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The paper discusses some classes of contextual grammars--mainly those with "maximal use of 
selectors"--giving some arguments that these grammars can be considered a good model for 
natural language syntax. 

A contextual grammar produces a language starting from a finite set of words and iteratively 
adding contexts to the currently generated words, according to a selection procedure: each context 
has associated with it a selector, a set of words; the context is adjoined to any occurrence of such a 
selector in the word to be derived. In grammars with maximal use of selectors, a context is adjoined 
only to selectors for which no superword is a selector. Maximality can be defined either locally 
or globally (with respect to all selectors in the grammar). The obtained families of languages are 
incomparable with that of Chomsky context-free languages (and with other families of languages 
that contain linear languages and that are not "too large"; see Section 5) and have a series of 
properties supporting the assertion that these grammars are a possible adequate model for the 
syntax of natural languages. They are able to straightforwardly describe all the usual restrictions 
appearing in natural (and artificial) languages, which lead to the non-context-freeness of these 
languages: reduplication, crossed dependencies, and multiple agreements; however, there are 
center-embedded constructions that cannot be covered by these grammars. 

While these assertions concern only the weak generative capacity of contextual grammars, 
some ideas are also proposed for associating a structure to the generated words, in the form of a 
tree, or of a dependence relation (as considered in descriptive linguistics and also similar to that 
in link grammars). 

1. Introduction 

Contextual  g r a m m a r s  were  in t roduced by  Marcus (1969), as "intrinsic g rammars , "  
wi thout  auxil iary symbols ,  based  only on the fundamenta l  linguistic opera t ion of in- 
serting words  in given phrases,  according to certain contextual dependencies .  More 
precisely, contextual g r a m m a r s  include contexts (pairs of words),  associated with  
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selectors (sets of words); a context can be adjoined to any associated word-selector. In 
this way, starting from a finite set of words, we can generate a language. 

This operation of iterated selective insertion of words is related to the basic com- 
binatorics on words, as well as to the basic operations in rewriting systems of any 
type. Indeed, contextual grammars, in the many variants considered in the literature, 
were investigated mainly from a mathematical point of view; see P~iun (1982, 1985, 
1994), P~un, Rozenberg and Salomaa (1994), and their references. A complete source 
of information is the monograph P~iun (1997). A few applications of contextual gram- 
mars were developed in connection with action theory (P~un 1979), with the study of 
theatrical works (P~iun 1976), and with computer program evolution (B~lanescu and 
Gheorghe 1987), but up to now no attempt has been made to check the relevance 
of contextual grammars in the very field where they were motivated: linguistics, the 
study of natural languages. A sort of a posteriori explanation is given: the variants 
of contextual grammars investigated so far are not powerful enough, hence they are 
not interesting enough; what they can do, a regular or a context-free grammar can 
do as well. However, a recently introduced class of contextual grammars seems to be 
quite appealing from this point of view: the grammars with a maximal use of selectors 
(Martin-Vide et al. 1995). In these grammars, a context is adjoined to a word-selector 
if this selector is the largest on that place (no other word containing it as a proper 
subword can be a selector). Speaking strictly from a formal language theory point 
of view, the behavior of these grammars is not spectacular: the family of generated 
languages is incomparable with the family of context-free languages, incomparable 
with many other families of contextual languages, and (strictly) included in the fam- 
ily of context-sensitive languages, properties rather common in the area of contextual 
grammars. 

This type of grammar has a surprising property, however, important from a lin- 
guistic point of view: all of the three basic features of natural (and artificial) languages 
that lead to their non-context-freeness (reduplication, crossed dependencies, and mul- 
tiple agreements) can be covered by such grammars (and no other class of contextual 
grammars can do the same). Technically, the above mentioned non-context-free fea- 
tures lead to formal languages of the forms {xcx I x E {a, b}*} (duplicated words of ar- 
bitrary length), {anbmcnd m I n, m > 1} (two crossed dependencies), and {anbnc" I n > 1} 
([at least] three correlated positions). All of them are non-context-free languages and 
all of them can be generated in a surprisingly simple way by contextual grammars 
with selectors used in the maximal mode. 

Examples of natural language constructions based on reduplication were found, 
for instance, by Culy (1985), and Radzinski (1990), whereas crossed dependencies were 
demonstrated for Swiss German by Shieber (1985); see also Partee, ter Meulen and 
Wall (1990) or a number of contributions to Savitch et al. (1987). Multiple agreements 
were identified early on in programming languages (see, for example, Floyd [1962]), 
and certain constructions having such characteristics can also be found in natural 
languages. We shall give some arguments in Section 4. 

Some remarks are in order here. Although we mainly deal with the syntax of nat- 
ural languages, we sometimes also mention artificial languages, mainly programming 
languages. Without entering into details outside the scope of our paper, 1 we adopt the 
standpoint that natural and artificial languages have many common features (Man- 

1 A word of warning: When we invoke statements concerning various topics, some of which have been 
debated for a long time, we do not necessarily argue for these statements and we do not consider the 
adequacy of contextual grammars as either proved or disproved by them. We simply mention a 
connection between a linguistic fact and a feature of our grammars. 
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aster Ramer 1993). For instance, we consider these languages infinite and organized on 
successive levels of grammaticality, whose number is unlimited in principle, although 
practically only a finite number of such levels can be approached. In Marcus (1981- 
83), where an effective analysis of contextual ambiguity in English, French, Romanian, 
and Hungarian is proposed, practical difficulties imposed a limitation to two levels 
of grammaticality for English (one level excluding compound words, the other level 
allowing the building of compound words) and Hungarian, but six levels for the anal- 
ysis of French verbs. The reason for this situation is the "open" character of natural 
languages, making it impossible to formulate a necessary and sufficient condition for a 
sentence to be well-formed. As is pointed out by Hockett (1970), the set of well-formed 
strings in a natural language should be both finite and infinite, a requirement that is 
impossible to fulfill in the framework of classical set theory; for a related discussion, 
see Savitch (1991, 1993). This can also be related to Chomsky's claim that a basic prob- 
lem in linguistics is to find a grammar able to generate all and only the well-formed 
strings in a natural language. Chomsky's claim presupposes that natural languages 
have the status of formal languages, but not everyone agrees with this notion. Even 
for programming languages, many authors reject the idea that well-formed strings 
constitute a formal language; see, for instance, the various articles in the collective 
volume Olivetti (1970), as well as Marcus (1979). 

Returning to constructions specific to natural languages, we have found the sur- 
prising fact that the language {ancbmcbmca n I n, m > 1} cannot be generated by contex- 
tual grammars with a maximal global use of selectors. Observe the center-embedded 
structure of this language and the fact that it is an "easy" linear language. As Manaster 
Ramer (1994, 4) points out, "the Chomsky hierarchy is in fact highly misleading . . . .  
suggesting as it does, for example, that center-embedded structures (including mirror- 
images) are simpler (since they are context-free) than cross-serial structures (including 
reduplications). Yet we know that natural languages abound in reduplications but 
abhor mirror-images (Rounds, Manaster Ramer, and Friedman 1987) and it also ap- 
pears that, other things being equal, cross-serial structures are easier to process than 
center-embedded ones." 

This point brings to mind Chomsky's arguments (1964, 120-25) that center- 
embedded constructions can be handled by the grammar (the description of com- 
petence), but not by the performance system. Here competence itself is not able to 
cover the center-embedded construction. However, we have to mention the fact that 
other similar constructions can be covered by contextual grammars (with or without 
maximal use of selectors). This is the case with {wc mi(w) I w c {a, b}*}, where mi(w) 
is the mirror image of w. Also the language {w mi(w) I w E {a,b}*} can be gener- 
ated when the maximal use of selectors is considered, but not without involving this 
feature. 

The difference between these last two languages suggests another point supporting 
the adequacy of contextual grammars: from the Chomsky hierarchy point of view, 
there is no difference between these languages; rather, their grammars are similar. 
This is not the case in the contextual grammar framework, and this also corresponds 
to our intuition: having a marker (the central c here) is helpful, it is significantly easier 
to process a language when certain positions of its sentences are specified. (Further 
illustrations of this point can be found in Section 4.) We conclude that contextual 
grammars with a maximal use of selectors seem adequate from these points of view 
for modeling natural languages. 2 

2 We do not claim and we do not intend to prove (because we cannot) that a contextual grammar with 
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In the architecture and the functioning of a contextual g rammar  one can note 
two contradictory basic ingredients. On the one hand,  because we use adjoining,  not  
rewri t ing  (moreover,  we do not  use nonterminal  symbols), the strings are always in- 
creased. At every  step, we preserve all previously int roduced symbols and we add 
new ones. This looks quite limiting for the power  of these grammars.  On the other  
hand,  in contextual grammars  there is a clear context-sensing capability, the contexts 
are adjoined to their selectors and depend  on them. Context-sensitivity is in general 
a powerfu l  property. Context-sensitivity plus erasing produces  everything.  In m an y  
cases in formal language theory, this combinat ion leads to characterizations of recur- 
sively enumerable  languages. Such a result has been p roved  by  Ehrenfeucht,  P~un, 
and Rozenberg (1997) for contextual grammars  with unrestr icted use of selectors. In 
the last section of this paper, we prove  that this is also true for the case of maximal  
use of selectors. Specifically, we prove that every  recursively enumerable  language, 
L, can be wri t ten in the form L ~- hl(h~-l(L')),  where  hi,h2 are morphisms  and L' is a 
language generated by  a contextual g rammar  with maximal  use of selectors. The proof  
uses the same construction as in Ehrenfeucht,  P~un, and Rozenberg (1997), adapted  
to our  class of grammars.  The effect of hi, h~ -I can also be achieved by  a sequential 
t ransducer  (with finite memory) ,  hence we may  state the theorem in the form: every  
recursively enumerable  language is a sequential translation of a contextual language 
(generated with maximal  use of selectors). As a consequence,  we find that our  gram- 
mars can generate languages outside any family of languages that is strictly included 
in the family of recursively enumerable  languages and is closed under  direct and in- 
verse morphisms  or under  finite sequential transducers.  Impor tant  families in formal 
language theory have these properties: the family of context-free languages, several 
families in the regulated rewrit ing area (see Dassow and P~un [1989]), including in- 
dexed languages and p rog rammed  languages. Together with the fact that the language 
{ a"cbmcbmcan I n, m > 1} ment ioned above is linear, we get the incomparabil i ty of our  
families with many  families in the Chomsky hierarchy or in its refinements. 

This relates to another  s tatement of Manaster  Ramer 's  (1994, 4): "The quest ion as 
posed by  Chomsky  [about the place of natural  languages in a hierarchy of generative 
devices] seems to suggest that the class of natural  languages will be found somewhere  
in the Chomsky hierarchy. Yet this need not be the case, and probably is not. It is en- 
tirely possible, for example,  that a realistic theory of natural  languages would  define 
a class of languages which is incommensura te  with the Chomsky  types, e.g., a few 
regular languages, a few non-regular  context-free languages, a few non-context-free 
context-sensitive languages, and so on. Indeed,  it has been pointed out  . . .  that, if finite 
languages are to be excluded from linguistic theory as Chomsky himself  has always 
contended,  then the class of natural  languages will necessarily be a non-Chomsky 
class, since all the Chomsky  classes do contain finite languages." Maybe contextual 
grammars  (with maximal  use of selectors) are one example of such a realistic possi- 
bility. 

The discussion above has concerned the weak  generative capacity of contextual 

maximal use of selectors is the best model for natural language syntax, that these grammars can 
describe all types of constructions in natural languages or in other languages, or that, for instance, we 
can describe in a satisfactory manner the syntax of English. Maybe even other classes of contextual 
grammars have to be imagined, which will be better than the existing ones. Further efforts should be 
made to clarify the relevance of contextual grammars of various types for the study of natural 
languages. For instance, we can report no practical experience in writing a contextual grammar for a 
fragment of a natural language. In short, our goal is to acquaint the reader with contextual grammars 
and to convince him or her that these grammars deserve further investigation---of a mathematical and, 
more importantly, of a linguistic type. 
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grammars (with maximal use of selectors). Recently (see Martin-Vide and P~un [1998]), 
some attempts were made to introduce a structure into the strings generated by con- 
textual grammars. An easy way to do so is to associate a tree to a derivation (just add 
a pair of parentheses to each context, then build a tree in the usual way: when reading 
a left parenthesis add a new edge, when reading a right parenthesis go back along the 
current edge, etc.) or a graph describing a dependence relation similar to those dis- 
cussed in descriptive linguistics (see Chapter VI of Marcus [1967]) or in link grammars 
(Sleator and Temperley 1991; Grinberg, Lafferty, and Sleator 1995). We briefly present 
these possibilities here, although the linguistic relevance of the obtained structures is 
still being researched. 

Let us also mention that, by definition, contextual grammars are (fully) lexicalized 
(in accordance with many current trends in formal syntax) and that their languages 
have the bounded growth property. 

In view of all these results and properties, we believe that contextual grammars 
are an attractive model for natural language syntax, completing (but not necessarily 
competing with) the existing models, and that they deserve further investigation. 

2. Definitions 

In this section, we introduce the classes of grammars we shall investigate in this paper. 
As usual, given an alphabet V (which we also call vocabulary), we denote by V* the 
set of all words (equivalently: strings) over V, including the empty one, which is 
denoted by A. The set of all nonempty words over V, hence V* - {A}, is denoted 
by V +. The length of x c V* is denoted by Ix[ and its mirror image (also called the 
reversal) by mi(x). The families of finite, regular, linear, context-free, context-sensitive, 
and recursively enumerable languages are denoted by FIN, REG, LIN, CF, CS, RE, 
respectively. For the elements of formal language theory we use, we refer to Harrison 
(1978), Rozenberg and Salomaa (1997), and Salomaa (1973). 3 

A contextual grammar (with choice) is a construct: 

G = ( V , A , ( S 1 ,  C 1 ) , . . . , ( S n ,  Cn)),  n > 1, 

where V is an alphabet, A is a finite language over V, $1 . . . . .  Sn are languages over V, 
and C1 . . . . .  Cn are finite subsets of V* x V*. 

The elements of A are called axioms (starting words), the sets Si are called selectors, 
and the elements of sets Ci, written in the form (u, v), are called contexts. The pairs 
(Si, Ci) are also called productions. The intuition behind this construction is that the 
contexts in Ci may be adjoined to words-in the associated set Si. Formally, we define 
the direct derivation relation on V* as follows: 

X ::=:=-kin y 

iff x = XlX2X3, y =Ill ,  lX2VX3, where x2 E Si,(u,v) E Ci, for some i, 1 < i < n. 
Denoting by ~ T n  the reflexive and transitive closure of the relation ==->'in, the 

language generated by G is: 

Lin(G) -~ {z  E V* I w ===>'i~ z, for some w E A}. 

3 As general mathematical notations, we use: C (inclusion, not necessarily proper), C (proper inclusion), 
C ("is an element of"), 0 (the empty set), 2 x (the family of all subsets of the set X). 

249 



Computational Linguistics Volume 24, Number 2 

Consequently, Lin (G) contains all words  of A, as well as all words  that can be obtained 
from them by adjoining finitely many  contexts, according to the selection imposed  by  
the pairing (Si, Ci). 

Remark 1 
The previous  definition of a contextual g rammar  is called modular .  Sometimes, it is 
useful to present  a contextual g rammar  in the so-called functional form, that is, as a 
construct G = ( V , A , C , ~ ) ,  where  V and A are as above, C is a finite set of contexts 
over  V, and ~: V* ~ 2 c associates sets of contexts from C to strings in V*. Then we 
write x ~ i n  y iff x = xlx2x3,  y = XlUX2VX3, for some (u,v) E ~(x2), Xl,X2, X3 E V*. 

It is easy to see that starting from a contextual g rammar  in the modular  pre- 
sentation, G = (V,A, ($1, C1) , . . . ,  (Sn, C,)),  we can consider its functional counterpar t  
G' = ( V , A , C , ~ ) ,  with: 

n 

C = U ci, 
i=1 

~o(x) = { (u ,v)  I (u,v)  ~ Ci, x ~ Si,1 < i < n},  x E V*. 

Conversely, from a grammar  given as G = (V,A, C, ~) with: 

C --~ { ( U l , V l  ) . . . . .  (Un, Vn)}, 

we can pass, for instance, to G' = (V,A, ($1, C1) , . . . ,  (S , ,C,)) ,  taking, for each i, 1 < 
i < n :  

c i  = {(ui, v i)} ,  

and Si the set of strings in V* to which the context (ui, vi) can be adjoined, that is: 

si = {x E V* I (u~,vi) E ~(x)} .  

The two grammars  G and G' are clearly equivalent  in both  cases. 
Thus, in the proofs below we shall use that presentat ion of a contextual g rammar  

which is more  appropriate  (economical) for that case. 

Remark 2 
The derivat ion relation defined above has been denoted  by  ~ i n  in order  to distin- 
guish it from the external  derivat ion defined for G, where  the context is adjoined at 
the ends of the der ived word: x ==~'ex y iff y = uxv for (u, v) E Ci, x E Si, for some 
i, 1 < i < n. In Marcus (1969), only the external derivat ion is considered, for gram- 
mars presented in the functional form, wi thout  restrictions on the selection mapping.  
Contextual  grammars  with internal derivat ion were  in t roduced in P~un and N g u y e n  
(1980). 

We do not investigate the external derivat ion here. 

Two natural  variants of the relation ~ i n  defined above were considered by  
Mart/n-Vide et al. (1995): 

x ::=-~Mt Y 

iff x = XlX2X3, y = XlUX2VX3, for X2 E Si, (u,v) E Ci, for some 1 < i < n, and there are 
! ! ! 

n o  X~, x2,' X 3! E V* such that x = xlx2x3,  x~ E Si, and Ix~l _< IXll, Ix~I <_ I/B1, Ix~l > Ix2]; 

x ~ M R  y 
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iff x = XlX2X3, y = XlUX2VX3, for x2 E Si, (u,v) E Ci, for some 1 < i < n, and there 
I ! / V*  ! ! ! ! are no x 1, x 2, x 3 E such that x = XlX2X3, x 2 E Sj, for some 1 < j _< n, and I/~1 _< 

J i l l ,  IX3J ~ Ix3l, IX2I > IX2I. 
We say that ~ M l  is a derivat ion in the maximal local mode  (the word-selector x2 

is maximal  in Si) and ~ M x  is a derivat ion in the maximal  global  mode  (the word-  
selector x2 is maximal  with respect to all selectors $1 . . . . .  Sn). 

For ol E {MI, Mg}, we denote: 

L~(G) = {z E V* I w ~ z, for some w E A}. 

• If in a g rammar  G = (V,A,(S1,C1), . . . , (SH, Cn)), all selectors $1 . . . . .  Sn are lan- 
guages in a given family F, then we say that G is a contextual g rammar  with F choice 
(or with F selection). The families of languages L~(G), for G a contextual g rammar  
with F choice, are denoted  by  CL~(F), where  oL E {in, MI, Mg}. Here we consider F one 
of the families FIN, REG only. (It is natural  to deal with selectors that are as simple 
as possible, otherwise the grammar  is no longer of "practical" interest. Still, for the 
case of regular selectors we have here a sort of two-level grammar,  because in order  to 
completely describe a contextual grammar,  we also need a grammatical  description for 
the selector languages. However ,  using a selector Si means deciding the membership  
of a substring of the current  string with respect to Si; when  Si is a regular language, 
this question can be solved in real time, using the simplest type of recognizers: a de- 
terministic finite automaton.  Derivations where  the selectors are used in the minimal 
mode  (no subword  of a word-selector can be a selector) are in t roduced by Martin-Vide 
et al. (1995); we do not discuss this variant here. 

3. Generative Capacity 

First, we recall some results from previous papers  devoted  to contextual grammars  of 
the basic type or with maximal use of selectors, then we prove  new results about  the 
power  of the latter classes of grammars.  

The relations between families of contextual languages, defined above, and be- 
tween these families and families in the Chomsky hierarchy, pictured in the diagram 
in Figure 1, were proved  by  Mart/n-Vide et al. (1995). An arrow from a family F1 to 
a family F2 indicates the strict inclusion F1 C F2; the dotted arrow indicates an inclu- 
sion not  known  to be proper. Families not  related by a path in this diagram are not 
necessarily incomparable.  The families CLMg(REG) and CF are incomparable with all 
families CL~(F), o~ E {in, Ml} ,F E {FIN, REG}; CF is incomparable with CLMx(REG), 
too. 

Here are three languages used by  Martin-Vide et al. (1995) in order  to prove  some 
of these strict inclusions and incomparabilities (we will need these languages later): 

L1 = {anbmanb m ] n,m _> 1} E CLc~(REG) - CLfl(FIN), o~,fl E {in, MI, Mg}, 

L 2 = {anb] n > 1} U {anb" I n > 1} E CLMg(FIN) - CL~(REG), a E {in, Ml}, 

L3 = {x mi(x) Ix E (a,b}*} E CL~(REG) - CLin(REG), c~ E {MI, Mg}. 

Note that languages L2 and L 3 a r e  linear, but  L1 is not  context-free. In P~un (1985), it 
is p roved  that CLin (FIN) - CF ~ O. 

Here is a g rammar  generating the language L2 in the Mg mode: 

G =  ({a,b},{ab, a2b2},({ab},{(a,&)}),({a2b2in ~ 1},{(a,b)})). 
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CS 

CLin (REG) CLMI(REG) 

T 
CLMi(FIN) 

CLin (FIN) 

CLMg(REG) 

CF CLMg(FIN) 

REG 

FIN 

Figure 1 
Relations between families of contextual languages and families in the Chomsky hierarchy. 

Indeed, for any word  a"b with n > 1 only the first context can be used, and for any 
word  anb n with n > 2 only the second context can be used (here, the use of selectors 
in the maximal  global mode  is essential, in order  to prevent  the adjoining of the first 
context to words  of the form anb n, n > 2, in such a way  as to destroy the equality of the 
number  of a and of b occurrences). However ,  L2 ~ CLMi(REG) U CLin(REG). Assume 
the contrary and take G' = ({a, b},A, ($1, C1) , . . . ,  (Sn, Cn)) such that L,~(G') = L2, ol E 
{in, Ml}. 

In order  to generate all strings anb, n > 1, we need a context (ai, aJ), with i + j  > 1, 
either associated with aSb for s > 0 (then j = 0), or with a k, k > O. For oz = in, the 
contradiction is clear: strings a"'b n with n ~ > n can be p roduced  in both  cases. 

Assume that G' is used in the maximal  local mode.  In order  to generate the strings 
anb ", n > 1, we also need a context (a k, bk), k > 1. This context cannot  be applied to a 
string to which (ai, a j) above can be applied (from arab we get am+kbk+l, which is not  
in L2). Therefore (a k, b k) and (a i, aJ) can be used independent ly  (these contexts belong 
to sets Cs and Ct in G', respectively, with 1 < s, t < n, s # t). This implies that (a t, a 0 
can be applied to a string aqbq with large enough q, again producing strings that are 
not in L2. 

The relationships be tween the family CLMx(FIN) and other families CL~(F), oz E 
{in, Ml},F E {FIN, REG}, as well as be tween CLMg(FIN) and CF, are not  settled by  
Martin-Vide et al. (1995). We solve most  of these problems here. 

We start with two results having a linguistic relevance. The first one points out  
a surprising limitation of contextual grammars  with global maximal  use of selectors: 
there are center -embedded structures that cannot  be generated by  such grammars  even 
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when  regular selectors are used. Specifically, let us consider the language: 

L4 = { an cbm cbm ca" In, m > 1}. 

Note that this is a linear language in Chomsky 's  sense and that it belongs to the 
families CLin(FIN) and CLMr(FIN). For the grammar:  

G =  ({a,b,c},{acbcbca},({bcb},{(b,b)}),({acbcbca},{(a,a)})), 

we have Lin(G) = L; the context (a,a) cannot be used after using the context (b, b), 
hence the grammar  G can first generate any word  of the form ancbcbca n, n > 1, then 
any word  ancbmcbmca n, n, m > 1; each selector consists of one word  only, hence the local 
maximal  use of selectors imposes no restriction, Lin (G) = LMt(G). 

In contrast to these observations, we have the following result: 

Theorem 1 
The language L4 is not  in the family CLMg(REG). 

Proof 
Assume that L4 = LMg(G) for some grammar  G = ({a,b,c}, A, (S1,C~),.. . ,  (Sk, Ck)). In 
order to generate strings ancbmcbmca n with arbitrarily large n and m we need: 

contexts (a i, a i) associated with selectors of the form aPcbrcbrca q, for some 
p , q > O , r >  l, 

contexts (bJ, bJ) associated with selectors of the form bScb t, for some 
s, t > 1 (if one of s, t is zero, then we can introduce occurrences of b in 
front of the first occurrence of c or after the third occurrence of c in 
strings ancbmcbmca n with large enough m). 

If in a derivat ion we use an a-context, then no b-context can be used at a subsequent  
step: either the a-context is still applicable or an a-context with a larger selector is 
applicable, while the central subword  cbmcbmc has not  been changed; the b-contexts 
use proper  subwords  of cbmcbmc, hence they are not al lowed in the Mg mode.  

Therefore, the derivations in G start by  a phase: 

w ==;~'~,Ig anlcbmcbmcanl, 

where only b-contexts are used, then (possibly) continue by  a phase: 

anlcbmcbmca nl =_=~g ancbmcbmca n, 

where only a-contexts are used (and the subword cbmcbmc is not  modified). 
For a given n > 1, denote: 

M(n) = {x E Lug(G) I w ==~g x by using only b-contexts ,  

w c A , w  = ancbmcbmca n, for some m > 1}. 

Let: 
no = max{n I M(n) is infinite}. 
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All strings in M(no) are of the form an°cbmcbmca "o, m _> 1. Denote: 

M'(n0) = {w E LMx(G) I w ==-~Mg x by using a b-context, x c M(n0)}. 

Because M(n0) is infinite and we use a finite set of contexts, the set Mr(no) is also 
infinite. Because each w E M(no) is derived using a b-context, it follows that no a- 
context can be applied to w, otherwise the derivation is not done in the Mg mode. 
However, for each m such that an°cbmcbmca"° E M'(n0), all strings z = ancbmcbmca ", n > 
1, are in L4. Let us denote their set with M"(n0). In order to generate such strings 
with arbitrarily large n, we have to use a-contexts. Because such a context (ai, a i) E 
~(aPcbmcb'nca q) cannot be applied to a"°cbmcbmca "o, it follows that at least one of the 
relations p > no, q > no holds. We have seen that a-contexts can be used only after 
b-contexts. Therefore, the strings in M"(n0) must be generated starting from axioms 
an'cbmlcbm'ca "1 with nl > no. By the choice of no, such axioms are able to generate only 
finitely many strings of the form anlcbmcbmca n~. The set M'(n0) is infinite, the set of 
axioms is finite, hence M'(n0) cannot be covered by strings generated in this way, a 
contradiction. The equality L4 ~- LMx(G) is not possible, L4 ~ CLMg(REG). 

Note that the type of selectors plays no role in the previous argument, hence 
L4 ~ CLMg(F), for any family F of languages. 

The fact that L4 E CL~(FIN) - CLMx(REG), for o~ c {in, Ml}, should be contrasted 
with the fact that L3 E CL~(REG) - CLin(REG), for o~ E {MI, Mg}: there are center- 
embedded constructions that cannot be handled by grammars with global maximal use 
of selectors, but the "total mirror language" can be generated when using a maximal 
restriction and not in the free case. 

On the other hand, the family CLMg(FIN) goes surprisingly far in the Chomsky 
hierarchy. The result will be stressed, indirectly, in Section 6, but we prefer to also 
give an example of a language that belongs to the family CLMg(FIN) and looks quite 
complex. Together with the previous theorem, this example settles the relationships 
between the family CF and families CL~ (F), o~ E {Mg, MI}, F c {FIN, REG}. 

Theorem 2 
The family CLMx(FIN) contains non-context-free languages. 

Proof 
Consider the grammar: 

G=({a,b},{aab},({b},{(a,~),(b,a)}),({abb},{(bb, a)}),({ba, babb},{(&,&)})). 

Let us examine the intersection of the language LMg(G) with the regular language: 

R = (bba)+a +. 

The family CF is closed under intersection with regular languages; if LMg(G) E CF, 
then Lag(G) N R E CF. However, this does not hold, because, as we shall prove below, 
we obtain: 

LMx(G) M R = {(bba)2"a n I n > 2}. 

This is not a context-free language. 
Indeed, examine the derivations in G, with a global maximal use of selectors, 

starting from aab and leading to words of the form (bba)"a m, n, m > 1 (such words are 
elements of R). 
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As an illustration of the arguments  that follow, let us consider a short example: 
take n = 3. We have to proceed as follows: 

aaab_ba ==-~ MR 
~ M g  
~ M g  

~ M g  

aabbabbaa~Mg ab_babbaabbaa 
bbabbaabbaabbaa==~Mg bbabbabbabbaaabb___aa 
bbabbabbabbaabbabbaaa--~Ms bbabbabbabbabbabbaabbaaa 

bbabbabbabbabbabbabbabbaaaa=(bba)23a 3. 

(The selector used at each step is underl ined.)  
Let us now examine a derivat ion of a general form. The first context of the first 

production,  (a, A), can be adjoined to occurrences of the symbol b only when  these 
occurrences do not  have a symbol a to their r ight-hand side; in such a case, the Selector 
ba is present,  which is larger than b, thus prevent ing the use of the first production.  
Thus, from aab we can produce  any word  of the form anb, n > 2. 

To such a word  we can adjoin the context (b,a), thus obtaining a"bba. From n o w  
on, the selector b can never  be used: the symbols b in pairs of b occurrences will not  be 
separated, and there can never  be four adjacent occurrences of b. (This could happen  
only when  two symbols b are already present  and two further  ones are in t roduced 
by the context (bb, a); this means  that we would  have started from a word  xbbabbx', 
but  with such a word  we are not  al lowed to use the selector abb, because the longer 
selector babb is present.) Therefore, the right occurrence of b in each pair bb is followed 
by  an occurrence of a, and thus the use of the selector b is forbidden by  the selector 
ba in the last production,  whereas  for the left b in a pair bb we cannot  use the selector 
b, because the selector abb is present. Thus, from a word  of the form anbba we have 
to obtain a word  in R using only the second product ion  of the grammar.  This means  
that every  occurrence of a will go to the right, using this production.  Crossing a pair  
bb, each occurrence of a introduces one more pair bb, as well as one more  a. Hence, 
each use of the product ion  doubles the number  of occurrences of the pair  bb. Since 
we eventual ly get a word  starting with bb, this means  that one pair bb has crossed 
all occurrences of a; at every  step, one further a is introduced. One copy of a remains 
in triples bba, the other must  migrate to the suffix of the word.  Consequently, the 
obtained string is of the form (bba)ma p, where  m is the number  of times of using the 
product ion ({abb}, ((bb, a)}) minus one, and p is the number  of initial occurrences of 
a, that is p = n. This implies that the occurrence of a immediately to the left-hand side 
of the initial pair  bb has crossed one pair  bb (doubling it), the next  one has crossed 
two pairs bb (doubling them), and so on until the leftmost occurrence of a, the n-th 
one. In total, we have n doublings,  because we started from anbba. This means  that m 
above is equal to 2 n, that is the obtained word  is of the form (bba)2"a n. This completes 
the proof. 

Corollary 1 
The families CF, CLMs (FIN) are incomparable.  

Proof 
Theorem 1 shows that CF - CLMg(FIN) ~ O, whereas from Theorem 2 we know that 
CLMx(FIN) - CF # O. 

Returning to the diagram in Figure 1, we now  know that any two families not  
linked by a path  in this diagram are incomparable,  except the pairs (CLi,(REG), 
CLMt(FIN)), (CLin(REG), CLMI(REG)), and (REG, CLMg(FIN)), (REG, CLMs(REG)). 
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For the convenience of the reader, we list all pairs (F1, F2) of families of contextual 
languages from this diagram that are not known in be included in each other, specify- 
ing in each case the known incomparability arguments in the form L, (F1, F2), L t, with 
the following meaning: L E F1 - F2, L' E F2 - F1. When L or L' is not specified, it means 
that no such language is known. The languages L1, L2, L3, L4 used are those mentioned 
above: 

L4, (CLin(FIN),CLMR(FIN)), L2 
L4, (CLin(FIN),CLMR(REG)), L2 
L1, (CLin(REG), CLMj(FIN)) 

(CLin (REG), CLMI (REG)), L3 
L4, (CLi,(REG),CLMR(FIN)), L2 
L4, (CLin(REG),CLMg(REG)), L2 
L4, (CLMi(FIN),CLM~(FIN)), L2 
L4, (CLMt(FIN),CLMx(REG)), L2 
L4, (CLMi(REG),CLMg(FIN)), L2 
L4, (CLMt(REG),CLMR(REG)), L2. 

Both families CLi,(FIN) and CLMg(FIN) contain non-context-free languages, but there 
are linear languages not in CLin(REG), CLMi(REG) (for example: L2) or in CLMg(REG) 
(for example: L4). We conjecture that REG C_ CLMg(FIN), however, the construction 
from the proof of the inclusion REG c CLin (FIN) from Ehrenfeucht, P~un, and Rozen- 
berg (1997) cannot be directly modified for the Mg case. 

4. On the Linguistic Relevance of Contextual Grammars with Maximal Use of 
Selectors 

With regard to their linguistic foundations, contextual grammars are closely related 
to American distributional linguistics, the potential of which they try to exploit. Let 
us quote some words of Manaster Ramer (1994, 4): "It is my contention that, until 
the early 1960's, the situation, as revealed by a close mathematical analysis of the 
underlying issues, was this: (a) there was no basis for concluding that 'in principle' 
natural languages were anything but context-sensitive (and it should have been clear 
that nothing was likely to change that result), (b) it was clear that phrase structure was 
inadequate in terms of its descriptive devices, and (c) it should have been clear (since 
it had been admitted in print) that phrase structure left out some of the descriptive 
devices of immediate constituent analysis. The right thing to have done would have 
been to pursue a more accurate formalization of immediate constituent analysis, and 
a more detailed analysis of just how much context-sensitivity was really required for 
natural languages." 

The generative process in a contextual grammar is based on two dual linguistic 
operations, which are among the most important in both natural and artificial lan- 
guages: insertion of a string in a given context and adding a context to a given string. 
Descriptive distributional linguistics developed in the U.S.A. in the 1940s and 1950s 
is entirely based on these ideas. To some extent, a similar idea is behind some as- 
pects of Chomsky grammars; for instance, the difference between a context-free and 
a context-sensitive rule is that a certain substitution, generally valid in a context-free 
grammar, becomes possible only in a given context as soon as the grammar is no 
longer context-free, but context-sensitive. 

Any derivation in a contextual grammar is a finite sequence of such operations, 
starting from an initial finite stock of strings, simple enough to be considered primitive 
well-formed strings (axioms). 

Given a language L over the alphabet V, each context (u, v) over V selects a set of 
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strings x such that uxv c L. We say in this case that x is accepted by (u, v) in L or that 
(u, v) accepts x in L. Any set C of contexts over V selects the set X of those strings that 
are accepted in L by any context in C. Obviously, X is here maximal, because it is the 
set of all strings with the relevant property. The dual phenomenon is the following: 
each string x over V selects the set C(x) of those contexts that accept x in L. To any 
set E of strings over V we associate the set of contexts accepting in L any string in E. 
In short, given a language L, each set of contexts (strings) selects, with respect to L, 
a set of strings (contexts); in other words, each language over V determines a precise 
interplay of strings and contexts over V. 

A natural question can be raised: could we now follow an inverse itinerary, by 
starting from a finite stock A of strings (over V) simple enough to be considered 
primitive well-formed strings (axioms), and by considering a finite set of couples 
(Si, Ci), 1 < i < n, where Si is a set of strings, while Ci is a finite set of contexts, to ask 
what is (are) the language(s) with respect to which Ci selects Si, 1 < i < n? The idea 
of a contextual grammar, in its various forms, is born from the attempt to answer this 
question. A series of details about this topic can be found in Marcus (1997). 

Let us consider again the three non-context-free constructions in natural languages 
mentioned in the introduction. The (non-)context-freeness of natural and programming 
languages has been investigated since the early sixties (Bar-Hillel and Shamir [1964]; 
Floyd [1962], among others). While for Algol 60 and for all advanced programming 
languages, the question has been settled from the very beginning--these languages 
are not context-free--a long debate was necessary concerning natural languages. We 
shall use information about this question from Gazdar and Pullum (1985); the reader 
might also consult Pullum (1985, 1986, 1987) and Pullum and Gazdar (1982). 

The general technique in approaching this problem is the same for both program- 
ming and natural languages. Look for special constructions that seem, intuitively, 
to require a non-context-free competence. In order to extract them from the studied 
language, use an intersection with a regular language. Because CF is closed under 
intersection with regular sets, if the result is not context-free, then we have a proof 
that the initial language is not context-free. 

The basic constructions of this type are duplication of arbitrarily long subwords, 
dependencies (agreements) between crossed pairs of subwords, and dependencies act- 
ing on (at least) three correlated subwords. The basic features of programming lan- 
guages requiring dependencies are the necessity of declaring identifiers and names of 
procedures, and of defining labels. 

In natural languages, such replications and dependencies can appear either at the 
level of the vocabulary or at the level of the sentences in a given language. The question 
is not simple, because it might not be clear what is grammatical and what is not 
grammatical with respect to a natural language. However, there are now convincing 
examples of non-context-free constructions in many languages. At the level of the 
vocabulary, the case of Bambara, a language from the Mande family in Africa (Culy 
1985) is illustrative: compound words of the form string-of-words-o-string-of-words are 
possible in this language. The corresponding formal language consists of words of the 
form xcx, for x an arbitrarily long word over an alphabet not containing the symbol c 
(this symbol corresponds to the separator o in the Bambara construction). Because we 
can always codify words using two symbols, we work here with the language: 

M1 = {xcx l x E {a,b}*}. 

Another non-context-free construction has been found in a dialect of German spo- 
ken around Zurich, Switzerland (Shieber 1985; Pullum 1985), which allows construc- 
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tions of the form NP~ NP~ V~ n' V~', where NPa are accusative noun phrases, NPd are 
dative noun phrases, Va are accusative-demanding verbs, Vd are dative-demanding 
verbs, and the numbers match up, that is m = m', n = nq This leads to languages of 
the form: 

M2 = {ambncmd n ] n,m ~_ 1}: 

Both of these constructions can be easily found in programming languages, too. 
The proof of Floyd (1962) that Algol 60 is not context-free leads to a language of M1 
type. Intersecting any Algol-like language with a regular language consisting of strings 
of the form: 

begin; real x; . . . ,  go to label1; . . . .  y := 1; . . .  label2 : . . .  ; end 

we force the equalities x = y, label1 = label2, hence a language like M2 is obtained. 
If, however, we intersect an Algol-like language with the regular set of strings of 

the form: 

begin; real x; y := z; end 

then we force the equalities x = y = z, which can be translated into a language of the 
form: 

M3 = {a"b"c n ] n > 1}. 

Concerning a natural language version of this form, Manaster Ramer (1993, 12) says: 
"The interaction of two different constructions (coordination and serial-verb forma- 
tion) gives rise to patterns essentially of the form anbnc" (and, more generally, (a"b) m) 
in Dutch and German, but there is no indication that any one construction in any 
language has this property." Also according to Manaster Ramer (1994, 21), "Columnar 
structures like anbnc n, anb"cnd ", etc. (for all positive n) seem not to exist by themselves 
as constructions but do appear as compositions of two constructions (in particular, the 
serial verb construction of German or the cross-serial construction of Dutch together 
with coordination of the verb clusters) ... in these terms, natural languages possess 
an important property different from the usual formal languages. Namely, in natural 
languages individual constructions often have forms which no natural language, taken 
as a whole, can have. Thus, reduplication is common (probably universal), but there 
is no natural language which is made up, in its entirety, of reduplications." 

Counterparts of these much-used examples of non-context-free languages can be 
identified in other areas, such as the semiotics of folklore (Marcus 1978). 

None of the languages M1, M2, M3 is context-free, and this is an easy exercise in 
any formal language textbook. Moreover, M1 and M3 belong to no family CLin(F), 
for arbitrary F (even more general than FIN and REG). The argument is similar in all 
cases: in the free mode of using selectors, one cannot sense the place where the context 
must be added without producing a parasitic word. Take, for instance, the case of M3. 
If, in order to introduce arbitrarily many occurrences of a, we use a context (a i, bici), 
i > 1, associated with words of the form aJbk, j ,k  ~_ O, then aJ+k+lbJ+k+lcJ+k+l ==:~in 
ak+laiaJbkbicibJ+lcJ+k+l is a correct derivation, but the word produced is not in M3. 
A similar parasitic word is obtained if we use a context of the form (aib i, ci), i > 1, 
associated with bJck, j ,k  ~_ 1, and for contexts of the form (aibJ, bkcl),i = j + k = l > 1, 
associated with words bP, p > O. At least one such context is necessary, hence no 
grammar can generate M3 in the free mode without producing parasitic strings. 

However, all three languages mentioned above can be generated by using the selectors in 
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Table 1 
Languages generated by various contextual grammars. 

CLi.(FIN) CLin(REG) CLMi(FIN) CLMt(REG ) CLMg(FIN) CLMg(REG) 

M1 No No No Yes No Yes 
M~ No No No No No ? 
M2 No Yes No ~ s  No ~ s  
M3 No No No ~ s  No Yes 
M4 ~ s  ~S ~S ~S ~S ~S 
M~ No No No ~ s  No Yes 

the maximal mode, both in the local and the global way. Here are grammars proving this 
assertion: 

G1 = ({a, b, c}, {c}, ({c}{a, b}*, {(a, a), (b, b)})), 

G2 = ( {a, b, c, d}, {abcd}, (ab+c, { (a, c) }), (bc+d, { (b, d) })), 

G3 = ({a, b, c}, {abc}, (b +, {(a, bc)})). 

The reader can easily check that LMi(Gi) = LMg(Gi) = Mi, i = 1,2,3. Notice how 
simple these grammars are, even compared with regulated context-free grammars 
(Dassow and P~iun 1989), which, in some sense, are specially designed for handling 
such languages. 

What is significant here is that all of these languages, hence all of the subjacent 
syntactic restrictions, can be handled by contextual grammars with both a local and 
a global maximal use of selectors, although--as we have seen--the overall generative 
power of such grammars is not "too large": there are context-free languages (even 
linear ones: remember the language in Theorem 1) that they cannot generate. On the 
other hand, the power of these grammars is not "too small." Theorem 2 from Section 3 
and Theorems 3, and 4 from Section 6 explain the meaning of this statement. 

At the beginning of Section 3, we mentioned that M2 E CLin (REG). This also fol- 
lows from grammar G2, for which we have LiR(G2) = LMg(G2) = LMi(G2): the two 
selectors are disjoint and their elements are "marked strings," bounded by fixed sym- 
bols, hence no selector string is the subword of another selector string. The maximality 
feature is, however, essential for G1 and G3, because, as we have mentioned before, 
the languages M1 and M3 cannot be generated by contextual grammars working in 
the in mode. 

Consider now the "unmarked" variant of the language M1 above, that is: 

M~ = {xx Ix E {a,b}*}, 

as well as the marked and unmarked mirror image languages: 

M 4  = {XC mi(x) IX E {a,b}*}, 

M~ = {x mi(x) l x E {a,b}*}. 

For reference, we indicate the possibility of generating these languages by contextual 
grammars of various types in Table 1. 

Proofs of the assertions represented in Table 1 can be found in Martin-Vide et al. 
(1995), some of them were mentioned above, or can be easily found by the reader. For 
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the sake of the completeness, some hints for the proofs not discussed here are given 
in the appendix. 

It is worth emphasizing the clear difference between marked and unmarked lan- 
guages: the former are easier to handle than the latter. There is also a clear difference 
between contextual grammars and Chomsky grammars, with respect to the languages 
listed above. For instance, M4 and M~ are of the same complexity when they are gener- 
ated by Chomsky grammars (both of them are linear and can be generated by almost 
identical grammars); in the framework of contextual grammars, M4 and M~ are sig- 
nificantly different. This also holds for M1 and M~. The case of contextual grammars 
is closer to our intuition, because the existence of a marker makes it very easy to 
check the property defining the strings in our languages (knowing the "center," we 
can directly check the relation between the two halves of the strings). 

It is known that the language M3 mentioned above cannot be generated by a tree 
adjoining grammar (TAG) in the pure form introduced by Joshi, Levy, and Takahashi 
(1975), but CF c TAL, where TAL is the family of languages generated by TAGs 
without additional features (see also Section 21.2 in Partee, ter Meulen, and Wall 
[1990]). In view of the languages L2 and L3 in Section 3, which are context-free but not 
in CLMg(REG), or CLMt(REG), respectively, it follows that TAL is incomparable with 
each of the families CLMt(REG), and CLMg(REG). However, TAGs with constraints (for 
instance, with null adjoining contraints; see, for example, Joshi [1987] and references 
therein) can generate all languages M1, M2, and M3; hence, a proper superfamily of 
TAL is obtained. The relationships between such enlarged TAL families and families 
of contextual languages are not settled yet. 

An important question in this framework is whether or not the languages in the 
families CLo,(REG), a E {MI, Mg}, are mildly context-sensitive. It is obvious that, by 
definition, contextual languages have the bounded growth property: the set of contexts 
is finite, passing from one string to another means adjoining of a context from a finite 
set, and all generated strings belong to the language. However, we do not know 
whether or not the languages in families CL,~(REG), ~ E {MI, Mg} are parsable in 
polynomial time. 

In general, the parsing of languages generated by contextual grammars (of any 
type, not only with maximal use of selectors) is a research area still open. There are 
several attempts to define contextual automata (see, for example, P~un [1982], Jan~ar et 
al. [1996], and Miquel-Verg6s [1997]). Some of them characterize a number of families 
of contextual languages, and some of them recognize families that do not correspond to 
classes of contextual grammars. However, no systematic study of parsing complexity 
has been done, even for basic classes of contextual grammars. (Of course, because 
in contextual grammars we do not have erasing operations but  only adjoining, we 
always generate context-sensitive languages, hence membership is decidable.) 

The only complexity results known at the moment concern external contextual 
grammars with regular (even context-free) selectors, and a variant of internal contex- 
tual grammars with regular selectors used in a "localized" manner: the selector used 
at any derivation step should "touch" the context used at the previous step. Ilie (1997a, 
1997b) proved that the parsing of the languages generated by such grammars can be 
done in polynomial time. 

Let us close this section with the observation that contextual grammars have 
another property much discussed recently: they are lexicalized (we might say "fully 
lexicalized'), as each of their productions (pair selector-context) consists of terminal 
symbols only. 
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5. Attempts to Associate a Structure to Contextual Languages 

In this section, we investigate further the adequacy of contextual grammars  for de- 
scribing the syntax of natural languages. 

One of the features of context-free grammars and of other grammars based on 
context-free core rules (TAGs included) most useful for linguistics is the fact that a 
derivation can be described by a tree defining a structure of the generated sentence. 
On this basis, the difference between weak generative capacity and strong generative 
capacity was introduced: the former refers to the set of sentences that a grammar 
produces, while the latter refers to the set of pairs composed by a sentence and its 
phrase-structure tree. 

Only very recently (see Martin-Vide and P~un [1998]) some possibilities for intro- 
ducing a structure to the words generated by contextual grammars  were considered. 
We present here some ideas from Martin-Vide and P~un (1998), without  entering into 
details; research is still in progress. We only want  to show that various natural solu- 
tions exist for structuring contextual languages. For instance, a tree can be associated 
to a derivation in a contextual grammar, as we describe below. 

Consider the parentheses [ and ] and denote by B their set. A string w E (V U B)*, 
where V is an alphabet, is said to be minimally Dyck covered if: 

. 

. 

w can be reduced to A by using reduction rules of the form [x] ~ ,~, for 
XE V+; 

if w = wl]w2[w3, w i t h  W l , W  3 E (VU B)* and W 2 E W*, then w2 = )~. 

We denote by MDC(V) the language of all minimally Dyck covered strings over 
the alphabet V. 

To any string x E MDC(V) we can associate a tree T(x) with labeled edges in the 
following way: 

• draw a dot representing the root of the tree; the tree will be represented 
with the root up and the leaves down; 

• scan x from the left to the right and grow 7-(x) according to the following 
two rules: 

• for each maximal substring [w of x, for w E V* (hence after w we find 
either [ or ]), we draw a new edge, starting from the current point of the 
partially constructed ~-(x), marked with w on its left side, and placed to 
the right of the currently constructed tree; 

• for each maximal w], w E V*, not scanned yet (hence, either before w we 
find ], or w = ,~ and to the left of ] we have a substring [z for some z E V* 
already scanned), we climb the current edge, writing w on its right side. 

Here is a simple example. The tree corresponding to the string: 

x = [a[ab] [ab[ab[c]b]b]a] [a] 

(which is clearly in MDC({a, b, c})) is presented in Figure 2. The nodes are numbered 
in the order of producing them (1 is the root). 

A bracketed contextual grammar is a construct: 

c = (V ,A ,  ( S , , C , )  . . . . .  
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ab 

C 
c 

b 

A 

Figure 2 
Tree corresponding to the string x = [a[ab][ab[ab[c]b]b]a][a]. 

where  V is an alphabet,  A is a finite subset of MDC(V), S i c  MDC(V), and Ci are finite 
subsets of V" x V* - (A, A), for all 1 < i < n; in turn, n > 1. 

For x,y E MDC(V) we define: 
x ==Fin Y 

iff x = XlX2X3, y = xl[ux2v]x3, where  xl,x3 E (Vl3B)*,x2 E MDC(V), and x2 E Si, (u,v) E 
Ci, for some 1 < i < n. (Clearly, if x E MDC(V) and x ~ i ,  y, then y E MDC(V), hence 
the definition above is consistent.) 

The str ing language generated by  a bracketed contextual g rammar  G = (V,A, 
($1,C1) . . . . .  (Sn, C,)) is defined by: 

L(G) = {pry(z) I w ==>~ z, for some w E A}, 

where  pry(z) denotes the projection of z E (V U B)* on V, that is the string in V* 
obtained by  removing [ and ] from z. 

We can also associate to G the bracke ted  language BL(G) defined by: 

BL(G) -= {(prv(z),T(z)) I w ==~ z, for some w E A}. 

Note the fact that each string in L(G) is paired with a tree in BL(G); however,  
the string should be read on the edges of this tree, not  on leaf nodes  as in the case 
of derivat ion trees of context-free grammars.  The linguistic significance of such a tree 
is not  yet  clear to us, hence we do not  insist on this idea (the ambigui ty  of contex- 
tual grammars  and languages can be defined in this f ramework,  but  how the tree 
illuminates the grammatical  structure of a sentence remains to be clarified). 

Another  idea considered by  Martfn-Vide and P~un (1998), closer to linguistics, 
is to introduce a dependence  relat ion on the set of symbols appear ing in axioms, 
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selectors, and contexts of a contextual grammar. We present some of the details of this 
idea informally below. 

Consider an alphabet V and a string x c V*. We denote: 

M(x)  = {1,2 . . . . .  Ixl} 

and we write x = x(1)x(2). . .x(n),  for n = Ixl, x(i) E V, 1 < i < n. Any  antireflexive 
relation on M(x)  is called a dependence relation on x. Let px be such a relation (antire- 
flexivity means i Px i for no value of i). The pair (x, Px) is called a structured string. If 
i px j, then we say that x(j) depends  on x(i). Let us denote by p~+ the transitive closure 
of px. If i px + j, then we say that x(j) is subordinate  to x(i). A structured string (x, px) 
can be represented in a graphical form by writing the elements x (1) , . . . ,  x(n) of x in 
a row and drawing above them arcs (x(i),x(j)) for i px j. A structured string (X, px) is 
called a simple string of center x(io) if the graph associated to it as described above 
is a tree with the root marked with x(io) (the center corresponds to the predicative 
element of a sentence). 

The notion of a structured string is well-known in linguistics: see, for example, 
Chapter VI of Marcus (1967). A related notion has been recently considered, that of 
a link grammar: see Sleator and Temperley (1991), or Grinberg, Lafferty, and Sleator 
(1995). In a link grammar, the elements of a sentence are correctly related in a linkage, 
according to a pairing of left and right connectors given for each word in the dictionary, 
providing that the obtained dependence relation has several properties: the associated 
graph is connected, planar, etc. Because we do not  investigate here the possibility of 
producing correct linkages, in the sense of Sleator and Temperley (1991), by using 
contextual grammars (such results appear in Martin-Vide and P~un [1998]), we do not  
formally define the notion of a link grammar. 

For a structured string (X, px), x E V +, and a substring y of x, we denote by pxly 
the restriction of px to y, defined in the natural way (we remove the symbols of x not 
appearing in y and we collect the remaining pairs of px). 

Now, a structured contextual grammar is a construct: 

G = (V,A,P), 

where V is an alphabet, A is a finite set of structured strings over V, and P is a finite 
set of triples of the form Ix, (u, v);puxvl, with x E V +, (u, v) c V* x V*, and p,xv a 
dependence relation over uxv such that p,xv[x = O. 

The elements of A are called axioms, the triples in P are called productions;  in a 
production Ix, (u, v); puxvl, the string x is the selector, (u, v) is the context and puxv is a 
relation defining the structure of uxv; note that no dependence is considered between 
the elements of x. (Thus, we consider here only grammars with finite selectors.) 

The derivation relation is defined (only for structured strings) as follows: for 
(x, px), (y, py), x, y E V +, we write: 

(x, px) = ~ c  (y, py) 

iff x = XlX2X3, y = XlUX2VX3, for xl, x3 C V* and (X2, (U, P); Pux2vl E P, such that pylx, x~x3 = 
Px, and Py]ux2v = PUXRV. In words, the string x is enlarged with the context (u, v) and 
the structure of x is extended according to the dependencies imposed by pux2v; due 
to the restriction Pux2vlx2 = 0, the dependencies in x are not modified when  adjoining 
u, v. The elements of x2 can be linked to elements of Xl, x3, but  the elements of u, v 
participate only in dependencies with elements of the selector string x2. 
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a c b 

a a c b b 

a a a c b b b 

Figure 3 
First three strings generated by G1. 

The string language generated by G isi 

L(G) = {w E V* [ (x, Px) ~ h  (w, Pw), for some (X, px) c A}. 

The language of s t ructured strings generated by a g rammar  G as above is: 

SL(G) = {(W, pw) [ (X, px) ~ (W, pw), for some (x, px) c A}. 

Let us examine two examples.  For the grammar:  

G1 = ({a, b, c}, {(acb, {(2,1), (1, 3)})}, {/c, (a, b); {(2,1), (1, 3)}/} ), 

we obtain: 

L(G1) = {ancb n In _> 1}, 

SL(G1) = { (a"cbn , { (n+l , i ) , ( i , 2n+2- i ) l l  < i < n } ) ] n >  l}. 

The first three strings generated by G1 are represented in Figure 3. 
The s t ructured strings generated by G1 are s imple strings wi th  center c; the struc- 

ture graph  is not  planar  if we preserve the order of e lements  of strings w h e n  wri t ing 
them in a row as above. 

For the grammar:  

G2 = ({a, b, c}, {(acb, {(2,1), (2, 3)})}, {/c, (a, b); {(2,1), (2, 3)})}), 

we obtain: 

n(G2) = {a"cb" In > 1}, 
SL(G2) = {(ancbn, {(n + l,i),(n + l,2n + 2 -  i) l l < i< n}) l n > 1}. 
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a c b 

a a c b b 

a a a c b b b 

Figure 4 
First three strings generated by G2. 

One sees that G1 and G2 are weakly equivalent, they generate the same string language, 
but they are not strongly equivalent, the structures of the same strings generated by 
G1 and G2 are not identical. For instance, the first three strings generated by G2 are as 
shown in Figure 4. 

We again obtain simple strings with center c, but the graphs describing the struc- 
ture of the strings in the representation above are planar. 

These examples suggest that classes of structured contextual grammars should be 
considered on the basis of a classification of the graphs associated to their generated 
strings. Thus, a grammar G = (V,A,P) is said to be connected, simple, or planar if 
the graphs associated to the relation describing the structure of the strings generated 
by G is connected, a tree, or planar (when the string is written on a horizontal line, 
as before), respectively. Moreover, we can use these properties as restrictions on the 
grammar, selecting from the languages L(G), and SL(G) only the (structured) strings 
whose structure graph has the properties mentioned above. Of course, many other 
variants can be defined; for instance, we can consider the various types of projectivity 
(progressive, regressive, strong, and so on), as investigated in Chapter VI of Marcus 
(1967). 

The above definitions of bracketed and structured contextual grammars can be 
extended in an obvious way to grammars with maximal use of selectors. Some results 
in this area can be found in Martin-Vide and P~iun (1998), but a lot of questions 
remain to be clarified. The main problem is to find the most useful and natural type 
of structured contextual grammars for describing the structure of natural language 
syntactic constructions. 
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6. Representations of Recursively Enumerable Languages 

Completing the s tudy on (weak) generative power  of contextual grammars from Sec- 
tion 3, we  now give a result proving the eccentric position of families of contextual 
languages with regard to the Chomsky  hierarchy. 

Ehrenfeucht, P~un, and Rozenberg (1997) prove that each recursively enumerable  
language L can be writ ten in the form L ~- hi (h~-! (L')), for L' E CLin (FIN) and hi, h2 t w o  
morphisms.  In view of the inclusion CLin(FIN) C_ CLMt(FIN), this result is valid also for 
L' E CLM~(FIN) and L' E CLM~(REG). Because CLin(FIN) - CLMx(REG) -~ 0, the result 
of Ehrenfeucht, P~un, and Rozenberg (1997) is not  directly valid for L t E CLMx(REG) 
or L ~ E CLMg(FIN). However ,  the result of Ehrenfeucht, P~un, and Rozenberg (1997) 
can also be extended to these cases. Because we  shall use it below, we  outline here the 
construction of Ehrenfeucht, P~un, and Rozenberg (1997). 

Take L C_ T*, L E RE, and a type-0 Chomsky  grammar Go = (N, T, S, P) for L. 
Consider the new symbols  [,], t-, and construct the contextual grammar  G with the 
alphabet: 

V = N U T U {[, ] ,1-}, 

the starting string S, and the following productions: 

° 

2. 

3. 

({u}, {([, Iv)}), for u ~ v E P, 

({ol[u]}, {0-, ol)}), for o~ E N U T, u --~ v E P, 

({o~-fl},{(t- ,  o~)}), for a, fl E N UT. 

Consider also the set: 

R =  {[u] I u ---~ v E P} U {~ o~ I oL E N U T } .  

For each string w E R, consider a new symbol,  bw; denote by  D = {bw I w E R} their 
set. We define the coding hi : (D U T)* ~ T* by: 

hl(bw)=&,wER, hl(a)=a, aET,  

as well as the morphism h2 : (D U T)* ~ V* by: 

h2(bw)=w, w ER, h2(a)=a, aET.  

One obtains the equali ty L = hl(h~-l(Lin(G))). 
The idea is the following: h~ -1 is defined on (R U T)*, hence all derivations in G 

that do not produce  words  in (R U T)* will be "lost"; thus, h~ -1 acts like an intersection 
with the regular language (R U T)*, plus the conversion of each string w E R into the 
associated symbol  bw. In order to obtain a string in (R U T)*, a derivation in G must  
follow a derivation in Go, in the sense that each rule u ~ v E P is simulated by  a 
production of type 1, ({u}, ({([, ]v)}), thus replacing u with [u]v. The parentheses [, 
] "kill" the word  u. Productions of types 2 and 3 allow "living" symbols  o~ to go to 
the right, across "dead"  symbols; also b is a "killer," specifically, of the symbol  placed 
immediately to its right. The requirement that a word  in (R U T)* must  eventually be 
reached imposes the use of productions of type 1 for living u only, and the use of 
productions of types 2 and 3 for living c~ and dead u and fl, respectively. After using 
these rules, u is dead, v is living (type 1), the first o~ is dead,  the new one is living 
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(types 2 and 3). This ensures that the obtained word contains only dead symbols and 
killers in words of R and living terminal symbols. By means of hi, h~ -1, only the living 
terminals remain. 

Note that the construction of Ehrenfeucht, Paun, and Rozenberg (1997) does not 
work directly for the global maximal case: the grammar Go can contain, for instance, 
two rules u --, v, u I ~ v t with u a proper subword of u'; the first rule cannot be 
simulated in G when  u' is present, because we are forced to use the maximal selector, 
u ~ in this case. However, the proof can be modified to cover the case of global maximal 
selectors as well. 

Theorem 3 
Every language L E RE can be written in the form L = hl(h~-l(L')), where L' E 
CLMg(FIN) and hi, h2 are two morphisms. 

Proof 
Take L C_ T*, L E RE, and take a type-0 Chomsky grammar Go = (N, T, S, P) for L in 
the Kuroda normal form, that is containing rules of the forms: 

1. X ~ Y Z ,  X ~ a ,  X ~ & ,  forX,  Y, Z E N ,  a E T ,  

2. X Y - ~  ZU, for X, Y,Z, U E N. 

(Context-free rules and non-context-free rules, respectively, all of them with left-hand 
and right-hand members of length at most two.) 

Take a new symbol, c ~ T, and construct the Chomsky grammar  G1 = (NU {S'}, TU 
{c}, S', P'), where: 

P' = {s '  Sc} u 

U { X Y - - , Z U t X Y ~ Z U E P ,  X,Y ,Z ,  U E N } U  
U {Xc~ --~ xo~ I X ~ x is a rule of type 1 in P and c~ E N U r U {c}}. 

It is easy to see that L(G1) = L(Go){C}. 
Now start the procedure of Ehrenfeucht, Phun, and Rozenberg (1997) from the 

grammar G1, constructing the contextual grammar G exactly as in Ehrenfeucht, P~iun, 
and Rozenberg (1997) and extending the morphisms hi, h2 by: 

hi(c) = A, 

h2(c) = c. 

Because all rules in P~, excepting S I ~ Sc, which is used only once, have left-hand 
members of the same length, the maximal restriction of using the associated selectors 
has no effect. Concerning selectors u and of[u], appearing in productions of type 1 and 
type 2, respectively, the first selector for u is already dead (as is the case of the second 
selector), so its use is illegal; it leads to nonsuccessful derivations. The symbol c is 
preserved by h~ -1 and it is erased by hi. Consequently, with the details of the proof 
in Ehrenfeucht, P~iun, and Rozenberg (1997), we obtain L = hl(h~-l(LMg(G))), which 
completes the proof. 

Corollary 2 
Every L E RE can be written in the form L = g(L'), where L' E CLMg(FIN) and g is a 
generalized sequential transducer. 
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Proof 
A sequential transducer can simulate at the same time both the work of hi and of h~ -1. 

[] 

These results have a rather InterestIng consequence. 

Theorem 4 
Every family F of languages such that L I N c  F C RE that is closed under direct and 
inverse morphisms is incomparable with each family CL~(F'), for o~ E {MI, Mg} and 
F' E {FIN, REG}. 

Proof 
Consider a family F with the properties mentioned above. Because L I N c  F and 
LIN - CL~(REG) ~ O for both o~ E {MI, Mg}, we get F - CL~(F') ~ 0 for o~,F' as above. 
Let us now prove that also the assertion CL~(F') - F ~ 0 holds, for o~ and F' as above. 
Assume the contrary, that is, CL~(F') G F. The closure of CL~(F I) under direct and 
inverse morphisms should be included in the closure of F under direct and inverse 
morphisms. From Theorem 3 we know that the closure of CL~(F ~) under direct and 
inverse morphisms is equal to RE. From the closure properties of F, the closure of F 
under direct and inverse morphisms is equal to F. This implies RE C F, contradicting 
the strictness of the inclusion F c RE from the theorem statement. [] 

Important families in formal language theory that fulfill the conditions in Theorem 
4 are: (1) languages generated by programmed grammars without appearance check- 
ing but possibly using h-rules introduced by Rosenkrantz (1969) (they are equivalent to 
many other grammars with context-free core rules applied in a regulated manner: see 
Dassow and P~un [1989]; (2) indexed languages (Aho 1968); (3) ETOL languages (gen- 
erated by extended tabled interactionless LIndenmayer systems; ETOL is the largest 
family in this area--see Rozenberg and Salomaa [1980]; and (4) other subfamilies of 
ETOL (for instance, EOL). Each of the families CL~(FIN),e~ E {in, MI, Mg}, contains 
(context-sensitive) languages outside these families. Therefore, the families CL~ (FIN) 
occupy a quite eccentric position in the Chomsky hierarchy (Figure 5). 

7. Summary and Final Remarks 

In this paper, we have continued the investigation of contextual grammars with (global 
or local) maximal use of selectors, recently introduced by Martfn-Vide et al. (1995). We 
have mainly borne in mind issues concerning the adequacy of these grammars as an 
alternative model (with respect to Chomsky grammars) for the syntax of natural lan- 
guages, because "the arguments against the adequacy of phrase structure grammar (as 
defined by Chomsky) are absolutely incontrovertible (although they also apply to full 
context-sensitive grammars and to unrestricted grammars), that is, the constructions of 
natural languages cannot be described In an adequate way using the descriptive mech- 
anisms of such grammars . . . .  Bizarre though it may sound . . . .  Bloomfield's theory of 
constructions is probably the best point of departure for future work on the subject" 
(Manaster Ramer 1994, 20). We need to keep in mInd, as Manaster Ramer (1994) points 
out, that "the kinds of mathematical models we are used to are, of course, largely de- 
rived from Chomsky's early work on phrase structure, and this in turn represents ...  
the formalization of a terribly diminished, impoverished, and even caricatured idea 
of immediate constituent analysis, created by Leonard Bloomfield" (p. 22). 
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# 
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CL~(FIN)~ 
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J 

Figure 5 
Position of the families CL~ (FIN) in the Chomsky hierarchy. 

Our essential arguments have been the following: 

. 

. 

. 

4. 

. 

The families of contextual languages are incomparable with some basic 
families in the Chomsky hierarchy (with LIN and CF) or in refinements 
of this hierarchy (programmed languages, indexed languages, languages 
generated by various classes of Lindenmayer systems). Some pieces of 
evidence indicate that perhaps natural languages occupy a similar 
incommensurate position with regard to Chomsky's classification. 

Contextual grammars with global maximal use of selectors cannot 
generate all languages based on center-embedded constructions, as 
Chomsky linear grammars (and TAGs) do. Such constructions seem not 
to be very frequent in natural languages. 

Contextual grammars with (global or local) maximal use of selectors can 
generate, in a very easy way, the three basic non-context-flee 
constructions in natural languages: reduplication, crossed dependencies, 
multiple agreements. 

Contextual grammars are sensitive to using markers, languages of the 
form {wcw[w E {a,b}*} and {wc mi(w) I w E {a,b}*} are handled more 
easily (i.e., by classes of grammars with simpler features) than 
{ww I w E {a,b}*} and {w mi(w) [ w E {a,b}*}. This again corresponds to 
our intuition, but it does not fit the Chomsky hierarchy. 

By definition, contextual grammars are "fully" lexicalized (they use only 
terminal symbols), and their languages have the bounded growth 
property, which is specific to natural languages (and one of the main 
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. 

. 

ideas behind the notion of mild context-sensitivity, see Joshi [1985]): each 
word generated by a contextual grammar---excepting the axioms--is 
obtained by adjoining a context from a finite set. 

If we intend our model to convey some cognitive meaning, we must say 
that the simple operation of adjoining might be closer than rewriting to 
the way our brain may work when building a sentence. It is hard to 
imagine our brain using auxiliary intermediate sentences of a 
nonterminal type. Instead, it looks more n a t u r a l ,  i n  the proper sense of 
the word, to start with a collection of well-formed sentences, maybe 
acquired from experience, and to produce new well-formed ones by 
adding further words, in pairs that can observe dependencies and 
agreements, and in accordance with specified selectors, which can ensure 
the preservation of grammaticality. Of course, this is only a speculation, 
but it also fits with the general idea of "natural computation": for 
example, nature seems not to use the rewriting operation in the area of 
genetics, where recombination (crossing over) of chromosomes is the 
basic evolutionary operation (together with nondeterministic insertion 
and deletion operations, which, again, are not rewriting) and where no 
"nonterminal symbol" is used. Further discussion of this topic can be 
found in Martin-Vide (1997). 

A structure for the words generated by a contextual grammar can be 
introduced in various ways. By parenthesizing the contexts, we get a 
tree. Considering dependence relations on symbols appearing in axioms, 
contexts, and selectors, we can obtain structured strings of a type well 
investigated in descriptive linguistics and very similar to the 
phrase-linkage structures produced by a link grammar. 

A number of the previous points need further investigation. There are also several 
topics that are important from a linguistic point of view and that are still poorly 
investigated for contextual grammars. The main one concerns the parsing algorithms 
and their complexity. Polynomial parsing algorithms were found for a few variants 
of contextual grammars, which is encouraging, but  the problem is still open for the 
variants discussed in this paper. - 

The main aim of this paper was to call the reader's attention to contextual gram- 
mars, to prove that they deserve further research efforts, especially in terms of their 
linguistic adequacy and relevance. It is our (optimistic) belief that such efforts will be 
rewarded. 

Appendix: Proofs of Some Assertions Represented in Table 1 

Proof 
Assume that M 1  E C L ~  (F/N), o~ E { M I ,  M g } ,  take a grammar G for M1, and consider a 
string of the form: 

zi  = aba2b2 . . . aibi caba2b2 . . . aib i, 

for a large-enough integer i. In order to produce such a string, we need a derivation: 

W ~ W l W 2 W 3  =:::::'~c~ W l U W 2 V W 3  ~ Zi" 

It is obvious that IW21 depends on i, and so cannot be bounded; therefore G cannot 
have finite selectors only. [] 
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Proof 
Assume that M~ E CLin (F), for F E {FIN, REG}. Take G = ({a, b}, A, ($1, C , ) , . . . ,  (Sn, Cn)) 
such that Li,(G) = M~. There is at least one context (u ,v)  in G with uv # A; all the 
strings in M~ are of even length, so luvl must  be even. Take x in the selector of (u, v) 
and consider the strings xaixa i, i > luvl. Then uxvaixa i E Lin(G), so uxvaixa i = yy, for 
y E {a, b}*. This implies: 

uxvai-luv]/2 = aluvl/2xa i, 

that is, uxv = z d , j  > 1. In the same way, starting from xbixb i we get that uxv = z'bk, k _> 
1, a contradiction. As in point 1, we obtain that M~ ~ CL~ (FIN), c~ E {MI, Mg} .  [] 

Proof 
Assume that M~ = LMt(G), for any G = ({a ,b} ,A , (S1 ,C1) ,  . . . ,  (Sn, Cn)) with regular 
selectors. Let us denote: 

~(X) = { (u ,v )  l (u ,v)  E Ci, x E Si, l < i < n}, x E {a,b}*, 

~- l ( (u ,v) )  = {x E {a,b}* I (u,v) E ~(x)}, (u,v) E Ci, 1 < i < n. 

All strings ambamb, m > 1, are in M~. Take such a string with arbitrarily large m. If there 
is a derivation step aq =:::=~M! ambamb, then there is a context (u, v) = (a 6 ba 6, a6b) E ~(aP), 
for p < q. As m = /2 + p +/3, it follows that p is arbitrarily large. The set qa-l ( (u ,v))  
is regular (it is the union of a finite number  of regular sets), so it contains an infinite 
number  of strings of the form a s (we apply a pumping  lemma to a m in ~-l((u,v))) .  
Therefore, (u, v) must  be used for a maximal selector of the form a t. In this way, a 
string aJ'baJ2ba j3 can be produced, with bounded jl , j3 and arbitrarily large j2. Such a 
string is not  in M~, a contradiction. Therefore, in the derivation of ambamb there exists 
an arbitrary number  of derivation steps of the form: 

aSbaSb ==-~Mi aS+kbaS+kb, 

with k _> 1 and aPba q E ~- l ( (ak ,  ak)). Consider now a string: 

w = d'ba'2bdlbat2b, 

with arbitrarily large il,/2. Each such string is in M~. If aPba q above or any other selector 
of the form arba r' from ~- l ( (ak ,  ak)) is maximal in w, then we shall produce a string 
which is not in M~. On the other hand, flPbfl q is a subword of w, so the selectors 
included in ~- l ( (ak ,  ak)) must  contain a string that is a strict superword of aPba q, in 
order to prevent the generation of a parasitic word. Such a superword can only be 
of the forms aJ'bai2baJ 2 or ahbailba j2. In both cases, the middle subword, bai2b or bai'b, 
respectively, is arbitrarily long. As elements of a regular language, such strings have 
pumping  properties. Let us consider the case of ba6b (the second one is similar). This 
means that all the strings of the form: 

Z = a h bai2+rhbaJ2, 

for r > 1 and all h > 0, are in ~- l ( (u ,v)) .  Take such a string z with h being large 
enough to have: 

i2 + rh > jl + j2. 

Consider the string: 
w ~- ai2+rh-J2bai2+rhba j2. 
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Because: 
i2 + rh = (/2 + rh - j2) + j2, 

we have w E M~. Because: 
i2 -4- rh - j2 > jl, 

the context (a k, a k) is applicable to w. That is: 

W ::==~MI ai2+rh-j2+kbai2+rhbaJ2+k. 

The string obtained is not  in M~, a contradiction. In conclusion, M~ cannot  be in 
CLMI(REG). The previous  argument  does not  hold for the global maximal  derivation, 
so the relation M~ E CLMg(REG) remains open. [] 

Proof 
For the grammar  G = ({a, b, c}, {c}, ({c}, { (a, a), (b, b) })), we have L~ (G) = M4 for all o~. 

[] 

Proof 
The fact that M~ ~ CLin(REG) is already proved  in P~iun (1982). As for M1, one can 
easily prove that M~ ~ CL~ (FIN), o~ C {MI, Mg}. On the other hand,  for the grammar  

G = ({a, b}, {,~}, ({a, b}*, {(a,a), (b, b)})), 

we have LMI(G) = LMg(G) = M~. Hence M~ c CL~(REG),c~ E {MI, Mg}. [] 
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