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Abstract

Cross-lingual transfer has been shown to
produce good results for dependency pars-
ing of resource-poor languages. Although
this avoids the need for a target language
treebank, most approaches have still used
large parallel corpora. However, parallel
data is scarce for low-resource languages,
and we report a new method that does
not need parallel data. Our method learns
syntactic word embeddings that generalise
over the syntactic contexts of a bilingual
vocabulary, and incorporates these into a
neural network parser. We show empir-
ical improvements over a baseline delex-
icalised parser on both the CoNLL and
Universal Dependency Treebank datasets.
We analyse the importance of the source
languages, and show that combining mul-
tiple source-languages leads to a substan-
tial improvement.

1 Introduction

Dependency parsing is a crucial component of
many natural language processing (NLP) systems
for tasks such as relation extraction (Bunescu
and Mooney, 2005), statistical machine transla-
tion (Xu et al., 2009), text classification (Özgür
and Güngör, 2010), and question answering (Cui
et al., 2005). Supervised approaches to depen-
dency parsing have been very successful for many
resource-rich languages, where relatively large
treebanks are available (McDonald et al., 2005a).
However, for many languages, annotated tree-
banks are not available, and are very costly to cre-
ate (Böhmová et al., 2001). This motivates the
development of unsupervised approaches that can
make use of unannotated, monolingual data. How-
ever, purely unsupervised approaches have rela-
tively low accuracy (Klein and Manning, 2004;
Gelling et al., 2012).

Most recent work on unsupervised dependency
parsing for low-resource languages has used the
idea of delexicalized parsing and cross-lingual
transfer (Zeman et al., 2008; Søgaard, 2011; Mc-
Donald et al., 2011; Ma and Xia, 2014). In
this setting, a delexicalized parser is trained on a
resource-rich source language, and is then applied
directly to a resource-poor target language. The
only requirement here is that the source and tar-
get languages are POS tagged must use the same
tagset. This assumption is pertinent for resource-
poor languages since it is relatively quick to man-
ually POS tag the data. Moreover, there are many
reports of high accuracy POS tagging for resource-
poor languages (Duong et al., 2014; Garrette et
al., 2013; Duong et al., 2013b). The cross-lingual
delexicalized approach has been shown to signif-
icantly outperform unsupervised approaches (Mc-
Donald et al., 2011; Ma and Xia, 2014).

Parallel data can be used to boost the perfor-
mance of a cross-lingual parser (McDonald et al.,
2011; Ma and Xia, 2014). However, parallel data
may be hard to acquire for truly resource-poor lan-
guages.1 Accordingly, we propose a method to
improve the performance of a cross-lingual delex-
icalized parser using only monolingual data.

Our approach is based on augmenting the delex-
icalized parser using syntactic word embeddings.
Words from both source and target language are
mapped to a shared low-dimensional space based
on their syntactic context, without recourse to par-
allel data. While prior work has struggled to ef-
ficiently incorporate word embedding information
into the parsing model (Bansal et al., 2014; An-
dreas and Klein, 2014; Chen et al., 2014), we
present a method for doing so using a neural net-

1Note that most research in this area (as do we) evalu-
ates on simulated low-resource languages, through selective
use of data in high-resource languages. Consequently paral-
lel data is plentiful, however this is often not the case in the
real setting, e.g., for Tagalog, where only scant parallel data
exists (e.g., dictionaries, Wikipedia and the Bible).
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work parser. We train our parser using a two stage
process: first learning cross-lingual syntactic word
embeddings, then learning the other parameters of
the parsing model using a source language tree-
bank. When applied to the target language, we
show consistent gains across all studied languages.

This work is a stepping stone towards the more
ambitious goal of a universal parser that can ef-
ficiently parse many languages with little modi-
fication. This aspiration is supported by the re-
cent release of the Universal Dependency Tree-
bank (Nivre et al., 2015) which has consensus de-
pendency relation types and POS annotation for
many languages.

When multiple source languages are available,
we can attempt to boost performance by choosing
the best source language, or combining informa-
tion from several source languages. To the best
of our knowledge, no prior work has proposed a
means for selecting the best source language given
a target language. To address this, we introduce
two metrics which outperform the baseline of al-
ways picking English as the source language. We
also propose a method for combining all available
source languages which leads to substantial im-
provement.

The rest of this paper is organized as fol-
lows: Section 2 reviews prior work on unsuper-
vised cross-lingual dependency parsing. Section 3
presents the methods for improving the delexi-
calized parser using syntactic word embeddings.
Section 4 describes experiments on the CoNLL
dataset and Universal Dependency Treebank. Sec-
tion 5 presents methods for selecting the best
source language given a target language.

2 Unsupervised Cross-lingual
Dependency Parsing

There are two main approaches for building de-
pendency parsers for resource-poor languages
without using target-language treebanks: delexi-
calized parsing and projection (Hwa et al., 2005;
Ma and Xia, 2014; Täckström et al., 2013; Mc-
Donald et al., 2011).

The delexicalized approach was proposed
by Zeman et al. (2008). They built a delexi-
calized parser from a treebank in a resource-rich
source language. This parser can be trained us-
ing any standard supervised approach, but with-
out including any lexical features, then applied di-
rectly to parse sentences from the resource-poor

language. Delexicalized parsing relies on the fact
that parts-of-speech are highly informative of de-
pendency relations. For example, an English lex-
icalized discriminative arc-factored dependency
parser achieved 84.1% accuracy, whereas a delex-
icalized version achieved 78.9% (McDonald et al.,
2005b; Täckström et al., 2013). Zeman et al.
(2008) build a parser for Swedish using Danish,
two closely-related languages. Søgaard (2011)
adapt this method for less similar languages by
choosing sentences from the source language that
are similar to the target language. Täckström et al.
(2012) additionally use cross-lingual word cluster-
ing as a feature for their delexicalized parser. Also
related is the work by Naseem et al. (2012) and
Täckström et al. (2013) who incorporated linguis-
tic features from the World Atlas of Language
Structures (WALS; Dryer and Haspelmath (2013))
for joint modelling of multi-lingual syntax.

In contrast, projection approaches use paral-
lel data to project source language dependency
relations to the target language (Hwa et al.,
2005). Given a source-language parse tree along
with word alignments, they generate the target-
language parse tree by projection. However, their
approach relies on many heuristics which would
be difficult to adapt to other languages. McDon-
ald et al. (2011) exploit both delexicalized parsing
and parallel data, using an English delexicalized
parser as the seed parser for the target languages,
and updating it according to word alignments. The
model encourages the target-language parse tree
to look similar to the source-language parse tree
with respect to the head-modifier relation. Ma and
Xia (2014) use parallel data to transfer source lan-
guage parser constraints to the target side via word
alignments. For the null alignment, they used a
delexicalized parser instead of the source language
lexicalized parser.

In summary, existing work generally starts with
a delexicalized parser, and uses parallel data ty-
pological information to improve it. In contrast,
we want to improve the delexicalized parser, but
without using parallel data or any explicit linguis-
tic resources.

3 Improving Delexicalized Parsing

We propose a novel method to improve the per-
formance of a delexicalized cross-lingual parser
without recourse to parallel data. Our method uses
no additional resources and is designed to com-
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plement other methods. The approach is based on
syntactic word embeddings where a word is rep-
resented as a low-dimensional vector in syntactic
space. The idea is simple: we want to relexicalize
the delexicalized parser using word embeddings,
where source and target language lexical items are
represented in the same space.

Word embeddings typically capture both syn-
tactic and semantic information. However, we hy-
pothesize (and later show empirically) that for de-
pendency parsing, word embeddings need to bet-
ter reflect syntax. In the next subsection, we re-
view some cross-lingual word embedding meth-
ods and propose our syntactic word embeddings.
Section 4 empirically compares these word em-
beddings when incorporated into a dependency
parser.

3.1 Cross-lingual word embeddings

We review methods that can represent words
in both source and target languages in a low-
dimensional space. There are many benefits of us-
ing a low-dimensional space. Instead of the tra-
ditional “one-hot” representation with the number
of dimensions equal to vocabulary size, words are
represented using much fewer dimensions. This
confers the benefit of generalising over the vocab-
ulary to alleviate issues of data sparsity, through
learning representations encoding lexical relations
such as synonymy.

Several approaches have sought to learn cross-
lingual word embeddings from parallel data (Her-
mann and Blunsom, 2014a; Hermann and Blun-
som, 2014b; Xiao and Guo, 2014; Zou et al., 2013;
Täckström et al., 2012). Hermann and Blunsom
(2014a) induced a cross-lingual word representa-
tion based on the idea that representations for par-
allel sentences should be close together. They
constructed a sentence level representation as a
bag-of-words summing over word-level represen-
tations, and then optimized a hinge loss function
to match a latent representation of both sides of
a parallel sentence pair. While this might seem
well suited to our needs as a word representation
in cross-lingual parsing, it may lead to overly se-
mantic embeddings, which are important for trans-
lation, but less useful for parsing. For example,
“economic” and “economical” will have a simi-
lar representation despite having different syntac-
tic features.

Also related is (Täckström et al., 2012) who

Pronoun   Noun         Verb           Adj

    Tu      mascota     parece      adorable

 Det       Noun      Verb      Adj         Noun

    The      weather     is      horrible    today     

Figure 1: Examples of the syntactic word embed-
dings for Spanish and English. In each case, the
highlighted tags are predicted by the highlighted
word. The Spanish sentence means “your pet
looks lovely”.

build cross-lingual word representations using a
variant of the Brown clusterer (Brown et al., 1992)
applied to parallel data. Bansal et al. (2014)
and Turian et al. (2010) showed that for monolin-
gual dependency parsing, the simple Brown clus-
tering based algorithm outperformed many word
embedding techniques. In this paper we compare
our approach to forming cross-lingual word em-
beddings with those of both Hermann and Blun-
som (2014a) and Täckström et al. (2012).

3.2 Syntactic Word Embedding

We now propose a novel approach for learning
cross-lingual word embeddings that is more heav-
ily skewed towards syntax. Word embedding
methods typically exploit word co-occurrences,
building on traditional techniques for distribu-
tional similarity, e.g., the co-occurrences of words
in a context window about a central word. Bansal
et al. (2014) suggested that for dependency pars-
ing, word embeddings be trained over dependency
relations, instead of adjacent tokens, such that
embeddings capture head and modifier relations.
They showed that this strategy performed much
better than surface embeddings for monolingual
dependency parsing. However, their method is
not applicable to our low resource setting, as it
requires a parse tree for training. Instead we
consider a simpler representation, namely part-of-
speech contexts. This requires only POS tagging,
rather than full parsing, while providing syntactic
information linking words to their POS context,
which we expect to be informative for characteris-
ing dependency relations.
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Algorithm 1 Syntactic word embedding
1: Match the source and target tagsets to the Uni-

versal Tagset.
2: Extract word n-gram sequences for both the

source and target language.
3: For each n-gram, keep the middle word, and

replace the other words by their POS.
4: Train a skip-gram word embedding model on

the resulting list of word and POS sequences
from both the source and target language

We assume the same POS tagset is used for both
the source and target language,2 and learn word
embeddings for each word type in both languages
into the same syntactic space of nearby POS con-
texts. In particular, we develop a predictive model
of the tags to the left and right of a word, as il-
lustrated in Figure 1 and outlined in Algorithm 1.
Figure 1 illustrates two training contexts extracted
from our English source and Spanish target lan-
guage, where the highlighted fragments reflect the
tags being predicted around each focus word. Note
that for this example, the POS contexts for the En-
glish and Spanish verbs are identical, and there-
fore the model would learn similar word embed-
dings for these terms, and bias the parser to gener-
ate similar dependency structures for both terms.

There are several motivations for our approach:
(1) POS tags are too coarse-grained for accurate
parsing, but with access to local context they can
be made more informative; (2) leaving out the
middle tag avoids duplication because this is al-
ready known to the parser; (3) dependency edges
are often local, as shown in Figure 1, i.e., there
are dependency relations between most words and
their immediate neighbours. Consequently, train-
ing our embeddings to predict adjacent tags is
likely to learn similar information to training over
dependency edges.3 Bansal et al. (2014) stud-
ied the effect of word embeddings on dependency
parsing, and found that larger embedding win-
dows captured more semantic information, while
smaller windows better reflected syntax. There-
fore we choose a small±1 word window in our ex-
periments. We also experimented with bigger win-

2Later we consider multiple source languages, but for now
assume a single source language.

3For the 16 languages in the CoNLL-X and CoNLL-07
datasets we observed that approx. 50% of dependency rela-
tions span a distance of one word and 20% span two words.
Thus our POS context of a ±1 word window captures the
majority of dependency relations.

SOFT-MAX LAYER

HIDDEN LAYER 

WORDS POS TAGS ARC LABELS

MAPPING LAYER

CONFIGURATION (STACK, QUEUE, ARCS)

Eword Epos Earc

W1

W2

Figure 2: Neural Network Parser Architecture
from Chen and Manning (2014)

dows (±2,±3) but observed performance degra-
dation in these cases, supporting the argument
above.

Step 4 of Algorithm 1 finds the word embed-
dings as a side-effect of training a neural language
model. We use the skip-gram model (Mikolov et
al., 2013), trained to predict context tags for each
word. The model is formulated as a simple bilin-
ear logistic classifier

P (tc|w) =
exp(u>tcvw)∑T

z=1 exp(u>z vw)
(1)

where tc is the context tag around the current
word w, U ∈ RT×D is the tag embedding matrix,
V ∈ RV×D is the word embedding matrix, with T
the number of tags, V is the total number of word
types over both languages and D the capacity of
the embeddings. Given a training set of word and
POS contexts, (tLi , wi, t

R
i )N

i=1,4 we maximize the
log-likelihood

∑N
i=1 log P (tLi |wi)+log P (tRi |wi)

with respect to U and V using stochastic gradient
descent. The learned V matrix of word embed-
dings is later used in parser training (the source
word embeddings) and inference (the target word
embeddings).

3.3 Parsing Algorithm

In this Section, we show how to incorporate the
syntactic word embeddings into a parsing model.
Our parsing model is built based on the work
of Chen and Manning (2014). They built a
transition-based dependency parser using a neural-
network. The neural network classifier will decide
which transition is applied for each configuration.

4Note that w here can be a word type in either the source
or target language, such that both embeddings will be learned
for all word types in both languages.
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The architecture of the parser is illustrated in Fig-
ure 2, where each layer is fully connected to the
layer above.

For each configuration, the selected list of
words, POS tags and labels from the Stack, Queue
and Arcs are extracted. Each word, POS or label is
mapped to a low-dimension vector representation
(embedding) through the Mapping Layer. This
layer simply concatenates the embeddings which
are then fed into a two-layer neural network clas-
sifier to predict the next parsing action. The set
of parameters for the neural network classifier is
Eword, Epos, Elabels for the mapping layer, W1 for
the hidden layer and W2 for the soft-max output
layer. We incorporate the syntactic word embed-
dings into the neural network model by setting
Eword to the syntactic word embeddings, which
remain fixed during training so as to retain the
cross-lingual mapping.5

3.4 Model Summary

To apply the parser to a resource-poor target lan-
guage, we start by building syntactic word em-
beddings between source and target languages as
shown in algorithm 1. Next we incorporate syn-
tactic word embeddings using the algorithm pro-
posed in Section 3.3. The third step is to substitute
source- with target-language syntactic word em-
beddings. Finally, we parse the target language
using this substituted model. In this way, the
model will recognize lexical items for the target
language.

4 Experiments

We test our method of incorporating syntactic
word embeddings into a neural network parser, for
both the existing CoNLL dataset (Buchholz and
Marsi, 2006; Nivre et al., 2007) and the newly-
released Universal Dependency Treebank (Nivre
et al., 2015). We employed the Unlabeled Attach-
ment Score (UAS) without punctuation for com-
parison with prior work on the CoNLL dataset.
Where possible we also report Labeled Attach-
ment Score (LAS) without punctuation. We use
English as the source language for this experiment.

5This is a consequence of only training the parser on the
source language. If we were to update embeddings during
parser training this would mean they no longer align with the
target language embeddings.

4.1 Experiments on CoNLL Data

In this section we report experiments involving
the CoNLL-X and CoNLL-07 datasets. Run-
ning on this dataset makes our model comparable
with prior work. For languages included in both
datasets, we use the newer one only. Crucially, for
the delexicalized parser we map language-specific
tags to the universal tagset (Petrov et al., 2012).
The syntactic word embeddings are trained using
POS information from the CoNLL data.

There are two baselines for our experiment. The
first one is the unsupervised dependency parser
of Klein and Manning (2004), the second one is
the delexicalized parser of Täckström et al. (2012).
We also compare our syntactic word embedding
with the cross-lingual word embeddings of Her-
mann and Blunsom (2014a). These word em-
beddings are induced by running each language
pair using Europarl (Koehn, 2005). We incor-
porated Hermann and Blunsom (2014a)’s cross-
lingual word embeddings into the parsing model
in the same way as for the syntactic word em-
beddings. Table 1 shows the UAS for 8 lan-
guages for several models. The first observation
is that the direct transfer delexicalized parser out-
performed the unsupervised approach. This is
consistent with many prior studies. Our imple-
mentation of the direct transfer model performed
on par with Täckström et al. (2012) on average.
Table 1 also shows that using HB embeddings im-
prove the performance over the Direct Transfer
model. Our model using syntactic word embed-
ding consistently out-performed the Direct Trans-
fer model and HB embedding across all 8 lan-
guages. On average, it is 1.5% and 1.3% better. 6

The improvement varies across languages com-
pared with HB embedding, and falls in the range
of 0.3 to 2.6%. This confirms our initial hypoth-
esis that we need word embeddings that capture
syntactic instead of semantic information.

It is not strictly fair to compare our method
with prior approaches to unsupervised dependency
parsing, since they have different resource require-
ment, i.e. parallel data or typological resources.
Compared with the baseline of the direct transfer
model, our approach delivered a 1.5% mean per-
formance gain, whereas Täckström et al. (2012)
and McDonald et al. (2011) report approximately
3% gain, Ma and Xia (2014) and Naseem et al.
(2012) report an approximately 6% gain. As we

6All performance comparisons in this paper are absolute.
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da de el es it nl pt sv Avg

Unsupervised 33.4 18.0 39.9 28.5 43.1 38.5 20.1 44.0 33.2
Täckström et al. (2012) DT 36.7 48.9 59.5 60.2 64.4 52.8 66.8 55.4 55.6
Our Direct Transfer 44.1 44.9 63.3 52.2 57.7 59.7 67.5 55.4 55.6
Our Model + HB embedding 45.0 44.5 63.8 52.2 56.7 59.8 68.7 55.6 55.8
Our Model + Syntactic embedding 45.9 45.9 64.1 52.9 59.1 61.1 69.5 58.1 57.1

Table 1: Comparative results on the CoNLL corpora showing UAS for several parsers: unsupervised
induction Klein and Manning (2004), Direct Transfer (DT) delexicalized parser of Täckström et al.
(2012), our implementation of Direct Transfer and our neural network parsing model using cross-lingual
embeddings Hermann and Blunsom (2014a) (HB) and our proposed syntactic embeddings.

cs de en es fi fr ga hu it sv

Train 1173.3 269.6 204.6 382.4 162.7 354.7 16.7 20.8 194.1 66.6
Dev 159.3 12.4 25.1 41.7 9.2 38.9 3.2 3.0 10.5 9.8
Test 173.9 16.6 25.1 8.5 9.1 7.1 3.8 2.7 10.2 20.4
Total 1506.5 298.6 254.8 432.6 181 400.7 23.7 26.5 214.8 96.8

Table 2: Number of tokens (× 1000) for each language in the Universal Dependency Treebank.

have stated above, our approach is complementary
to the approaches used in these other systems. For
example, we could incorporate the cross-lingual
word clustering feature (Täckström et al., 2012)
or WALS features (Naseem et al., 2012) into our
model, or use our improved delexicalized parser as
the reference model for Ma and Xia (2014), which
we expect would lead to better results yet.

4.2 Experiments with Universal Dependency
Treebank

We also experimented with the Universal Depen-
dency Treebank V1.0, which has many desirable
properties for our system, e.g. dependency types
and coarse POS are the same across languages.
This removes the need for mapping the source and
target language tagsets to a common tagset, as was
done for the CoNLL data. Secondly, instead of
only reporting UAS we can report LAS, which is
impossible on CoNLL dataset where the depen-
dency edge labels differed among languages.

Table 2 shows the size in thousands of tokens
for each language in the treebank. The first thing
to observe is that some languages have abundant
amount of data such as Czech (cs), French (fr) and
Spanish (es). However, there are languages with
modest size i.e. Hungarian (hu) and Irish (ga).

We ran our model with and without syntactic
word embeddings for all languages with English
as the source language. The results are shown in
Table 3. The first observation is that our model

using syntactic word embeddings out-performed
direct transfer for all the languages on both UAS
and LAS. We observed an average improvement
of 3.6% (UAS) and 3.1% (LAS). This consistent
improvement shows the robustness of our method
of incorporating syntactic word embedding to the
model. The second observation is that the gap be-
tween UAS and LAS is as big as 13% on average
for both models. This reflects the increase diffi-
culty of labelling the edges, with unlabelled edge
prediction involving only a 3-way classification7

while labelled edge prediction involves an 81-way
classification.8 Narrowing the gap between UAS
and LAS for resource-poor languages is an impor-
tant research area for future work.

5 Different Source Languages

In the previous sections, we used English as the
source language. However, English might not be
the best choice. For the delexicalized parser, it is
crucial that the source and target languages have
similar syntactic structures. Therefore a differ-
ent choice of source language might substantially
change the performance, as observed in prior stud-
ies (Täckström et al., 2013; Duong et al., 2013a;
McDonald et al., 2011).

7Since there are only 3 transitions: SHIFT, LEFT-ARC,
RIGHT-ARC.

8Since the Universal Dependency Treebank has 40 uni-
versal relations, each relation is attached to LEFT-ARC or
RIGHT-ARC. The number 81 comes from 1 (SHIFT) + 40
(LEFT-ARC) + 40 (RIGHT-ARC).
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cs de es fi fr ga hu it sv UAS LAS

Direct Transfer 47.2 57.9 64.7 44.9 64.8 49.1 47.8 64.9 55.5 55.2 42.7
Our Model + Syntactic embedding 50.2 60.9 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8

Table 3: Results comparing a direct transfer parser and our model with syntactic word embeddings.
Evaluating UAS over the Universal Dependency Treebank. (We observed a similar pattern for LAS.) The
rightmost UAS and LAS columns shows the average scores for the respective metric across 9 languages.

TARGET LANGUAGE

S
O

U
R

C
E

L
A

N
G

U
A

G
E

cs de en es fi fr ga hu it sv UAS LAS

cs 76.8 65.9 60.8 70.0 53.7 66.8 59.0 55.2 70.7 56.8 62.1 38.7
de 60.0 78.2 61.7 63.1 52.4 60.6 49.8 56.7 64.0 59.5 58.6 45.5
en 50.2 60.9 81.0 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8
es 60.5 58.5 60.4 80.9 45.7 73.3 53.8 46.9 77.4 55.3 59.1 46.2
fi 49.0 41.8 44.5 33.6 71.5 35.2 24.4 44.6 31.7 43.1 38.7 25.5
fr 54.2 55.7 63.2 74.8 43.6 79.2 54.7 44.3 76.2 54.8 57.9 46.3
ga 32.8 35.3 39.8 56.3 23.5 52.6 72.3 26.0 58.3 32.6 39.7 26.7
hu 42.3 53.4 45.4 43.8 53.3 42.1 29.2 72.1 41.2 42.5 43.7 22.7
it 57.6 53.4 53.2 72.1 42.7 71.4 54.7 42.2 85.9 54.2 55.7 45.0
sv 49.1 59.2 54.9 59.8 47.9 55.7 48.5 52.7 62.2 78.4 54.4 41.2

Table 4: UAS for each language pair in the Universal Dependency Treebank using our best model. The
UAS/LAS column show the average UAS/LAS for all target languages, excluding the source language.
The best UAS for each target language is shown in bold.

In this section we assume that we have multi-
ple source languages. To see how the performance
changes when using a different source language,
we run our best model (i.e., using syntactic em-
beddings) for each language pair in the Universal
Dependency Treebank. Table 4 shows the UAS for
each language pair, and the average across all tar-
get languages for each source language. We also
considered LAS, but observed similar trends, and
therefore only report the average LAS for each
source language. Observe that English is rarely
the best source language; Czech and French give a
higher average UAS and LAS, respectively. Inter-
estingly, while Czech gives high UAS on average,
it performs relatively poorly in terms of LAS.

One might expect that the relative performance
from using different source languages is affected
by the source corpus size, which varies greatly.
We tested this question by limiting the source cor-
pora 66K sentences (and excluded the very small
ga and hu datasets), which resulted in a slight re-
duction in scores but overall a near identical pat-
tern of results to the use of the full sized source
corpora reported in Table 4. Only in one instance
did the best source language change (for target fi
with source de not cs), and the average rankings

by UAS and LAS remained unchanged.

The ten languages considered belong to five
families: Romance (French, Spanish, Italian),
Germanic (German, English, Swedish), Slavic
(Czech), Uralic (Hungarian, Finnish), and Celtic
(Irish). At first glance it seems that language
pairs in the same family tend to perform well.
For example, the best source language for both
French and Italian is Spanish, while the best
source language for Spanish is French. However,
this doesn’t hold true for many target languages.
For example, the best source language for both
Finnish and German is Czech. It appears that the
best choice of an appropriate source language is
not predictable from language family information.

We therefore propose two methods to predict
the best source language for a given target lan-
guage. In devising these methods we assume that
for a given resource-poor target language we do
not have access to any parsed data, as this is ex-
pensive to construct. The first method is based on
the Jensen-Shannon divergence between the dis-
tributions of POS n-grams (1 < n < 6) in a pair
of languages. The second method converts each
language into a vector of binary features based
on word-order information from WALS, the World
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cs de en es fi fr ga hu it sv UAS LAS

English 50.2 60.9 — 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8
WALS 50.2 59.2 44.5 72.1 51.4 73.3 53.8 44.6 77.4 59.6 60.2 47.1
POS 49.1 58.5 53.2 74.8 53.7 73.3 53.8 56.7 76.2 56.8 61.4 47.7
Oracle 60.5 65.9 63.2 74.8 53.7 73.3 59.0 56.7 77.4 59.6 64.5 50.8
Combined 61.1 67.5 64.4 75.1 54.2 72.8 58.7 57.9 76.7 60.5 64.9 52.0

Table 5: UAS for target languages where the source language is selected in different ways. English uses
English as the source language. WALS and POS choose the best source language using the WALS or
POS ngrams based methods, respectively. Oracle always uses the best source language. Combined is the
model that combines information from all available sources language. The UAS/LAS columns show the
UAS/LAS average performance across 9 languages (English is excluded).

Atlas of Language Structures (Dryer and Haspel-
math, 2013). These features include the relative
order of adjective and noun, etc, and we compute
the cosine similarity between the vectors for a pair
of languages.

As an alternative to selecting a single source
language, we further propose a method to combine
information from all available source languages to
build a parser for a target language. To do so we
first train the syntactic word embeddings on all the
languages. After this step, lexical items from all
source languages and the target language will be
in the same space. We train our parser with syn-
tactic word embeddings on the combined corpus
of all source languages. This parser is then applied
to the target language directly. The intuition here
is that training on multiple source languages limits
over-fitting to the source language, and learns the
“universal” structure of languages.

Table 5 shows the performance of each target
language with the source language given by the
model (in the case of models that select a sin-
gle source language). Always choosing English
as the source language performs worst. Using
WALS features out-performs English on 7 out of
9 languages. Using POS ngrams out-performs the
WALS feature model on average for both UAS
and LAS, although the improvement is small. The
combined model, which combines information
from all available source languages, out-performs
choosing a single source language. Moreover, this
model performs even better than the oracle model,
which always chooses the single best source lan-
guage, especially for LAS. Compared with the
baseline of always choosing English, our com-
bined model gives an improvement about 6% for
both UAS and LAS.

6 Conclusions

Most prior work on cross-lingual transfer depen-
dency parsing has relied on large parallel corpora.
However, parallel data is scarce for resource-poor
languages. In the first part of this paper we investi-
gated building a dependency parser for a resource-
poor language without parallel data. We improved
the performance of a delexicalized parser using
syntactic word embeddings using a neural net-
work parser. We showed that syntactic word em-
beddings are better at capturing syntactic infor-
mation, and particularly suitable for dependency
parsing. In contrast to the state-of-the-art for un-
supervised cross-lingual dependency parsing, our
method does not rely on parallel data. Although
the state-of-the-art achieves bigger gains over the
baseline than our method, our approach could be
more-widely applied to resource-poor languages
because of its lower resource requirements. More-
over, we have described how our method could be
used to complement previous approaches.

The second part of this paper studied ways of
improving performance when multiple source lan-
guages are available. We proposed two methods
to select a single source language that both lead
to improvements over always choosing English as
the source language. We then showed that we can
further improve performance by combining infor-
mation from all the source languages. In summary,
without any parallel data, we managed to improve
the direct transfer delexicalized parser by about
10% for both UAS and LAS on average, for 9 lan-
guages in the Universal Dependency Treebank.

In this paper we focused only on word em-
beddings, however, in future work we could also
build the POS embeddings and the arc-label em-
beddings across languages. This could help our
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system to move more freely across languages, fa-
cilitating not only the development of NLP for
resource-poor languages, but also cross-language
comparisons.
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berg, Jan Hajič, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missilä, Simonetta
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