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A theoretically sound method for learning dependencies between case frame slots is proposed. In 
particular, the problem is viewed as that of estimating a probability distribution over the case 
slots represented by a dependency graph (a dependency forest). Experimental results indicate that 
the proposed method can bring about a small improvement in disambiguation, but the results 
are largely consistent with the assumption often made in practice that case slots are mutually 
independent, at least when the data size is at the level that is currently available. 

1. Introduction 

We address the problem of automatically acquiring case frame patterns (or their near 
equivalents, selectional patterns and subcategorization patterns) f rom large corpus 
data. In our  view, the acquisition of case frame patterns involves the following three 
subtasks: (1) extracting case frame instances f rom corpus data, i2) generalizing case 
frame slots within the case frames, and (3) learning dependencies  that exist be tween 
the (generalized) case frame slots. We consider here the third of these subtasks and 
propose a me thod  of learning dependencies  be tween case frame slots. 

The term "dependency"  refers to the relationship that may  exist be tween case 
slots and that indicates strong co-occurrence between the values of those case slots. 
For example, consider the following sentences: 

(1) She flies jets. 

(2) That airline company  flies jets. 

(3) She flies Japan Airlines. 

(4) *That airline company  flies Japan Airlines. 

We see that airline company can be the value of the argl  (subject) slot, when  the value of 
the arg2 (direct object) slot is airplane but  not  when  it is airline company. These sentences 
indicate that the possible values of case slots depend  in general on those of others: 
dependencies  be tween case slots exist. 1 

The knowledge  of dependencies  be tween case slots is useful in various tasks in nat- 
ural language processing, especially in analyzing sentences involving multiple prepo-  
sitional phrases, such as The girl will fly a jet from Tokyo to Beijing. Note in this example 

* c/o C&C Media Res. Labs. NEC, 4-1-1 Miyazaki Miyamae-ku, Kawasaki, 216-8555 Japan. E-mail: 
{lihang, abe}@ccm.d.nec.co.jp 

1 One may argue that these examples involve different word senses of fly, and in general, that if word 
senses were disambiguated there would be no dependency between case slots. But, with that 
interpretation, word senses would have to be automatically disambiguated given the corpus data, and 
we would find ourselves left with the same problem. Furthermore, word senses are in general difficult 
to define precisely, and we feel it is better not to rely on this notion in a natural language application, 
unless it is necessary. 
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Table 1 
Example case frames generated by a class-based model. 

Case Frame Frequency 

(fly (argl (person))(arg2 (airplane))) 3 
(fly (argl (company))(arg2 (airplane))) 2 
(fly (argl (person))(arg2 (company))) 1 
(fly (argl (person))(to (place/)) 1 
(fly (argl (person) )(from (place/)(to (place))) 1 
(fly (argl (company))(from (place))(to (place))) 1 

that the slot of from and that of to should be considered dependent and the attach- 
ment site of one of the prepositional phrases (case slots) can be determined by that 
of the other with high accuracy and confidence. There has not been a general method 
proposed to date, however, that learns dependencies between case slots. Methods of 
resolving ambiguities have been based, for example, on the assumption that case slots 
are mutually independent (Hindle and Rooth 1991), or at most two case slots are de- 
pendent (Collins and Brooks 1995). In this article, we propose an efficient and general 
method of learning dependencies between case frame slots. 

2. Learning Method 

Suppose that we have frequency data of the type shown in Table 1 automatically 
extracted from a corpus, in which words in the slots are replaced by the classes they 
belong to. We assume that case frame instances with a given verb are generated by a 
discrete joint probability distribution of the form 

Py(Xl, x2 . . . . .  xn), 

where Py stands for the verb, and each of the random variables Xi, i = 1, 2 . . . .  , n, 
represents a case slot. We then formulate the dependencies between case slots as the 
probabilistic dependencies between these random variables. 

Such a joint distribution can be represented by three alternative types of prob- 
abilistic models according to the type of values each random variable Xi assumes. 
When Xi assumes a word or a special symbol "0" as its value, we refer to the corre- 
sponding model as a word-based model. Here 0 indicates the absence of the case slot 
in question. When Xi assumes a word-class (such as (person) or (company)) or 0 as 
its value, the corresponding model is called a class-based model. When Xi takes on 1 
or 0 as its value, we call the model a slot-based model. Here the value of 1 indicates 
the presence of the case slot in question, and 0 the absence thereof. 

The number of parameters in a joint distribution will be exponential, however, if 
we allow interdependencies among all of the variables (even the slot-based model has 
0(2 n) parameters), and thus their accurate and efficient estimation may not be feasi- 
ble in practice. It is often assumed implicitly in statistical natural language processing 
that case slots (or the corresponding random variables) are mutually independent. 
Although assuming that they are mutually independent would drastically reduce the 
number of parameters (e.g., under the independence assumption, the number of pa- 
rameters in a slot-based model becomes O(n)), as illustrated above, this assumption 
is not necessarily valid in practice. 
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What seems to be true in practice is that some case slots are in fact dependent on 
one another, but that the overwhelming majority of them are mutually independent, 
due partly to the fact that usually only a few case slots are obligatory; the others are 
optional. (Optional case slots are not necessarily independent, but if two optional case 
slots are randomly selected, it is very likely that they are independent of one another.) 
Thus the target joint distribution is likely to be approximatable as the product of lower- 
order component distributions, and thus has, in fact, a reasonably small number of 
parameters. 

In general, any n-dimensional joint distribution can be written as 

n 

P(X1, X2,.. .,Xn) = 1-I P(Xm, I Xm, . . . . .  Xrni_l) 
i----1 

for some permutation (ml, m2 . . . . .  m,) of (1, 2 . . . . .  n), letting P(Xml I Xmo) denote P(Xml). 
A plausible assumption regarding the dependencies between these random variables 
is that each variable directly depends on at most one other variable. This is one of the 
simplest assumptions that can be made to relax the independence assumption. For ex- 
ample, if the joint distribution P(X1, X2, X3) over 3 random variables X1, X2, X3 can be 
written (approximated) as P(X1).P(X2 I X1).P(X3 I X2), it (approximately) satisfies such 
an assumption. We call such a distribution a dependency forest model. A dependency 
forest model can be represented by a dependency forest (i.e., a set of dependency trees), 
whose nodes represent random variables (each labeled with a number of parameters), 
and whose directed links represent the dependencies that exist between these random 
variables. A dependency forest model is thus a restricted form of the Bayesian network 
(note that it is also an extension of the first-order Markov chain model). 

Now we turn to the problem of how to select the best dependency forest model 
from among all possible ones to approximate a target joint distribution based on input 
data. This problem has already been investigated in the area of machine learning and 
related fields. In particular, Suzuki (1993) has devised an algorithm, based on the 
Minimum Description Length (MDL) principle (Rissanen 1989), which estimates the 
target joint distribution as a dependency forest model (see Li [1998] for a derivation of 
this algorithm from MDL). Figure 1 shows this algorithm, for which k i and kj denote, 

Algori thm: 
Let T := 0, V = {{Xi}, i  = 1,2, . . - ,n};  
Calculate the value O(Xi, Xj) for all node pairs (Xi, Xj); 
O(Xi, Xj) = I(Xi, Xj) - (ki - 1). (kj - 1). ~ where mutual information 

2 . N  ' / \ 

I ( Xi, X i) = 7~:,c x,,xj~ x j I P( xi, xj ) log P(xi, xj ) - P( xl, xj ) log( P(xi) . P( xj ) ) ) 

Sort the node pairs in descending order of 0, and store them into queue Q; 
while (max(x,,)G)eQ O(Xi, Xj) > 0) do 

Remove arg max(x,,xj)eQ O(Xi, Xj) from Q; 
i fX i  and Xj belong to different sets W1,W2 in V 
then Replace W1 and W2 in V with W1 U W2, and add edge (Xi ,Xj)  to T; 

Output T as the set of edges of the dependency forest. 

Figure 1 
The learning algorithm. 
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X•rg2 N = 9 0 Xaval X~,~ X fro m X{e NN 
karg 1 = 2 Xargl -0.28 -0.16 -0.18 Xargl Xto 
karg2 = 3 Xarg2 0.11 0.57 
kfrom = 2 Xfrom 0.28 / 
kto ~- 2 Xtq X fro m 

Figure 2 
A dependency forest as case frame patterns. 

respectively, the number of possible values assumed by random variables Xi and Xj, 
and N the input data size. We employ Suzuki's algorithm to learn case frame patterns 
as a dependency forest model. 

Let us now consider an example to see how the algorithm works. Suppose that 
the input data is as given in Table 1 and there are four nodes (random variables) 
Xargl,Xarg2,Xfrom , and Xto. The table in Figure 2 shows the 0 values for all node pairs. 
Our program actually induces the set of possible values of a random variable from 
those in the input data and thus here kargl = 2. Probabilities are calculated based on 
maximum-likelihood estimation. Also, the base of logarithm is 2, and 0 • log 0 = 0 is 
assumed. The dependency forest in Figure 2 is then constructed. The dependency forest 
indicates that there is dependency between the to slot and the arg2 slot, and between 
the to slot and the from slot, but the argl slot is independent from all others. Note that 
this algorithm in fact outputs a forest consisting of labeled free trees. A labeled free 
tree is a tree in which each node is uniquely associated with a label and the root node 
is left unspecified. After applying the algorithm, any node can be designated as the 
root of that tree, since the dependency models based on the same labeled free tree are 
all equivalent (cf. Li 1998). 

3. Experimental Evaluation 

3.1 Experiment 1: Slot-based Model 
In the first experiment, we used the proposed method to learn slot-based dependen- 
cies. As training data, we used the entire bracketed data of the Wall Street Journal 
corpus (Penn Treebank). We extracted case frame data from the corpus using some 
heuristic rules. There were 3,678 verbs for which case frame instances were extracted. 
We considered only the 354 verbs for which more than 50 case frame instances were 
extracted, since dependencies are not likely to be found with smaller data sizes (see 
Section 3.4.) Also, we only considered the 12 most frequently occurring case slots (argl, 
arg2, on, in, for, at, by, from, to, as, with, against) and ignored the others. 

Example Case Frame Patterns. We acquired slot-based case frame patterns for the 354 
verbs using our method. There were on the average 484/354 = 1.4 dependency links 
acquired for each of the 354 verbs. We found that there were some verbs whose arg2 
slot is dependent on a preposition (referred to as p) slot. Table 2 shows some of the 
verbs with large P(Xarg2 = 1, X p  = 1) values. We also found that there were some verbs 
having preposition slots that depend on each other (referred to as pl and p2). Table 2 
also shows some of the verbs with large P(Xpl = 1, Xp2 = 1) values. The dependencies 
found by our method seem to agree with human intuition. 
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Table 2 
Verbs and their dependent case slots. 

Verb Dependent Slots Example 

gain arg2 to 
compare arg2 with 
invest arg2 in 
convert arg2 to 
add arg2 to 
withdraw arg2 from 
prepare arg2 for 
file arg2 against 
sell arg2 to 
lose arg2 to 
range from to 
climb from to 
rise from to 
shift from to 
soar from to 
fall from to 
increase from to 
climb from in 
apply to for 
boost from to 

gain 10 to 100 
compare profit with estimate 
invest share in fund 
convert share to cash 
add 1 to 3 
withdraw application from office 
prepare case for trial 
file suit against company 
sell facility to firm 
lose million to 10% 
range from 100 to 200 
climb from million to million 
rise from billion to billion 
shift from stock to bond 
soar from 10% to 20% 
fall from million to million 
increase from million to million 
climb from million in period 
apply to commission for permission 
boost from 1% to 2% 

Perplexity Reduction. We evaluated the acquired case f rame pat terns  (using the slot- 
based  models)  for all of the 354 verbs  in te rms of reduct ion in test data  perplexity. 2 
We conducted the evaluat ion th rough  a 10-fold cross validation. That  is, to acquire 
case f rame pat terns  for a given verb, we  used  nine-tenths of the case f rames  for that  
verb as training data, saving wha t  remained  for use as test data, and  then calculated 
the test data  perplexity. We repeated  this process 10 t imes and  calculated the average  
perplexity. We then compared  this wi th  the average  perplexi ty  for independen t  models ,  
which were  acquired based  on the assumpt ion  that  each case slot is independent .  

The exper imenta l  results indicate that  for some verbs the use of dependency  forest 
models  results in a reduct ion of perplexi ty  as compared  to that of independen t  models .  
For 30 of the 354 verbs  (8%), perplexi ty  reduct ion exceeded 10%, while the average  
perplexi ty  reduct ion overall  was  only 1%. Nonetheless,  it seems safe to say that, wi th  
the currently available amoun t  of data, the dependency  forest mode l  is more  suitable 
as a representat ion for the true model  of case f rames  than  the independent  model ,  at 
least for 8% of the 354 verbs. 

3.2 Experiment 2: Slot-based Disambiguation 
In order  to quanti tat ively evaluate  the acquired knowledge  of case slot dependencies ,  
we  conducted a PP-at tachment  d isambiguat ion  experiment ,  in which  we make  a de- 
cision of the following type: Whether  from Tokyo should be at tached to f ly or jet in the 
sentence he will f ly a jet from Tokyo. 

2 Test data perplexity is a measure of how well an estimated probability model predicts future data, and 
is defined as 2 H(PT'PM), H(PT, PM) = -- ~-~x PT(X) • logPM(x), where PM(X) denotes the estimated 
model, PT(X) the empirical distribution of the test data. It is in general the case that the smaller 
perplexity a model has, the closer to the true model it is. 
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A simple way to disambiguate is to compare the following likelihood values, based 
on acquired slot-based models, 

Pfly(Xarg2 = 1, Xfrom = 1)"  Pjet(Xfrom = 0), 

and 
Pfly(Xarg2 = 1, Xfrorn = 0)-Pje t (Xfrom = 1) 

assuming that there are only two case slots arg2 and from for the verb fly, and there 
is only one case slot from for the noun jet. This means that we need to compare 

Pfly(Xfrom = l [ Xarg2 = l) " ( 1 -  Pjet(Xfrom = l) I 

= Pfly(Xfmm = 1 [ X a r g  2 = 1 )  - -  P f l y ( X f r o m  = 1 [ Xarg2 = 1)-Pjet(Xfrom = 1) 

and 

( 1 -  Pfly(Xfrom ~- 1 I Xarg2 = 1))"  Pjet(Xfrom = 1) 

= Pjet(Xfrom = 1) - Pfly(Xfrom = 1 [ Xarg2 -~ 1) )"  Pjet(Xfrom = 1). 

Since the second term is common to both expressions, we actually only need to com- 
pare 

Pfly(Xfrom = 1 [Xarg 2 = 1) 

and 
Pjet(Xfrom = 1). 

Obviously, if we assume that case slots are independent, then we only need to compare 
Pfly(Xfrom = 1) and Piet(Xfrom = 1). This is nearly equivalent to the disambiguafion 
method proposed by Hindle and Rooth (1991). Their method, referred to here as the 
Lexical Association (LA) method, actually compares the two probabilities by means 
of hypothesis testing. Specifically, it calculates the so-called t-score, which is a statistic 
about the difference between the two probabilities. 

Here, we first employ the proposed dependency learning method to judge if 
slots Xarg2 and Xfrom with respect to verb fly are mutually dependent. Then, if they 
are dependent, we make the disambiguation decision based on the t-score between 
Pfly(Xfrom = 1 [ Xfrom = 1) and P j e t ( X f r o m  = 1). Otherwise, we consider the two slots 
independent and make a decision based on the t-score between Pfly(Xfrom = 1) and 
Pjet(Xfrom = 1). We call this disambiguation method DepenLA, since it is a natural 
extension of LA. 

First, we randomly selected the files under one directory of the Wall Street Journal 
corpus, containing roughly 1/26 of the entire bracketed corpus data, and extracted 
(v, nl, p, n2) quadruples (e.g., (fly, jet, from, Tokyo)) as test data. We then extracted case 
frames from the remaining bracketed corpus data as we did in Experiment I and used 
them as training data. We repeated this process 10 times and obtained 10 data sets 
consisting of different training data and test data. In each training data set, there were 
roughly 128, 000 case frames on the average for verbs and roughly 59, 000 case frames 
for nouns. On the average, there were 820 quadruples in each test data set. 

We used these 10 data sets to conduct cross-validation on the disambiguation 
accuracy. We used the training data to acquire dependency forest models, which we 
then used to perform disambiguation on the test data based on DepenLA. We also 
tested the performance of LA for comparison. We set the threshold for the t-score to 
1.28 for both methods. In both cases, some quadruples remained whose attachment 
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Table 3 
PP-attachrnent disambiguation results. 

Method Accuracy(%) Accuracy for 11% of Data (%) 

Default 56.2 55.3 
LA 78.1 + 0.5 93.8 -4- 0.8 
DepenLA 78.4 + 0.5 97.5 :t: 0.5 

sites could not be determined. In such cases, we made a default decision--namely, 
we forcibly attached (p, n2) to v. This is because we found empirically for our data set 
that for what remains after applying LA or DepenLA, it is most likely that (p, n2) goes 
with v. Table 3 summarizes the results, which are evaluated in terms of disambiguation 
accuracy, averaged over the ten trials. Table 3 also gives the standard deviation (+) of 
each accuracy value, calculated based on the assumption that the 10 cross-validation 
trials are statistically independent. 

We found that as a whole it is still difficult to judge if DepenLA significantly im- 
proves upon LA, indicating that it is almost justifiable to rely on the independence 
assumption in practice, at least when the data size is at the level that is currently avail- 
able. For about 11% of the verbs, however, for which the dependencies are detected and 
are strong enough (i.e., P(Xp = 1 I Xarg2 = 1) > 0.2 o r  P(Xp = 1 [ Xarg 2 = 1) < 0.002), 
DepenLA significantly improves upon LA. (The cutoff points were set heuristically 
by observing the obtained dependencies, but not after the accuracy was calculated.) 
It is interesting to note that on the subset of data for which DepenLA is found 
to significantly improve upon LA, LA is already doing quite well: 93.8% as com- 
pared to 78.1%. We found that in cases in which dependencies are detected (i.e., 
P(Xp = 1 I Xarg2 = 1~ >> P(Xp = 1) or the converse), the probability value P(Xp = 1) 
is already highly discriminative, that is, either very large or very small. This is prob- 
ably due to the fact that the verbs for which dependencies are detected are those for 
which the amount of training data is sufficient (relative to the inherent difficulty of 
disambiguation for that verb), and hence that are easy to disambiguate. 

3.3 Experiment 3: Class-based Model  
We also used the proposed method to acquire case frame patterns as class-based de- 
pendency forest models, using the 354 verbs in Experiment 1. As before, we considered 
only the 12 most frequent slots. We generalized the values of the case slots within these 
case frames using the method proposed in Li and Abe (1998) to obtain class-based case 
frame data. We then used these data as input to the learning algorithm. The results 
were rather discouraging: very few case slots were determined to be dependent in the 
case frame patterns. To be more precise, there were on the average only 64/354 - 0.2 
dependency links found for each verb. This is because the number of parameters in a 
class-based model was large as compared to the size of the data we had available. 

These experimental results seem to justify the commonly made assumption that 
class-based case slots, and hence word-based case slots, are mutually independent, 
when the data size available is at the level of what is currently provided by the Penn 
Treebank. 

3.4 Experiment 4: Simulation 
In order to test how large a data size is required to estimate a dependency forest model, 
we conducted the following experiment. We defined an artificial model in the form of 
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Simulation results. 
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a dependency forest model and generated data according to its distribution. We then 
used the data obtained to estimate a model, and evaluated the estimated model by 
measuring the KL divergence between the estimated model and the true model. We 
also checked the number of dependency links in the obtained model. We repeatedly 
generated data and observed the learning curve, namely the relationship between the 
data size and the KL divergence between the estimated and true models, and the 
relationship between the data size and the number of dependencies in the estimated 
model. We repeated this experiment on three artificial models. Figure 3 shows the 
results of these experiments averaged over 10 trials. The number of parameters in 
Model 1, Model 2, and Model 3 are 18, 30, and 44 respectivel~ and the number of 
links in them 1, 3, and 5. Note that the KL divergence between the estimated model 
and the true model converges to 0, as expected. Also note that the number of links in 
the estimated model converges to the correct value (1, 3, and 5) in each of the three 
examples. 

These simulation results verify that the dependencies between case slots can be ac- 
curately learned when there is enough data, given that the true model is representable 
as a dependency forest model. We also see that to estimate a model reasonably accu- 
rately, the data size required is as large as 5 to 10 times the number of parameters. For 
example, for the KL divergence to go below 0.1, we need more than 200 examples, 
which is roughly 5 to 10 times the number of parameters. (Recall that there were only 
354 verbs, having frequencies greater than 50 in our experiments, see Subsection 3.1.) 

In Experiment 2, there were 12 binary-valued random variables associated with 
each verb, and hence its distribution is thought to  be approximatable by a model with 
a comparable number of parameters. So having 50 to 100 examples for each of these 
verbs approaches the minimum data size required for reasonable estimation of their 
dependencies. In Experiment 3 there were also 12 slots, but  each slot could take on 
roughly 10 classes as its values and thus a class-based model tended to have about 
120 parameters. The corpus data available to us was in no way sufficient for this case. 

4. Summary 

We have proposed a method of learning dependencies between case slots, based on 
an estimation method for dependency forest models. When using slot-based models, 
it was found empirically that some case slots are dependent, and when such depen- 
dencies are detected, using that knowledge of dependencies can significantly improve 
PP-attachment disambiguation accuracy. For class-based models, however, most case 
slots were judged independent. These empirical findings indicate that the assumption 
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often made  in practice that  case slots in a class-based mode l  are mutua l ly  independen t  
is indeed justified, at least wi th  the data size currently available in the Penn Treebank. 
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