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Grapheme-to-phoneme conversion (GTPC) has been achieved in most European languagesby 
dictionary look-up or using rules. The application of these methods, however, in the reverse pro- 
cess, (i.e., in phoneme-to-grapheme conversion [PTGC]) creates serious problems, especially in 
inflectionally rich languages. In this paper the PTGC problem is approached from a completely 
different point of view. Instead of rules or a dictionary, the statistics of language connecting pro- 
nunciation to spelling are exploited. The novelty lies in modeling the natural language intraword 
features using the theory of hidden Markov models (HMM) and performing the conversion using 
the Viterbi algorithm. The PTGC system has been established and tested on various multilingual 
corpora. Initially, the first-order HMM and the common Viterbi algorithm were used to obtain a 
single transcription for each word. Afterwards, the second-order HMM and the N-best algorithm 
adapted to PTGC were implemented to provide one or more transcriptions for each word input 
(homophones). This system gave an average score of more than 99% correctly transcribed words 
(overall success in the first four candidates)for most of the seven languages it was tested on 
(Dutch, English, French, German, Greek, Italian, and Spanish). The system can be adapted to 
almost any language with little effort and can be implemented in hardware to serve in real-time 
speech recognition systems. 

1. Introduction 

Phoneme-based speech recognition systems incorporate a phoneme-to-grapheme con- 
version (PTGC) module to produce orthographically correct output. Many approaches 
have been used, most of which compare the phonemic strings to a (usually application- 
specific) dictionary containing both the phonemic and the graphemic form of every 
word the system can handle (Laface, Micca, and Pieraccini 1987; Levinson et al. 1989, 
etc.). Considering the effort and cost required to create such a dictionary, this is a seri- 
ous limitation, especially for inflectionally rich languages such as Greek and German. 
Another very important issue when searching for words in a dictionary is the number 
of candidates resulting from each phonemic input. Depending on the language and the 
errors of the recognizer, this number may be very large, rendering the disambiguation 
of the words by a subsequent language model a time-consuming and unreliable task. 

The domain of application is another factor that strongly influences conversion 
performance; a general dictionary can omit the specialized words of specific domains 
(e.g., legal, engineering, or medical terminology) and vice versa. Finally, applications 
that must handle a large number of proper names (e.g., directory service applications) 
generally cannot include all the possible names. The only remedy in such situations 
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would be to increase the size of the reference dictionary, so that every possible input 
word is included. A final consideration is the type of errors a dictionary-based PTGC 
system introduces when it encounters a word that is not contained in the dictionary: 
the system will produce the closest existing word (in its dictionary) as the best can- 
didate, which may give a completely incomprehensible (if not wrong) meaning to the 
input phrase. 

Another approach to phoneme-to-grapheme conversion is the use of linguistic 
and/or  heuristic rules (Kerkhoff and Wester 1987). This method works on a phoneme 
or syllable basis and can give adequate results in languages where the spelling is very 
similar to the pronunciation (such as Italian). Nevertheless, languages with diphthongs 
or double letters cannot benefit from this method, since it creates long lists of homo- 
phonic candidates that are all correct (in the sense that they are pronounced as the 
input word) but that do not exist in the language. In Greek, for example, where the 
p h o n e m e / i / i s  the sound of five different graphemes (~, z, v, ~, o~) and the phoneme 
/1 / can  come from ~ and ;~;~, the phonemic f o r m / m ' i l a / w o u l d  produce a list contain- 
ing the following 10 transcriptions: #i)~c~, #~&c~, #(;Ae~, l~i&o~, #oi&~, #i)~&c~, #~&&c~, 
#~)~&a, #ci&o~, and #oi&&e~ all having the same pronunciation. From this list, only two 
represent existing orthographically correct words; "#i),c~" 'speak!' and "#~)~c~" 'apples.' 
Previous work has shown that an average of 30 graphernic candidates is produced by 
this transcription for every input phonemic word (Rentzepopoulos 1988). 

To overcome the disadvantages of the above mentioned methods, a novel statistical 
approach to the problem of PTGC, which is based on hidden Markov models (HMM), 
has been investigated and is presented in this paper. Although statistical approaches 
have already been widely applied in several fields of natural language processing, they 
have not been considered for PTGC. The proposed method is language independent, 
does not use a dictionary, and can be applied with only minimal linguistic knowledge, 
thus reducing the cost of system development. Initially, the first-order HMM and the 
common Viterbi algorithm were used to provide a simple transcription for each input 
word. In its current version, the method is based on second-order HMM and on a 
modified Viterbi algorithm, which can provide more than one graphemic output for 
each phonemic input, in descending order of probability. The multiple outputs make 
it possible to apply a language model in sentence level for disambiguation at a subse- 
quent stage. This version of the algorithm raised the number of correctly transcribed 
phonemes to 97%-100% for most of the languages the system was tested on. The pro- 
posed system assumes that the word boundaries are known; that is, it is a subsequent 
stage in an isolated-word speech recognition system. The PTGC method can work as 
a stand-alone module or in co-operation with a look-up module with a small to mod- 
erate size dictionary containing the most common words of the language. In the latter 
case, the look-up module employs a distance threshold: when the difference between 
the input and the words in the dictionary is greater than this threshold, control is 
passed to the HMM system, which converts the input phoneme string to graphemes. 

The basic theory, the pilot implementation, and the proposed final system are 
presented in Section 2. The evaluation procedure and the error-measure methodology 
are described in Section 3. In Section 4, the experimental results of the system are 
presented and the nature of the errors is discussed. The multilingual aspects of the 
algorithm and experimental results for seven languages are also given in this section. 
Finally, some conclusions are drawn about the system and topics for further research 
and hardware implementation are discussed in Section 5. 
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2. Description of the System 

Before the presentation of the proposed system, a brief overview of the theory used 
and the issues addressed in its application are given. These include the basic hidden 
Markov model theory, the Viterbi algorithm, the N-best algorithm and the solutions 
used to make the PTGC system fast and efficient, adequate for real-time applications. 

2.1 The First Order Hidden Markov Model 
An HMM can model any real-world process that changes states in time, provided 
that the state changes are more or less time independent (Hannaford and Lee 1990; 
Rabiner 1989). An HMM is used to describe statistical phenomena that can be consid- 
ered sequences of hidden (i.e., not directly observable) states that produce observable 
symbols (Lee 1989). These phenomena are called hidden Markov processes. A hidden 
Markov process is described by a model ,~ that consists of three matrices A, B, and ~-. 
Matrix A contains the transition probabilities of the hidden states, matrix B contains 
the probability of occurrence of an observation symbol given the hidden state, and 
vector 7r contains the initial probabilities of the hidden state. In mathematical terms: 

A = {oqy: i =  1 . . .  N , j  = 1. . .  N), ~ij = P(qt = Sj [qt-1 ~ -  Si) (1) 

B = {fly(m) : j =  l . . . N , m  = l . . . M } ,  fly(m) = P(Ot = vm ] qt = Sj) (2) 

~r = Or/: i =  1 . . .  N}, 7ri = P(ql = Si) (3) 

where N is the number of possible hidden states and M is the number of all the 
observable events. Obviously the dimension of matrix A is N x N, that of matrix B is 
N x M, and ~ is a vector of N elements. 

In equations (1)-(3), qt is the hidden state of the system at time t, Si is the /th 
possible hidden state of the system, Ot is the observation symbol at time t, and Vm is 
the m th possible observable symbol. 

For the application of HMM theory to PTGC, the correspondence of the natural 
language intraword features to an HMM can be found on the following basis: 

The natural language pronunciation can be considered as the output 
(observation) of a system that uses as input (hidden state sequence) the 
spelling of the language (Rentzepopoulos, Tsopanoglou, and Kokki- 
nakis 1991). 

In this formulation, the sequence of phonemes produced by the system can be 
seen as the observation-symbol sequence of an HMM that uses the graphemic forms 
as a hidden-state sequence. With this statement, the PTGC problem can be restated as 
follows: 

Given the observation-symbol sequence O(t) (phonemes) and the HMM 
A, find the hidden-state sequence Q(t) (graphemes) that maximizes the 
probability P(O I Q, ,~). 

A formal technique for finding the single best state sequence is based on dynamic 
programming and is the well-known Viterbi algorithm (Forney 1973; Viterbi 1967). 

In a word-level implementation, the algorithm must find the hidden-state sequence 
(i.e., word in its orthographic form) with the best score, given the model & and the 
observation sequence O (i.e., word in its phonemic form). This algorithm proceeds 
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recursively from the beginning to the end of the word calculating for any time (in the 
case of PTGC, time is the position of a phoneme/grapheme in the word) the score of 
the best path in all possible hidden-state sequences that end at the current state. 

The model's parameters can be estimated using the definition formulas, since both 
the hidden-state and the observation-symbol sequences are known during the training 
phase of the conversion system. Thus there is no need of a special estimation procedure 
like the Baum-Welsh algorithm (Rabiner 1989), which is used when the hidden-state 
sequence is not known. In general: 

nS(qt-1 ---- Si, qt = Sj) (4) 
aij = n(qt  = S/) 

n ' (q t  = S p O t  = vm) 
b j (m)  = n(qt  = Sj) (5) 

n ' (q l  = Si) (6) 
~ i  - -  n(ql) 

where n ( x )  is the number of occurrences of x in the training corpus and n'(x) is an 
estimation of the number of occurrences of x in the application corpus. The size of 
the training corpus and the sparseness of the resulting matrices can lead to different 
approaches in the definition of the estimation function n' (x). If a reasonably large text 
is available for training, then nS(x) ~- n ( x ) .  On the other hand, if the training data are 
insufficient (something that would result in a very sparse transition matrix) then a 
smoothing technique should be used for the estimation function n' (x) (Katz 1987; Ney 
and Essen 1991). 

2.2 Pilot System 
To implement the above algorithm in PTGC, some decisions had to be made about 
the states, observation symbols, and transition probabilities. These decisions are listed 
below. 

a .  

b. 

Every hidden state should produce one observation symbol. To achieve 
this, all the possible graphemic transcriptions of phonemes were coded 
as separate graphemic symbols (e.g., 7r and 7rTr are two different 
graphemic symbols even though they are both p r o n o u n c e d / p / ) .  

The transition probability matrix (A) should be biased to contain at least 
one occurrence for every transition and no zero elements. 

Consider first (a). According to the physical meaning given to the hidden states 
and the observation symbols of the HMM used, there cannot be hidden states (graph- 
emes) that do not produce an observable symbol (phoneme). This is only partially 
correct for natural languages including mute letters and diphthongs. To overcome 
this problem, the hidden-state alphabet and the observation-symbol alphabet should 
contain not only single characters (single graphemes or phonemes respectively) but 
also clusters. This way, it is guaranteed that there will be no case where a sequence of 
graphemes produces a sequence of phonemes of a different length. The rules for the 
segmentation of a phoneme string to a sequence of symbols conforming to the above 
condition are manually defined off-line according to the procedure presented below 
in an informal algorithmic language (Figure 1). 
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Let G = {gl, g2, ... gM} be the set of phonemes and 

P = {Pl, P2, ... PN} the set of graphemes of the language 

repeat 
Pt = Z 

for i=l to M 

Pt = Pt • phoneme_transcriptions_of 

end for 

P = PU Pt 

Gt = Z 

for i=l to N 

Gt = Gt U grapheme_transcriptions_of 

end for 

G = G u Gt 

until (Pt == Z and Gt == Z) 

(gi) 

(Pi) 

Figure 1 
Segmentation rule development algorithm. 

The meaning of this algorithm is the following: If a pair of phonemes is written 
as either a single grapheme or a pair of graphemes, then this pair is considered a 
single state. The same holds for the reverse procedure when a pair of graphemes is 
pronounced as either a single phoneme or a pair of phonemes. For example (in Greek): 

grapheme ~ is p ronounced /ks / e .g . ,  ¢4&-ksfdi 'vinegar' 

grapheme ~ is p r o n o u n c e d / k / e . g . ,  ~aA6-kald 'good' 

grapheme rT is p r o n o u n c e d / s / e . g . ,  c~c~O~-saff 'lucid' 

graphemes ~cr are p ronounced /ks / e . g . ,  ~¢~-c~cr~-4kstasi 'ecstasy' 

In this example the pair of p h o n e m e s / k s / i s  considered a single phonemic sym- 
bol. Accordingly, the pair "~cr" is also considered a single graphemic state since it 
is pronounced as /ks / .  As can be seen, in order to disambiguate the case of ~cr the 
phonemic s y m b o l / k s / a n d  the graphemic state ~cr must be introduced. 

This algorithm is the only language-specific part of the PTGC system and its for- 
mulation requires only familiarity with the spelling of the language and not sophisti- 
cated linguistic knowledge. The rules are incorporated in the PTGC system using an 
automated procedure as a separate input function that parses the input strings into 
states. 

Now consider (b), concerning the transition probability matrix. Matrix A is es- 
tablished according to formula (4) through training in appropriate corpora using as 
n'(x) = max(n(x), 1). The bias described in (b) is necessary so that the algorithm does 
not discard a new transition but instead assigns a bad score to it (Rabiner 1989). The 
bias is one occurrence for each transition that has never occurred in the training corpus 
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and the model is normalized so that it fulfills the statistical constraints, i.e.: 

o~ij >_ O, ~ o~ij = 1 (7) 
i 

This estimation is allowed since the training corpora are reasonably large and the 
bias of one occurrence per transition has no significant effect on the validity of the 
actually nonzero matrix elements. 

Initially, a system based on a first-order HMM was implemented,  and the results 
of its evaluation, detailed in Section 3, were promising. For Greek, this system gave an 
average score of 78% correctly transcribed words, while at the phoneme level the score 
reached 95.5% (Rentzepopoulos and Kokkinakis 1991). Similar rates were achieved 
in four other languages (English, French, German, and Italian) (Rentzepopoulos and 
Kokkinakis 1992). 

The model  implemented as above showed some disadvantages: 

• It did not have enough detail. 

• It could not produce more than one solution (homophones). 

Therefore, a higher-order HMM and a mult iple-output  conversion algorithm were 
employed in order to overcome these disadvantages and achieve better results. 

2.3 S e c o n d  Order  H M M  
Since the results of the first order HMM system were encouraging, we decided to 
develop an improved version of the system. Two areas were selected for possible 
advancement:  first, to make the system contain more detail in the model ing of the 
language, and second, to use a system that could produce more than one output  
solution for each phonemic input (homophones). This would  offer a choice between 
alternatives, making it possible to find the best solution at a following stage. 

The first improvement  was accomplished using a second-order HMM. This is a 
model  that contains conditional probabilities of the form: 

o~ijk = e ( q t  = sk [ q t_ l  = s j ,  qt_2 = s i )  (8) 

i.e., the probability of occurrence of state Sk when  the two previous states are Si and Sj 
at t - 2 and t - 1, respectively. The complete model needs a new matrix of conditional 
probabilities that contains the probability of state-pairs in time t = {1, 2}: 

p= {pij:i= l . . . N , j =  l . . .N} ,  pi j=P(ql=Silq2=Sj)  (9) 

So the complete model  3~ consists of {A, B, 7r, p}. The second-order HMM can be 
translated into a first-order HMM with an extended state space, in which state pairs 
are used as single states. 

To use the above model,  a new version of the Viterbi algorithm should be em- 
ployed, one which can recursively calculate the intermediate values of the probability 
measure d using the second-order HMM. A second-order HMM has been introduced 
before (Kriouile, Mari, and Haton 1990) for other problems in the field of pattern 
analysis and speech recognition. In He (1988) the Viterbi algorithm is presented for 
a second-order HMM using the transformation of the model  to a first-order with ex- 
tended state space. The algorithm that was developed here uses the features of the 
Viterbi algorithm in a slightly different way, tailored to the needs of the PTGC problem 
as described in Section 2.5. 
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2.4 Multiple-Output (N-best) Conversion Algorithm 
The Viterbi algorithm produces the overall best state sequence by maximizing the over- 
all probability P(O I Q). If the N best state sequences are needed, then the algorithm 
must be modified to keep the N best state' sequences from ql through qt. Schwartz and 
Austin (1991) and Schwartz and Chow (1990) present the N-best algorithm in detail. 
The following consideration is the basis of the multiple-output conversion algorithm: 

Let QE = {Ql(t), Q2(t),..., QE(t)} be the globally E best hidden-state 
sequences that end at state qt = Si at a given time t. By "best" we 
mean, as usual, those sequences having the highest probability. If one 
of the globally E best hidden-state sequences that starts at t = 1 and 
ends at t = T passes from state Si at time t then it must have one of 
the members of Qt E as part of the path from time 1 to t. 

To prove this, only the following assumptions are required: Qx(t) is a state se- 
quence that ends at time t at state Si; Qx(t) ¢~ QE; and Qx(t) is part of one of the 
E globally best hidden-state sequences. Clearly Qx(t) ~ QE ~=~ P(Qx(t)) < P(Qi(t)), 
Vi E 1. . .  E. The probability of the complete state sequence Qm(T) (1 < m _< E) which 
contains Qx(t) would be: 

P(Qm(T)) 
T 

T=2 

t T 

"~ 71"ql/~ql ( O l ) "  H OLq'-]qT~'(OT)" 1-'I OZq'r -- ]q'r ~q" (OT)  
r = 2  r = t + l  

T 

= P(QI(t)). I-I {2qr--lqrflq'r(OT) 
~-=t+l  

(lO) 

Since qt = Si, the underlined part of (10) is independent from P(Qx(t)). But 
P(Qx(t)) < P(Qi(t)), Vi E 1. . .E.  This means that there are at least E more paths 
leading to state Si at time t that are more probable than Qm (T), which is a path among 
the first E most probable paths; a contradictory statement. 

Summarizing, we have shown that we only need to keep the locally (at any time 
t in 1 . . .  T) E best paths as we go along the possible state sequences for every pos- 
sible state. When we arrive at the end, we only need to keep the E globally highest 
probabilities and trace back the states that resulted in these. 

2.5 Final system 
The final version of the conversion system uses the previously mentioned methods, 
i.e., the second-order HMM and the N-best version of the Viterbi algorithm along with 
a transformation that is necessary to speed up the execution of the conversion. 

The algorithm as described previously has many disadvantages for a PTGC system 
from the implementation point of view. The values of the parameters of the model are 
in the range of 100. This implies that, considering storage, we need to keep in memory 
100 x 100 x 100 double precision floating point numbers for matrix A along with the 
other data of the model and the algorithm. To be exact we need for: 

A: N 3 

B: N x M  

double precision floating point numbers 

double precision floating point numbers 
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7r: N 

p: N 2 

6: N 2 x E x T  

~ : N 2 x E x T  

double precision floating point numbers 

double precision floating point numbers 

double precision floating point numbers 

short integers 

(for the meaning of 6 and ~b see the algorithm presented in the 
Appendix). 

In the above, if we substitute the values of the Greek PTGC system (N=140, M=70, 
T=30, E=4) for the symbols, we can see that we need no less than 45,708,320 bytes for 
storing these data. Aside from the problem of storage, the computer has to execute 
the inner part of the second-order-multiple-output conversion algorithm N 3 x E x T/2 
times (the average length of a word is about T/2), i.e., 219,520,000 times per word. 
As is clear from the presentation of the algorithm, this part contains a rather time- 
consuming sorting procedure plus a floating point multiplication. It is obvious that 
this is an unacceptable time delay for real-time applications. 

To decrease the algorithm execution time and storage needs we introduced the 
following improvements: 

a .  

b. 

C. 

Taking advantage of the relative sparseness of matrix B, we first 
determine if Bj(t) is nonzero and only then does the algorithm proceed 
to the rest of the processing. This has decreased the execution time of the 
conversion by nearly 100 times. 

We do the same for matrix A. This means that if the indices (i,j, k) 
indicate a zero transition probability then the algorithm proceeds 
without trying to calculate the overall probability, thus eliminating a 
floating point multiplication. 

Since at every time point the intermediate variable d(t) is calculated only 
from d(t - 1) we keep only two copies of dij, one for t and one for t - 1. 

Finally, the fact that only multiplications are involved in the processing of the 
conversion algorithm led us to transform the algorithm to use only additions. In the 
Appendix, the algorithm we implemented is presented. 

3. Testing 

The proposed system has been tested and evaluated in two separate procedures: the 
training process and the conversion process. The training process has been performed 
using dictionaries that contain both the graphemic form and the phonemic form of 
words along with the frequency of occurrence of the words in the corpora that were 
used for the creation of the dictionary. The output of the training process was a file 
containing the model parameters (transition matrix, initial state probabilities, etc.). The 
conversion process has been performed using various portions of texts not included in 
the training texts, for which the phonemic form and the graphemic form were known. 
The phonemic form was converted into orthographic (graphemic) form using the al- 
gorithm and then compared with the original. To thoroughly test the performance of 
the system, a series of experiments was conducted. These experiments were designed 
so that the following set of factors could be examined: 
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• training and testing material domain: general, specialized, name 
directory 

• type of the phonetic form: correct phonemic strings, corrupted speech 

• language: Dutch, English, French, German, Greek, Italian, Spanish 

• conversion algorithrn version: first-/second-order HMM 

For each experiment the following figures were measured: 

• number of words converted correctly 

• number of phonemes converted correctly 

• rank of the correct word (for the multiple-output versions of the 
conversion algorithm) 

• time response 

• memory requirements 

Details about the factors presented above and the quantities that were measured 
are given below. 

3.1 Evaluation factors 
For all languages tested, the models were created using full-form dictionaries set up 
during the EEC ESPRIT project 291/860 "Linguistic Analysis of the European Lan- 
guages" (ESPRIT 1987) from corpora of about 300,000 words. These dictionaries cover 
three domains: office environment, newspapers, and law. The input to the conversion 
process was separate 10,000 word texts not included in the training dictionaries. The 
testing material was taken from the above domains. Furthermore, for Greek, two ad- 
ditional dictionaries of proper names provided by the ONOMASTICA (LRE 61004) 
project were used for training and testing the algorithm in a name directory environ- 
ment. This was done to get a more accurate indication of the system's performance in 
applications where a complete dictionary can never be available. 

A second set of training and testing material was created from the above using 
a phoneme confusion matrix that simulated the output of a speech recognizer. The 
confusion matrix relates the input (correct) with the output (corrupted) phonemes 
employing probabilities of the form mq = P ( O o u t  = Pj I O i n  ~- Pi). The texts used for the 
training and testing phase were corrupted according to these probabilities. Different 
confusion matrices were applied to show the degradation of the performance as a 
function of the input phonemic corruption. In Section 4.2, the two sets of results are 
presented and compared. 

Finally, one more experiment per language was performed using a first-order 
HMM, so that the ambiguity in each of the languages tested could be revealed and a 
comparison of the performance of the two HMM models could be made. 

3.2 Performance Criteria 
For every experiment carried out, the success rate of the conversion algorithm was 
measured for each output candidate (the system was asked to produce a maximum 
of four candidates if available) in two levels: 

a .  Errors at word (state sequence) level: The system counts one error for 
every phonemic word not converted correctly to its graphemic form. 
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b. Errors at symbol (state) level: The system counts one error for every 
graphemic symbol (unit grapheme) that does not match with the 
corresponding symbol of the correct graphemic transcription. 

As an example, if instead of the correct transcription of the Hellenic word/ t rap~zi /  
'table' to the graphemic form 9-pc~lrg~, the system produces 9-pc~Tr~/, this counts for 
one error per one word (i.e., 100% error) and for one error per seven symbols (or 
14.3% error). This distinction was made because the first error type (word error) is 
more important from the user's point of view, while the second type (symbol error) 
is a more objective measure of the performance of the system. 

In addition to these error types, the average symbol errors per incorrect word were 
counted. This is a measure of the quality of the system output since it shows whether 
an incorrect word is easily comprehensible or not. 

Another very important feature was also measured! the position in the output list 
of the correct candidate. The distribution of this variable is very important, so that 
decisions about the trade-off between speed and accuracy can be made. Finally, for 
each experiment, the amount of time and computer memory needed were counted, 
to get a measure of the applicability of the algorithm in real-time applications when 
using general- or special-purpose hardware. 

4. Results 

4.1 Explanation of tables and charts 
In all tables and charts some symbols have been used to designate the different param- 
eters of the experiments. More precisely, Exp n (n = 1, 2, 3) designates the experiment 
type as follows: 

Exp 1: uses a first-order HMM with correct phonemic representation of 
the input 

Exp 2: is like Exp 1 but uses a second order HMM 

Exp 3: is like Exp 2 but with corrupted phonemic representation 
simulating the output of a speech recognizer 

The letter combinations El, E2, and NE show the domain of the experiment: E1 
experiments use the office environment corpora for training and assessment, E2 the 
law corpora, NE the newspaper corpora. For the name corpus (Table 8) N1 shows 
experiments using a corpus of surnames and OD experiments using a corpus of street 
names. It must be noted that in all experiments the testing material was not included 
in the training of the model although it may belong to the same domain. 

In Tables 1 through 8 the model parameters for all the models created for the 
experiments mentioned above are presented. The columns show the density (i.e., 
the number of nonzero elements) of the respective model parameters (initial hidden- 
state probability vector ~r, initial hidden-state pair probability vector p, observation- 
symbol probability matrix B, and hidden-state transition probability matrix A). The 
values are percentages. The matrix density is a way of measuring the saturation of 
the model, that is, whether the model is sufficiently objective or is too dependent 
on the nature of the training material. One can see from these tables the impor- 
tant differences between the languages on which the experiments were performed. 
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Table I Table 2 
Model parameters for Dutch. Model parameters for English. 

lr p B A rr p B A 

E1 53.21 4.29 2.38 0.52 E1 61.46 5.02 6.05 0.50 
E2 39.45 2.48 1.46 0.22 E2 61.46 5.75 7.08 0.58 
NE 52.29 4.88 2.28 0.58 NE 65.63 8.72 9.41 1.19 

Table 3 Table 4 
Model parameters for French. Model parameters for German. 

rc p B A ~r p B A 

E1 57.79 4.43 3.11 0.21 E1 59.26 3.56 2.16 0.31 
E2 60.42 4.51 3.29 0.22 E2 62.96 4.00 2.34 0.37 
NE 64.02 5.02 3.36 0.32 NE 61.48 4.86 2.78 0.47 

Table 5 Table 6 
Model parameters for Greek. Model parameters for Italian. 

rr p B A 7r p B A 

E1 48.89 2.51 1.56 0.25 E1 82.00 10.00 3.10 2.38 
E2 55.56 3.28 1.61 0.33 E2 86.00 13.88 3.10 3.32 
NE 60.74 5.09 1.80 0.52 NE 70.00 9.84 2.78 1.99 

Table 7 Table 8 
Model parameters for Spanish. Model parameters for names. 

rc p B A rr p B A 

E1 64.286 5.329 1.83 0.661 N1 49.47 5.25 2.12 0.60 
E2 72.619 6.76 1.863 0.771 OD 64.21 10.15 2.87 1.78 
NE 65.476 6.08 1.775 0.706 

In Tables 9 to 17, a s u m m a r y  of the conversion results is presented for the three 
sets of exper iments  carried out. The columns have  the following meaning:  

d: 

l(s): 
l(w): 

1-2, etc: 

Is/lw x 100% where  lw is the size of a word  in error (in 
characters), Is is the n u m b e r  of incorrect characters in the word,  
and  Is/lw x 100% is the mean  value es t imated over  all wrong  
words.  This n u m b e r  is a measure  of the similarity of wrong  
words  with the corresponding correct words  (percentage). A 
small percentage indicates a high similarity. 
symbol  convers ion success rate for the first posi t ion (percentage). 
word  conversion success rate for the first posi t ion (percentage). 
word  conversion success rate accounting for all the referenced 
posit ions (percentage). 

Figures 2 through 10 give an analytic overv iew of the results in each language. 
The legends of these figures have  the form cc/n where  cc is a two letter code for the 
corpus  domain  ( E 1 / E 2 / N E / N 1 / O D ,  as described in the beginning of this section) and 
n is either 1 for a first-order mode l  or 2 for a second-order  model .  For example,  the 
legend E1/1 means  that text of the domain  E1 (office envi ronment)  was  used with  a 
first-order H M M  for the experiment .  
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Table 9 
Conversion results for Dutch. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 21.82 93.12 68.49 84.67 89.26 91.92 
Exp 2 18.80 98.00 87.62 96.29 97.27 97.60 
Exp 3 26.32 78.40 76.23 86.66 90.46 92.72 

Table 10 
Conversion results for English. 

d l(s) 1 1-2 1-3 1--4 

Exp 1 19.69 95.51 62.95 75.56 81.84 83.51 
Exp 2 16.96 97.60 74.53 86.50 88.10 89.14 
Exp 3 23.74 78.08 64.84 77.85 81.93 84.68 

Table 11 
Conversion results for French. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 16.99 96.02 64.23 79.24 82.25 83.70 
Exp 2 16.04 97.42 76.36 85.59 87.24 88.31 
Exp 3 22.46 77.94 66.43 77.03 81.13 83.90 

Table 12 
Conversion results for German. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 17.90 95.01 69.94 83.95 90.93 92.79 
Exp 2 15.42 97.34 82.81 96.11 97.89 99.05 
Exp 3 21.58 77.87 72.04 86.50 91.04 94.09 

Table 13 
Conversion results for German with no capital letters. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 17.40 95.27 72.77 86.93 91.50 93.27 
Exp 2 15.50 99.20 95.00 99.20 99.70 99.90 
Exp 3 21.70 79.36 82.65 89.28 92.72 94.91 

Table 14 
Conversion results for Greek. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 15.17 96.45 72.17 89.03 92.41 94.05 
Exp 2 14.32 97.70 85.80 96.17 98.02 99.23 
Exp 3 20.05 78.16 74.65 86.55 91.16 94.27 
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Table 15 
Conversion results for Italian. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 13.74 98.94 92.30 99.54 99.91 99.95 
Exp 2 13.67 99.83 98.30 99.95 99.99 100.00 
Exp 3 19.14 79.86 85.52 89.96 92.99 95.00 

Table 16 
Conversion results for Spanish. 

d l(s) 1 1-2 1-3 1--4 

Exp 1 15.49 97.89 86.39 96 .84  98.66 99.31 
Exp 2 14.37 98.98 93.03 96.59 99 .90  99.99 
Exp 3 20.11 79.18 80.94 86.93 92.91 94.99 

Table 17 
Conversion results for names. 

d l(s) 1 1-2 1-3 1-4 

Exp 1 12.30 96.24 69.36 83.16 89.39 92.33 
Exp 2 11.88 97.83 81.44 93.60 96.86 98.28 
Exp 3 16.63 78.26 70.85 84.24 90 .08  93.37 

In Figures 11 to 13, a summary for each type of experiment is shown in order to 
compare the performance between the languages. In Figure 14 the average number of 
times an output position is occupied is given for all the languages. Finally, in Figure 15, 
the degradation of performance as a function of the corrupted input words is shown. 
The differences in performance between the languages and the types of domains and 
models used are discussed in the following section. 

4.2 Comments on the Performance of the Proposed System 
One can initially observe the number of times the algorithm produced a word in 
each position 1 to 4 (Figure 14). This number decreases very fast from the first to 
the last position for most of the languages, which shows that the system does not 
produce extreme spellings of the input words (even though these may be allowed 
by the language). The second very interesting feature revealed in Tables 9 to 17 is 
that the improvement in the system's performance decreases rapidly from the first to 
the last position of the output, which means that the majority of correct suggestions is 
included in the first two positions. Column l(s) shows that the percentage of erroneous 
symbols is very small indeed, while column d shows that even though a word may be 
incorrect, only a small percentage of its symbols may be wrong (about 15% on average 
in Exp 2), which proves that the output of the algorithm is very easily human-readable 
even when it contains errors. 

The performance of the algorithm varied widely, depending on the language being 
tested. This is due to the differences in spelling in each language and, consequently, 
to the training the model required. As described in Section 3.1, the available material 
for training were 300k-word corpora for all languages. This amount was sufficient 
for some languages (Dutch, German, Italian, Greek, and Spanish) but insufficient for 
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Figure 3 
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Figure 4 
Overview of results for French. 
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Figure 5 
Overview of results for German. 
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Figure 6 
Overview of results for German (no capitals). 
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Overview of results for Greek. 
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Overview of results for Italian. 
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Figure 9 
Overview of results for Spanish. 
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Overview of results for names. 

others (English and French). A more detailed presentation of the algorithm's behavior 
in the languages tested follows. 

For Dutch, the model gives relatively good results (97.6% for four output candi- 
dates). Spelling in Dutch is rather straightforward for etymologically Dutch words, but 
words of foreign origin are usually spelled as in the lauguage of their origin. These 
words are responsible for most of the errors encountered. 

The model performed worse for English than for the other languages mainly be- 
cause the relationship between pronunciation and spelling is less regular. This resulted 
in fewer grapheme transitions in the training corpus and meant that the standard train- 
ing period was insufficient. Another problem is that compound words usually keep 
the initial pronunciation of their components (e.g., in words such as "whatsoever", 
"therefore", etc.); this leads to many errors for an algorithm like the one proposed 
here, which has no information about the origin and etymology of each word. Simi- 
lar work (Parfitt and Sharman 1991) shows the same problems in a slightly different 
context. Of course, more training of the model would improve performance. 

With French, there is a special problem, which does not occur with other languages: 
there exist many homophones that are distinguished only by the presence or absence 
of various mute letters at the ends of the words. This feature significantly increases the 
number of states that have to be defined. Consequently, the available training material 
was inadequate for the creation of a correct model, and led to poor performance. 

The model performed well with German. The only drawback was the decision 
about the type of the first letter (uppercase or lowercase); nouns always start with 
a capital letter while other words do not. This is the primary cause of the errors 
introduced in the experiments with German. Experiments ignoring this ambiguity 
significantly improved the German results as can be seen from a comparison of Figure 5 
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Degradation of output vs input corruption. 

and Figure 6. 
With Greek, the model behaved quite well, reaching more than 99% success for the 

second-order HMM experiments with up to four output candidates. Figure 7 illustrates 
the difference between the performance of Exp 1 and Exp 2 (order of model) in the 
first output position. These results are the consequence of two contradictory features 
of the Greek language: 

a .  

b. 

every grapheme is usually pronounced in the same way (i.e., 
corresponds to one phoneme), and 

every phoneme usually has more than one possible spellings regardless 
of its neighboring phonemes. 

As an example, the p h o n e m e / i / c a n  be transcribed as z, 7/, v, ¢z, and oz in almost 
any context (Petrounias 1984; Setatos 1974). Other problems arise from the consonants, 
which can be either single or double without any change in the pronunciation. 

Finally, the model gave extremely good results with Italian and Spanish, reaching 
more than 99% success for the second order model and up to two or three output 
candidates for known and unknown text experiments, respectively. This is because 
there is usually a one-to-one correspondence between phonemes and graphemes in 
these languages. 

Another dimension of the analysis of the results is the domain of the experiment. 
The model behaved best in experiments that used the newspaper corpora, which are 
more casual in style and richer in vocabulary than the other domains. These corpora 
usually contain more grapheme transitions, which give greater detail about the spelling 
mechanism of the language, and provide the most efficient training possible. The 
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experiments on the Name corpora resulted in lower scores than the corresponding 
experiments on the Hellenic general corpora reaching 92.3% for Exp 1, 98.3% for Exp 
2, and 93.4% for Exp 3 for four output candidates. The main difference in the success 
rate (Table 17) is due to the size of the training corpora (the training, especially with 
the street names, was inadequate) and to the fact that names are usually spelled or 
pronounced in a more arbitrary way than other words. 

Finally, as expected, the model performed worse in experiments using as input a 
simulation of a speech recognizer output (distorted speech) than in the corresponding 
experiments using a correct phonemic representation of the words. However, by mea- 
suring the ambiguity introduced by the speech recognizer output, it can be seen that 
the PTGC system in fact improved the performance of the overall system (recognizer 
simulator and PTGC). This was also expected, since in the training phase the model 
is trained using the correct graphemic form of the words, which is later reproduced 
in the conversion experiments. Evidently, the performance of the algorithm depends 
on the amount of distortion introduced in the input phonemic string. Figure 15 shows 
the degradation of the success rate of the algorithm as a function of the corruption of 
the input stream. The dashed lines refer to a first-order HMM experiment, while the 
solid lines refer to a second-order HMM experiment. The input degradation does not 
affect the overall system performance very much (in any of the four output positions) 
even when more than 85% of the input words have at least one incorrect phoneme. It 
must be noted that, in this case, about 30% of the input symbols (unit phonemes) have 
been replaced by erroneous ones but still the score of the first four positions remains 
above 98%. 

5. C o n c l u s i o n  

We have presented a system for phoneme-to-grapheme conversion (PTGC) at the word 
level that uses the principles of hidden Markov models to statistically correlate the 
graphemic forms to the phonemic forms of a natural language. A first- and second- 
order HMM have been created and the Viterbi and N-best algorithm have been used 
for the conversion. In the latter case, experimentation showed that no more than two 
solutions (output candidates) are necessary to produce the correct output with an 
accuracy higher than 96% for most of the languages the system was tested on. If four 
output candidates are allowed, then this rate reaches 97% to 100%. Moreover, it must 
be noted that the success rate of the system, although already good enough, can be 
further improved by better training on a larger corpus of selected texts. 

An important advantage of the system presented here, in comparison to rule- 
based or dictionary look-up systems, is that it produces only one (or at least very few) 
graphemic suggestions for each phonemic word. In the first case (one suggestion), no 
language model is needed to disambiguate potential homophones at sentence level. In 
the second case (a few suggestions), the execution speed of the system is substantially 
higher than in rule-based or dictionary-based systems, due to the small number of 
suggestions per word. The prototype system, which was implemented on a 486-based 
personal computer, responded at an average rate of one word per second for Exp 2 
(second-order HMM) and about ten times faster for Exp 1 (first-order model). The fact 
that the algorithm scans the input word linearly (once from the beginning to the end) 
means that it can work in parallel with other modules of speech recognition systems 
and produce output with a very short delay after the end of the input. 

Another advantage of this system is that it can work in any language in which 
the pronunciation of the words is statistically dependent only on their spelling. The 
only language-specific part of the system, i.e., the algorithm for the segmentation rule 
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definition, is straightforward and does not need any special linguistic knowledge but 
only familiarity with the target language to be processed. 

The system is not limited by any dictionary. This is a significant advantage in 
very large or unlimited dictionary applications. An implication of this property is 
that the system does not try to match the input utterance to the closest word (by 
some measure of distance) contained in the dictionary but rather tries to find its most 
probable spelling. In this sense, the output of the PTGC system never misleads the 
final human user about what the input was. 

Note also that the system is symmetric between the two forms of a natural lan- 
guage: graphemic and phonemic. This implies that without any modification, the al- 
gorithm can be used in the reverse order (i.e., for a grapheme-to-phoneme conversion 
system, widely used in text-to-speech [or speech synthesis] systems) by just inter- 
changing the phonemic with the graphemic data of the training procedure. 

Last but not least, the fact that the system is not rule based but uses an algorithm 
based on probabilities makes it possible to implement the system in hardware, result- 
ing in a system adaptable to any real-time speech recognition system. As can be seen 
in the equations of the appendix the algorithm is highly parallel since the values of 
djk(t) are independently computed from the values of dij(t - 1); this means that these 
calculations can be performed concurrently. In this manner, the response time of the 
complete algorithm can be proportional to N 2 rather than to N 3, yielding a system 
that can serve as a module for any real-time speech recognition system. 

In conclusion, the proposed method has the following advantages: 

• It is language independent, making it adaptable it to any language with 
little effort. 

• It does not need a dictionary and thus is free of any restrictions. 

• It gives only one or very few transcriptions per word. 

• It can be implemented in hardware and serve in real-time speech 
recognition systems. 

Appendix: Implementation Notes 

The fact that only multiplications are involved in the processing of the conversion 
algorithm led us to convert the algorithm to use only additions. Instead of using 
probabilities, we used their negative logarithm, thus yielding distances. This trans- 
formation offers two advantages: First, a four-byte integer representation is used for 
each number instead of a ten-byte floating point representation, without any loss of 
accuracy, thus reducing memory requirements. Second, a substantial increase in pro- 
cessing speed is achieved, since the fixed point addition is faster than floating point 
multiplication. 

Clearly, since the probability P is a number between 0 and 1, - l o g ( P )  is a number 
in the range 0 . . .  ec. In order to reduce computation, one of the two library-supplied 
logarithm functions had to be used, i.e., log10 or log e. It can easily be seen that if a > b, 
then - loga(P ) < -lOgb(P ). For this reason the natural logarithms (base e = 2.71828) 
were chosen instead of decimal logarithms. 

To benefit from the above transformation, a fixed point arithmetic should be used 
(floating point addition is as troublesome as floating point multiplication if not more). 
At this point, we had to make decisions taking into account implementation-specific 
parameters. The system was implemented using the C programming language on 
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a 486-based computer in protected mode, thus exploiting its full 32-bit architecture. 
The probabilities are first calculated using the greatest available floating point rep- 
resentation, which is 80 bits for a long double floating point number. The small- 
est nonzero value of P in this representation (and effectively its best resolution) is 
3.4 x 10 -4932 corresponding to the greatest value of - log(P), which is 11,355.126. An 
unsigned long integer has a 32-bit dynamic range, which results in a max imum value 
of  2 32 = 4, 294, 967, 295. Since for every state we need to add two distances, one from 
matrix A and one from matrix B, we must  be sure that there will be no overflow 
after all the additions that must  be made for each word. The system as tested uses a 
maximum number  of 30 states per word, a constant that has not yet been surpassed 
by any word in all the languages in which it was tested. This means that the max- 
imum distance value must  be 232/60 = 71,582, 788, which results in a scaling factor 
f = 71,582,788/11,355.126 = 63, 040. By mult iplying every distance with this factor 
and truncating it to its integral part, it is guaranteed that there will be no overflow 
in the execution of the Viterbi algorithm. This fact allows the elimination of code 
that would  check for overflow during the algorithm, resulting in a much  faster code. 
For reference, the complete algorithm converted to work with logarithms (as it was 
implemented) is presented below: 

Let a t, fl!, 7r' and p' be the HMM parameters after the above transformation and 
normalization (e.g., alj k = f .  Lloge(aijk)J where f ( =  63, 040) is the factor that was used to 
facilitate fixed point arithmetic). Then we inductively compute the locally min imum 
distance 6 ! and the path ~ as follows: 

Initialization 

! ! 6'~(2) = 7r i + Pij + fl;(O1) q- f l ; (02)" 1 <_ i , j  <_ N (11) 

6'e(2~ijk, = 232, 1 < i, j < N (12) 
2 < e < E  

w/B ,~/''et2~ = 0, 1 _< i, j _< N (13) 
2 < e < E  

Recursion (2 < t < T): 

! 

6;k(t + 1) = m/in *(6;j(t) + aljk) + fl~k(Ot+l) 1 <_ i , j  <_ N (14) 

~;k(t + 1) = arg rain *(6[j(t) + aljk) 
I 

Sequence backtracking: 

1 < i,j <_ N (15) 

- . ! 

d * = m m  6ij(T ), l <_ i,j < N (16) 
zj 

(qT--l,qv) = arg m i n  *dlj(T ), 1 G i,j G N (17) 
q 

,e I 1 < t < T - 2 qe t 
= ~b q,+lq,+2 1 K e < E (18) 

K 

where d* is a vector containing the E min imum distance values that correspond to 
the E state sequences Qe = {qt}, t = 1 . . .  T, e = 1 . . .  E, which are returned as the best 
(most probable) state sequences. 
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