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Prosodic phrase structure provides important information for the understanding and naturalness 
of synthetic speech, and a good model of prosodic phrases has applications in both speech synthesis 
and speech understanding. This work describes a statistical model of an embedded hierarchy of 
prosodic phrase structure, motivated by results in linguistic theory. Each level of the hierarchy is 
modeled as a sequence of subunits at the next level, with the lowest level of the hierarchy repre- 
senting factors such as syntactic branching and prosodic constituent length using a binary tree 
classification. A maximum likelihood solution for parameter estimation is presented, allowing 
automatic training of different speaking styles. For predicting prosodic phrase breaks from text, 
a dynamic programming algorithm is given for finding the maximum probability prosodic parse. 
Experimental results on a corpus of radio news demonstrate a high rate of success for predict- 
ing major and minor phrase boundaries from text without syntactic information (81% correct 
prediction with 4% false prediction). 

1. Introduction 

Prosodic phrase structure plays a role in both naturalness and intelligibility of speech. 
For example, prosodic phrase boundaries break the flow of a sentence, dividing it into 
smaller units for easier processing. In addition, researchers have shown that prosodic 
phrase break placement is important in syntactic disambiguation (Lehiste 1973; Price, 
Ostendorf, Shattuck-Hufnagel, and Fong 1991). For these reasons, computational mod- 
eling of prosodic phrases is important both for text-to-speech synthesis and speech 
understanding applications. In this work, we present a computational model that rep- 
resents a hierarchy of prosodic constituents using a stochastic formalism to capture the 
natural variability allowable in prosodic phrasing. The model is useful for both anal- 
ysis and synthesis applications; we focus on synthesis here, and present experimental 
results for predicting prosodic phrase structure from text. 

Prosodic phrase structure, or groupings of words in a sentence, can be equiva- 
lently represented by different phrase break markers. The location and relative size 
of these breaks define the prosodic phrase structure, which we will refer to here as 
a prosodic parse. Prosodic phrase breaks are discrete events that are associated with 
acoustic cues such as duration lengthening, pause insertion, and intonation markers. 
In this work, we are concerned only with the relationship between the abstract events 
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(different levels of phrase breaks) and text. To be useful in synthesis or understanding 
applications, the results presented here need to be integrated with a component that 
models the acoustics associated with these abstract events (see, for example, Hirose 
and Fujisaki 1982). 

Several observations about prosodic phrase breaks raise issues to be considered 
in designing an algorithm to predict such breaks from text. First, there is a signifi- 
cant body of literature in linguistics concerning various hierarchies that specify the 
relationship among prosodic constituents, and the model should reflect this structure. 
Second, several different prosodic parses may all be acceptable for one sentence. This 
variability is particularly important to represent if the model is to be useful for anal- 
ysis as well as synthesis. Third, prosodic phrase breaks do not always coincide with 
syntactic phrase boundaries, and the relationship between prosody and syntax is not 
well understood. This means that prosodic phrases cannot simply be predicted from 
syntactic structure. Finally, since most text-to-speech synthesis applications require a 
low cost implementation, there is the concern of computational complexity. We shall 
expand on these points separately below, to motivate the work described here. 

The various linguistic theories of prosodic phrase structure (e.g., Liberman and 
Prince 1977; Selkirk 1980, 1984; Beckman and Pierrehumbert 1986; Nespor and Vogel 
1983; Ladd 1986) differ in the specific levels that they represent, but all have a similar 
hierarchical structure. Two levels of prosodic phrases are common to most propos- 
als: the intonational phrase and the intermediate phrase, using the terminology of 
Beckman and Pierrehumbert. A sentence is composed of a sequence of intonational 
phrases, which in turn are composed of sequences of intermediate phrases. An in- 
tonational phrase break is therefore perceived as stronger or more salient than an 
intermediate phrase break. Intonational phrases are delimited by boundary tones, and 
intermediate phrases are theoretically marked with a phrase accent, where the pitch 
markers can be either high or low (Beckman and Pierrehumbert 1986). (In other the- 
ories of intonation, for example, t'Hart, Collier, and Cohen [1990], pitch markers also 
occur at phrase boundaries, but are identified with movement and referred to as either 
rising or falling.) Both types of constituents are also cued by segmental lengthening in 
the phrase final syllable (Wightman, Shattuck-Hufnagel, Ostendorf, and Price 1992). 
Since intonational and intermediate phrases are generally accepted, the experiments 
here will only address these two levels, referring to them as major and minor phrases, 
respectively. However, other types of prosodic constituents may be useful and, in fact, 
there is durational evidence for at least four levels (Wightman, Shattuck-Hufnagel, Os- 
tendorf, and Price 1991; Ladd and Campbell 1991). We therefore propose a more gen- 
eral hierarchical model that can be extended to an arbitrary, but fixed, number of levels. 

In the examples given here, we will represent intonational phrases (I) using "] I" to 
mark a major break and intermediate phrases (i) using "1" to mark a minor break. The 
example below illustrates how phrase breaks are used to represent prosodic phrase 
structure: 

Those on early release ] must check in with correction officials II 
fifty times a week II according to Ash, II 
who says about half I the contacts for a select group II 
will now be made I by the computerized phone calls. [I 

((Those on early release)i (must check in with correction officials)i)i 
((fifty times a week)i)i ((according to Ash,)i)I 
((who says about half)i (the contacts for a select group)i)~ 
((will now be made)i (by the computerized phone calls.)i)~ 
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Another important consideration in modeling prosody (and evaluating the model) 
is that prosodic phrase structure is not deterministic. Speakers can produce a sentence 
in several ways without altering the naturalness or the meaning. Prosodic breaks can 
differ in size and /or  placement because of differences in style, competence, or simply 
natural speaking variations. For example, the following sentence was said three ways 
by five speakers: 

They're in jail I] for such things ]l as bad checks or stealing. 
They're in jail ]for such things I as bad checks I or stealing. 
They're in jail I I for such things as bad checks I or stealing. 

Although deterministic rules can be used to predict phrase breaks for speech syn- 
thesis applications, such a model will be limited in its usefulness in speech analysis. 
In addition, speech synthesis might be more natural if variability is included in the 
model. Here, a stochastic model is used to represent the natural variability in prosodic 
structure by deriving probabilities of phrase breaks, rather than predicting locations 
of phrase breaks by rule. 

The relationship between prosody and syntax is not fully understood, though it 
is generally accepted that there is such a relationship. For example, relatively higher 
syntactic attachment usually corresponds to relatively larger prosodic breaks, but there 
are many exceptions, as in: 

[[Mary]np lwas amazed [Ann Dewey was angry]s']vp]s 

which was produced by four speakers as 

Mary was amazed I I Ann Dewey was angry. 

In an analysis of the London-Lund corpus, Altenberg (1987) finds relative frequencies 
that describe the correspondence between prosodic constituents (tone units) and dif- 
ferent syntactic units. This data supports the use of a probabilistic model, which also 
has an advantage in that it can be trained automatically, facilitating representation of 
a wide variety of speaking styles and allowing a means of discovering syntax-prosody 
relationships from a large corpus. One reason that the mapping between syntax and 
prosody is not simple is because, in speech, the constraints of syntactic structure and 
phrase length are balanced to produce a regular, roughly equal, sequence of prosodic 
phrases (Gee and Grosjean 1983). Consequently, we include constituent length as a 
factor in the model. 

The cost of obtaining a full and accurate syntactic parse can be high, which presents 
difficulties for text-to-speech synthesis systems. In addition, a full syntactic parse may 
not be necessary for predicting prosodic phrases, since prosody is not directly related to 
syntax. Consequently, we investigate computation/performance trade-offs associated 
with using a skeletal syntactic parse vs. simple part-of-speech (POS) assignments. 

To summarize, the model proposed here addresses several issues in modeling 
prosodic phrase structure. The model is a general formalism for an embedded hier- 
archy, which we specifically apply to represent sentences, major phrases, and minor 
phrases. In order to account for the allowable variability in prosodic parsing, the model 
is probabilistic. The structure of the model allows use of grammatical information such 
as part-of-speech labels, syntactic structure and constituent length, but the specific pa- 
rameters are trained automatically. Finally, computational complexity trade-offs are 
investigated by evaluating the algorithm with and without syntactic cues. 
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The remainder of the paper is organized as follows. We begin, in Section 2, by 
discussing past work in predicting prosodic phrase breaks from text for speech syn- 
thesis. In Section 3, we introduce the probabilistic formalism of the hierarchical model 
and outline the implementation: text pre-processing, parameter estimation, and phrase 
break prediction using a dynamic programming algorithm to obtain the most likely 
prosodic parse. In Section 4, we present experimental results for prediction of major 
and minor prosodic phrase breaks based on a corpus of FM radio news stories. Finally, 
we conclude in Section 5 by discussing possible implications and extensions of these 
results. 

2. Previous Work 

Initial attempts to incorporate prosody in speech synthesis involved determining into- 
nation and duration patterns as a function of syntactic phrase structure (Allen, Hunni- 
cutt, Carlson, and Granstrom 1979; Allen, Hunnicutt, and Klatt 1987), which requires 
syntactic parsing. More recently, researchers have attempted to address the fact that 
prosody and syntax are not directly related by explicitly predicting prosodic phrase 
boundaries rather than using syntactic clause boundaries. An important difference be- 
tween these subsequent approaches is in the amount of syntactic information used to 
predict prosodic boundaries. The algorithms reflect different assumptions about the 
relationship between prosody and syntax, as well as different levels of computational 
complexity. Clearly, a greater use of syntactic information will require more computa- 
tion for finding a more detailed syntactic parse. 

One approach is based on the idea that a prosodic parse may not require a full 
syntactic parse and that detailed part-of-speech information (e.g., noun, verb, deter- 
miner) may not be necessary for generating a prosodic parse. Sorin, Larreur, and Llorca 
(1987) proposed a simple prosodic parser for French based on content/function word 
classification to determine prosodic constituents referred to as prosodic groups. The 
length and relative location of these prosodic groups is then used to determine phrase 
break locations that are marked with a pause. Our earlier work drew on this scheme 
for predicting phrase boundaries in English: a Markov model was developed to pre- 
dict phrase breaks by representing the sequence of prosodic groups and breaks as a 
Markov chain (Veilleux, Ostendorf, Price, and Shattuck-Hufnagel 1990). An advantage 
of these approaches is that they only require a small dictionary of function words to as- 
sign part-of-speech labels. Motivated by similar principles and using only a 300-word 
dictionary, O'Shaughnessy (1989) proposes a somewhat more sophisticated parser for 
English based on function word identification, number agreement, and suffix identi- 
fication. O'Shaughnessy's work differs from the other approaches in that his goal is a 
syntactic parse, though not complete, and he does not address the issue of differences 
between prosody and syntax. 

At the other end of the spectrum are approaches based on the hypothesis that 
prosodic phrase boundaries can be predicted by rule from a full syntactic parse. Gee 
and Grosjean (1983) developed a rule-based system, called the Phi Algorithm, to pre- 
dict psycholinguistic "performance structures" that are represented by assigning an 
integer number corresponding to boundary salience between each pair of words. Con- 
stituent length information is incorporated primarily through the application of their 
verb balancing rule, which splits the verb phrase and groups the verb with either the 
previous or subsequent material, subject to syntactic constraints. Gee and Grosjean 
developed their Phi Algorithm only to predict performance structures. However, their 
work has been extended to prosodic phrase prediction for speech synthesis applica- 
tions by Bachenko and Fitzpatrick (1990), who explicitly find prosodic phrase breaks 
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from derived boundary salience indices. They relax many of the constraints on the 
use of the verb rule and propose a Verb Adjacency Rule, so their algorithm requires 
a fairly detailed parse, although not a complete one. One of the relaxed constraints 
obviates the need for clause information. Altenberg (1987) has also proposed an algo- 
rithm for prediction of phrase boundary locations (specifically, tone unit boundaries 
for British English) by rule from syntactic structure and semantic information. How- 
ever, the detailed information required for the algorithm cannot currently be acquired 
automatically from text. 

Departing from these approaches, Wang and Hirschberg (1992) have recently used 
binary decision trees to predict the presence or absence of a prosodic break at each 
word boundary in a sentence. They consider a range of input variables, including text- 
derived information such as detailed POS labels and syntactic constituent structure, 
and in some experiments, acoustic information. POS labels were given by Church's 
tagger (Church 1988) and syntactic constituents by Hindle's parser (Hindle 1987). The 
acoustic information (previous boundary location, pitch accent location, and phrase 
duration), which was based on hand-labeled prosodic markers, did not improve per- 
formance but resulted in a much smaller tree for prediction. 

All of these approaches have influenced the model proposed here. For example, we 
investigate simple content/function word POS assignment, as in Sorin, Larreur, and 
Llorca (1987). Like Wang and Hirschberg (1992), we use decision trees to automatically 
determine the important factors influencing phrase break location. In addition, all of 
the above works have influenced the choice of factors and questions incorporated 
in the decision tree. Two important differences in our approach include a stochastic 
model to capture variability and an explicit representation of a linguistically motivated 
hierarchy. Of course, whether it is effective and/or  efficient for a computational model 
to reflect a linguistic hierarchy is an empirical question. 

3. Hierarchical Model of Prosodic Phrases 

A prosodic parse of a sentence can be represented by a sequence of break indices, one 
index following each word, which code the level of bracketing or attachment in a tree. 
A prosodic parse S is therefore given by 

S = (bl,b2,...,bL), 

where bi is the break index after the ith word and L is the number of words in the 
sentence. A break is a random variable that can take on one of a finite number of 
values from "no break" (orthographic word boundary, but not a prosodic constituent 
boundary) to "sentence boundary," where the values form an ordered set that corre- 
spond to the different levels of the hierarchy. Below we consider a stochastic model 
for first a general hierarchical prosodic parse (any specified number of levels), and 
then specifically for the three-level case that models a sentence as a sequence of major 
phrases, which are in turn modeled as a sequence of minor phrases. Although most 
phonological theories do not recognize the "sentence" as a unit, it is useful for both 
synthesis and recognition applications to model sentences separately, as sentence-final 
boundaries tend to be acoustically different from sentence-internal boundaries (e.g., a 
low boundary tone is much more likely). 1 

1 We have chosen to use the term "sentence" rather than the more general term "utterance," since the 
algorithm is designed to predict boundaries from text that in our data and in many applications 
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We will begin by presenting the mathematical structure, first generally and then 
specifically as a three-level embedded hierarchy. Next, some pragmatic details of text 
processing are discussed, followed by a description of the parameter estimation and 
phrase break prediction algorithms. 

3.1 Stochastic Model 
We assume the relationship between units and subunits will hold at any level of the 
hierarchy. Therefore, in describing the general case, we need only consider one level of 
embedding and will use Ui and Uq when referring to units and subunits, respectively, 
at some unspecified level of the hierarchy. Using this notation, the probability of a unit 
Ui is parameterized in terms of the probability of the sequence of subunits uq (on the 
next lower level) and the length ni in subunits of that sequence given the orthographic 
transcription of the sentence W: 

p(Ui]W) = p(uit~...,Uini]'lA2) 
= p(ua,...,Uini[W, ni)p(ni]¥V) 

ni 

= p(nilW)p(uit ]W) H p(uij[W, Uil , . . . ,  ui(j_l)). 
j=2 

The specific hierarchy considered here involves representing the prosodic parse of 
a sentence S as an N-length sequence of major phrases Mi: 

S = (Mt, . . . ,MN).  

A major phrase Mi is composed of a ni-length sequence of minor phrases mij: 

Mi = (mil, . • • , m i n i ) .  

Finally, a minor phrase mq is composed of a v/j-length sequence of breaks bt starting 
at time t(i,j) and ending at time t(i,j + 1) - 1, 

mq = ( b t ( i , j ) , .  . . ~ bt(i,j+l)-l), 

where t(i,j) is the time index of the first word of mij and t(i,j + 1) - 1  is the time index 
of the final word of mq, vii = t(i,j + 1) - t(i,j) is simply the number of words in the 
minor phrase, and the breaks bt take on values from the set {no break, minor break, 
major break, sentence break}. 

It might be useful to consider phonological words rather than orthographic words 
as possible sites for break indices. This could be accomplished, without using de- 
terministic rules, by specifying the bottom of the hierarchy (e.g., break level 0) to 
represent locations internal to a phonological word and the next level of the hierar- 
chy (e.g., break level 1) to represent phonological word boundaries. However, it is 
controversial as to whether phonological words can be larger or smaller than ortho- 
graphic (lexical) words (Booij 1983; Nespor and Vogel 1983), so it is not clear how the 
lowest level should be defined relative to the orthographic words. In this work, we 
have chosen not to distinguish between these two levels, to reduce the complexity 
of implementation and performance evaluation. For similar reasons, we have limited 

comprises syntactically well-formed sentences. The phrase prediction model may also be useful in 
speech recognition applications, in which case the term "utterance" would clearly be more appropriate. 
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Table 1 
Histograms of number of minor phrases in a major phrase and number of major phrases in a 
sentence, as a function of quantized length of the unit. The quantizer regions are indicated by 
the length ranges. 

Number of minor phrases in major phrase Number of major phrases in sentence 

e(M) 1 2 3 4 5 ~(S) 1 2 3 4 5 6 

1-5 522 69 2 1-14 31 39 11 2 1 
6-7 106 78 9 15-21 4 23 28 17 9 5 
8-14 61 107 43 1 22-31 6 6 20 24 11 
15-19 2 2 1 1 32-37 2 6 4 

this study to the more universally agreed-upon levels of major and minor prosodic 
phrases, although there is durational evidence that a more detailed hierarchy would 
be useful (Ladd and Campbell 1991; Wightman, Shattuck-Hufnagel, Ostendorf, and 
Price 1992). 

In the current work, we make several simplifying assumptions due to training 
limitations. First, the probability of the number of subunits in a unit p(nilUi) is assumed 
to depend only on the number of words in the unit f(Ui). As is not surprising, our data 
indicate that units that span a larger number of words tend to comprise more subunits. 
Altenberg has noticed similar tendencies in the London-Lund corpus (Altenberg 1987, 
p. 81). (Alternatively, it has been suggested that either phonological word count or 
stressed syllable count rather than orthographic word count may be a useful measure 
of phrase length on the lowest level [Bachenko and Fitzpatrick 1990].) In addition, 
the probability distribution is approximated by conditioning on quantized lengths 
Qu(~(Ui)). The quantizer varies as a function of the specific unit and is designed 
using a regression tree (Breiman, Friedman, Olshen, and Stone 1984). A regression 
tree partitions the data along intervals of a continuous variable, in this case length of 
the unit, to decrease variance of the response variable, the number of subunits in the 
unit. The resulting quantizer regions and the corresponding distribution of subunits 
in a unit are given in Table 1 for major phrase and sentence units. 

Using these simplifying assumptions, the constituent length probability distribu- 
tions are then: 

p(N]W) = qs(NlL) (1) 

p(niJW) -- qa(nilli) (2) 

p(~ij]W) = qm(~jlAij) (3) 

where L = Qs(£(S)), 1i = QM(f(Mi)) and Aij = Qm(f(mij)). 
Next, major phrases in a sequence are assumed to be Markov given the number 

in the sequence: 

p(Mi]W, M1, . . .~Mi_i)  = p(MilW, Mi_l). 

Minor phrases are also assumed to be Markov, depending only on the previous minor 
phrase and the features of the major phrase it is contained in: 

p(mij]Wi, rail , . . . ,  miO._l ),Mi-1) = p(rnijIWi, mi(j-1)) 

p(mil]Wi, Mi-1) -- p(mil]Wi~m(i_l)ni_l)~ 

where Wi is the sequence of feature vectors spanning the ith major phrase. For sim- 
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plicity, we will abbreviate the notation to: 

p(mi jJVVi~  mi l~  . . . ~ m i ( j - 1 ) ~ M i - 1 )  = p(mijlVVi~ mprev). 

The conditional probability of a sequence of words within a minor phrase is assumed 
to depend on a state determined by the (variable-length) sequence of past words and 
the time of the last break, where the state is given by a decision tree as in Bahl, Brown, 
deSouza, and Mercer (1989): 

p ( b k l W i ~  bt(i,j)~ . . . ~ b k - l  ~ mprev ) = p ( b k l f  ( W i ~  mprev ) ). 

Note that within a minor phrase, probabilities for only two cases, that of no break or 
that of any higher level break index, are used. 

Incorporating all of the above simplifying assumptions, the probability of a specific 
prosodic parse is given by 

N 

p(SIW ) = qs(NIn ) Hp(MilW~Mi_i), (4) 
i=1 

ni 

p(Mi]W, Mi-1) = qM(nilli) I I  P(mijlWi~mprev)~ (5) 
j = l  

t ( i j )+v i j -1  

p(mijlWi,mprev) = qm(vijl&ij) I I  p(bklf(Wi~mp rev))" (6) 
k=t(i,j) 

W used in this model is not simply the orthographic word sequence. Rather, it is a 
sequence of feature vectors, one per word extracted from the word sequence. Examples 
of possible features include part-of-speech labels and syntactic information such as 
bracketing labels or labels of an associated node in a syntactic tree. The decision tree 
f(Wi~ mprev) used in determining the probabilities p(bklf(Wi, mpre~;)) includes questions 
based on these features, attributes of the previous minor phrase and the current major 
phrase, and length in words of the sentence. Details on our specific choice of features 
and questions is given in Section 4. 

Our use of decision trees is different from the phrase break detection algorithm 
of Wang and Hirschberg (1992), although the tree design algorithm and choice of 
features is similar. The tree is not used to classify phrase breaks directly; instead it is 
used to determine the probability of the occurrence of a minor break at some location, 
conditioned on the decision tree structure. This probability is used to represent the 
lowest level in the hierarchical model. 

Previously, we mentioned two important factors affecting the placement of phrase 
breaks: (1) grammatical structure and (2) length constraints on the prosodic con- 
stituents such as overall length and length relative to neighboring phrases. Gram- 
matical information is incorporated in the tree f(Wi~mprev) through questions about 
the feature sequence Wi. Prosodic constituent length is modeled in two ways, through 
the constituent length probability distributions and through questions about the length 
of the previous phrase used in the tree f(Wi~ mpr~v). 

3.2 Text Processing 
In the experiments reported here, the feature vectors include part-of-speech labels, 
punctuation and, optionally, information from a skeletal syntactic parse. The feature 
extraction is described in more detail below, and an example is given in Figure 1. 

Two levels of detail are considered for part-of-speech (POS) labeling. At the sim- 
plest level, a function word table look-up is used to categorize words either as one of 
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word # in sent. 
word class 
part-of-speech 
punctuation 
left dominated 
right dominated 
both dominated 
# init. constit. 
# term. constit. 

[VP is [AP free [PP on [NP bail]] [PP after [NP [VP facing ... 

5 6 7 8 9 
v c p c p 
v adj p noun p 

none none none none none 
same same same PP same 
AP PP NP PP NP 
VP AP PP AP PP 

1 1 1 1 2 
0 0 0 2 0 

10 
C 

verb 
none 

Figure 1 
Seven features are extracted for each word in a sentence to describe the boundary between 

that word and the following word. Syntactic information is based on a skeletal parse, as 
shown. Part=of-speech assignment is based on a table look-up from lists of function words. 

six types of function words ,  as a p roper  name  (P) if capitalized, or o therwise  as a con- 
tent word  (c). Function words  are d iv ided into several  classes: conjunctions (j) (such as 
and, but, if, because), auxiliary verbs and modals  (v), de terminers  (d), preposi t ions  (p), 
p ronouns  (n), and  a general  category (g), which includes the quantifiers and  function- 
like adverbs  such as not, no, ever, now. The POS labels given by  the s imple table look-up 
are referred to here as "word  classes." A more  detailed par t -of-speech classification is 
given by  Penn Treebank POS tags (Marcus and  Santorini 1993), which were  obtained 
automatical ly  using the BBN tagger  (Meteer, Schwartz,  and  Weischedel 1991). What  
we  refer to here as POS labels is actually a g roup ing  of these classes that includes 
the above  function word  categories, the p roper  name  category (now de te rmined  by  
the tagger  rather  than f rom capitalization), plus categories for particles (pa), nouns  
(noun), verbs  (verb), adjectives (adj), adverbs  (adv), and  all other content  words  (def). 

Contract ions are not decomposed  into separate  words ,  since it is not possible that  
a phrase  break will occur within the word  contraction. The contraction is treated as a 
single word  in consti tuent  length measures  and  feature extraction, and  it is ass igned 
the POS label of its base word  (left component) .  

Punctuat ion following a word  is incorporated as a feature for that word.  In our  
data, the only punctua t ion  that appears  are com mas  and periods.  Periods and  other  
sentence-final punc tua t ion  determinist ically assign a sentence break. This implies some 
text preprocess ing that dist inguishes per iods used for abbreviat ion f rom sentence-final 
periods.  While comma s  often cor respond to major  breaks, there is a systematic excep- 
tion: a series of the same syntactic units such as a series of nouns  (an apple, an orange, 
and a pear) or a series of adjectives (safe, cost-effective alternative ...) m a y  or m a y  not  be 
associated with a major  prosodic break. Therefore, we  have  chosen to use c o m m a s  as a 
feature to de te rmine  the likelihood of a phrase  break rather  than as a determinist ic  cue 
to a prosodic  break. Al though using com m as  determinist ically to assign a major  phrase  
bounda ry  yields better  per formance  on our  test set than using c o m m a s  as a feature, 
we  felt that using c o m m a s  as a feature was  a more  extensible approach,  and  have  used 
this s t ra tegy in the results repor ted  here. Including c o m m a s  as a feature does improve  
per formance  relative to not using commas ,  as will be discussed in Section 4. C o m m a s  
(and other punctuat ion)  can be very  useful  for prosodic b o u n d a r y  predict ion w h e n  
they are available, and they are used  in other a lgori thms (e.g., Allen, Hunnicut t ,  and  
Klatt  1987; O 'Shaughnessy  1989; Bachenko and Fitzpatrick 1990). However ,  c o m m a s  
are not reliably transcribed f rom spoken  language and  not consistently used  in wri t ten 
text, so it is impor tan t  that  the a lgor i thm not depend  too heavi ly on commas .  
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Syntactic features were extracted from skeletal parses provided through a prelim- 
inary version of the Penn Treebank Corpus. Since these are hand-corrected parses, the 
results are indicative of the performance possible using syntactic information, but do 
not reflect performance achievable with an existing parser. Several researchers have 
investigated the relationship between prosody and syntax (e.g., Selkirk 1984; Gee and 
Grosjean 1983; Cooper and Paccia-Cooper 1980; Altenberg 1987). Our features have 
been motivated by some of these results, which suggest that some syntactic con- 
stituents are more likely to be separated by a phrase break than others. However, 
we have chosen to let the important constituents be determined automatically, similar 
to Wang and Hirschberg (1992), rather than by rule. One feature is the highest syn- 
tactic constituent dominating the left word but not dominating the right word, which 
describes potential locations for phrase breaks after a specific syntactic constituent. We 
also consider the similar case, the highest syntactic constituent dominating the right 
word but not the left, to allow for prosodic phrase breaks that may be associated with 
the beginning of a syntactic constituent. The lowest syntactic constituent that domi- 
nates both words is a feature that will provide information about which constituents 
are not likely to be divided by a phrase break. In addition, the number of terminat- 
ing constituents and the number of initiating constituents between the two words 
were included as features to investigate the influence of relative strength of syntac- 
tic attachment. Eight categories of syntactic constituent were used: sentence (S), noun 
phrase (NP), verb phrase (VP), prepositional phrase (PP), wh-noun phrase (WHNP), 
adjective or adverbial phrase (AP), any other constituent (O), and both words in the 
same lowest level constituent (same). 

3.3 Parameter Estimation 
An advantage of a stochastic model is that the parameters can be estimated automat- 
ically from a large corpus of data, which means that it is relatively straightforward to 
redesign the model to reflect a different speaking style. Here we describe a maximum 
likelihood approach to parameter estimation, where model parameters are chosen to 
maximize the likelihood of the training data. 

We will assume that sentences are independent and identically distributed to sim- 
plify parameter estimation and prediction, although the independence assumption 
precludes capturing any speaker-dependent or discourse effects. In this case, the like- 
lihood of the prosodic parse of a corpus of sentences ($1,. . . ,  S T) given parameters 0 
is, from Equations (4)-(6), 

£(o) = ~logp(StlW t) 
t 

= ~t [logqs(NtlLt)+~i logp(MllWt,Ml_l) ] 

= t~[logqs(NtlLt) q-[~[logqM(n~ll~)q-l~logp(mlj[wit,m~rev)]] ] 

= logqs(Nt[L t) + [lOgqM(ni]li)+ 

[ j~[l°gqm(v~[~lj)+~l°gp(b~lfO4"~,m~rev))l]]]" 
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Arranging terms we have 

£(0) = ~logqs(NtlL t) 
t 

+ ~ l O g q M ( n ~ ] l f )  
t i 

+ ~ ~ l ° g q m ( 4 1 A f j )  
t i j 

+ ~ ~ ~l°gp(b~If(W~'m~rev))" 
t i j k 

(7) 

Since there are no cross dependencies between parameters, the four terms in Equa- 
tion (7) can be maximized separately. The resulting parameter estimates for qs, qM, and 
qm are then simply relative frequency estimates. The last term is maximized jointly with 
the design of the state function f (-) using standard classification tree design techniques, 
as described below. 

The tree is grown using a greedy algorithm, which iteratively extends branches 
by choosing the parameters of a question, the question at a node and the node in 
a tree that together maximize some criterion for reducing the impurity of the class 
distributions at the leaves of the tree. The tree is used to find the probability of a 
minor phrase boundary, so there are only two classes: "break" and "no break." In 
this work, we have used the Gini criterion, i.e., the node distribution impurity is 
given by i(t) = ~i#jp(ilt)p(jlt) (Breiman, Friedman, Olshen, and Stone 1984). Since 
the relative frequency of the "break" class is so low (8% of all breaks), we include 
different error costs in the design criterion. Generally, the cost of classifying a "break" 
as "no break" is chosen to be three to four times higher than the opposite error, 
and the specific costs for each tree are chosen to control the false prediction rate 
on the training set. Initially a tree is grown using two-thirds of the training data, 
and the remaining one-third of the data is used to determine a good complexity- 
performance trade-off point. The complexity criterion determined at this point is then 
used in pruning a second tree grown with the entire training set, in order to make 
better use of the available data. Each leaf t of the tree is associated with a conditional 
probability distribution of "break" vs. "no break" (actually, the relative frequency es- 
timate). This probability distribution p(blt ) is used in the hierarchical model for com- 
puting the probability of a minor phrase, Equation (6), by running test data through 
the tree and using the probability distribution associated with the final leaf node 

= f(Wi, mprev). 

3.4 Phrase Break Prediction Algorithm 
The stochastic model can be used to predict a prosodic parse for a sentence simply 
by finding the most probable prosodic parse for that sequence of words, where the 
probability of any given parse is determined by Equations (4)-(6). In other words, 
we hypothesize all possible prosodic parses, compute the probability of each, and 
choose the most probable. The most likely prosodic parse can be found efficiently 
using a dynamic programming (DP) algorithm that is similar to algorithms used in 
speech recognition, in particular that for the Stochastic Segment Model (Ostendorf 
and Roukos 1989), except that the dynamic programming routine is called recursively 
for successive levels in the hierarchy. Defining pt(uil...Uinl~/Vi, Ui) as the probability 
of the most likely sequence of n subunits in but not necessarily spanning Ui and 
ending at location t, and U i j ( S  ~ t) as a subunit that spans boundaries {bs,...,bt}, the 

37 



Computational Linguistics Volume 20, Number 1 

dynamic programming algorithm can be expressed generally in the subroutine that 
follows. This subroutine is called recursively for each level of the hierarchy, with the 
lowest level constituent probability being computed using probabilities given by the 
tree. 

Dynamic Programming Routine for Prosodic Parse Prediction 

For each word t in unit Ui (t = 1~..., li): 

Compute log pt ( Uil (1, t ) [Wi, Ui- l ). 

For each n-length sequence of subunits spanning [1, t] (n = 2,...~ t): 

log Pt (Uil'"Uin []/Vi~ Ui-1  ) = maxs<t log ps (Uil, . . . , Ui,(n-1)]~/Vi~ Ui-1  ) 
+ logp(uin(S + 1, t)[Wi, Ui(n-1)) 

(Computing logp(uin(s + 1~ t)]Wi, Ui(n-1)) with a recursive call to this routine.) 

Save pointers to best previous break location s. 

To find the most likely sequence, 

p(Ui[~/Vi, U i -1 )  -~ maxn logPl,(Uil~ . . . ,Uin[~/Vi, U i -1 )  q- logq(n[li) 

The final step is to decode the sequence of breaks once the value n* that maximizes 
the above equation is determined. Using the n* associated with any level unit, we can 
trace back to find the optimal segmentation of subunits that comprise that unit. The 
complete parse is found by tracing back at the highest level units and successively 
tracing back in each lower level. 

For the specific case of a three-level hierarchy, the most likely major phrase se- 
quence in a sentence p(S[W) and the most likely minor phrase sequence in a major 
phrase p(Mil W )  are found by a dynamic programming algorithm, called recursively. 
The lowest level unit considered here is the minor phrase, and the probability of the 
minor phrase is computed as given in Equation (6) using the decision tree. 

4. Experiments 

4.1 Corpus 
For our investigation of prosodic phrase structure, an FM radio news story corpus 
was used. The training data included ten stories from one announcer and another ten 
stories from a second announcer, both female, for a total of 312 sentences (6,157 words, 
or potential boundary locations). The stories were studio recordings of actual radio 
broadcasts, which were transcribed by a listener who did not have access to the original 
scripts. It is likely that transcription of punctuation did not exactly match the original 
written text and may have been biased by the prosody of the utterance. However, 
the radio announcers tended to annotate the transcribed text before reading the test 
stories, so we conjecture that commas were more often omitted than inserted in our 
transcriptions. All of the training stories were used to estimate the probabilities of the 
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number of subconstituents (Equations 1-3). In the first pass of tree design, two-thirds 
of the training data was used to grow the tree and one-third was used to determine 
the performance complexity trade-off, but the final tree used was redesigned on the 
entire training set. 

For testing, we used five versions of a different story spoken by two female and 
two male announcers (one radio broadcast version and four radio-news-style lab 
recordings). One of the female announcers (two spoken versions) was the same as 
the speaker who provided roughly three-quarters of the training data. Multiple test 
versions are used in order to allow for some acceptable differences in phrasing in 
the context of the FM radio news style, and to investigate the possibility of speaker- 
dependent effects. On average, there were 3.3 different prosodic parses among the five 
versions. The test story contained 23 sentences (385 words) ranging in length from 3 
to 36 words. For reference, the test sentences are included in an appendix with the 
phrase predictions of our best system. 

Prosodic phrase breaks were hand-labeled in the entire corpus; the training set 
labels were used for estimating the parameters of the model and test set labels were 
used for evaluating the performance of the model. The prosodic phrase labeling system 
used break indices marked between each pair of words, based on auditory perceptual 
judgments (that is, the labelers did not have access to spectrogram or pitch displays). 
The break indices ranged on a scale of 0 to 6, chosen to map to a superset of the 
prosodic hierarchies proposed in the literature. The labeling scheme is described in 
more detail in Price, Ostendorf, Shattuck-Hufnagel, and Fong (1991). Six of the stories 
were labeled by polling two listeners who discussed any discrepancies. The remaining 
stories were labeled by a third listener working independently. Comparing the labels 
of one story using both schemes showed that there was a high degree of consistency 
across labelers. For the full seven-level labeling system, the correlation between the 
two sets of labels was 0.93, where correlation is computed as the maximum likelihood 
estimate of the correlation coefficient based on the two sets of labels. Only 1% of the 
labels differed by 2, and these were at locations where the disagreement was actually 
over the location of the boundary rather than the relative strength of the boundary. 
In this work we considered only a three-level hierarchy and therefore mapped breaks 
0-2 to "no break," 3 to a "minor break" (I), 4 and 5 to a "major break" (ll) and 6 to a 
"sentence break." 

4.2 Evaluat ion  M e t h o d s  
The goal of this algorithm is to predict placement of phrase breaks that sound natural 
to listeners and that communicate the intended meaning of the sentence. As men- 
tioned above, many renditions of a sentence can fulfill this criterion. Therefore, we 
have attempted to estimate system performance by comparing the predicted breaks to 
parses observed in five spoken versions of the sentence. Although the ultimate test of 
the algorithm is in a speech synthesis system, a quantitative measure of system per- 
formance is useful in algorithm development and comparison. We have considered 
four performance measures in this work. 

Since one incorrectly assigned break could make a whole sentence or clause un- 
acceptable, one measure of system performance is the number of sentences with a 
predicted parse that matches entirely a parse observed in any of the five spoken ver- 
sions. When such a match occurs, we call the predicted parse "correct." The five spoken 
versions do not represent an exhaustive set of acceptable parses, however. Therefore 
in a separate evaluation, the sentence is also judged subjectively to determine whether 
it is an "acceptable" parse. The number of sentences that fall into these two categories 
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are reported separately, and for the best case system are marked separately in the 
results in the appendix. 

In order to better understand the system performance, we have chosen to com- 
pute additional error measures based on the prediction accuracy at individual break 
locations. A predicted sentence is compared to each of the five spoken versions, and 
the closest spoken version is used as the reference for that sentence. (The closeness 
of parses is measured using a Euclidean distance with 0 for no break, 1 for minor 
break and 2 for major break.) Then the correspondence between predicted and ob- 
served breaks is tabulated in a confusion matrix. Sentence breaks are deterministically 
assigned at periods, but these are included in the performance results reported here 
(as major breaks) to be consistent with results reported elsewhere. Also, note that con- 
fusion tables for different systems sometimes reflect different numbers of observed 
minor and major breaks because the predicted sentences may best match different 
versions of the test sentence. 

It is also useful to have a simple measure for comparing systems. One possible 
performance figure is the overall percent correct, but we have found this measure to 
be difficult to interpret because the overall figure is dominated by the performance 
on the much more frequent "no break" locations. Instead, we compute the correct 
prediction and false prediction rate for breaks as a combined class (merging minor 
and major breaks). Using terminology from detection theory, these are also referred to 
as correct detection (CD) and false detection (FD) in the following sections. CD/FD 
results must be interpreted with some caution, because there is a trade-off between the 
two error rates: higher break detection rates are associated with a higher rate of false 
break insertion. If the insertion rate is too high, there will be few good parses at the 
sentence level. We have therefore tried to control the insertion rate as much as possible 
for the different systems evaluated. Two types of CD/FD results are reported. One 
figure is computed based on comparison to the nearest sentence of the five versions. 
In addition, since other research results have been reported based on comparison to 
only one spoken version, we include correct prediction and false prediction rates that 
correspond to the average rates over the five separate test versions. In general, the 
correct prediction rates using the single version comparison are roughly 10% lower 
than using the comparison to five versions, so comparison to one version significantly 
underestimates performance of the algorithms. The variation in error rate over the 
five versions is relatively small, as shown later in the discussion of speaker-dependent 
effects. 

4.3 Tree Questions and Designs 
Several experiments using different sets of questions to train the embedded decision 
trees were performed in order to compare the relative merits of different information in 
the hierarchical model, as well as trade-offs associated with computational complexity. 
The entire set of questions is listed below. All experiments included questions 1-8, 
which were based on features that were relatively straightforward to extract from text, 
using a table look-up to assign part-of-speech labels. Experiments that made use of 
syntactic features also allowed questions 9-13. The syntax experiments were based 
on trees that were trained using only 14 of the 20 stories, since skeletal parses were 
only available for these stories. Another set of experiments included question 14, which 
tested the ratio of the current minor phrase length to the previous minor phrase length. 
Finally, experiments that made use of the more detailed POS classifications included 
question 15, and used the additional particle category in question 3. All questions 
were based on features derived from text information only. 

40 



M. Ostendorf and N. Vei l leux Hierarchical Stochastic Model for Automatic Prediction 

Below we enumerate the questions used in the different tree design experiments, 
together with the motivation for each question. 

. 

. 

. 

. 

5. 

. 

. 

. 

. 

10. 

11. 

12. 

Is this a sentence or major phrase boundary? Assuming major breaks occur at 
qualitatively different locations than minor breaks, we effectively remove 
the major breaks and sentences from our training corpus with this 
question. 

Is the left word a content word and the right word a function word? In the 
training data, 65% of the minor and major breaks combined occur at 
content word/function word (CW/FW) boundaries, and about half of the 
CW/FW boundaries are marked with breaks. The CW/FW boundaries 
also correspond to the prosodic group boundaries used deterministically 
in Sorin, Larreur, and Llorca (1987) and in Veilleux et al. (1990). 

What is the function word type of the word to the right? Previous work in 
prosodic parsing with a small dictionary (Sorin, Larreur, and Llorca 
1987) suggested that different types of function words may be more or 
less likely to signal a prosodic phrase break. 

Is either adjacent word a proper name (capitalized)? Preliminary examination 
of our data suggested there was some relationship between proper 
nouns and phrase boundaries, probably related to the phrasing of 
complex nominals. 

How many content words have occurred since the previous function word? 
Speakers seemed to insert phrase breaks when a string of content words 
became long, e.g., exceeded four or five words. 

Is there a comma at this location? Usually, but not always, a major phrase 
break occurs at locations orthographically transcribed with commas. 

What is the relative location in the sentence (in eighths)? Previous work (Gee 
and Grosjean 1983) has suggested that prosodic phrase boundaries tend 
to bisect a longer unit. Therefore, one of the questions used to partition 
the training data is the ratio of the word number over the sentence 
length, quantized to the nearest eighth. 

What is the relative location in the proposed major phrase (in eighths)? This 
question is included following the same reasoning as the previous 
question. 

What is the largest syntactic unit that dominates the word preceding the potential 
boundary location and not dominating the succeeding word? Phrase breaks are 
known to co-occur with certain syntactic configurations. For example, 
phrase breaks often occur before subordinate clauses. 

What is the largest syntactic unit that dominates the word succeeding the 
potential boundary location and not dominating the preceding word? The 
rationale behind this question is similar to that of the previous question. 

What is the smallest syntactic unit that dominates both? Some syntactic units 
may be less likely to be broken up by a phrase break. 

How many syntactic units end between the two words? This question provides 
information on the relative level of syntactic attachment between the two 
words, capturing the effect of constituent endings. 
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13. 

14. 

15. 

How many syntactic units begin between the two words? This question is 
similar to the previous one, except that it captures effects associated with 
the start of new constituents. 

How large is the ratio of the current minor phrase length over the previous minor 
phrase length? This question incorporates the concept of balancing minor 
phrase lengths noted by other researchers (Gee and Grosjean 1983; 
Bachenko and Fitzpatrick 1990), and was found to be useful in phrase 
prediction trees investigated by Wang and Hirschberg (1992). In the 
beginning of a sentence where there is no previous minor phrase, the 
ratio is treated as missing data and handled using a surrogate variable 
(Breiman, Friedman, Olshen, and Stone 1984). 

What is the label of the content word to the right? to the left? Wang and 
Hirschberg found that part-of-speech information is useful in phrase 
break prediction (Wang and Hirschberg 1992). 

Questions 5, 12, 13, and 14 are based on numerical features, so the binary ques- 
tion asks whether the feature is greater than some threshold, where the threshold is 
determined automatically in tree design. All other questions are based on categorical 
variables, and the best binary groupings of the possible values are determined auto- 
matically (Breiman, Friedman, Olshen, and Stone 1984). Two of the questions (8, 14) 
require knowledge of major or minor phrase boundaries. This information is available 
in the training data or from a spoken utterance, but hypothesized locations of minor 
and major phrase breaks must be used in phrase prediction from text. Therefore, these 
features are calculated dynamically in the prediction algorithm for each hypothesized 
prosodic parse. 

The first tree designed used only the very simple information represented by 
questions 1-8. The resulting tree is shown in Figure 2, with the relative frequency of a 
break in the training data included at each node. The first split trivially locates the sen- 
tence and major break boundaries. The second split utilized the content word/funct ion 
word boundary question that we had used deterministically in previous work (Veilleux 
et al. 1990). The content/function word boundaries seem to be important in other al- 
gorithms as well: they correspond closely to the phi-phrase boundaries that would be 
predicted by the Bachenko-Fitzpatrick algorithm, and they seem to be captured in the 
Wang-Hirschberg text-only tree by a succession of questions about the part-of-speech 
labels of the words adjacent to the break. Of the boundaries that were preceded by 
a content word and followed by a function word, 30% were hand-labeled as minor 
breaks, whereas only 4% of other locations were labeled as minor breaks and these 
were identified by the next question as coinciding with a comma. The complete tree 
was relatively small (9 nodes), and used almost all questions provided. On the training 
data, the resulting tree classified 89% of the nonbreaks correctly and 59% of the minor 
breaks correctly. All sentence and major breaks were given in the tree design. 

The next stage was to incorporate syntactic information (questions 9-13) into the 
tree design algorithm to determine minor phrase probabilities. Syntactic parses were 
available for only 14 of the 20 training stories (217 sentences, 4,230 words), and the tree 
was designed using this subset. A very simple five-node tree was designed, as shown 
in Figure 3. Again the first nontrivial question was concerning the content/function 
word boundaries, and the presence of a comma was again used to predict minor 
breaks at other locations. The two other questions in the tree were based on which 
syntactic unit dominated one or the other words at the boundary site. The tree design 
algorithm chose syntactic units that were less likely to contain a boundary as: words 
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sentence / major word 
boundary ? 

riO 

content / function word 
~boundary ? 

comma ? 

yes 

other 

place in 
major phrase ? 

other first or last 
,Quarter ? 

-la^e in ~ function word 
180/571 1-1 ~ 9 ~71/323 J t,,n e 9 

sentence .. ~ ~v • 
' 

\eighth __Z_ 
,~-----~-,xfunction w o r d ~ - - - ]  ~ -  ~ capital ? 

other X _]g yes / \ no 

Figure 2 
Tree designed using only simple part-of-speech information, questions 1-8. Relative frequency 
of a "break" (in the training data) is indicated in each node for the subset of data associated 
with that node, and the left branch in a split is more likely to have a break. 

in the same constituent, words separated by a wh-noun phrase boundary, and words 
separated by a verb phrase initial boundary. (In their work on spontaneous speech, 
Wang and Hirschberg found that noun phrases in general tended to be less likely 
to contain boundaries.) The tree with syntactic information seemed to classify minor 
breaks with slightly higher accuracy than the previous tree: 90% correct classification 
of nonbreaks and 62% correct classification of minor breaks in the training data. 

A third tree, illustrated in Figure 4, was grown using the first 8 baseline questions 
and question 14, which examines the ratio of current minor phrase length to previous 
minor phrase length. The motivation behind this question is constituent balancing, as 
mentioned earlier. The main difference between this tree and the first one is that the 
minor phrase length ratio test is chosen instead of the question about the position in a 
major phrase. These two questions served similar roles, as evidenced by the fact that 
the surrogate variable for the ratio test was the location of the current word within 
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sentence / major phrase 
dary ? 

] t ' ~ ' ~ , ~  content/function word 
752/752 ] ~ b ~ m d a r y  ? 

. . . .  l e f t  w o r d  c o m m a  ? 
k,~_/° ~,Y dominated by ... 

- \ .  
right word 

I 1091212 ~ . ~ ~oghmti~a~er~ by ... I 8/8 I I 10412760 I 

\s o, 
I J l  P 

Figure 3 
Tree designed using syntactic information but not the minor phrase length ratio test, questions 
1-13. Relative frequency of a "break" (in the training data) is indicated in each node for the 
subset of data associated with that node, and the left branch in a split is more likely to have a 
break. 

the major phrase, in terms of the ratio of the number of words up to the current 
position over the total length of the major phrase. Classification rates on the training 
data for this tree were 87% for nonbreaks and 66% for minor breaks. A fourth tree 
was designed using the first fourteen questions, and performance was similar to that 
for the third tree. 

The decision tree design algorithm's performance was not significantly changed 
by the introduction of additional features. New features can supplant previously used 
ones, as also found by Wang and Hirschberg (1992), because of the redundancy in 
information between features. For example, in the syntax trees, many of the baseline 
questions were no longer chosen, but the overall classification performance was similar. 

4.4 Phrase Prediction Results 
The trees were used in the hierarchical model, and the phrase break prediction algo- 
rithm was evaluated on the independent test set described in Section 4.1. A summary 
of the results is given in Table 2, and the corresponding confusion matrices are in 
Tables 3 and 4. The baseline system (questions 1-8) gave the best performance, with 
a correct prediction rate of 81% and a false prediction rate of 4%. The results indicate 
that syntactic information did not improve the performance of the algorithm, and in 
fact gave poorer phrase predictions by every measure of performance on the test data. 
The difference in performance cannot be attributed to the smaller amount of training 
data used in the experiments with syntax, because designing the model without syn- 
tax on this subset actually yielded slightly better performance on the test set than that 
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entence/major phrase boundary ? 

- - - . % _ _ .  

[ 992/992 [ (430/4599) content/function word I "'J ~ a r y ?  

~ comma ? ~ c o m m a  ? 

111118/>! ~ ? ~ ° e r a t i o ?  [ 1 ~  [ 13~/~664 ] 

4 5 ~  NN~4.5 % 

234/726 ~ function word 
I I ~ e  ? 

~ r l g h r a s e  ~ ~ i  °rp 

~ < l ~ r a t i ° ? - 9 %  I 2/62 I 

~ a C : e i n n  c > 1 9 %  e ? '  ~0~S8% [ 

other / \ first, fifth or sixth 
/ ] N~ighth I 

20/49 I I 5/39 [ 

Figure 4 
Tree designed using the minor phrase length ratio test but no syntax questions, questions l-8 
and 14. Relative frequency of a "break" (in the training data) is indicated in each node for the 
subset of data associated with that node, and the left branch in a split is more likely to have a 
break. 

designed on the full training set. We conjecture that the poorer performance associ- 
ated with using syntax in our model may be due to the fact that syntax plays more 
of a role in location of major breaks as opposed to the minor breaks predicted in the 
tree. As we shall see later, syntactic cues were useful in our implementations of the 
Bachenko-Fitzpatrick and Wang-Hirschberg algorithms. We also found that the minor 
phrase length ratio test hurt performance, which is likely due to the fact that the ra- 
tios are based on hypothesized boundary locations in phrase prediction, as opposed 
to the known locations used in training. In examining the confusion matrices, we see 
the main effect of the additional syntactic and minor phrase length ratio questions is 
more errors at minor phrase boundary locations. 

Examining the sentence level performance of the algorithms, we find that a phrase 
break was inserted between the verb and the particle in three of the six unacceptable 
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Table 2 
Performance of different break prediction algorithms, including variations of our hierarchical 

model, variations of a tree-based classifier, and the Bachenko-Fitzpatrick (B-F) algorithm 
based on a test set of 23 sentences (386 words). "Questions Used" refers to those questions 
listed in Section 4.3 for the two tree-based algorithms. Although the B-F algorithm does not 
use these specific questions, it does utilize syntactic information as well as relative constituent 
length. Correct Detection/False Detection (CD/FD) rates are for the merged category of minor 
and major breaks computing (a) error according to the closest utterance of five versions, and 
(b) the average error in comparing to a single utterance. 

Phrase model Questions used Sentences CD/FD of merged breaks 

Syntax Minor ratio Correct Accept. 5 versions 1 version 

Hierarchical model 

Classification trees 

B-F 

No No 7 11 .81 /.04 .70/.05 
Yes No 4 6 .77/.04 .68/.06 
No Yes 5 10 .79/.03 .67/.05 
Yes Yes 3 11 .77/.04 .70/.05 
No No 7 6 .68/.03 .62/.03 
Yes No 7 5 .72/.01 .61 /.01 
Yes Yes 6 10 .88/,07 .84/.09 

Table 3 
Confusion matrices for predicted breaks using the hierarchical system with and without 
syntax, and without the minor phrase length ratio test. 

No Syntax Syntax 

Actual Actual 

Predicted major minor no-break Predicted major minor no-break 

major 49 6 5 major 46 14 11 
minor 5 12 6 minor 7 6 1 

no-break 7 10 286 no-break 12 10 279 

Table 4 
Confusion matrices for predicted breaks using the hierarchical system with and without 
syntax, in both cases with the minor phrase length ratio test. 

No Syntax Syntax 

Actual Actual 

Predicted major minor no-break Predicted major minor no-break 

major 51 15 9 major 49 13 9 
minor 5 1 1 minor 5 5 2 
no-break 9 9 286 no-break 9 12 282 

parses  (e.g., tried I out, plugs I in, and check I in ). This is not surpr is ing since the s imple  
POS labeling scheme labels the particle as a preposi t ion.  The trees us ing syntactic 
informat ion were  not able to overcome this effect because  of the relative sparsi ty  
of particles in the training data  (only 5% of the words  labeled as preposi t ions  are 
particles). Other  mis takes  included a misplaced  minor  phrase  and  a deleted major  
phrase  where  a c o m m a  occurs in the original text. Most  of the sentences that  were  
correct (had an exact match  with  one of the spoken  versions) were  shorter  in length. 
However ,  there were  several  long sentences judged  to have  acceptable parses.  Since 
m a n y  more  variat ions in prosodic  phras ing  are al lowable for longer  sentences,  it is 
not surpr is ing that the predic ted version was  not one of the five spoken  versions.  The 
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Table 5 
Confusion matrices for predicted breaks using the simple classification trees (no hierarchical 
model) with and without syntax, in both cases without the minor phrase length ratio test. 

No Syntax Syntax 

Actual Actual 

Predicted major minor no-break Predicted major minor no-break 

major 57 4 8 major 57 3 4 
minor 0 0 0 minor 0 0 0 
no-break 13 15 288 no-break 5 18 298 

predicted breaks for the best system, the hierarchical model based on questions 1-8, 
are shown in the Appendix together with the closest spoken prosodic parse. 

In tree design, we chose to represent major breaks as a separate category that the 
tree was not explicitly designed to detect. A consequence of this choice is that there 
are fewer "break" data points for training the tree, since there are less than half as 
many minor breaks as major breaks in the training data. This choice is reasonable if 
the two breaks occur at qualitatively different locations, which we suspect. In fact, 
results using trees that were trained by merging major and minor breaks into a single 
category and then embedded in the hierarchical model had either lower prediction 
accuracy or a higher false prediction rate. Another consequence of using only minor 
breaks to train the tree is that features that are associated with major breaks are not 
represented in the model, which may explain the poor performance of the model with 
syntax. However, this problem could be addressed with an extension of the current 
model. 

In order to see if explicit modeling of a prosodic hierarchy was a useful aspect 
of the model, we conducted similar experiments using trees designed specifically for 
classification. A binary decision tree was trained using the baseline questions (1-8), 
and another tree was trained using syntax as well (1-13). In both cases, the trees were 
trained to predict three classes: major break, minor break, and no break. Including the 
minor phrase length ratio test using known break locations (from hand labels) did not 
improve prediction performance, so we did not implement a dynamic version based 
on hypothesized minor breaks. Results for these two trees are included in Table 2, with 
confusion matrices given in Table 5. The costs of different errors were chosen to obtain 
a false detection rate similar to that for the hierarchical model. Choosing good costs 
proved difficult, so the correct detection rate is lower than that for the other models 
primarily because the false detection rate was so low. The difference in false detection 
rates makes comparison to the hierarchical model difficult. However, experience with 
performance of the models at different false detection rates suggests that the baseline 
hierarchical model outperforms the classification tree that does not use syntax, but that 
the classification tree that uses syntax is at least as good as the hierarchical model. 
Since the complexity associated with obtaining a syntactic parse is significantly greater 
than that associated with the simple three-level hierarchy that we have proposed, we 
conclude that explicit modeling of a hierarchy is a useful feature of the model. In 
addition, the fact that syntactic information was useful for the classification tree but 
not for the hierarchical model suggests that syntactic features are more important for 
predicting major breaks than minor breaks, since major breaks are not represented as 
a class in tree design for the hierarchical model. 

For both the hierarchical model and the simple classification trees, we also inves- 
tigated the use of more detailed part-of-speech information both with and without 
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Table 6 
Confusion matrix for the Bachenko-Fitzpatrick algorithm, which uses syntax and rules to 
account for balancing constituent lengths. 

Actual 
Predicted major minor no-break 

major 49 9 7 
minor 10 21 12 
no-break 4 8 265 

the syntactic features. The more detailed part-of-speech did not improve performance 
under any of these conditions. For the classification trees, correct detection improved 
slightly, but there was a corresponding increase in false detection. For the hierarchi- 
cal model, performance actually degraded. These results suggest that the complexity 
associated with more detailed part-of-speech tagging may not be necessary; however, 
further research is needed to answer this question. It may be that other POS questions, 
such as testing a larger window of words around the break as in Wang and Hirschberg 
(1992), would yield better results. 

Finally, we thought it would be interesting to compare the results of our predic- 
tion algorithm to that of Bachenko and Fitzpatrick's algorithm on our corpus. Since 
the test set was relatively small, we were able to implement the algorithm by predict- 
ing the phrase boundaries from the rules by hand. To assign node indices to prosodic 
breaks (Bachenko and Fitzpatrick 1990), a critical value for separating major and mi- 
nor phrase breaks is calculated based on an average of the indices associated with the 
prosodic phrase nodes, where the prosodic phrase nodes are all those created by the 
Bachenko-Fitzpatrick primary salience rules. Boundaries with an index greater than 
the critical value are assigned a major break, indices below 5 have no prosodic break, 
and intermediate indices map to a minor prosodic break. (Bachenko and Fitzpatrick 
include index 4 in the minor break category, but 5 was used here to obtain a lower in- 
sertion rate.) For multiple verb phrases in sequence, the verb balancing rule is applied 
left-to-right until all verb phrases are grouped before applying the verb adjacency rule 
or other processing. The confusion matrix for these results is shown in Table 6, and the 
performance summary is also included in Table 2. Although the correct break detection 
rate is significantly higher than that for the other algorithms, the false detection rate is 
also higher, and so the sentence accuracy is similar to that for the baseline hierarchical 
model. Unlike the other algorithms, the Bachenko-Fitzpatrick algorithm did not make 
the mistake of assigning a minor phrase break before a particle, but this relies on 
having a parser that can make that distinction. An advantage of both the classification 
tree and the hierarchical model over the Bachenko-Fitzpatrick model is that they can 
be automatically trained, and thus can be tuned to handle particular tasks. 

Table 7 gives the correct detection and false detection rates calculated by compar- 
ing the predicted prosodic parses to each of the different spoken versions. The perfor- 
mance of speaker f2b, whose speech made up roughly three-quarters of the training 
data, had performance similar to the average for the five versions with slightly lower 
correct detection rates but also slightly lower false detection rates. These results sug- 
gest that the automatic algorithms are not particularly speaker-dependent, though we 
expect that it is important to have similar styles for both training and test data. There 
was no consistent difference in performance between male and female speakers, and 
the difference in error rates for different speakers was relatively small. 
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Table 7 
Correct detection/false detection rates for predicted phrase breaks to each of the five different 
test versions. With the exception of the Bachenko-Fitzpatrick algorithm, the systems included 
here did not use the minor ratio question. Speaker codes begin with "f" or "m" for female and 
male speakers, respectively. Speaker code f2b is annotated with "r" for the original radio 
recording and "1" for the subsequent lab recording. 

Phrase model Uses syntax? CD/FD of merged breaks 

f2b(r) f2b(1) f3a mlb m3b average 
Hierarchical model No .69/.04 .66/.05 .73/.06 .72/.06 .70/.06 .70/.05 

Yes .66/.06 .69/.05 .68/.08 .71/.07 .69/.07 .68/.06 
Classification trees No .60/.02 .59/.02 .64/.04 .65/.04 .62/.04 .62/.03 

Yes .58/.01 .57/.01 .61/.02 .67/.01 .63/.01 .61/.01 
B-F Yes .85/.06 .82/.07 .81/.11 .85/.10 .85/.10 .84/.09 

Table 8 
Comparison of correct detection/false detection rates computed from five test versions for 

different break prediction algorithms that do and do not use comma information. 

Hierarchical Model Classification Trees 
baseline all features baseline w/syntax 

Commas .81/.04 .77/.04 .68/.03 .72/.01 

No commas .66/.05 .71/.04 .59/.04 .68/.02 

In all of the previous experiments,  the presence of a comma was an impor tant  fea- 
ture for predicting phrase boundaries  for all algorithms implemented.  While this is a 
valid feature in text-to-speech synthesis applications, it is not  available in applications 
involving spoken speech. (Although presence of a pause might  be a useful alternative 
feature.) In addition, as we have ment ioned earlier, commas are not  reliably used even 
in writ ten text. Therefore, it is interesting to determine the performance of the algo- 
r i thm without  the comma feature. As expected, performance degrades significantly, 
both for the hierarchical model  and for the classification trees. In addition, fqr the 
hierarchical model,  syntactic information and the minor  phrase length ratio test now 
provide information that improves  performance over  the baseline system. To illustrate 
performance differences, some correct predict ion/false  prediction rates are given in 
Table 8. 

It is difficult to compare  our  performance figures with other repor ted results 
because of differences in corpora and speaking styles. However ,  the average single 
speaker correct detection and false detection rates reported here for our  implementa-  
tions of the Bachenko-Fitzpatrick and Wang-Hirschberg algorithms indicate the ro- 
bustness of these algorithms to different types of data. Our  results for the Bachenko-  
Fitzpatrick algori thm are somewhat  higher than those that they report,  .84/.09 vs. 
, 78 / .08 .  2 Using only the features inferable from text, Wang and Hirschberg use classi- 
fication trees to predict  prosodic boundaries  in spontaneous speech, achieving phrase 
break prediction results of .66/.02. 3 (Again, note that these results are not  directly 
comparable  because of the differences in false detection rates, and results for other  
trees in Wang and Hirschberg [1992] suggest that these two algorithms have similar 

2 This figure is calculated from the examples in the appendix in Bachenko and Fitzpatrick (1990), 
ignoring tertiary boundaries and including sentence-final boundaries as correct. The sentence that did 
not parse was not included in the calculation. 

3 This result is computed from Figure 6 of Wang and Hirschberg (1992), which illustrates classification 
on training data. Cross validation results may vary slightly. 
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performance.) Our classification trees used somewhat different features, though also 
based on POS and syntactic information, and achieved results on radio news speech 
that are surprisingly lower, i.e., .59/.02 for the tree that used syntax but did not use 
commas. Of course, the POS and syntactic information used here may not have been 
as detailed and/or  reliable as that used by Wang and Hirschberg. (The comparisons 
here are based on the average error rates for single version comparisons.) 

5. D i scuss ion  

In summary, the model proposed here addresses several issues in modeling prosodic 
phrase structure. The model is a general formalism for an embedded hierarchy, which 
represents a unit in terms of the probability of the sequence of subunits comprising 
it. The model is specifically applied to represent a hierarchy containing sentences, 
major phrases, and minor phrases. The model captures grammatical and constituent 
length factors through the use of a decision tree, as in Wang and Hirschberg (1992), 
but embedding the tree within a hierarchical structure yields better performance than 
that achieved by a decision tree alone. The model is stochastic, which accounts for 
the natural variability in prosodic parsing, and can be automatically trained to reflect 
different speaking styles. The automatic training algorithm described here, based on 
maximum likelihood estimation, involves simple relative frequency estimates and de- 
cision tree design. Automatic training on a large corpus to design the best predictors of 
phrase breaks can also provide new insight into the relationship between prosody and 
syntax. Using the stochastic model, prosodic phrase break prediction involves choos- 
ing the most likely prosodic parse, which can be achieved using a recursive dynamic 
programming algorithm. We have found that good phrase break prediction results can 
be achieved without the use of syntactic information or detailed part-of-speech labels, 
resulting in a very low complexity prediction algorithm. Without syntax, our algo- 
rithm predicted a good prosodic parse for 18 out of 23 sentences, which corresponds 
to a correct break prediction of 81% and a false prediction rate of 4%. 

There are many ways in which this work could be extended. As we have pointed 
out, it would be useful to use features directly in determining the probability of a unit, 
rather than simply representing a unit in terms of the probabilities of the subunits. For 
example, we conjecture that commas and certain syntactic structures might be good 
predictors of major phrase breaks, but not minor phrase breaks. In addition, other 
features could be used in the model, including different syntactic features and differ- 
ent questions about the more detailed part-of-speech labels. Automatically predicted 
prominence (or pitch accent) locations might also be useful in phrase boundary pre- 
diction, although it is arguable whether prominence prediction should come before or 
after boundary placement. Of course, it would also be interesting to consider a higher 
order hierarchy, though we anticipate that a successful implementation would require 
representation of features at the different levels. The results reported here were limited 
to some extent by the amount of available data. A larger training set would enable 
the study of more factors, including possibly paragraph-level phenomena. A larger 
test set would better establish the significance of the results. Finally, the best test of a 
phrase break prediction algorithm is in perceptual judgments of synthesized speech, 
and we would like to evaluate our algorithm in this context. 

In this work we have focused on the synthesis application of prosodic phrase break 
prediction. However, one of the advantages of a stochastic model is that it may be use- 
ful for analysis of spoken speech. Because there is some relationship between prosody 
and syntax, prosodic phrase structure can be used to improve the performance and/or  
speed of speech understanding systems. For example, a score of the consistency be- 
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tween a syntactic parse and a prosodic parse has been used to resolve ambiguities 
in sentence interpretation, where  the score is computed  by comparing automatically 
detected prosodic phrase breaks to phrase breaks predicted from the text of the dif- 
ferent interpretations (Ostendorf, Wightman, and Veilleux 1993). Another  approach to 
syntactic disambiguation using prosodic information is described in Bear and Price 
(1990) and Ostendorf,  Price, Bear, and Wightman (1990), where prosodic breaks are 
used to constrain g rammar  rules in a parser. A stochastic phrase model  could also be 
used to improve performance of this system simply by serving as a "language model"  
(as in speech recognition) to improve the performance of a detection algori thm using 
acoustic information. 
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Appendix: Predicted Breaks in Test Corpus 

The sentences below illustrate the predicted minor  (I) and major (1[) phrase  boundar ies  
for our  best case algorithm, that  which  uses the basic questions 1-8 in the hierarchical 
model .  The evaluations "correct" (C), "acceptable" (A), and  "incorrect" (I) are indicated 
after each sentence. For the cases where  the predicted sentences were either acceptable 
or incorrect, we have included the spoken version that was closest to the predicted 
sentence in the sense of minimiz ing  the Euclidean distance based on represent ing no 
break with 0, a minor  break with 1, and  a major break with 2. 

1. Computer ized  phone  calls, I I which do everything from selling magazine  
subscriptions I to reminding  people  about  meetings,  ]1 have become the 
te lephone equivalent  I I of junk mail. I I (A) 
Computer ized  phone  calls, I I which do everything I f rom selling 
magazine  subscriptions ]1 to reminding  people  about  meet ings  II have 
become the te lephone equivalent  I of junk mail. I I 

2. But a new  application of the technology II is about  to be tried I out  in 
Massachusetts  I I to ease c rowded jail conditions. I I (I) 
But a new application of the technology I I is about  to be tried out  in 
Massachusetts  ]l to ease c rowded jail conditions. I I 

3. Next  week some inmates  released early I f rom the H a m p t o n  County  jail 
in Springfield ]1 will be wear ing a wris tband that hooks up  with a special 
jack I on their h o m e  phones.  I] (A) 
Next  week I I some inmates  released early [ f rom the H a m p t o n  County  
jail in Springfield I[ will be wear ing a wris tband [I that  hooks  u p  with a 
special jack ] on  their home  phones.  II 

4. Whenever  a compute r  r andomly  calls I[ them from jail, I[ the former  
prisoner plugs  I in to let corrections officials k n o w  I I they're in the right 
place I at the right time. ][ (I) 
Whenever  a compute r  r andomly  calls them from jail, I I the former 
prisoner plugs in I to let corrections officials k n o w  I] they're in the right 
place ] at the right time. ]l 

5. Margo Melnicove reports. II (C) 

6. The device is at tached ] to a plastic wristband.  I I (C) 

7. It looks like a watch. II (C) 

8. It functions like an electronic probat ion officer. II (A) 
It functions I like an electronic probat ion officer. II 

9. When  a computer ized  call is made  I to a former pr isoner 's  home  phone,  
II that person answers I by p lugging  in the device. II (C) 

10. The wris tband can be r emoved  II only by breaking its clasp, II and  if 
that 's  done  the inmate I is immedia te ly  re turned to jail. I] (A) 
The wris tband ] can be r emoved  I I only by breaking its clasp, I] and  if 
that 's done  II the inmate  I is immedia te ly  re turned to jail. II 

11. The descript ion conjures up  images ] of big brother  watching.  I I (C) 

12. But Jay Ash, II depu ty  super in tendent  of the H a m p t o n  County  jail I in 
Springfield, I says the surveillance system ]l is not  that sinister. II (I) 
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13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

But Jay Ash, I I depu ty  super in tendent  of the H a m p t o n  County  jail in 
Springfield, II says the surveillance system I is not  that  sinister. [I 

Such supervision,  II according to Ash, I is a sensible, [I cost effective 
alternative to incarceration I that should  not  a larm civil libertarians. II (A) 
Such supervision,  II according to Ash, II is a sensible, L I cost effective 
alternative to incarceration I] that  should  not  alarm II civil libertarians. 11 

Doctor N o r m a n  Rosenblatt,  ] dean of the college I of criminal justice at 
Nor theas tern  University, I] agrees. II (A) 
Doctor N o r m a n  Rosenblatt,  II dean of the college I of criminal justice at 
Nor theas tern  University, II agrees. I[ 

Rosenblatt  expects electronic surveillance I in parole situations to become 
more  widespread,  ]1 and he thinks eventual ly  people  II will get used  to 
the idea. II (I) 
Rosenblatt  expects electronic surveillance in parole situations to become 
more  widespread,  II and  he thinks eventual ly II people  will get used  to 
the idea. II 

Springfield jail depu ty  super in tendent  Ash says II a l though it will al low 
I[ some prisoners to be released II a few mon ths  II before their sentences 
are up,  I L concerns that  may  raise about  public safety II are not  well 
founded.  I] (A) 
Springfield jail depu ty  super in tendent  Ash ] says II a l though it will allow 
I some prisoners to be released I a few mon ths  before their sentences are 
up,  II concerns that  may  raise I about  public safety II are not  well 
founded.  II 

Most  county  jail inmates  I] did not  commit  violent crimes. I1 (C) 

They're  in jail for such things I as bad checks or stealing. I] (A) 
They're  in jail for such things I as bad checks I or stealing. I] 

Those on early release mus t  check I in wi th  corrections officials fifty t imes 
II a week  according to Ash, II who  says about  half I the contacts for a 
select group II will now  be made  I L by the compute r ized  phone  calls. I[ (I) 
Those on early release I mus t  check in with corrections officials II fifty 
t imes a week  ]1 according to Ash,]l who  says about  half I the contacts for 
a select group [I will now  be made  I by the compute r ized  phone  calls. II 

Initially the p rogram will involve II only a handfu l  of inmates.  11 (A) 
Initially ] the p rogram will involve I only a handfu l  of inmates.  II 

Ash says the ul t imate goal [I is to use it to get I about  forty out  of jail 
early. II (A) 
Ash says I the ul t imate goal II is to use it to get about  forty II out  of jail 
early. II 

The Springfield jail, I[ built  for 270 people,  I now houses  more  than 500. 
]L (A) 
The Springfield jail, [I built  for 270 people,  II now houses  more  than 500. 
II 

For WBUR, II I 'm Margo Melnicove. II (C) 
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