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Abstract

Supervised machine learning classifica-
tion algorithms assume both train and test
data are sampled from the same domain
or distribution. However, performance
of the algorithms degrade for test data
from different domain. Such cross do-
main classification is arduous as features
in the test domain may be different and
absence of labeled data could further ex-
acerbate the problem. This paper proposes
an algorithm to adapt classification model
by iteratively learning domain specific fea-
tures from the unlabeled test data. More-
over, this adaptation transpires in a simi-
larity aware manner by integrating similar-
ity between domains in the adaptation set-
ting. Cross-domain classification exper-
iments on different datasets, including a
real world dataset, demonstrate efficacy of
the proposed algorithm over state-of-the-
art.

1 Introduction

A fundamental assumption in supervised statis-
tical learning is that training and test data are
independently and identically distributed (i.i.d.)
samples drawn from a distribution. Otherwise,
good performance on test data cannot be guar-
anteed even if the training error is low. In real
life applications such as business process automa-
tion, this assumption is often violated. While re-
searchers develop new techniques and models for
machine learning based automation of one or a
handful business processes, large scale adoption is
hindered owing to poor generalized performance.
In our interactions with analytics software devel-
opment teams, we noticed such pervasive diver-
sity of learning tasks and associated inefficiency.
Novel predictive analytics techniques on standard

datasets (or limited client data) did not general-
ize across different domains ( new products & ser-
vices) and has limited applicability. Training mod-
els from scratch for every new domain requires hu-
man annotated labeled data which is expensive and
time consuming, hence, not pragmatic.

On the other hand, transfer learning techniques
allow domains, tasks, and distributions used in
training and testing to be different, but related. It
works in contrast to traditional supervised tech-
niques on the principle of transferring learned
knowledge across domains. While transfer learn-
ing has generally proved useful in reducing the
labelled data requirement, brute force techniques
suffer from the problem ofnegative transfer(Pan
and Yang, 2010a). One cannot use transfer learn-
ing as the proverbial hammer, but needs to gauge
when to transfer and also how much to transfer.

To address these issues, this paper proposes
a domain adaptation technique for cross-domain
text classification. In our setting for cross-domain
classification, a classifier trained on one domain
with sufficient labelled training data is applied to
a different test domainwith no labelled data. As
shown in Figure 1, this paper proposes an iterative
similarity based adaptation algorithm which starts
with a shared feature representation of source and
target domains. To adapt, it iteratively learns do-
main specific features from the unlabeled target
domain data. In this process, similarity between
two domains is incorporated in the adaptation set-
ting for similarity-aware transfer. The major con-
tributions of this research are:

• An iterative algorithm for learning domain
specific discriminative features from unla-
beled data in the target domain starting with
an initial shared feature representation.

• Facilitating similarity-aware domain adapta-
tion by seamlessly integrating similarity be-
tween two domains in the adaptation settings.
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Figure 1: Outlines different stages of the proposed
algorithm i.e. shared feature representation, do-
main similarity, and the iterative learning process.

To the best of our knowledge, this is the first-of-
its-kind approach in cross-domain text classifica-
tion which integrates similarity between domains
in the adaptation setting to learn domain specific
features in an iterative manner. The rest of the
paper is organized as follows: Section 2 summa-
rizes the related work, Section 3 presents details
about the proposed algorithm. Section 4 presents
databases, experimental protocol, and results. Fi-
nally, Section 5 concludes the paper.

2 Related Work

Transfer learning in text analysis (domain adapta-
tion) has shown promising results in recent years
(Pan and Yang, 2010a). Prior work on domain
adaptation for text classification can be broadly
classified into instance re-weighing and feature-
representation based adaptation approaches.

Instance re-weighing approaches address the
difference between the joint distributions of ob-
served instances and class labels in source do-
main with that of target domain. Towards this di-
rection, Liao et al. (2005) learned mismatch be-
tween two domains and used active learning to
select instances from the source domain to en-
hance adaptability of the classifier. Jiang and Zhai
(2007) proposed instance weighing scheme for do-
main adaptation in NLP tasks which exploit inde-
pendence between feature mapping and instance
weighing approaches. Saha et al. (2011) lever-
aged knowledge from source domain to actively
select the most informative samples from the tar-
get domain. Xiaet al. (2013) proposed a hybrid
method for sentiment classification task that also
addresses the challenge of mutually opposite ori-
entation words.

A number of domain adaptation techniques are
based on learning common feature representation
(Pan and Yang, 2010b; Blitzer et al., 2006; Ji et

al., 2011; Daumé III, 2009) for text classification.
The basic idea being identifying a suitable fea-
ture space where projected source and target do-
main data follow similar distributions and hence,
a standard supervised learning algorithm can be
trained on the former to predict instances from
the latter. Among them, Structural Correspon-
dence Learning (SCL) (Blitzer et al., 2007) is the
most representative one, explained later. Daumé
(2009) proposed a heuristic based non-linear map-
ping of source and target data to a high dimen-
sional space. Pan et al. (2008) proposed a di-
mensionality reduction method Maximum Mean
Discrepancy Embedding to identify a latent space.
Subsequently, Pan et al. (2010) proposed to map
domain specific words into unified clusters using
spectral clustering algorithm. In another follow
up work, Panet al. (2011) proposed a novel fea-
ture representation to perform domain adaptation
via Reproducing Kernel Hilbert Space using Max-
imum Mean Discrepancy. A similar approach,
based on co-clustering (Dhillon et al., 2003), was
proposed in Daiet al. (2007) to leverage common
words as bridge between two domains. Bollegala
et al. (2011) used sentiment sensitive thesaurus to
expand features for cross-domain sentiment clas-
sification. In a comprehensive evaluation study, it
was observed that their approach tends to increase
the adaptation performance when multiple source
domains were used (Bollegala et al., 2013).

Domain adaptation based on iterative learning
has been explored by Chen et al. (2011) and
Garcia-Fernandez et al. (2014) and are similar to
the philosophy of the proposed approach in ap-
pending pseudo-labeled test data to the training
set. The first approach uses an expensive fea-
ture split to co-train two classifiers while the for-
mer presents a single classifier self-training based
setting. However, the proposed algorithm offers
novel contributions in terms of 1) leveraging two
independent feature representations capturing the
shared and target specific representations, 2) an
ensemble of classifiers that uses labelled source
domain and pseudo labelled target domain in-
stances carefully moderated based on similarity
between two domains. Ensemble based domain
adaptation for text classification was first pro-
posed by Aue and Gammon (2005) though their
approach could not achieve significant improve-
ments over baseline. Later, Zhao et al. (2010)
proposed online transfer learning (OTL) frame-
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work which forms the basis of our ensemble based
domain adaptation. However, the proposed algo-
rithm differs in the following ways: 1) an unsuper-
vised approach that transforms unlabeled data into
pseudo labeled data unlike OTL which is super-
vised, and 2) incorporates similarity in the adapta-
tion setting for gradual transfer.

3 Iterative Similarity based Adaptation

The philosophy of our algorithm is gradual trans-
fer of knowledge from the source to the target do-
main while being cognizant of similarity between
two domains. To accomplish this, we have devel-
oped a technique based on ensemble of two classi-
fiers. Transfer occurs within the ensemble where
a classifier learned on shared representation trans-
forms unlabeled test data into pseudo labeled data
to learn domain specific classifier. Before explain-
ing the algorithm, we highlight its salient features:

Common Feature Space Representation:Our
objective is to find agood feature representation
which minimizes divergence between the source
and target domains as well as the classification
error. There have been several works towards
feature-representation-transfer approach such as
(Blitzer et al., 2007; Ji et al., 2011) which derives a
transformation matrixQ that gives a shared repre-
sentation between the source and target domains.
One of the widely used approaches is Structural
Correspondence Learning (SCL) (Blitzer et al.,
2006) which aims to learn the co-occurrence be-
tween features expressing similar meaning in dif-
ferent domains. Topk Eigenvectors of matrix,W ,
represent the principal predictors for weight space,
Q. Features from both domains are projected on
this principal predictor space,Q, to obtain a shared
representation. Source domain classifier in our ap-
proach is based on this SCL representation. In
Section 4, we empirically show how our algorithm
generalizes to different shared representations.

Iterative Building of Target Domain Labeled
Data: If we have enough labeled data from the
target domain then a classifier can be trained with-
out the need for adaptation. Hence, we wanted
to explore if and how (pseudo) labeled data for
the target domain can be created. Our hypothe-
sis is that certain target domain instances are more
similar to source domain instances than the rest.
Hence a classifier trained on (a suitably chosen
transformed representation of) source domain in-
stances will be able to categorize similar target do-

main instances confidently. Such confidently pre-
dicted instances can be considered as pseudo la-
beled data which are then used to initialize a clas-
sifier in target domain.

Only handful of instances in the target domain
can be confidently predicted using the shared rep-
resentation, therefore, we further iterate to create
pseudo labeled instances in target domain. In the
next round of iterations, remaining unlabeled tar-
get domain instances are passed through both the
classifiers and their output are suitably combined.
Again, confidently labeled instances are added to
the pool of pseudo labeled data and the classi-
fier in the target domain is updated. This pro-
cess is repeated till all unlabeled data is labeled
or certain maximum number of iterations is per-
formed. This way we gradually adapt the target
domain classifier on pseudo labeled data using the
knowledge transferred from source domain. In
Section 4, we empirically demonstrate effective-
ness of this technique compared to one-shot adap-
tation approaches.

Domain Similarity-based Aggregation: Perfor-
mance of domain adaptation is often constrained
by the dissimilarity between the source and target
domains (Luo et al., 2012; Rosenstein et al., 2005;
Chin, 2013; Blitzer et al., 2007). If the two do-
mains are largely similar, the knowledge learned in
the source domain can be aggressively transferred
to the target domain. On the other hand, if the two
domains are less similar, knowledge learned in the
source domain should be transferred in a conserva-
tive manner so as to mitigate the effects ofnegative
transfer. Therefore, it is imperative for domain
adaptation techniques to account for similarity be-
tween domains and transfer knowledge in a simi-
larity aware manner. While this may sound obvi-
ous, we do not see many works in domain adapta-
tion literature that leverage inter-domain similar-
ity for transfer of knowledge. In this work, we use
the cosine similarity measure to compute similar-
ity between two domains and based on that gradu-
ally transfer knowledge from the source to the tar-
get domain. While it would be interesting to com-
pare how different similarity measures compare
towards preventing negative transfer but that is not
the focus of this work. In Section 4, we empiri-
cally show marginal gains of transferring knowl-
edge in a similarity aware manner.
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Table 1: Notations used in this research.
Symbol Description
{xs

i , ys
i }i=1:ns ; xs

i ∈
Rd; ys

i ∈ {−1, +1} Labeled source domain instances

{xt
i}i=1:nt ; ŷi ∈

{−1, +1}
Unlabeled target domain instances and pre-
dicted label for target domain

Q Co-occurrence based projection matrix

Pu , Ps
Pool of unlabeled and pseudo-labeled target
domain instances respectively

Cs, Ct ; function from
Classifier Cs is trained on{(Qxs

i , ys
i )};

classifierCt is trained on{xt
i, ŷt

i} where
xt

i ∈ Ps andŷ is the pseudo label
Rd → {−1, +1} predicted labels by EnsembleE
α confidence of prediction
E Weighted ensemble ofCs andCt

θ1, θ2 confidence threshold forCs and ensembleE
ws, wt Weights forCs andCt respectively

3.1 Algorithm

Table 1 lists the notations used in this research. In-
puts to the algorithm are labeled source domain in-
stances{xs

i , y
s
i }i=1:ns and a pool of unlabeled tar-

get domain instances{xt
i}i=1:nt , denoted byPu.

As shown in Figure 2, the steps of the algorithm
are as follows:

1. LearnQ, a shared representation projection
matrix from the source and target domains,
using any of the existing techniques. SCL is
used in this research.

2. LearnCs on SCL-based representation of la-
beled source domain instances{Qxs

i , y
s
i }.

3. UseCs to predict labels,ŷi, for instances
in Pu using the SCL-based representation
Qxt

i. Instances which are predicted with con-
fidence greater than a pre-defined threshold,
θ1, are moved fromPu to Ps with pseudo la-
bel, ŷ.

4. LearnCt from instances inPs ∈ {xt
i, ŷ

t
i} to

incorporate target specific features.Ps only
contains instances added in step-3 and will
be growing iteratively (hence the training set
here is small).

5. Cs andCt are combined in an ensemble,E,
as a weighted combination with weights as
ws andwt which are both initialized to0.5.

6. EnsembleE is applied to all remaining in-
stances inPu to obtain the label̂yi as:

E(x
t
i) → ŷi → w

s
Cs(Qx

t
i) + w

t
Ct(x

t
i) (1)

(a) If the ensemble classifies an instance
with confidence greater than the thresh-
old θ2, then it is moved fromPu to Ps

along with pseudo label̂yi.

Figure 2: Illustrates learning of the initial classi-
fiers and iterative learning process of the proposed
similarity-aware domain adaptation algorithm.

(b) Repeat step-6 for allxt
i ∈ Pu.

7. Weightsws andwt are updated as shown in
Eqs. 2 and 3. This update facilitates knowl-
edge transfer within the ensemble guided by
the similarity between domains.

w
s
(l+1) =

(sim ∗ ws
l ∗ I(Cs))

(sim ∗ ws
l
∗ I(Cs) + (1− sim) ∗ wt

l
∗ I(Ct))

(2)

w
t
(l+1) =

((1− sim) ∗ wt
l ∗ I(Ct))

(sim ∗ ws
l
∗ I(Cs) + (1− sim) ∗ wt

l
∗ I(Ct))

(3)

where,l is the iteration,sim is the similarity
score between domains computed using co-
sine similarity metric as shown in Eq. 4

sim =
a · b

||a||||b|| (4)

wherea & b are normalized vector represen-
tations for the two domains.I(·) is the loss
function to measure the errors of individual
classifiers in each iteration:

I(·) = exp{−ηl(C, Y )} (5)

where,η is learning rate set to0.1, l(y, ŷ) =
(y − ŷ)2 is the square loss function,y is the
label predicted by the classifier and̂y is the
label predicted by the ensemble.

8. Re-train classifierCt onPs.

9. Repeat step6− 8 until Pu is empty or maxi-
mum number of iterations is reached.
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In this iterative manner, the proposed algorithm
transforms unlabeled data in the test domain into
pseudo labeled data and progressively learns clas-
sifier Ct. Confidence of prediction,αi for ith in-
stance, is measured as the distance from the de-
cision boundary (Hsu et al., 2003) which is com-
puted as shown in Eq. 6.

α =
R

|v| (6)

where R is the un-normalized output from the
support vector machine (SVM) classifier,v is the
weight vector for support vectors and|v| = vT v.
Weights of individual classifiers in the ensem-
ble are updated with each iteration that gradu-
ally shifts emphasis from the classifier learned on
shared representation to the classifier learned on
target domain. Algorithm 1 illustrates the pro-
posed iterative learning algorithm.

Algorithm 1 Iterative Learning Algorithm
Input: Cs trained on shared co-occurrence
based representationQx, Ct initiated on TFIDF
representation fromPs, Pu remaining unlabeled
target domain instances.
Iterate: l = 0 : till Pu = {φ} or l ≤ iterMax
Process: Construct ensembleE as weighted
combination ofCs andCt with initials weights
ws

l andwt
l as0.5 andsim = similarity between

domains.
for i = 1 to n (size ofPu) do

Predict labels:E(Qxi, xi) → ŷi; calculateαi

if αi > θ2 then
Removeith instance fromPu and add to
Ps with pseudo label̂yi.

end if.
end for. RetrainCt on Ps and updatews

l and
wt

l .
end iterate.
Output: UpdatedCt, ws

l andwt
l .

4 Experimental Results

The efficacy of the proposed algorithm is eval-
uated on different datasets for cross-domain text
classification (Blitzer et al., 2007), (Dai et al.,
2007). In our experiments, performance is eval-
uated on two-class classification task and reported
in terms of classification accuracy.

4.1 Datasets & Experimental Protocol

The first dataset is the Amazon review dataset
(Blitzer et al., 2007) which has four different

domains, Books, DVDs, Kitchen appliances and
Electronics. Each domain comprises1000 pos-
itive and 1000 negative reviews. In all experi-
ments,1600 labeled reviews from the source and
1600 unlabeled reviews from the target domains
are used in training and performance is reported
on the non-overlapping400 reviews from the tar-
get domain.

The second dataset is the20 Newsgroups
dataset (Lang, 1995) which is a text collection
of approximately20, 000 documents evenly par-
titioned across20 newsgroups. For cross-domain
text classification on the20 Newsgroups dataset,
we followed the protocol of Dai et al. (2007)
where it is divided into six different datasets and
the top two categories in each are picked as the two
classes. The data is further segregated based on
sub-categories, where each sub-category is con-
sidered as a different domain. Table 2 lists how
different sub-categories are combined to represent
the source and target domains. In our experiments,
4/5th of the source and target data is used to learn
shared feature representation and results are re-
ported on the remaining1/5th of the target data.

Table 2: Elaborates data segregation on the20
Newsgroups dataset for cross-domain classifica-
tion.

dataset Ds Dt

comp vs rec

comp.graphics comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware comp.windows.x
comp.sys.mac.hardware rec.autos

rec.motorcycles rec.sport.baseball
rec.sport.hockey

comp vs sci

comp.graphics comp.sys.ibm.pc.hardware
comp.os.ms-windows.misc comp.sys.mac.hardware

sci.crypt comp.windows.x
sci.electronics sci.med

sci.space

comp vs talk

comp.graphics comp.os.ms-windows.miscnewline
comp.sys.mac.hardware comp.sys.ibm.pc.hardware

comp.windows.x talk.politics.guns
talk.politics.mideast talk.politics.misc
talk.religion.misc

rec vs sci

rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey

sci.med sci.crypt
sci.space sci.electronics

rec vs talk

rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey
talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

sci vs talk

sci.electronics sci.crypt
sci.med sci.space

talk.politics.misc talk.politics.guns
talk.religion.misc talk.politics.mideast

The third dataset is a real world dataset com-
prising tweets about the products and services
in different domains. The dataset comprises
tweets/posts from three collections,Coll1 about
gaming, Coll2 about Microsoft products and
Coll3 about mobile support. Each collection has
218 positive and negative tweets. These tweets
are collected based on user-defined keywords cap-
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tured in a listening engine which then crawls the
social media and fetches comments matching the
keywords. This dataset being noisy and compris-
ing short-text is more challenging than the previ-
ous two datasets.

All datasets are pre-processed by converting to
lowercase followed by stemming. Feature selec-
tion based on document frequency (DF = 5)
reduces the number of features as well as speed
up the classification task. For Amazon review
dataset, TF is used for feature weighing whereas
TFIDF is used for feature weighing in other two
datasets. In all our experiments, constituent clas-
sifiers used in the ensemble are support vector ma-
chines (SVMs) with radial basis function kernel.
Performance of the proposed algorithm for cross-
domain classification task is compared with dif-
ferent techniques1including 1) in-domain classi-
fier trained and tested on the same domain data, 2)
baseline classifier which is trained on the source
and directly tested on the target domain, 3) SCL2,
a widely used domain adaptation technique for
cross-domain text classification, 4) ‘Proposed w/o
sim’, removing similarity from Eqs. 2 & 3.

4.2 Results and Analysis

For cross-domain classification, the performance
degrades mainly due to 1) feature divergence and
2) negative transfer owing to largely dissimilar do-
mains. Table 3 shows the accuracy of individ-
ual classifiers and the ensemble for cross-domain
classification on the Amazon review dataset. The
ensemble has better accuracy than the individual
classifiers, therefore, in our experiments the fi-
nal reported performance is the accuracy of the
ensemble. The combination weights in the en-
semble represent the contributions of individual
classifiers toward classification accuracy. In our
experiments, the maximum number of iterations
(iterMax) is set to30. It is observed that at the
end of the iterative learning process, the target spe-
cific classifier is assigned more weight mass as
compared to the classifier trained on the shared
representation. On average, the weights for the
two classifiers converge tows = 0.22 andwt =
0.78 at the end of the iterative learning process.

1We also compared our performance with sentiment sen-
sitive thesaurus (SST) proposed by (Bollegala et al., 2013)
and our algorithm outperformed on our protocol. However,
we did not include comparative results because of difference
in experimental protocol as SST is tailored for using multiple
source domains and our protocol uses single source domain.

2Our implementation of SCL is used in this paper.

Table 3: Comparing the performance of individual
classifiers and the ensemble for training on Books
domain and test across different domains.Cs and
Ct are applied on the test domain data before per-
forming the iterating learning process.

SD→ TD Cs Ct Ensemble
B → D 63.1 34.8 72.1
B → E 64.5 39.1 75.8
B → K 68.4 42.3 76.2

Table 4: List some examples of domain specific
discriminative features learned by the proposed al-
gorithm on the Amazon review dataset.

Domain Domain specific features
Books picturesillustrations, moredetail, to read
DvDs Definite buy, deliveryprompt
Kitchen invaluableresource, rust, delicious
Electronics Bargain, Energysaving, actuallyuse

This further validates our assertion that the tar-
get specific features are more discriminative than
the shared features in classifying target domain in-
stances, which are efficiently captured by the pro-
posed algorithm. Key observations and analysis
from the experiments on different datasets is sum-
marized below.

4.2.1 Results on the Amazon Review dataset

To study the effects of different components of the
proposed algorithm, comprehensive experiments
are performed on the Amazon review dataset3.

1) Effect of learning target specific features: Re-
sults in Figure 3 show that iteratively learning tar-
get specific feature representation (slow transfer as
opposed to one-shot transfer) yields better perfor-
mance across different cross-domain classification
tasks as compared to SCL, SFA (Pan et al., 2010)4

and the baseline. Unlike SCL and SFA, the pro-
posed approach uses shared and target specific fea-
ture representations for the cross-domain classifi-
cation task. Table 4 illustrates some examples of
the target specific discriminative features learned
by the proposed algorithm that leads to enhanced
performance. At95% confidence, parametric t-
test suggests that the proposed algorithm and SCL
are significantly (statistically) different.

2) Effect of similarity on performance: It is ob-
served that existing domain adaptation techniques
enhance the accuracy for cross-domain classifica-
tion, though, negative transfer exists in camou-

3Due to space restrictions, we show this analysis only on
one dataset; however similar conclusions were drawn from
other datasets as well.

4We directly compared our results with the performance
reported in (Pan et al., 2010).
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Figure 3: Comparing the performance of the proposed approach with existing techniques for cross-
domain classification on Amazon review dataset.
flage. Results in Figure 3(b) (for the case K→ B)
describes an evident scenario for negative trans-
fer where the adaptation performance with SCL
descends lower than the baseline. However, the
proposed algorithm still sustains the performance
by transferring knowledge proportionate to simi-
larity between the two domains. To further an-
alyze the effect of similarity, we segregated the
12 cross-domain classification cases into two cat-
egories based on similarity between two the par-
ticipating domains i.e. 1)> 0.5 and 2)< 0.5.
Table 5 shows that for6 out of 12 cases that fall
in the first category, the average accuracy gain is
10.8% as compared to the baseline. While for
the remaining6 cases that fall in the second cat-
egory, the average accuracy gain is15.4% as com-
pared to the baseline. This strongly elucidates that
the proposed similarity-based iterative algorithm
not only adapts well when the domain similarity
is high but also yields gain in the accuracy when
the domains are largely dissimilar. Figure 4 also
shows how weight for the target domain classi-
fier wt varies with the number of iterations. It
further strengthens our assertion that if domains
are similar, algorithm can readily adapt and con-
verges in a few iterations. On the other hand for
dissimilar domains, slow iterative transfer, as op-
posed to one-shot transfer, can achieve similar per-
formance; however, it may take more iterations
to converge.While the effect of similarity on do-
main adaptation performance is evident, this work
opens possibilities for further investigations.

3) Effect of varying thresholdθ1 & θ2: Figure
5(a) explains the effect of varyingθ1 on the final
classification accuracy. Ifθ1 is low, Ct may get
trained on incorrectly predicted pseudo labeled in-
stances; whereas, ifθ1 is high, Ct may be defi-
cient of instances to learn a good decision bound-
ary. On the other hand,θ2 influences the number
of iterations required by the algorithm to reach the

Table 5: Effect of similarity on accuracy gain for
cross-domain classification on the Amazon review
dataset.

Category SD→ TD Sim Gain Avg. (SD)

> 0.5

E→ K 0.78 13.1

10.8 (4.9)

K → E 0.78 10.6
B → K 0.54 8.0
K → B 0.54 2.9
B → E 0.52 13.1
E→ B 0.52 17.2

< 0.5

K → D 0.34 8.9

15.4 (4.4)

D → K 0.34 21.6
E→ D 0.33 14.5
D → E 0.33 14.5
B → D 0.29 14.1
D → B 0.29 19.1

Figure 4: Illustrates how the weight (wt) for tar-
get domain classifiers varies for the most and least
similar domains with number of iterations.

stopping criteria. If this threshold is low, the algo-
rithm converges aggressively (in a few iterations)
and does not benefit from the iterative nature of
learning the target specific features. Whereas a
high threshold tends to make the algorithm con-
servative. It hampers the accuracy because of the
unavailability of sufficient instances to update the
classifier after each iteration which also leads to
large number of iterations to converge (may not
even converge).

θ1 and θ2 are set empirically on a held-out
set, with values ranging from zero to distance of
farthest classified instance from the SVM hyper-
plane (Hsu et al., 2003). Theknee-shapedcurve
on the graphs in Figure 5 shows that there exists
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Figure 5: Bar plot shows % of data that crosses
confidence threshold, lower and upper part of the
bar represents % correctly and wrongly predicted
pseudo labels. The black line shows how the final
classification accuracy is effected with threshold.

an optimal value forθ1 and θ2 which yields the
best accuracy. We observed that the best accuracy
is obtained when the thresholds are set to the dis-
tance between the hyper plane and the farthest sup-
port vector in each class.

4) Effect of using different shared represen-
tations in ensemble: To study the generaliza-
tion ability of the proposed algorithm to differ-
ent shared representations, experiments are per-
formed using three different shared representa-
tions on the Amazon review dataset. Apart from
using the SCL representation, the accuracy is
compared with the proposed algorithm using two
other representations, 1) common features be-
tween the two domains (“common”) and 2) multi-
view principal component analysis based repre-
sentation (“MVPCA”) (Ji et al., 2011) as they are
previously used for cross-domain sentiment clas-
sification on the same dataset. Table 6 shows that
the proposed algorithm yields significant gains in
cross-domain classification accuracy with all three
representations and is not restricted to any spe-
cific representation. The final accuracy depends
on the initial classifier trained on the shared repre-
sentation; therefore, if a shared representation suf-
ficiently captures the characteristics of both source
and target domains, the proposed algorithm can
be built on any such representation for enhanced
cross-domain classification accuracy.

4.2.2 Results on 20 Newsgroups data

Results in Figure 6 compares the accuracy of pro-
posed algorithm with existing approaches on the
20 Newsgroups dataset. Since different domain
are crafted out from the sub-categories of the
same dataset, domains are exceedingly similar and
therefore, the baseline accuracy is relatively better

Table 6: Comparing the accuracy of proposed al-
gorithm built on different shared representations.

SD→ TD Common MVPCA SCL
B → D 66.8 76.4 78.2
B → E 69.0 79.2 80.6
B → K 71.4 79.2 79.8
D → B 64.5 78.4 79.3
D → E 62.8 76.4 76.2
D → K 64.3 80.9 82.4
E → B 68.9 77.8 78.5
E → D 65.7 77.0 77.3
E → K 75.1 85.4 86.2
K → B 71.3 71.0 71.1
K → D 70.4 75.0 76.1
K → E 76.7 85.7 86.4

Figure 6: Results comparing the accuracy of pro-
posed approach with existing techniques for cross
domain categorization on20 Newsgroups dataset.

than that on the other two datasets. The proposed
algorithm still yields an improvement of at least
10.8% over the baseline accuracy. As compared to
other existing domain adaptation approaches like
SCL(Blitzer et al., 2007) and CoCC (Dai et al.,
2007), the proposed algorithm outperforms by at
least4% and 1.9% respectively. This also vali-
dates our assertion that generally domain adapta-
tion techniques accomplishes well when the par-
ticipating domains are largely similar; however,
the similarity aggregation and the iterative learn-
ing offer the proposed algorithm an edge over one-
shot adaptation algorithms.

4.2.3 Results on real world data

Results in Figure 7 exhibit challenges associated
with real world dataset. The baseline accuracy
for cross-domain classification task is severely af-
fected for this dataset. SCL based domain adap-
tation does not yields generous improvements as
selecting the pivot features and computing the co-
occurrence statistics with noisy short text is ardu-
ous and inept. On the other hand, the proposed
algorithm iteratively learns discriminative target
specific features from such perplexing data and
translates it to an improvement of at least6.4%
and3.5% over the baseline and the SCL respec-
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Figure 7: Results comparing the accuracy of the
proposed approach with existing techniques for
cross domain categorization on the real world
dataset.

tively.

5 Conclusion

The paper presents an iterative similarity-aware
domain adaptation algorithm that progressively
learns domain specific features from the unlabeled
test domain data starting with a shared feature rep-
resentation. In each iteration, the proposed algo-
rithm assigns pseudo labels to the unlabeled data
which are then used to update the constituent clas-
sifiers and their weights in the ensemble. Updating
the target specific classifier in each iteration helps
better learn the domain specific features and thus,
results in enhanced cross-domain classification ac-
curacy. Similarity between the two domains is ag-
gregated while updating weights of the constituent
classifiers which facilitates gradual shift of knowl-
edge from the source to the target domain. Finally,
experimental results for cross-domain classifica-
tion on different datasets show the efficacy of the
proposed algorithm as compared to other existing
approaches.
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