as stabilize, allay or heal.

4.2 Similarity Metrics
4.2.1 Word Embeddings
Recent research in machine learning has focused
on inducing vector representations of words. As
an example of a competitive word embedding
method, we induce vectors for our opinion verbs
with Word2Vec (Mikolov et al., 2013). Baroni et
al. (2014) showed that this method outperforms
count vector representations on a variety of tasks.
For the similarity between two verbs, we compute
the cosine-similarity between their vectors.

4.2.2 WordNet::Similarity
We use WordNet::Similarity (Pedersen et al.,
2004) as an alternative source for similarity met-
rics. The metrics are based on WordNet’s graph
structure (Miller et al., 1990). Various relations
within WordNet have been shown to be effective
for polarity classification (Esuli and Sebastiani,
2006; Rao and Ravichandran, 2009).

4.2.3 Coordination
Another method to measure similarity is ob-
tained by leveraging coordination. Coordination
is known to be a syntactic relation that also pre-
serves great semantic coherence (Ziering et al.,
2013), e.g. (15). It has been successfully applied
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not only to noun categorization (Riloff and Shep-
herd, 1997; Roark and Charniak, 1998) but also
to different tasks in sentiment analysis, includ-
ing polarity classification (Hatzivassiloglou and
McKeown, 1997), the induction of patient polarity
verbs (Goyal et al., 2010) and connotation learn-
ing (Kang et al., 2014). We use the dependency
relation from Stanford parser (Klein and Manning,
2003) to detect coordination (16).

(15) They criticize and hate him.
(16) conj(criticize,hate)

As a similarity function, we simply take the
absolute frequency of observing two words w1

and w2 in a conjunction, i.e. sim(w1, w2) =
freq(conj(w1, w2)).

4.2.4 Dependency-based Similarity

The metric proposed by Lin (1998) exploits the
rich set of dependency-relation labels in the con-
text of distributional similarity. Moreover, it has
been effectively used for the related task of ex-
tending frames of unknown predicates in semantic
parsing (Das and Smith, 2011).

The metric is based on dependency triples
(w, r,w′) where w and w′ are words and r is a
dependency relation (e.g. (argue-V, nsubj,
critics-N)). The metric is defined as:
sim(w1 , w2) =

∑
(r,w)∈T (w1)∩T (w2)(I(w1 ,r,w)+I(w2,r,w))

∑
(r,w)∈T (w1) I(w1,r,w)+

∑
(r,w)∈T (w2) I(w2,r,w)

where I(w, r, w′) = log
‖w,r,w′‖×‖∗,r,∗‖
‖w,r,∗‖×‖∗,r,w′‖ and T (w) is

defined as the set of pairs (r, w′) such that
log

‖w,r,w′‖×‖∗,r,∗‖
‖w,r,∗‖×‖∗,r,w′‖ > 0.

4.3 Propagation Methods

We use the k nearest neighbour classifier (kNN)
(Cover and Hart, 1967) as a simple method for
propagating labels from seeds to other instances.
Alternatively, we consider verb categorization as a
clustering task on a graph G = (V,E,W ) where
V is the set of nodes (i.e. our opinion verbs), E
is the set of edges connecting them with weights
W : E → R+. W can be directly derived from
any of the similarity metrics (§4.2.1-§4.2.4). The
aim is that all nodes v ∈ V are assigned a la-
bel l ∈ {AG,PT, SP}. Initially, only the verb
seeds are labeled. We then use the Adsorption la-
bel propagation algorithm from junto (Talukdar et
al., 2008) in order propagate the labels from the
seeds to the remaining verbs.

Acc Prec Rec F1
Baselines Majority Class 45.7 14.2 33.3 20.9

Only Seeds 8.9 87.0 9.8 17.6

Coordination kNN 45.2 61.5 47.3 53.4
graph 42.7 68.7 39.7 50.4

WordNet kNN 52.8 51.5 50.7 51.1
graph 51.1 51.9 51.5 51.5

Embedding kNN 59.3 58.4 61.0 59.7
graph 64.0 70.5 59.4 64.5

Dependency kNN 65.7 63.8 65.4 64.5
graph 70.3 72.0 68.0 70.6

Table 5: Eval. of similarity metrics and classifiers.

5 Experiments

5.1 Evaluation of the Induced Lexicon

Table 5 compares the performance of the differ-
ent similarity metrics when incorporated in either
kNN or graph clustering. The resulting catego-
rizations are compared against the gold standard
coarse-grained lexicon (§3.4). For kNN, we set
k = 3 for which we obtained best performance in
all our experiments.

As seeds, we took the top 40 AG-verbs, 30 PT-
verbs and 50 SP-verbs produced by the respective
initialization methods (§4.1). The seed propor-
tions should vaguely correspond to the actual class
distribution (Table 3). Large increases of the seed
sets do not improve the quality (as shown below).
10 of the 50 SP-verbs are extracted from the posi-
tive SP-patterns, while the remaining verbs are ex-
tracted from the negative SP-patterns (§4.1).

As baselines, we include a classifier only em-
ploying the seeds and a majority class classifier
always predicting an SP-verb. For word embed-
dings (§4.2.1) and WordNet::Similarity (§4.2.2),
we only report the performance of the best met-
ric/configuration, i.e. for embeddings, the con-
tinuous bag-of-words model with 500 dimensions
and for WordNet::Similarity, the Wu & Palmer
measure (Wu and Palmer, 1994).

Table 5 shows that the baselines can be out-
performed by large margins. The performance
of the different similarity metrics varies. The
dependency-based metric performs notably better
than the other metrics. Together with word embed-
dings, it is the only metric for which graph cluster-
ing produces a notable improvement over kNN.

Table 6 illustrates the quality of the similar-
ity metrics for the present task. The table shows
that the dependency-based similarity metric pro-
vides the most suitable output. The poor qual-
ity of coordination may come as a surprise. That
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Coordin. appear, believe, refuse, vow, want, offend, shock, help, ex-
hilarate, challenge, support, distort

WordNet appal, scandalize, anger, rage, sicken, temper, hate, fear,
love, alarm, dread, tingle

Embedd. anger, dismay, disgust, protest, alarm, enrage, shock, regret,
concern, horrify, appal, sorrow

Depend. anger, infuriate, alarm, shock, stun, enrage, incense, dis-
may, upset, appal, offend, disappoint

Table 6: The 12 most similar verbs to outrage
(PT-verb) according to the different metrics (verbs
other than PT-verbs are underlined).

AG-verbs PT-verbs SP-verbs
no graph graph no graph graph no graph graph

(Wiegand 2012) (Wiegand 2012)

55.45 69.12 38.59 67.66 52.16 72.03

Table 7: F-scores of entire output of pattern-based
extraction (§4.1) where no propagation is applied
(no graph) vs. best proposed induction method
from Table 5 (graph).

method suffers from data-sparsity. In our corpus,
the frequency of verbs co-occurring with outrage
in a conjunction is 5 or lower.5 The table also
shows that WordNet may not be appropriate for
our present verb categorization task. However, it
may be suitable for other subtasks in sentiment
analysis, particularly polarity classification. If we
consider the similar entries of outrage provided by
that metric, we find that polarity is largely pre-
served (10 out of 12 verbs are negative). This ob-
servation is consistent with Esuli and Sebastiani
(2006) and Rao and Ravichandran (2009).

In Table 5 we only used the top 40/30/50 verbs
from the initialization methods as seeds. We can
also compare the output of these methods (com-
bined with propagation, i.e. graph clustering) with
the entire verb lists produced by these pattern-
based initialization methods where no propagation
is applied. As far as AG- and PT-verbs are con-
cerned, the entire lists of these initialization meth-
ods correspond to the original approach of Wie-
gand and Klakow (2012). Table 7 shows the result.
The new graph-induction always outperforms the
original induction method by a large margin.

In Table 8, we compare our automatically gen-
5We found that for frequently occurring opinion verbs,

this similarity metric produces more reasonable output.

Patternhalf Pattern Patterndouble Goldhalf Gold Golddouble

68.71 70.59 66.50 66.21 70.31 73.77

Table 8: Comparison of automatic and gold seeds
(evaluation measure: macro-average F-score).

Coordin. WordNet Embedd. Depend.
Major. kNN graph kNN graph kNN graph kNN graph

English 20.9 53.4 50.4 51.1 51.5 59.7 64.5 64.5 70.6
German 22.9 43.8 48.9 53.2 59.9 54.3 60.9 58.3 63.1

Table 9: Comparison of English and German data
(evaluation measure: macro-average F-score).

erated seeds using the patterns from §4.1 (Pat-
tern) with seeds extracted from our gold stan-
dard (Gold). We rank those verbs by fre-
quency. Size and verb type distribution are pre-
served. We also examine what impact doubling
the size of seeds (Gold|Patterndouble ) and halv-
ing them (Gold|Patternhalf ) has on classification.
Dependency-based similarity and graph clustering
is used for all configurations. Only if we double
the amount of seeds are the gold seeds notably bet-
ter than the automatically generated seeds.

Since our induction approach just requires a
sentiment lexicon and aims at low-resource lan-
guages, we replicated the experiments for Ger-
man, as shown in Table 9. We use the PolArt-
sentiment lexicon (Klenner et al., 2009) (1416 en-
tries). (As a gold standard, we manually annotated
that lexicon according to our three verb types.)
As an unlabeled corpus, we chose the Huge Ger-
man Corpus6. As a parser, we used ParZu (Sen-
nrich et al., 2009). Instead of WordNet, we used
GermaNet (Hamp and Feldweg, 1997). The au-
tomatically generated seeds were manually trans-
lated from English to German. Table 9 shows
that as on English data, dependency-based similar-
ity combined with graph clustering performs best.
The fact that we can successfully replicate our
approach in another language supports the gen-
eral applicability of our proposed categorization of
verbs into three types for opinion role extraction.

5.2 In-Context Evaluation

We now evaluate our induced knowledge in the
task of extracting opinion holders and targets from
actual text. For this in-context evaluation, we sam-
pled sentences from the North American News
Corpus in which our opinion verbs occurred. We
annotated all holders and targets of those verbs.
(A constituent may have several roles for the same
verb (§2).) The dataset contains about 1100 sen-
tences. We need to rely on this dataset since it
is the only corpus in which our opinion verbs are

6www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/hgc.html
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Features Description
cand lemma head lemma of candidate (phrase)
cand pos part-of-speech tag of head of candidate phrase
cand phrase phrase label of candidate
cand person is candidate a person
verb lemma verb lemmatized
verb pos part-of-speech tag of verb
word bag of words: all words within the sentence
pos part-of-speech sequence between cand. and verb
distance token distance between candidate and verb
const path from constituency parse tree from cand. to verb
subcat subcategorization frame of verb
srlpropbank /dep semantic role/dependency path between cand. and

verb (semantic roles based on PropBank)
brown Brown-clusters of cand word/verb word/word

srlframenet frame element name assigned to candidate and the
frame name (to which frame element belongs)

fine-grain lex is candidate holder/target/targetspeaker according
to the fine-grained lexicon

coarse-grain lex is candidate holder/target/targetspeaker according
to the coarse-grained lexicon

inducgraph is candidate holder/target/targetspeaker according
to the coarse-grained lexicon automatically induced
with graph clustering (and induced seeds (§4.1))

Table 10: Feature set for in-context classification.

widely represented and both holders and targets
are annotated.

We solve this task with supervised learning. As
a classifier, we employ Support Vector Machines
as implemented in SVMlight (Joachims, 1999).
The task is to extract three different entities: opin-
ion holders, opinion targets and opinion targets
evoked by speaker views. All those entities are al-
ways put into the relation to a specific opinion verb
in the sentence. The instance space thus consists
of tuples (verb, const), where verb is the mention
of an opinion verb and const is any possible (syn-
tactic) constituent in the respective sentence. The
dataset contains 753 holders, 745 targets and 499
targets of a speaker view. Since a constituent may
have several roles at the same time, we train three
binary classifiers for either of the entity types. On
a sample of 200 sentences, we measured an in-
terannotation agreement of Cohen’s κ = 0.69 for
holders, κ=0.63 for targets and also κ=0.63 for
targets of a speaker view.

Table 10 shows the features used in our super-
vised classifier. They have been previously found
effective (Choi et al., 2005; Jakob and Gurevych,
2010; Wiegand and Klakow, 2012; Yang and
Cardie, 2013). The standard features are the fea-
tures from cand word to brown. For semantic role
labeling of PropBank-structures, we used mate-
tools (Björkelund et al., 2009). For person detec-
tion, we employ named-entity tagging (Finkel et

Features Holder Target TargetSpeaker

standard 63.59 54.18 40.06
+srlframenet 65.44∗ 55.70∗ 42.14

+inducgraph 68.06∗◦ 59.61∗◦ 46.66∗◦

+srlframenet+inducgraph 69.70∗◦ 60.47∗◦ 47.33∗◦

+coarse-grain lex 68.56∗◦ 59.89∗◦ 54.31∗◦†

+srlframenet+coarse-grain lex 69.70∗◦ 60.68∗◦ 54.06∗◦†

+fine-grain lex 69.83∗◦† 62.89∗◦† 56.71∗◦†

+srlframenet+fine-grain lex 70.80∗◦† 63.72∗◦† 56.64∗◦†

statistical significance testing (paired t-test, significance level p < 0.05) ∗:
better than standard; ◦: better than +srlframenet ; †: better than +inducgraph

Table 11: In-context evaluation (eval.: F-score).

al., 2005) and WordNet (Miller et al., 1990).
For semantic role labeling of FrameNet-

structures (srlframenet ), we used Semafor (Das et
al., 2010) with the argument identification based
on dual decomposition (Das et al., 2012). We run
the configuration that also assigns frame structures
to unknown predicates (Das and Smith, 2011).
This is necessary as 45% of our opinion verbs are
not contained in FrameNet (v1.5). FrameNet has
been shown to enable a correct role assignment for
AG- and PT-verbs (Bethard et al., 2004; Kim and
Hovy, 2006). For instance, in (17) and (18), the
opinion holder is assigned to the same frame el-
ement EXPERIENCER. However, the PropBank
representation does not produce a correct align-
ment: In (17), the opinon holder is the agent of
the opinion verb, while in (18), the opinion holder
is the patient of the opinion verb.

(17) PeterEXPERIENCER
agent dislikes Marypatient .

(dislike, Peter, holder)

(18) Peteragent disappoints MaryEXPERIENCER
patient .

(disappoint, Mary, holder)

With the feature fine-grain lex, we want to val-
idate that our manually-compiled opinion role lex-
icon for verbs (§2), i.e. the lexicon that also allows
multiple opinion roles for the same semantic roles,
is effective for in-context evaluation. Coarse-
grain lex is derived from the fine-grained lexicon
(§3.4). With this feature, we measure how much
we lose by dropping the fine-grained representa-
tion. Inducgraph induces the verb types of the
coarse representation automatically by employing
the best induction method obtained in Table 5.

Table 11 compares the different features on 10-
fold crossvalidation. The table shows that the fea-
tures encoding opinion role information, including
our induction approach, are more effective than
srlframenet . Even though the fine-grained lexicon
produces the best results, we almost reach that per-
formance with the coarse-grained lexicon. This is
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manual lexicons
Features inducgraph coarse-grain fine-grain
lexicon feature only (≈ unsuperv.) 52.38 55.81 60.68
lexicon with all other features 59.90∗ 61.71∗ 63.92◦

statistical significance testing (paired t-test, significance level p < 0.05) ∗:
better than lexicon feature only; ◦: only significant on 2 out of 3 roles

Table 12: Lexical resources and the impact
of other (not lexicon-based) features (evaluation
measure: macro-average F-score).

Distribution of Verb Types
Corpus AG PT SP # sentences
MPQA (training+test) 77.5 7.7 14.8 15, 753

FICTION (test) 67.5 15.1 17.3 614

VERB (test) 34.8 14.0 52.7 1, 073

Table 13: Statistics on the different corpora used.

further evidence that our proposed three-way verb
categorization, which is also the basis of our in-
duction approach, is adequate.

Table 12 compares the performance of the dif-
ferent lexicons in isolation (this is comparable
with an unsupervised classifier, as each lexicon
feature has three values each predicting either of
the opinion roles) and in combination with the
standard (+srlframenet ) features. The table shows
that all lexicon features are strong features on their
own. The score of induction is lowest but this fea-
ture has been created without manual supervision.
Moreover, the improvement by adding the other
features is much larger for induction than for the
manually-built fine-grained lexicon. This means
that we can compensate some lexical knowledge
missing in induction by standard features.

Since we could substantially outperform the
features relying on FrameNet with our new lex-
ical resources, we looked closer at the predicted
frame structures. Beside obvious errors in auto-
matic frame assignment, we also found that there
are problems inherent in the frame design. Particu-
larly, the notion of SP-verbs (§3.3) is not properly
reflected. Many frames, such as SCRUTINY, typi-
cally devised for AG-verbs, such as investigate or
analyse, also contain SP-verbs like pry. This ob-
servation is in line with Ruppenhofer and Rehbein
(2012) who claim that extensions to FrameNet are
necessary to properly represent opinions evoked
by verbal predicates.

5.3 Comparison to Previous Cross-Domain
Opinion Holder Extraction

We now compare our proposed induction ap-
proach with previous work on opinion holder ex-

in domain out of domain
Config MPQA FICTION VERB
MultiRel 72.54∗◦ 53.02 44.80

CK 62.98 52.91 43.88
CK + inducWiegand 2012 65.15 57.33∗ 50.83∗

CK + inducgraph 66.06∗ 65.03∗◦ 60.91∗◦

CK + coarse-grain lex 66.82∗ 64.13∗◦ 63.72∗◦†

CK + fine-grain lex 66.16∗ 64.98∗◦ 70.85∗◦†‡

statistical significance testing (permutation test, significance level p < 0.05)
∗: better than CK; ◦: better than CK + inducWiegand 2012 ; †: better than

CK + inducgraph ; ‡: better than CK + coarse-grain lex

Table 14: Evaluation on opinion holder extraction
on various corpora (evaluation measure: F-score).

traction. We replicate several classifiers and com-
pare them to our new approach. (Because of the
limited space of this paper, we cannot also address
cross-domain opinion target extraction.) We con-
sider three different corpora as shown in Table 13.
MPQA (Wiebe et al., 2005) is the standard corpus
for fine-grained sentiment analysis. FICTION,
introduced in Wiegand and Klakow (2012), is a
collection of summaries of classic literary works.
VERB is the new corpus used in the previous
evaluation (§5.2). VERB and MPQA both orig-
inate from the news domain but VERB is sam-
pled in such a way that mentions of all opinion
verbs of the Subjectivity Lexicon are represented.
The other corpora consist of contiguous sentences.
They will have a bias towards only those opinion
verbs frequently occurring in that particular do-
main. This also results in different distributions
of verb types as shown in Table 13. For example,
SP-verbs are rare in MPQA. However, there ex-
ist plenty of them (Table 3). Other domains may
have much more frequent SP-verbs (just as FIC-
TION has more PT-verbs than MPQA). A robust
domain-independent classifier should therefore be
able to cope equally well with all three verb types.

MPQA is also the largest corpus. Following
Wiegand and Klakow (2012), this corpus is cho-
sen as a training set.7 Despite its size, however,
almost every second opinion verb from our set of
opinion verbs is not contained in that corpus.

In the evaluation, we only consider the opinion
holders of our opinion verbs. (Other opinion hold-
ers, both in the gold standard and the predictions
of the classifiers are ignored.) Recall that we take
the knowledge of what is an opinion verb as given.
Our graph-based induction can be arbitrarily ex-
tended by increasing the set of opinion verbs.

7The split-up of training and test set on the MPQA corpus
follows the specification of Johansson and Moschitti (2013).
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For classifiers, we consider convolution ker-
nels CK from Wiegand and Klakow (2012) and
the sequence labeler from Johansson and Mos-
chitti (2013) MultiRel that incorporates relational
features taking into account interactions between
multiple opinion cues. It is currently the most so-
phisticated opinion holder extractor. CK can be
combined with additional knowledge. We com-
pare inducgraph with inducWiegand 2012 , which
employs the word lists induced for AG- and PT-
verbs in the fashion of Wiegand and Klakow
(2012), i.e. without graph clustering. As an upper
bound for the induction methods, coarse grain lex
and fine grain lex are used.8 The combination
of CK with this additional knowledge follows the
best settings from Wiegand and Klakow (2012).9

Table 14 shows the results. MultiRel produces
the best performance on MPQA but suffers simi-
larly from a domain-mismatch as CK on FICTION
and VERB. MultiRel and CK cannot handle many
PT- and SP-verbs in those corpora, simply because
many of them do not occur in MPQA. On MPQA,
only the new induction approach and the lexicons
significantly improve CK. The knowledge of opin-
ion roles has a lower impact on MPQA. In that cor-
pus, most opinion verbs take their opinion holder
as an agent. Given the large size of MPQA, this
information can be easily learned from the train-
ing data. The situation is different for FICTION
and VERB where the knowledge from induction
largely improves classification. In these corpora,
opinion holders as agents are much less frequent
than on MPQA. The new induction proposed in
this paper also notably outperforms the induction
from Wiegand and Klakow (2012).

Although the fine-grained lexicon is among the
top performing systems, we only note large im-
provements on VERB. VERB has the highest pro-
portion of PT- and SP-verbs (Table 13). Knowl-
edge about role-assignment is most critical here.

6 Related Work

Most approaches for opinion role extraction em-
ploy supervised learning. The feature design is

8Wiegand and Klakow (2012) use a lexicon Lex which
just comprises the notion of AG and PT verbs, so our manual
lexicons are more accurate and harder to beat.

9For in-domain evaluation (i.e. MPQA) the trees (tree
structures are the input to CK) are augmented with verb cat-
egory information. For out-of-domain evaluation (i.e. FIC-
TION and VERB), we add to the predictions of CK the pre-
diction of a rule-based classifier using the opinion role assign-
ment according to the respective lexicon or induction method.

mainly inspired by semantic role labeling (Bethard
et al., 2004; Li et al., 2012). Some work also em-
ploys information from existing semantic role la-
belers based on FrameNet (Kim and Hovy, 2006)
or PropBank (Johansson and Moschitti, 2013;
Wiegand and Klakow, 2012). Although those re-
sources give extra information for opinion role ex-
traction in comparison to syntactic or other surface
features, we showed in this work that further task-
specific knowledge, i.e. either opinion verb types
or a manually-built opinion role lexicon, provide
even more accurate information.

There has been a substantial amount of research
on opinion target extraction. It focuses, however,
on the extraction of topic-specific opinion terms
(Jijkoun et al., 2010; Qiu et al., 2011) rather than
the variability of semantic roles for opinion hold-
ers and targets. Mitchell et al. (2013) present
a low-resource approach for target extraction but
their aim is to process Twitter messages without
using general syntax tools. In this work, we use
such tools. Our notion of low resources is different
in that we mean the absence of semantic resources
helpful for our task (e.g. FrameNet).

7 Conclusion

We presented an approach for opinion role in-
duction for verbal predicates. We assume that
those predicates can be divided into three differ-
ent verb types where each type is associated with
a characteristic mapping between semantic roles
and opinion holders and targets. In several ex-
periments, we demonstrated the relevance of those
three types. We showed that verbs can effectively
be categorized with graph clustering given a suit-
able similarity metric. The seeds are automatically
selected. Our proposed induction approach out-
performs both a previous induction approach and
features derived from semantic role labelers. We
also pointed out the importance of the knowledge
gained by induction in supervised cross-domain
classification.
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