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Many modern grammatical formalisms divide the task of linguistic specification into a context- 
free component of phrasal constraints and a separate component of attribute-value or functional 
constraints. Conventional methods for recognizing the strings of a language also divide into two 
parts so that they can exploit the different computational properties of these components. This 

• paper focuses on the interface between these components as a source of computational complexity 
distinct from the complexity internal to each. We first analyze the common hybrid strategy in 
which a polynomial context-free parser is modified to interleave functional constraint solving 
with context-free constituent analysis. This strategy depends on the property of monotonicity in 
order to prune unnecessary computation. We describe a number of other properties that can be 
exploited for computational advantage, and we analyze some alternative interface strategies based 
on them. We present the results of preliminary experiments that generally support our intuitive 
analyses. A surprising outcome is that under certain circumstances an algorithm that does no 
pruning in the interface may perform significantly better than one that does. 

1. I n t r o d u c t i o n  

A wide range of modern grammatical formalisms divide the task of linguistic spec- 
ification either explicitly or implicitly into a context-free component of phrasal con- 
straints and a separate component of attribute-value or functional constraints. Lexical- 
Functional Grammar (Kaplan and Bresnan 1982), for example, is very explicit in as- 
signing both a phrase structure tree and an attribute-value functional structure to 
every sentence of a language. Generalized Phrase Structure Grammar (Gazdar, Klein, 
Pullum, and Sag 1985) assigns a phrase structure tree whose categories are attribute- 
value structures. For Functional Unification Grammar (Kay 1979) and other unification 
formalisms that evolved from it (such as HPSG [Pollard and Sag 1987]), the phrase 
structure is more implicit, showing up as the record of the control strategy that re- 
cursively reinstantiates the collection of attribute-value constraints from the grammar. 
For Definite Clause Grammars (Pereira and Warren 1980) the phrase structure is im- 
plicit in the unification of the concealed string-position variables and the recursive 
reinstantiation of the additional logic variables that carry functional information. 

The computational problem of recognizing whether a given string belongs to the 
language of a grammar also divides into two parts, since it must be determined that 
the string satisfies both the phrasal and functional constraints. These two types of 
constraints have different computational properties. It is well known that context-free 
phrase structure constraints can be solved in time polynomial in the length of the 
input sentence, whereas all known algorithms for solving Boolean combinations of 
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equality or unification constraints in the worst-case run in time exponential in size of 
the constraint system. 

There have been a number of approaches for implementing such hybrid constraint 
systems. In one approach the context-free constraints are converted to the form of 
more general functional constraints so that a general-purpose constraint satisfaction 
method can uniformly solve all constraints. While this has the advantage of simplicity 
and elegance, it usually gains no advantage from the special properties of the context- 
free subsystem. The original implementation for Definite Clause Grammars followed 
this strategy by translating the grammar into equivalent Prolog clauses and using the 
general Prolog interpreter to solve them. 

On the other hand, functional constraints of a sufficiently restricted kind can be 
translated into context-free phrasal constraints and solved with special purpose mech- 
anisms. This is true, for example, of all GPSG feature constraints. In the extreme, 
a GPSG could be completely converted to an equivalent context-free one and pro- 
cessed with only phrasal mechanisms, but the fast polynomial bound may then be 
overwhelmed by an enormous grammar-size constant, making this approach compu- 
tationally infeasible for any realistic grammar (Barton, Berwick, and Ristad 1987). 

More common approaches involve hybrid implementations that attempt to take 
advantage of the special computational properties of phrasal constraints while also 
handling the general expressiveness of arbitrary feature constraints. Although this 
sounds good in principle, it turns out to be hard to accomplish in practice. An ob- 
vious first approach, for example, is to solve the context-free constraints first using 
familiar polynomial algorithms (Earley 1970; Kaplan 1973; Younger 1967), and then 
to enumerate the resulting phrase structure trees. Their corresponding functional con- 
straints are solved by converting to disjunctive normal form (DNF) and using also 
well-known general purpose constraint algorithms (Nelson and Oppen 1980; Knight 
1989). 

This configuration involves a simple composition of well-understood techniques 
but has proven to be a computational disaster. The phrasal mechanisms compute in 
polynomial time a compact representation of all possible trees, each of which presents 
a potentially exponential problem for the constraint solver to solve. If the phrasal 
component is not properly restricted, there can be an infinite number of such trees 
and the whole system is undecidable (Kaplan and Bresnan 1982). But even with an 
appropriate restriction on valid phrase structures, such as LFG's prohibition against 
nonbranching dominance chains, the number of such trees can be exponential in the 
length of the sentence. Thus, even though a context-free parser can very quickly de- 
termine that those trees exist, if the grammar is exponentially ambiguous then the 
net effect is to produce an exponential number of potentially exponential functional 
constraint problems. 

This is an important observation. There have been several successful efforts in 
recent years to develop solution algorithms for Boolean combinations of functional 
constraints that are polynomial for certain special, perhaps typical, cases (Kasper 1987; 
Maxwell and Kaplan 1989; D6rre and Eisele 1990; Nakano 1991). But even if the func- 
tional constraints could always be solved in polynomial time (for instance, if there 
were no disjunctions), the simple composition of phrasal constraints and functional 
constraints would still in the worst case be exponential in sentence length. This expo- 
nential does not come from either of the components independently; rather, it lies in 
the interface between them. 

Of course, simple composition is not the only strategy for solving hybrid constraint 
systems. A typical approach involves interleaving phrasal and functional processing. 
The functional constraints associated with each constituent are incrementally solved 
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as the constituent is being constructed, and the constituent is discarded if those con- 
straints prove to be unsatisfiable. Although this interface strategy avoids the blatant 
excesses of simple composition, we show below that in the worst case it is also expo- 
nential in sentence length. However, it is too early to conclude that there is no sub- 
exponential interface strategy, since the computational properties of this interface have 
not yet been extensively investigated. This paper maps out a space of interface possi- 
bilities, describes alternative strategies that can provide exponential improvements in 
certain common situations, and suggests a number of areas for further exploration. 

2. Inter leaved Pruning  

We begin by examining in more detail the common hybrid strategy in which a poly- 
nomial context-free parser is modified to interleave functional constraint solving with 
context-free constituent analysis. All known polynomial parsers make essentially 
equivalent use of a well-formed substring table (Sheil 1976), so we can illustrate the 
computational properties of interleaved strategies in general by focusing on the famil- 
iar operations of active-chart parsing (Kaplan 1973; Kay 1980; Thompson 1983). There 
are, of course, other popular parsers, such as the generalized LR(k) parser (Tomita 
1986); however, in the worst case these are known not to be polynomial (Johnson 1989) 
unless a chartlike mechanism is added (Schabes 1991), and so they raise no new inter- 
face issues. Here and in the remainder of this paper we assume the restriction against 
nonbranching dominance chains to guarantee termination of the parsing computation. 

2.1 The Act ive  Chart Parser 
Recall that the chart in an active-chart parser contains edges that record how various 
portions of the input string match the categorial sequences specified by different rules. 
An inactive edge spans a substring that satisfies all the categorial requirements of a 
rule and thus represents the fact that a constituent has been completely identified. 
An active edge spans a substring that matches only part of a rule and represents 
a constituent whose daughters have only been partially identified. An active edge 
may span an empty substring at a particular string position and indicate that no rule 
categories have yet been matched; such an edge represents the unconfirmed hypothesis 
that a constituent of the rule's type starts at that string position. 

The chart is initialized by adding inactive edges corresponding to the lexical items 
and at least one empty active edge before the first word. The active edge represents 
the hypothesis that an instance of the root category starts at the beginning of the input 
string. The computation proceeds according to the following fundamental rules: First, 
whenever an active edge is added to the chart, then a new edge is created for each 
of the inactive edges to its right whose category can be used to extend the rule-match 
one step further. The new edge records the extended match and spans the combined 
substrings of the active and inactive edges. Also, for each category that can extend the 
active edge, a new empty edge is created to hypothesize the existence of a constituent 
of that type beginning to the right of the active edge. Second, whenever an inactive 
edge is added to the chart, a new edge is similarly created for each active edge to its 
left whose rule-match can be extended by the category of the inactive edge. Newly 
created edges are added to the chart and spawn further computations only if they are 
not equivalent to edges that were added in previous steps. Thus, in Figure 1, only one 
new edge n is created for the four different ways of combining the active edges ax 

with the inactive edges iy. 
The polynomial behavior of this algorithm for a context-free grammar depends 

crucially on the fact that equivalent edges are proscribed and that the number of 
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Figure 1 
Context-free edge creation. 

distinct edges is polynomial in sentence length. In the context-free case, two edges 
are equivalent if they span the same substring and impose exactly the same require- 
ments for further matching of the same rule. The polynomial bound on the number of 
distinct edges comes from the fact that equivalence does not depend on the internal 
substructure of previously matched daughter constituents (Sheil 1976). The chart data 
structures are carefully organized to make equivalent edges easy to detect. 

Conceptually, the chart is only used for determining whether or not a string be- 
longs to the language of a context-free grammar, and by itself does not give any trees 
for that string. A parse-forest variation of the chart can be created by annotating each 
edge with all of the combinations of active and inactive edges that it could come 
from (these annotations are ignored for the purpose of equivalence). This representa- 
tion can be used to read out quickly each of the trees that is allowed by the grammar. 
Note that a parse-forest representation still only requires space polynomial in sentence 
length since there are only a polynomial number of ways for each of the edges to be 
constructed out of edges with the same termination points. 

2.2 Augmenting the Active Chart Parser with Functional Constraints 
The main benefit of the chart algorithm is that subtrees are not recomputed when they 
are incorporated as daughters in alternative trees. It is possible to retain this benefit 
while also allowing functional constraints to be processed as constituents are being 
analyzed. Edges are augmented so that they also record the functional constraints 
associated with a constituent. The constraints associated with lexical items are stored 
in the initial inactive edges that correspond to them. Whenever a new edge is created 
from an active and an inactive, its constraints are formed by conjoining together the 
constraints of those edges with the constraints specified on the rule category that 
matches the inactive edge. Having collected the constraints for each edge in this way, 
we know that the input string is grammatical if it is spanned by a root-category 
edge whose constraints are satisfiable. Note that for this to be the case, the notion of 
equivalence must also be augmented to take account of the constraints: two edges are 
equivalent now if, in addition to satisfying the conditions specified above, they have 
the same constraints (or perhaps only logically equivalent ones). 

These augmentations impose a potentially serious computational burden, as illus- 
trated in Figure 2. Here, ~x and ~by represent the constraints associated with ax and iy, 
respectively. Although we are still carrying out the steps of the polynomial context-free 
algorithm, the behavior is no longer polynomial. The constraints of an edge include 
those from the particular rule-categories that match against its daughter edges, with 
different daughter matches resulting in different constraints. The net effect is that there 
can be a different set of constraints for every way in which a particular category can 
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Figure 2 
Augmented edge creation. 

Figure 3 
The advantage of pruning. 

be realized over a given substring. If the phrase structure grammar is exponentially 
ambiguous, there will be exponentially many ways of building at least one constituent, 
and there will be exponentially many edges in the chart (distinguished by their con- 
straints). Thus we retain the time benefit of avoiding subtree recomputation, but the 
algorithm becomes exponential in the worst case. 

2.3 The Advantage of Pruning 
This strategy has proved to be very appealing, however, because it does offer compu- 
tational advantages over the simple composition approach. Under this regime every 
edge, not just the spanning roots, has its own constraints, and we can therefore deter- 
mine the satisfiability of every edge as it is being constructed. If the constraint system 
is monotonic and the constraints for a particular edge are determined to be unsatisfi- 
able, then that edge is discarded. The effect of this is to prune from the search space 
all edges that might otherwise have been constructed from unsatisfiable ones. This is 
illustrated in Figure 3, where S[¢] denotes the solution of G and X indicates that a solu- 
tion is unsatisfiable. Since ¢1 is unsatisfiable, nl and n2 never get built. Pruning nl and 
n2 does not eliminate any valid solutions, since we know that their constraints would 
also have been unsatisfiable. Thus, by incrementally gathering and solving functional 
constraints, we can potentially eliminate from later consideration a number of trees 
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exponential in sentence length. In some cases it may only take a polynomial amount of 
work to determine all solutions even though the phrasal constraints are exponentially 
ambiguous. 

A familiar variation on the pruning strategy is to use the solutions associated 
with daughter constituents when computing a solution for a mother's constraints. 
This can have a significant effect, since it avoids recomputing the solutions to the 
daughters' constraints in the process of solving those of the mother. However, there 
is a technical issue that needs to be addressed. Since a daughter edge may be used by 
more than one mother, its solution cannot be changed destructively without the risk 
of introducing cross-talk between independent mothers. One way to avoid this is to 
copy the daughter solutions before merging them together, but this can be expensive. 
In recent years, there has been a great deal of attention devoted to this problem, and a 
number of different techniques have been advanced to reduce the amount of copying 
(Karttunen 1986; Wroblewski 1987; Godden 1990; Tomabechi 1991). 

2.4 Still Exponential 
Although pruning can eliminate an exponential number of trees, this strategy is still 
exponential in sentence length in the worst case when the grammar is exponentially 
ambiguous with few constituents that are actually pruned. There are two cases where 
few constituents are actually pruned. One is true ambiguity, as occurs with unrestricted 
prepositional phrase attachment. The grammar for PPs in English is well known to be 
exponentially ambiguous (Church and Patil 1982). If there are no functional or semantic 
restrictions on how the PPs attach, then none of the possibilities will be pruned and the 
interleaved pruning strategy, just like simple composition, will produce an exponential 
number of constituents spanning a string of prepositional phrases. 

The other case where few constituents are actually pruned is when most candidate 
solutions are eliminated high in the tree, for example, because they are incomplete 
rather than inconsistent. In LFG (Kaplan and Bresnan 1982) functional constraints are 
incomplete when a predicate requires grammatical functions that are not realized in 
the string. (The requirement that predicate argument frames be completely filled is 
encoded in different but equivalent ways in other formalisms.) This can occur when, 
say, a verb requires a SUBJ and an OBJ, but the tree only provides a SUBJ. Since edges 
constructed from an incomplete edge may themselves be complete, incomplete edges 
cannot be discarded from the chart. 

In sum, although the interleaved bottom-up strategy does permit some edges to be 
discarded and prunes the exponentially many trees that might be built on top of them, 
it does not in general eliminate the exponential explosion at the phrasal-functional in- 
terface. In fact, some researchers have observed that an augmented chart, even with 
interleaved pruning, may actually be worse than general constraint satisfaction algo- 
rithms because of the exponential space required to cache intermediate results (Varile, 
Damas, and van Noord, personal communications). 

3. Exploitable Properties 

Monotonicity is one of several constraint system properties that can be exploited to 
produce different interface strategies. Other properties include independence, concise- 
ness, order invariance, and constraint system overlap. In the remainder of this section 
we discuss these properties and outline some techniques for exploiting them. In the 
following sections we give examples of interface algorithms that incorporate some o f  
these techniques. Finally, we compare the performance of these algorithms on a sample 
grammar and some sample sentences. 
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3.1 Monotonicity 
A system of constraints is monotonic if no deduction is ever retracted when new con- 
straints are conjoined. This means that if ~ is unsatisfiable, then ~ A ~ is also unsatis- 
fiable for arbitrary ~, so that ¢ can be completely ignored. This property is exploited, 
for instance, in unification algorithms that terminate as soon as an inconsistency is 
detected. In order for this to be a useful heuristic, it must be easy to determine that 

is unsatisfiable and hard to solve ~ A ~. In the interleaved pruning strategy, deter- 
mining that a constituent's constraints are unsatisfiable can be expensive, but this cost 
is often offset by the exponential number of edges that may be eliminated when a 
constituent is discarded. In general, the usefulness of the interleaved pruning strategy 
is determined by the fraction of edges that are pruned. 

3.2 Independence 
Two systems of constraints are independent if no new constraints can be deduced when 
the systems are conjoined. In particular, two disjunctions Vi ~i and Vj ~j are indepen- 
dent if there are no i, j and atomic formula X such that ~i A ~j --+ ~ and ~(~i ~ X) and 
~(~j --* X). If two systems of constraints are independent, then it can be shown that 
their conjunction is satisfiable if and only if they are both satisfiable in isolation. This 
is because there is no way of deriving false from the conjunction of any subconstraints 
if false was not already implied by one of those subconstraints by itself. Indepen- 
dence is most advantageous when the systems contain disjunctions, since there is no 
need to multiply into disjunctive normal form in order to determine the satisfiability 
of the conjunction. This can save an amount of work exponential in the number of 
disjunctions, modulo the cost of determining or producing independence. 

One example of an algorithm that exploits independence is the context-free chart 
parser. Since sister constituents are independent of each other, their satisfiability can 
be determined separately. This is what makes a context-free chart parser polynomial 
instead of exponential. There are also several disjunctive unification algorithms that 
exploit independence, such as constraint unification (Hasida 1986; Nakano 1991), con- 
texted unification (Maxwell and Kaplan 1989), and unification based on disjunctive 
feature logic (D6rre and Eisele 1990). 

We say that a system of constraints is in free-choice form if it is a conjunction of 
independent disjunctions and all of the disjuncts are satisfiable. This means that we 
can freely choose one disjunct from each disjunction, and the result of conjoining these 
disjuncts together is guaranteed to be satisfiable. If recursively all of the disjuncts 
are also in free-choice form, then we have a nested free-choice form. The parse-forest 
representation for the chart discussed earlier is an example of a nested free-choice 
form. The advantage of such a form is that an exponential number of solutions (trees) 
can be represented in polynomial space. In general, any system of constraints in free- 
choice form can produce a number of solutions exponential in the size of the system. 
Each solution only requires a polynomial number of disjunctive choices to produce. 

3.3 Conciseness 
We say that a constraint system (or solution) is concise if its size is a polynomial function 
of the input that it was derived from. Most systems of constraints that have been 
converted to DNF are not concise, since in general converting a system of constraints 
to DNF produces a system that is exponential in the size of the original. Free-choice 
systems may or may not be concise. However, the constraint systems that tend to arise 
in solving grammatical descriptions are often concise when kept in free-choice form. 

It is an important but often overlooked property of parse-forest representations of 
context-free charts that they are concise. All of the solutions of even an exponentially 
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ambiguous context-free grammar can be represented in a structure whose size is cubic 
in the size of the input string and quadratic in the size of the grammar. So far, there 
has been little attention to the problem of developing algorithms for hybrid systems 
that exploit this property of the chart. 

A constraint system may be made concise by factoring the constraints. A disjunc- 
tion can be factored if there is a common part to all of its disjunctions. That is, the 
disjunction (A A 6~ ) V (A A 62) V... (A A 6n) can be reduced to A A (61 V 62 V... 6n ). Another 
advantage of factoring is that under certain circumstances it can improve the effec- 
tiveness of the pruning and partitioning techniques mentioned above. For instance, 
suppose that two disjunctions are conjoined, one with factor A and the other with 
factor B, and that A A B --* FALSE. Then if A and B are factored out and processed 
before the residual disjunctions, then the disjunctions don't have to be multiplied out. 
In a similar manner, if A and B are independent of the residual disjunctions, and the 
residual disjunctions are also independent of each other, then factoring A and B out 
first would allow the problem to be partitioned into three independent sub-problems, 
and again the disjunctions would not have to be multiplied out. Thus under some 
circumstances, factoring can save an exponential amount of work. In Section 5 we 
discuss an interface algorithm based on factoring. 

3.4 Order Invariance  
Phrasal constraint systems and functional constraint systems commonly used for lin- 
guistic description have the property that they can be processed in any order without 
changing the final result. Although the order in which the constraints are processed 
doesn't change the result in any way, it can have a dramatic impact on how quickly 
solutions can be found or non-solutions discarded. Unfortunately, we do not know 
in advance which order will find solutions or discard non-solutions in the shortest 
amount of time, and so we depend on heuristics that choose an order that is thought 
more likely to evaluate solutions quickly. The question of processing order can be bro- 
ken down into three parts: the order in which functional constraints are processed, the 
order in which phrasal constraints are processed, and the order in which functional 
and phrasal constraints are processed relative to one another. 

There has been a lot of effort directed toward finding the best order for processing 
functional constraints. Kasper observed that separating constraints into disjunctive and 
nondisjunctive parts and processing the nondisjunctive constraints first can improve 
performance when the nondisjunctive constraints are unsatisfiable (Kasper 1987). It 
has also been observed that the order in which features are unified can have an effect, 
and that it is better to unify morpho-syntactic features before structural features. Both 
of these approaches reorder the constraints so that pruning is more effective, taking 
advantage of the monotonicity of functional constraints. 

Research in context-free parsing has led to methods that can process phrasal con- 
straints in any order and still maintain a polynomial time bound (e.g., Sheil 1976). 
However, in an interleaved strategy the order in which phrasal constraints are eval- 
uated can make a substantial performance difference. This is because it determines 
the order in which the functional constraints are processed. The particular interleaved 
strategy discussed above effectively builds constituents and thus solves functional 
constraints in a bottom-up order. An alternative strategy might build constituents top- 
down and prune daughters whenever the collection of top-down functional constraints 
are unsatisfiable. It is also possible to process constituents in a head-driven order (Kay 
1989) or to utilize an opportunistic islands-of-certainty heuristic (Stock, Falcone, and 
Insinnamo 1988). 
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: {SD2 A ~],  S[42 A ~2]} 

Figure 4 
Noninterleaved pruning. 

The relative processing order of phrasal and functional constraints is not as well- 
studied. There has been relatively uncritical acceptance of the basic interleaved ar- 
rangement. Another possibility might be to process all of the functional constraints 
before the phrasal constraints. An example of this kind of strategy is a semantic-driven 
algorithm, where subjects and objects are chosen from the string for their semantic 
properties, and then phrasal constraints are checked to determine whether the con- 
nection makes sense syntactically. In Section 4 we describe still another algorithm in 
which all of the phrasal constraints are processed before any of the functional con- 
straints and discuss the advantages of this order. 

3.5 Constraint System Overlap 
As we mentioned in the introduction, the division between phrasal and functional 
constraints is somewhat fluid. All phrasal constraints can be converted into functional 
constraints, and some functional constraints can be converted into phrasal constraints. 
Turning all of the phrasal constraints into functional constraints obscures their special 
computational properties. On the other hand, turning all of the functional constraints 
into phrasal constraints is impractical even when possible because of the huge gram- 
mar that usually results. So it seems that the ideal is somewhere in between, but where? 
In Section 7, we observe that moving the boundary between phrasal and functional 
constraints can have a striking computational advantage in some cases. 

4. Noninterleaved Pruning 

We now consider a pruning strategy that does not interleave the processing of phrasal 
and functional constraints. Instead, all of the phrasal constraints are processed first, 
and then all of the functional constraints are collected and processed. This takes ad- 
vantage of the fact that our constraint systems are order-invariant. In the first step, an 
unmodified context-free chart parser processes the phrasal constraints and produces 
a parse-forest representation of all the legal trees. In the second step, the parse-forest 
is traversed in a recursive descent starting from the root-spanning edge. At each edge 
in the parse forest the solutions of the daughter edges are first determined recursively 
and then combined to produce solutions for the mother edge. For each way that the 
edge can be constructed, the daughter solutions of that way are conjoined and solved. 
If a daughter edge has no solutions, then there is no need to extract the solutions of 
any remaining sisters. The resulting set of solutions is cached on the mother in case 
the mother is also part of another tree. This process is illustrated in Figure 4. Note 

579 



Computational Linguistics 

Tc Is 

Figure 5 
Parse forest. 

Volume 19, Number 4 

Bill saw the girl with the telescope 

that this strategy differs from simple composition in that the functional component 
operates on edges in the chart rather than individually enumerated trees. 

The first step of this strategy is polynomial in sentence length since we can use 
a context-free algorithm that does not accumulate constraints for each constituent. 
The second step may be exponential since it does accumulate constraints for each 
edge and the constraints can encode all possible sub-trees for that edge. However, 
this method filters the functional computation using the global well-formedness of 
the phrase structure constraints. The performance can be significantly better than an 
interleaved approach if an exponentially ambiguous sub-tree fits into no complete 
parse tree. The disadvantage of this approach is that edges that might have been 
eliminated by the functional constraints have to be processed by the chart parser. 
However, this can at most add a polynomial amount of work, since the chart parser 
is in the worst case polynomial. Of course, this approach still incurs the overhead of 
copying, since it caches solutions on each edge. 

5. Factored Extraction 

We now examine an interface algorithm that is very different from both interleaved 
and noninterleaved pruning. Instead of focusing on pruning, this strategy focuses 
on factoring. We call this strategy a factored extraction strategy because it extracts a 
concise set of functional constraints from a chart and then passes the constraints to 
a constraint solver. Unlike the pruning strategies, constraints are not solved on an 
edge-by-edge basis: only the constraints for the spanning root edge are solved. Thus 
this is a noninterleaved strategy. 

As with the noninterleaved pruning strategy, the first step is to build a chart 
based on the context-free grammar alone. This can be done in polynomial time using 
the active chart parser, and has the advantage of filtering constituents that are not part 
of some spanning tree for the sentence. 

The second step is to extract the system of constraints associated with the spanning 
root edge. Consider the parse forest for the sentence Bill saw the girl with the telescope 
given in Figure 5. All of the constituents that are not part of a spanning tree have 
already been eliminated (for instance, the S that spans Bill saw the girl). The letters 
a through v represent lexical and grammatical constraints. For instance, a stands for 
the lexical constraints for Bill as an NP, and u stands for the grammatical constraint 
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(fs SUBJ) = fNP(Bit0, indicating that the NP that dominates Bill is the subject of S. 
Structural ambiguity is represented by a bracket over the ambiguous constituents. In 
this case, there is only one structural ambiguity, the one between the VPs that span 
the string saw the girl with the telescope. They represent two different ways of attaching 
the PP; the first attaches it to saw, and the second attaches it to girl. 

We extract the system of constraints for this sentence by starting from the S at the 
top and conjoining the result of recursively extracting constraints from its daughters. 
For constituents that are ambiguous, we disjoin the result of extracting the constraints 
of the ambiguous constituents. In addition, we cache the constraints of each node that 
we encounter, so that even if a node can be incorporated in more than one parse, 
we need only extract its constraints once. Note that since we are not caching solved 
constraints, there can be no cross-talk between constituents and copying is therefore 
not required. The result of this process is a re-entrant structure that is polynomial in 
the length of the string. If the re-entrant structure were expanded, it would produce 
the following: 

a A u A [ ( b A p A c A h A d A i A q A e A I A f  A j A g A k A m A r )  V ( b A s A c A h A d A i A  
n A e A I A f  A j A g A k A m A o A t ) ]  Av 

However, instead of expanding the constraints, we make them smaller by factoring 
common elements out of the disjunctions. For instance, the b constraint is common 
to both disjuncts, and hence can be factored into the conjunctive part. Also, since the 
p and s constraints identically encode the relationship between the verb and the VP, 
they can also be factored. In general, we factor disjunctions on a node by node basis 
and cache the results on each node, to avoid repeating the factoring computation. Al- 
though a straight-forward implementation for factoring two sets of constraints would 
be quadratic in the number of edges, a linear factoring algorithm is possible if the con- 
straints are sorted by string position and height in the tree (as they are in the example 
above). Factoring produces the following system of constraints: 

aAuAbAcAhAdAiAeAIAf AjAgAkAmApA[(qAr) V(nAoAt)]Av 

We can make factoring even more effective by doing some simple constraint anal- 
ysis. In LFG, for example, the head of a constituent is usually annotated with the 
constraint T--~. This equality means that the head can be substituted for the mother 
without affecting satisfiability. This substitution tends to increase the number of com- 
mon constraints, and thus increases the potential for factoring. In this example, q and 
t become the same since the NPs have the same head and n becomes tautologically 
true since its only function is to designate the head. This means that the disjunction 
can be reduced to just r V o: 

a A u A b A c A h A d A i A e A I A f  A j A g A k A m A p A q A ( r V o )  Av 

Thus the resulting system of constraints is completely conjunctive except for the ques- 
tion of where the PP attaches. This is the ideal functional characterization for this 
sentence. This approach produces an effect similar to Bear and Hobbs (1988), only 
without requiring special mechanisms. It also avoids the objections that Wittenburg 
and Barnett (1988) raise to a canonical representation for PP attachment, such as al- 
ways attaching low. The only point at which special linguistic knowledge is utilized is 
the last step, where constraint analysis depends on the fact that heads can be substi- 
tuted for mothers in LFG. Similar head-dependent analyses may also be possible for 
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other grammatical theories, but factoring can make the constraint system substantially 
smaller even without this refinement. 

Factoring is advantageous whenever a node participates in all of the sub-trees of 
another node. For example, this occurs frequently in adjunct attachment, as we have 
seen. It also occurs when a lexical item has the same category in all the parses of 
a sentence, which permits all the constraints associated with that lexical item to be 
factored out to the top level. Another advantage of the extraction algorithm comes 
from the fact that it does not solve the constraints on a per-edge basis, so that copying 
is not an issue for the phrasal-functional interface (although it still may be an issue 
internal to some functional constraint solvers). 

The major disadvantage of factored extraction is that no pruning is done in the 
interface. This is left for the functional constraint solver, which may or may not know 
how to prune constraints based on their dependencies in the chart. Without pruning, 
the solver may do an exponential amount of futile work. In the next two sections we 
describe ways to get both pruning and factoring in the same algorithm. 

6. Factored Pruning 

It is relatively easy to add factoring to the noninterleaved pruning strategy. Remember 
that in that strategy the result of processing an edge is a disjunction of solutions, one 
for each alternative sequence of daughter edges. We can factor these solutions before 
any of them is used by higher edges (note that this is easier to do in a noninterleaved 
strategy than in an interleaved one). That is, if there are any common sub-parts, then 
the result will be a conjunction of these sub-parts with a residue of disjunctions. This 
is very similar to the factoring in factored extraction, except that we are no longer 
able to take advantage of the phrasally motivated groupings of constraints to rapidly 
identify large common sub-parts. Instead we must factor at the level of individual 
constraints, since the solving process tends to destroy these groupings. 

The advantage of factored pruning over factored extraction is that we can prune, 
although at the cost of having to copy solutions. In the next section we will describe 
a complementary strategy that has the effect of adding pruning to factored extraction 
without losing its noncopying character. 

7. Selective Feature Movement 

So far we have examined how the properties of monotonicity, independence, con- 
ciseness, and order invariance can be exploited in the phrasal-functional interface. 
To conclude our discussion of interface strategies, we now consider how constraint 
system overlap can be exploited. As we have noted, many functional constraints can 
in principle be converted to phrasal constraints. Although converting all such func- 
tional constraints is a bad idea, it can be quite advantageous to convert some of them; 
namely, those constraints that would enable the context-free parser to prune the space 
of constituents. 

Consider a grammar with the following two rules (using LFG notation [Kaplan 
and Bresnan 1982]): 

S ___, S' ) NP VP 
~,E (T ADJUNCT) (T SUBJ) =1 T=,~ 
(,~ COMPL) = + 
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Rule 

S ! ____, 

COMP } 

(1 COMPL) = + S 

e 
(T COMPL) = - T=~ 

The first rule says that an S consists of an NP and a VP optionally preceded by an S !. 
The functional constraints assert that the functional structure corresponding to the NP 
is the SUBJ of the one corresponding to the S, the VP's f-structure is the head,  and the 
f-structure of the S ! is an adjunct whose COMPL feature is +. According to the second 
rule, an S ! consists of an S optionally preceded by a COMP (the e stands for the empty  
string). If the COMP is present, then the COMPL feature will be +; otherwise it will 
be - .  These rules allow for sentences such as Because John kissed Sue, Mary was jealous, 
but  exclude sentences such as *John kissed Sue, Mary was jealous. 

The difficulty with these rules is that they license the context-free parser to postu- 
late an initial S ! for a sentence such as Bill drank a few beers. This S t will eventual ly be 
eliminated when  its functional constraints are processed, because of the contradictory 
constraints on the value of the COMPL feature. An interleaved strategy would avoid 
building any edges on top of this spurious constituent (for example, an S with an 
initial adjunct). However ,  a noninter leaved strategy may  build an exponential  number  
of unnecessary trees on top of this S !, especially if such a string is the prefix of a longer 
sentence. If we convert  the COMPL functional requirements into equivalent  phrasal 
ones, the context-free parser will not postulate an initial S ~ for sentences like these. 
This can be done by splitting the S ! rule into distinct categories S~OMPL+ and S~OMPL_ 
as follows: 

Rule 
S S~OMPL+ ) NP VP 

~C (T ADJUNCT) (T SUBJ) -----~, T---,~ 
(~ COMPL) = + 

Rule 

SCOMPL+ COMP S 
(W COMPL) = + W=~ 

Rule 

SCOMP L - e S 
(T COMPL) = - T=~ 

! With these rules the context-free parser would  fail to find an SCOMPL+ in the sentence 
Bill drank a few beers. Thus the S with an initial adjunct and many  otherwise possible 
trees would  never  be built. In general, this approach notices local inconsistencies in 
the grammar  and changes the categories and rules to avoid encounter ing them. 

Moving features into the consti tuent space has the effect of increasing the num-  
ber of categories and rules in the grammar. In the worst  case, the size of the chart 
grows linearly with the number  of categories, and computat ion time grows quadrati-  
cally in the size of the grammar  (Younger 1967; Earley 1970). Just considering the cost 
of phrasal processing, we have increased the grammar  size and therefore have pre- 
sumably  made  the worst  case performance worse. However ,  if features are carefully 
selected so as to increase the amount  of pruning  done by  the chart, the net effect m ay  
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be that even though the grammar allows more types of constituents, the chart may 
end up with fewer instances. 

It is interesting to compare this technique to the restriction proposal in Shieber 
(1985). Both approaches select functional features to be moved forward in processing 
order in the hope that some processing will be pruned. Shieber's approach changes 
the processing order of functional constraints so that some of them are processed 
top-down instead of bottom-up. Our approach takes a different tack, actually convert- 
ing some of the functional constraints into phrasal constraints. Thus Shieber's does 
its pruning using functional mechanisms whereas our approach prunes via standard 
phrasal operations. 

8. Some  Performance Measures  

In the foregoing sections we outlined a few specific interface strategies, each of which 
incorporates a different combination of techniques for exploiting particular constraint 
system properties. We argued that each of these techniques can make a substantial 
performance difference under certain circumstances. In this section we report the re- 
sults of some preliminary computational comparisons that we conducted to determine 
whether these techniques can make a practical difference in parsing times. Our results 
are only suggestive because the comparisons were based on a single grammar and 
a small sample of sentences. Nevertheless, the patterns we observed are interesting 
in part because they reinforce our intuitions but also because they lead to a deeper 
understanding of the underlying computational issues. 

We conducted our comparisons by first fixing a base grammar and 20 test sen- 
tences and then varying along three different dimensions. The LFG grammar was 
developed by Jeff Goldberg and Annie Zaenen for independent purposes and came 
to our attention because of its poor performance using previously implemented algo- 
rithms. The test sentences were derived from a compiler textbook and are given in 
the appendix. One dimension that we explored was selective feature movement. We 
produced a descriptively equivalent variation of the base grammar by choosing cer- 
tain functional constraints to move into the phrasal domain. A second dimension was 
the choice of strategy. We compared the interleaved pruning, noninterleaved prun- 
ing, factored pruning, and factored extraction strategies discussed above. As a final 
dimension we compared two different unification algorithms. 

8.1 Grammar Variants 
The Goldberg-Zaenen base grammar was designed to have broad coverage over a set 
of complex syntactic constructions involving predicate-argument relations. It does not 
handle noun-noun compounds, and so these are hyphenated in the test sentences. 
The grammar was written primarily to capture linguistic generalizations, and little 
attention was paid to performance issues. We measured performance on the 20 test 
sentences using this grammar in its original form. We also measured performance 
on a variant of this grammar produced by converting certain function requirements 
into phrasal constraints. We determined which constraints to move by running the 
interleaved pruning strategy on the base grammar and identifying which constraints 
caused constituents to be locally unsatisfiable. We then modified the grammar and 
lexicon by hand so that those constraints were reflected in the categories of the con- 
stituents. Examination of the results prompted us to split five categories: 

• VP was split into VPINF+ and VPINF_ , where (T INF) = q- is true of 
VPINFq_ , and (T INF) ~ + is true of VPINF--. 
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Table 1 
Strategies and techniques. 

Strategy Interleaving Per-edge solving Pruning Factoring 

Simple composition . . . .  
Interleaved pruning yes yes yes - -  
Non-interleaved pruning - -  yes yes - -  
Factored pruning - -  yes yes yes 
Factored extraction - -  - -  - -  yes 

• V was split into VAUX, VOBL, MTRANS, and MOTHER, where VAUX is an 
auxiliary verb, MOB L is a verb with an oblique argument ,  VTRAN S is a 
transitive verb, and MOTHER is anything else. 

• N was split into NOBL+ and INIOBL_, where NOBL+ takes an oblique 
argument  and NOB L_ does not. 

• COMP was split into COMPcoMPL + and COMPcoMPL-, where 
COMPcoMPL+ has (T COMPL) = q- and COMPcoMPL- has (T COMPL) = - .  

• PP was split into PPPRED and PPPCASE, where  PPPRED has a predicate and 
PPPcASE has a PCASE (is used as an oblique argument).  

All of these splits were into mutual ly  exclusive classes. For instance, in the PP case 
every  use of a preposit ion in the grammar  had either a PCASE or a predicate but  not  
both. 

8.2 Strategy Variants 
Table 1 summarizes  the combination of techniques used in the strategies we have 
ment ioned in this paper. The simple composit ion strategy is the naive first imple- 
mentat ion discussed in the introduction; it is included in the table only as a point  
of reference. Factored extraction is the only other interface strategy that does not do 
per-edge solving and caching, and therefore does not  require a special copying algo- 
rithm. Obviously, the listed strategies do not instantiate all possible combinations of 
the techniques we have outlined. In all the strategies we use an active chart parser for 
the phrasal component .  

8.3 Unif ier Variants 
Unification is a s tandard technique for determining the satisfiability of and building 
attribute-value models for systems of functional constraints with equality. In recent 
years there has been a considerable amount  of research devoted  to the deve lopment  of 
unification algorithms that per form well when  confronted with disjunctive constraint 
systems (Hasida 1986; Maxwell  and Kaplan 1989; D6rre and Eisele 1990; Nakano 1991). 
Some of these unifiers take advantage of the same propert ies of constraint systems that 
we have discussed in this paper. For example, Kasper 's  algori thm takes advantage of 
monotonici ty  and order  invariance to achieve improved performance when  pruning is 
possible. It works by first determining the satisfiability of the conjunctive constraints, 
and then checking disjuncts one at a time to find those that are inconsistent with 
the conjunctive part. Finally, the disjuncts that remain are multiplied into DNF. Our  
contexted unification algori thm (Maxwell and Kaplan 1989) also allows for pruning  but  
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Table 2 
Mean scaled computation time. 

Grammar Strategy Benchmark Contexted 

Base 

Modified 

Interleaved pruning 100 42 
Noninterleaved pruning 71 25 
Factored pruning - -  23 
Factored extraction >1000 >1000 

Interleaved pruning 38 26 
Noninterleaved pruning 29 19 
Factored pruning - -  13 
Factored extraction 21 7 

in addition takes advantage of independence to achieve its performance. It works by 
objectifying the disjunctions so that the constraints can be put into conjunctive normal 
form (CNF). This algorithm has the advantage that if disjunctions are independent, 
they do not have to be multiplied out. These unifiers depend on different properties, 
so we have included both variants in our comparisons to see whether there are any 
interactions with the different interface strategies. In the discussion below, we call the 
unifier that we implemented based on Kasper's technique the "benchmark" unifier. 

8.4 R e s u l t s  and D i s c u s s i o n  
We implemented each of the four strategies and two unifiers in our computational en- 
vironment, except that, because of resource limitations, we did not implement factored 
pruning for the benchmark unifier. We then parsed the 20 test sentences using the two 
grammars for each of these configurations. We measured the compute time for each 
parse and averaged these across all the sentences. The results are shown in Table 2. To 
make comparisons easier, the mean times in this table have been arbitrarily scaled so 
that the mean for the interleaved pruning strategy with the benchmark unifier is 100. 

The most striking aspect of this table is that it contains a wide range of values. 
We can conclude even from this limited experiment that the properties and techniques 
we have discussed do in fact have practical significance. The strategy in the fourth 
line ran much longer than we were willing to measure, while every other combination 
behaved in a quite reasonable way. Since the fourth line is the only combination 
that does neither functional nor phrasal pruning, this demonstrates how important 
pruning is. 

Looking at the grammar variants, we see that in all cases performance is substan- 
tially better for the modified grammar than for the base grammar. This is in agreement 
with Nagata 1992's finding that a medium-grain phrase structure grammar performs 
better than either a coarse-grain or fine-grain grammar. The modified grammar in- 
creases the amount of pruning that is done by the chart because we carefully selected 
features for this effect. The fact that this improves performance for even the pruning 
strategies is perhaps surprising, since the same number of inconsistencies are being 
encountered. However, with the modified grammar the inconsistencies are being en- 
countered earlier, and hence prune more. This effect is strongest for the factored ex- 
traction algorithm since inconsistencies are never detected by the interface; they are 
left for the unifier to discover. 

Turning to the interface strategies, we see that noninterleaved pruning is always 
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Table 3 
Maximum scaled computation time. 

Grammar Strategy 

Base 

Modified 

Benchmark Contexted 

Interleaved pruning 691 314 
Noninterleaved pruning 421 182 
Factored pruning - -  135 
Factored extraction >20000 >20000 

Interleaved pruning 112 104 
Noninterleaved pruning 101 74 
Factored pruning - -  43 
Factored extraction 126 15 

better than interleaved pruning. This is also as expected, because the noninterleaved 
strategy has the benefit of global phrasal pruning as well as incremental functional 
pruning. Nagata (1992) reports similar results with early and late unification. Non- 
interleaved pruning is not as efficient as factored pruning, however. This shows that 
factoring is an important technique once the benefits of pruning have been obtained. 
The factored extraction strategy exhibits the most interesting pattern of results, since 
it shows both the worst and the best performance in the table. It gives the worst 
performance with the base grammar, as discussed above. It gives the overall best 
performance for the modified grammar with the contexted unifier. This takes advan- 
tage of the best arrangement for pruning (in the chart), and its contexted unifier can 
best operate on its factored constraints. The next best performance is the combination 
of factored pruning with the modified grammar and the contexted unifier. Although 
both strategies take advantage of factoring and pruning, factored pruning does worse 
because it must pay the cost of copying the solutions that it caches at each edge. 

Finally, the type of unifier also made a noticeable difference. The contexted unifier 
is always faster than the benchmark one when they can be compared. This is to be 
expected because, as mentioned above, the contexted unifier both prunes and takes 
advantage of independence. The benchmark unifier only prunes. 

Average computing time is one way of evaluating the effects of these different 
combinations, since it gives a rough performance estimate across a variety of different 
sentences. However, the degree of variability between sentences is also important for 
many practical purposes. A strategy with good average performance may be unac- 
ceptable if it takes an unpredictably large amount of time on some sentences. Table 3, 
which shows the computing time of the worst sentence in each cell, gives a sense of 
the inter-sentence variability. These values use the same scale as Table 2. 

This table supports roughly the same conclusions as Table 2. There is a wide range 
of values, the modified grammar is better than the base, and the contexted unifier is 
faster than the benchmark one. In many cells, the maximum values are substantially 
larger than the corresponding means, thus indicating how sensitive these algorithms 
can be to variations among sentences. There is an encouraging result, however. Just 
as the lowest mean value appears for factored extraction with the modified grammar 
and contexted unifier, so does the lowest maximum. Moreover, that cell has the lowest 
ratio of maximum to mean, almost 2. Thus, not only is this particular combination 
the fastest, it is also much less sensitive to variations between sentences. However, 
factored extraction is very sensitive to the amount of pruning done by the phrasal 
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constraints, and thus may not be the best strategy when it is impractical to perform 
appropriate grammar modifications. In this situation, factored pruning may be the 
best choice because it is almost as fast as factored extraction but is much less sensitive 
to grammar variations. 

9. Concluding Remarks 

As we discussed in the introduction, the interleaved pruning strategy is substantially 
better than simple composition and so it is no surprise that it is a widely used and little 
questioned interface strategy. However, it is only one point in a complex and multi- 
dimensional space of possibilities, and not necessarily the optimal point at that. We 
outlined a number of alternative strategies, and presented preliminary measurements 
to suggest that factored extraction may give better overall results, although it is very 
sensitive to details of the grammar. Factored pruning also gives good results and is 
less sensitive to the grammar. The good results of these two strategies show how 
important it is to take advantage both of monotonicity and independence and of the 
polynomial nature of the phrasal constraints. 

The investigations summarized in this paper suggest several directions for future 
research. One direction would aim at developing a grammar compiler that automati- 
cally selects and moves the best set of features. A compiler could hide this transforma- 
tion from the grammar developer or end user, so that it would be considered merely 
a performance optimization and not a change of linguistic analysis. Another research 
direction might focus on a way of adding functional pruning to the factored extraction 
algorithm so that it would be less sensitive to variations in the grammar. 

At a more general level, our explorations have illustrated the richness of the space 
of phrasal-functional interface possibilities, and the potential value of examining these 
issues in much greater detail. Of course, further experimental work using other gram- 
mars and larger corpora are necessary to confirm the preliminary results we have 
obtained. We also need more formal analyses of the computation complexity of inter- 
face strategies to support the intuitive characterizations that we have presented in this 
paper. We believe that the context-free nature of phrasal constraints has not yet been 
fully exploited in the construction of hybrid constraint processing systems and that 
further research in this area can still lead to significant performance improvements. 
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Appendix A" Test Sentences 

1. These normally include syntactic analyses. 

2. The phases are largely independent of the target-machine. 

3. Those phases depend primarily on the source-language. 

4. Code-optimization is done by the front-end as well. 

5. However there has been success in this direction. 

6. Often the phases are collected into a front-end. 

7. Generally these portions do not depend on the source-language. 

8. The front-end consists of those phases that depend primarily on the 
source-language. 

9. If the back-end is designed carefully it may not be necessary to redesign 
the back-end. 

10. It produces a compiler for the same source-language on a different 
machine. 

11. It has become fairly routine to take the front-end of a compiler. 

12. It is not even necessary to redesign much of the back-end. 

13. The front-end consists of those phases that depend primarily on the 
source-language. 

14. It is also tempting to compile several different languages into the same 
intermediate language. 

15. The back-end also includes those portions of the compiler that depend 
on the target-machine. 

16. This matter is discussed in Chapter 9. 

17. The front-end also includes the error-handling that goes along with these 
phases. 

18. It is tempting to use a common back-end for the different front-ends. 

19. Because of subtle differences in the viewpoints of the different languages 
there has been only limited success in that direction. 

20. It has become routine to redo its associated back-end to produce a 
compiler for the same source-language on a different machine. 
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