
Making DATR Work for Speech: Lexicon
Compilation in SUNDIAL

Francois Andry*
Cap Gemini Innovat ion

Scott McGlashant
Universi ty of Surrey

Nick J. Youd~
Logica Cambridge Ltd.

Norman M. Fraser ~
University of Surrey

Simon Thornton ~
Logica Cambridge Ltd.

We present DIALEX, an inheritance-based tool that facilitates the rapid construction of linguis-
tic knowledge bases. Simple lexical entries are added to an application-specific DATR lexicon
that inherits morphosyntactic, syntactic, and lexico-semantic constraints from an application-
independent set of structured base definitions. A lexicon generator expands the DATR lexi-
con out into a disjunctive normal form lexicon. This is then encoded either as an accep-
tance lexicon (in which the constraining features are bit-encoded for use in pruning word
lattices), or as a full lexicon (which is used for assigning interpretations or for generating
messages).

1. Introduction

In this paper we describe DIALEX, a modular inheritance-based tool for the construc-
tion of lexicalized grammar knowledge bases. DIALEX has been developed as part
of the SUNDIAL (Speech UNders tanding and DIALogue) project - -current ly one of
Europe's largest collaborative research projects in speech and language technology, l
SUNDIAL's main project goal is to produce four prototype systems that suppor t rela-
t ively unconstrained telephone dialogs for limited domains in each of English, French,
German, and Italian (Peckham 1991). This paper reports work carried out in the devel-
opment of the English and French systems. These share a common application domain,
namely flight enquiries and reservations.

* Cap Gemini Innovation, 118 Rue de Tocqueville, 75017 Paris, France (andry@capsogeti.fr).
t Social and Computer Sciences Research Group, University of Surrey, Guildford, Surrey, GU2 5XH, U.K.

(norman@soc.surrey.ac.uk; scott@soc.surrey.ac.uk).
:~ Logica Cambridge Ltd, Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, U.K.

(simont@logcam.co.uk; nick@logcam.co.uk).
1 The work reported here was supported in part by the Commission of the European Communities as

part of ESPRIT project P2218, SUNDIAL. Partners in the project are Cap Gemini Innovation, CNET,
IRISA (France); Daimler-Benz, Siemens, University of Erlangen (Germany); CSELT, Saritel (Italy);
Logica Cambridge Ltd, University of Surrey (U.K). We acknowledge with gratitude the helpful
comments and suggestions of the editors and reviewers of this special issue of Computational Linguistics
and of Lionel Moser.

(~) 1992 Association for Computational Linguistics

Computational Linguistics Volume 18, Number 3

The process of writing linguistic knowledge bases has been guided by a number
of design requirements on the SUNDIAL project as a whole.

.

.

.

.

.

First of all, prototype systems must be capable of understanding speech.
Therefore grammars must be appropriate for the purposes of speech
processing. For example, they must reflect the fact that input to the
parser is a word lattice or graph from which some of the spoken words
(typically short words such as function words) may be missing.

Each prototype system must be capable of producing speech. Speech
generation takes place in two stages. In the first stage, text is generated.
In the second stage, a text-to-speech system outputs the message.
Therefore the linguistic knowledge must also be structured appropriately
for the purposes of text generation.

Each system must run in real time or near real time. Therefore the
linguistic knowledge must be structured so as to allow rapid access and
manipulation.

Portability to new applications should be simple; work required to write
new linguistic knowledge bases should therefore be kept to a minimum.

Duplication of effort must be avoided. This must be true in respect of the
components of each separate prototype system. For example, the same
dialog manager software module has been used in each prototype with
minor customizations for each language (Bilange 1991; McGlashan et al.
1992). The same principle should apply to the design of tools for the
construction of knowledge bases, including lexical knowledge bases.
Thus, the task of adding a new lexical item should only require the
addition of knowledge that is idiosyncratic to that lexical item and not
predictable from what is already present in the knowledge base.

Section 2 of this paper presents an overview of the SUNDIAL DIALEX tool. Section
3 describes the way in which linguistic knowledge is initially expressed in terms of
declarative DATR theories. Section 4 explains how a compact DATR knowledge base
is expanded out into a fully specified lexicon. Section 5 relates how the lexicon can
be customized for the purposes of real-time speech parsing. Practical experiences of
constructing and using DIALEX are recounted in Section 6. Concluding observations
are drawn in Section 7.

2. Overview of the System

In common with contemporary generative theories that are unification based and for
which information is concentrated in the lexicon (Pollard and Sag 1987; Calder et al.
1988), we adopt the sign as our basic unit of linguistic representation. For a given lexi-
cal entry, a sign describes the constraints--morphological, syntactic, and semantic--it

246

Francois Andry et al. Making DATR Work for Speech

introduces. The sign for intransitive arrives, for example, is:

mor :

syn :

sem :

root : arrive]
form :arrives J

major : v
vform : fin

head : tense : pres
person : third
number : sg

args : I

syn : I head : [maj°r : prep l] c a s e : a t

sem : ~ type: time I RestT]
[opt: opt]

order : | dir : post J [adj: any

r r as°r:
I , , I case:nom

syn : I neaa : [person: third
L [number: sg

sem : [type:object I RestA]
[opt:oblig]

order : | dir : pre
• [adj :any

type : amve]
thetime : [type: time I RestT]
theagent : [type:object I RestA]

The lexical sign for arrives combines syntactic head features that help to determine
the inflected form, with an args list that constrains its envi ronment within the phrase
of which it is the head; the sere feature represents the semantic structure that will
be assigned to that phrase. The sign shows that the verb may optionally be followed
by a preposit ional phrase whose semantics will fill the semantic role thetime. 2 The
argument preceding the verb is constrained to be third person singular nominat ive
(i.e. not object-marked), and supplies the filler for the semantic role theagent.

In the interests of linguistic pars imony and sensible knowledge engineering, it is
necessary for lexicalist approaches to factor away at the lexicon-encoding interface as
many as possible of the commonalit ies between lexical items. To this end, we adopt
the principles of default inheritance (Gazdar 1987), as embodied in the DATR language
(Evans and Gazdar 1989). Areas where abstractions m ay be made over the lexicon are
morphosyntax (Gazdar 1990), transitivity (Charniak and McDermot t 1985; Flickinger
et al. 1985; Hudson 1990), and combinations of these leading to lexical rules such
as passive. To this we have added the area of lexico-semantic relations. In order to
generalize over semantic roles, it is necessary to tie these to functional-syntactic roles,
such as subject, direct object, etc. These in turn are related to order marked arguments
in the args frame. Only the latter appear in the final version of the lexicon.

2 In our representation of feature structures we follow Prolog conventions, whereby variables are
identified by initial capitals, and a vertical bar introduces the tail of a list.

247

Computational Linguistics Volume 18, Number 3

A major issue for approaches such as ours is whether or not regularities in the
lexicon should be expanded out off-line, or remain for lazy evaluation during pars-
ing. We are sympathetic with the latter approach, for reasons of the economies that
can be achieved in lexicon size. However, we believe that a precompiled lexicon is
more appropriate to current speech recognition technology. Parsing typically involves
extremely large lattices of lexical hypotheses with imprecise boundaries, and is thus
computationally expensive. Our experience suggests that the trade-off between lexi-
con size and the cost of online inference is such as to favor lexicon size, in the case
of application-specific lexicons of the size required in the SUNDIAL systems (around
2000 words). For inflection-impoverished English and (somewhat richer) French, which
form the basis of our work, limited morphological decomposition during parsing is
avoided; instead the parser lexicon consists of fully inflected forms.

The parser lexicon we have developed has the following two properties.

.

.

It is indexed by surface forms, i.e. fully inflected words that are unique
at the phonological level. Efficiency of access is achieved by allowing
some internal disjunctions within entries in cases where the surface form
can be derived from a number of morphosyntactic feature combinations.

It consists of two separate knowledge bases: an acceptance lexicon and a
full lexicon. The former is designed for efficient parsing. Only those
features that constrain the ability of a sign to combine are represented.
These include syntactic head features and semantic types. The encoding
technique uses bit-vectors to achieve economy of representation and fast
unification. The full lexicon contains signs with no information missing;
the information in a full lexical entry is therefore a superset of the
corresponding acceptance lexicon entry.

Parsing takes place in two phases: lattice parsing using the acceptance lexicon, involving
heuristic search with intensive computation; and structure building, which operates on
the analysis tree produced by the first phase, using term unification to combine the
entries from the full lexicon corresponding to the lexical entries found by the first
phase.

The lexicon compilation architecture that we present in this paper is outlined in
Figure 1.

At the lexical encoding interface, a human lexicon builder builds an application-
and sublanguage-specific lexicon, using a set of structured base definitions, which gen-
eralize over commonalities and provide macros with which to structure entries (Sec-
tion 3). Both of these are written in DATR; we refer to the output of this as the DATR
lexicon. The lexicon generator then compiles this into a lexicon for which the entries
are directed acyclic graphs (DAGs) indexed by surface forms. For this a set of closure
definitions is used. These constitute a knowledge base forming a set of meta-definitions
to complement the DATR lexicon, as well as rendering explicit what may be implicit in
the latter (Section 4). The resulting entries are encoded in two ways: for the full lexicon
via Prolog term encoding and for the acceptance lexicon via bit coding (Section 5).

3. Encoding Linguistic Knowledge

3.1 DATR
DATR is a declarative language for representing inheritance networks that support
multiple default inheritance. Knowledge is expressed in DATR in terms of path equa-

248

Frangois Andry et al. Making DATR Work for Speech

LEXICON
BUILDER

I

I

I

I
]

I

L

application

specific

lexicon

DATR lexicon

structured

base

definitions

lexicon

generation

•

osure f "-.

J
T

acceptance full
lexicon lexicon

Figure 1
DIALEX lexicon compilation architecture.

tions. The syntax of paths is a superset of that found in the PATR-II language (Shieber
1986). For example, (1) identifies two different paths in the DAG rooted at Node1 in
an inheritance network.

(1) Node1: <syn head case>

Node1: <syn head number>

The path equations we present in this paper take the following forms:

(2) a. Nodel: <> == Node2

b. Nodel: Path1 == Value1

c. Nodel: Path1 == "Path2"

d. Nodel: Pathl == Node2:Path2

e. Nodel: Pathl == Node2:<>

The form shown in (2a) is the special case in which the path at Node1 is empty. This
allows Node1 to inherit all equations available at Node2, except those incompatible with
equations at Node 1. Two equations are incompatible if they both make assignments to
the same path. The form shown in (2b) is used to assign values to paths, e.g. <syn head
number> =-- sg. Alternatively, a value may be copied from elsewhere in the DAG. (2c)
is used to assign to Path1 whatever value is found for Path2 at the original query
node. The double quotes are significant here because they indicate that Path2 must be
evaluated globally. If the quotes were not present, Path1 would be evaluated locally

249

Computational Linguistics Volume 18, Number 3

and assigned the value of Path2 at Nodel if such a value existed. The form shown in
(2d) assigns to Node l :Pa th l whatever value is found at Node2:Path2. A special case
of this is (2e), which allows extensions of Pathl to be specified at Node2. For example,
evaluating the DATR theory in (3) yields the theorems for node Ex2 shown in (4).

(3) Exl: <head major> == n

<head case> == nom.

(4)

Ex2: <syn> == Exl:<>.

Ex2: <syn head major> = n.

Ex2: <syn head case> = nom.

For a more detailed description of DATR see Evans and Gazdar (1990).

3.2 The Linguistic Framework
Linguistic knowledge is structured in terms of a simple unification categorial grammar
(Calder et al. 1988) in which featural constraints at the levels of morphology, syntax,
and semantics may all occur in a lexical sign. The basic sign structure of lexical entries
is shown in (5).

(5)
morphology : [...]]
syntax: [...]
semantics : [...]

The basic sign structure of the syntax feature value is shown in (6).

(6) s ntax[ea :llar sl
The head feature includes attribute-value structures for such things as tense, person,
number, and definiteness. The args feature is stack-valued, with stack position deter-
mining the order in which arguments may be combined by functional application.

The basic sign structure of the semantics feature value is shown in (7).

(7) semantics :

id :< value >
type :< value >
modus : [.:.]
role, :[...]

Each semantic object has a unique index (id). The type feature locates the object in a
sortal hierarchy. The modus feature specifies a number of constraints imposed on the
interpretation of semantic objects, such as polarity, aspect, and tense. Semantic roles
(such as theagent, thetime, theinstrument) are specified within the inheritance-based
definitions for semantic types.

The signs are defined in terms of a dual-component DATR lexicon. The base defini-
tions represent an application-independent account of morphosyntax, transitivity, and
lexico-semantic constraints. They define what can be thought of as most of the higher
nodes of an inheritance hierarchy. The base definitions as a whole are, of course, lan-
guage specific, although significant exchange of definitions has been possible during

250

Frangois Andry et al. Making DATR Work for Speech

the parallel development of our English and French DATR theories. The application-
specific lexicon can be thought of as a collection of lower nodes that hook onto the
bottom of the hierarchy defined by the structured base definitions. Whereas the struc-
tured base definitions provide a general morphological, syntactic, and lexico-semantic
account of a language fragment, the application-specific lexicon provides a vocabu-
lary and a task-related lexical semantics. Ideally, a change of application should only
necessitate a change of an application-specific lexicon. Naturally, application-specific
lexicons take much less time to construct than the base lexicon. Much of our discussion
in the rest of this section will focus on the structured base definitions.

3.3 Morphosyntax
Since the requirements of speech processing in real time rule out online morpholog-
ical parsing, a full-form lexicon must be produced. However, the task of entering all
possible forms of a word into the lexicon by hand would be both time consuming
and repetitive. We therefore provide a subtheory of morphology in the DATR base
definitions so that the grammar writer need only specify exceptional morphology for
each lexeme, leaving the lexicon generator to expand out all of the regular forms.

The surface form of an English verb encodes information relating to finiteness,
tense, number, and person. What is required in the DATR theory is a number of
condition-action statements that say things like:

IF a verb is finite
THEN IF it is present tense AND singular AND third per-

son
THEN its form is <root>+s

ELSE its form is <root>.

The desired effect is achieved by means of DATR's evaluable paths. The following path
equation is included at the VERB node.

(8) VERB: <mor form> == VERB_MOR:<>

The VERB_MOR node looks like this:

(9) VERB340R: <bse> == "<mor root>"

<prp> == ("<mor root>" ing)

<psp> == ("<mor root>" ed)

<fin> == "< "<syn head tense>" "<syn head number>"

"<syn head person>" >"

<pres> == "<mor root>"

<pres sg third> == ("<mor root>" s)

<past> == "<mor form psp>".

251

Computational Linguistics Volume 18, Number 3

The base, present participle, and past participle forms are immediately available. If the
verb is finite it is necessary to construct an evaluable path consisting of tense, number,
and person values. If the tense is past (last line), the form is copied from the form of
the past participle. If the form is present singular third person (second last line), the
form is <root> +s. Otherwise, the present tense form is copied from the root form.

Exceptional forms are stated explicitly, thus overriding default forms. For example,
the following entry for hear specifies that it has exceptional past forms.

(10) HEAR: <> == VERB

<mor root> == hear

<mor form psp> == heard.

The evaluable path mechanism is also used to set the value of an agreement feature agr
to tps (third person singular) or not_tps. The path equation shown in (11), augmented
by the information at the V_AGREE node (12) then requires subject and verb to share
the same agr feature value. The subject's agr feature is set by the definitions in (13). 3

(11) VERB: <syn args gr_subject syn head agr> ==

V_AGREE:< "<syn head tense> <syn head number>"

"<syn head person>" >.

(12) V_AGREE: <pres> == not_tps

<pres sg third> == tps.

(13) NOUN: <syn head agr> ==

N_AGREE:<agr "<syn head number>" "<syn head person>">.

N_AGREE: <agr> == not~ps

<agr sg third> == tps.

English verb morphology presents no real problems; noun morphology is even simpler.
French morphology is rather more complicated. However, it can be handled by means
of the same general technique of allowing evaluable paths to act as case statements
that select the appropriate morphological form. Instead of a unified account of French
verb morphology there are a number of distinct inflectional paradigms from which
different verbs inherit. A more sophisticated account of subject-verb agreement is also
required.

3.4 Transitivity
Consider the relationship between verbs of different transitivity. An intransitive verb
takes a subject only. A transitive verb takes a subject and an object. A ditransitive verb
takes a subject and two objects, one direct and the other indirect. This information

3 In a few exceptional cases (e.g. am~are~is in the singular of BE) more complex constraints on agreement
are stated in the relevant lexical entries.

252

Francois Andry et al. Making DATR Work for Speech

is easily expressible in terms of an inheritance hierarchy. Facts about subjects are
associated with a top node, for example a node called VERB. Facts about direct objects
are associated with another node, for example, a node called TRANS_V. By saying that
TRANS_V is a VERB, the general information about subjects is inherited at the TRANS_V
node. This relationship can be expressed simply in DATR. A similar treatment can be
adopted for ditransitive verbs (DTRANS_V):

(14) VERB: <syn head major> == v

<syn args gr_subject> == GR_SUBJECT:<>.

TRANS_V: <> == VERB

<syn args gr_direct> == GR_DIRECT:<>.

DTRANS_V: <> == TRANS_V

<syn args gr_indirect> == GR_INDIRECT:<>.

Entries of the form <syn args gr_subject> == GR_SUBJECT:<> represent a convenient
way of packaging up all information relating to an argument type at a single node
(part of the information stored at this node can be found in (18) below; notice that
different arguments are identified by unique labels such as gr_subj ect and gr_direct).
We have already noted that in our sign representation, arguments are distinguished
by their position in a stack. This ought to render unique argument labels superfluous.
In fact, there are a number of reasons why it is desirable to use unique labels in the
DATR theory. Firstly, they allow individual arguments of a word to be picked out (see
Section 3.4.1 below). Secondly, they allow classes of argument to be identified and
generalizations to be made where appropriate. For example, we show in Section 3.4.2
how order and optionality generalizations can be made over argument types, and how
a system organized around named arguments can be mapped within DATR into an
order-marked system. Finally, grammatical relation labels are much easier for grammar
writers to remember and manipulate than positionally encoded argument structures.

Consider the following partial DATR entry for English infinitival complement
verbs.

(15) INF_COMP_V: <> == VERB

<syn args gr_comp> == GR_COMP:<>

<syn args gr_comp syn args gr_subject> ==

"Ksyn args gr_subject>"

The first line states that an infinitival complement verb inherits from the VERB node,
i.e., it is a verb that must have a subject. The second line introduces a number of
constraints on the complement. These constraints-----collected at the GR_COMP node--
include the fact that the complement must be the infinitive form of a verb. The next
line enables the complement to share the subject of the matrix verb, i.e., in a sentence
like Amy wants to fly, Amy is the subject of both want and fly.

253

Computational Linguistics Volume 18, Number 3

3.4.1 Unevaluated Path Equations. Consider the relationship between the semantics of
a verb and the semantics of its subject. The semantics of the subject must be coindexed
with a semantic role of the verb such as theagent, as shown in (16).

(16) [syn:[args:[gr~ubject:[sem:Asem: [theagent:A]]]]]

This reentrancy can be expressed in DATR as follows:

(17) <sem theagent> == "<syn args gr_subject sere>".

The argument labeled gr_subj ec t is typically underspecified in the lexicon and awaits
full specification at parse time. Because of this, the constraint is carried over to the
DAG-encoding phase of lexicon compilation, where it becomes a reentrancy, as de-
scribed in Section 4.

3.4.2 Argument Order and Optionality. While arguments in the structured base def-
initions are identified by grammatical relation labels, such as gr_subj ect, the lexicon
generation process requires arguments encoding order and optionality constraints that
are identified by relative position in an args list. Two techniques are used to produce
DATR theories with arguments structured in this way.

The first technique is to define featural constraints of order and optionality for
each grammatical relation label. Three types of constraint are defined:

din indicating whether the argument precedes or follows the functor (pre or
post);

adj: indicating whether the argument is adjacent to the functor or not (next or
any); and

opt: indicating whether the argument is optional or obligatory (opt or oblig).

Arguments identified as gr_subject and gr_oblique, for example, inherit the follow-
ing ordering constraints:

(18) GR_SUBJECT: <order dir> == pre

<order adj> == next

<order opt> == oblig.

GR_0BLIQUE: <order dir> == post

<order adj> == any

<order opt> == opt

Whereas the subject is obligatory, and precedes the functor and allows for interven-
ing constituents, the oblique argument is optional and may appear in any position
following the functor.

The second technique maps arguments identified by relation labels onto arguments
identified by position in a linked list. Relative position is encoded in terms of the

254

Franqois Andry et al. Making DATR Work for Speech

features first and rest: first identifies the first argument in a list, and rest identifies the
linked list of remaining arguments.

Consider part of the base definition for transitive verbs, as shown in (19).

(19) TRANS_V: <> == VERB

<syn args gr_direct> == GR_DIRECT:<>

<syn args> == TVARGS:<>.

Part of the collection of nodes devoted to mapping named arguments onto order-

marked arguments is shown in (20).

(20) TVARGS: <> == DTVARGS

<rest> == DARGS:<>.

DTVARGS: <first> == "<syn args gr_subject>"

<rest> == ARGSI:<>.

DARGS: <first> == "<syn args gr_direct>"

<rest> == ARGS3:<>.

ARGS3: <first> == "<syn args obliquel>"

<rest> == ARGS4: <>.

TVARGS inherits the value of < f i r s t > from DTVARGS, which finds it by evaluating
the path "<syn args gr_subject>." The < r e s t > is then inherited from DTVARGS
where the < f i r s t > argument of < r e s t > inherits from "<syn args gr_direct>."
The < r e s t > of < r e s t > then inherits from ARGS3, which specifies the position of
oblique arguments within the args list of transitive verbs.

3.5 Lexico-Semantic Constraints
A word lattice is likely to include numerous semantically anomalous but syntactically
well-formed constructions. In a system that aims toward real time speech understand-
ing it is vital that semantic selectional restrictions be introduced as early as possible
in order to eliminate false phrasal hypotheses at an early stage.

Selectional restrictions are typically associated with lexemes. Each content word
has a semantic type, and many words specify the semantic types of their arguments.
For example, the semantic type of tell is inform and the type of its role theexperiencer
(associated with the indirect object) is almost always human in our trial domain. This
can be expressed as follows.

(21) TELL: <> == DTRANS_V

<mor root> == tell

<sem type> == inform

<sem theexperiencer type> == human.

255

Computational Linguistics Volume 18, Number 3

Certain argument types can be assigned default semantic types. For example, by de-
fault the semantic type of subjects must be sentient (a superclass of human). This
works for a large majority of verbs. Of course, defaults of this kind can be overridden
for individual lexemes (such as the verb rain) or word classes (such as copular verbs).

3.6 Example: The French Noun Phrase
By way of example, we show how two entries from the French SUNDIAL lexicon, the
determiner le ('the.MASC') and the common noun passager ('passenger'), are encoded
in DATR; to put the following section in context, we also show the DIALEX output.

In a simple French noun phrase, we treat the common noun as the head, with the
determiner as an optional argument. Therefore, most of the information is associated
with the common noun.

A common noun inherits from the node NOUN:

(22) NOUN: <> == WOKD

<syn head major> == n

<syn head gender> == masc

<syn head case> == nom

<syn args gr_determiner> == GK_DETERMINER: <>

<syn args gr_determiner syn head gender> ==

"<syn head gender>"

<syn args> == NOUNARGS: <>

<syn head number> ==

"<syn args gr_determiner syn head number>"

<syn head def> ==

"<syn args gr_determiner syn head def>"

<sem type> == entity.

NOUN itself inherits general word features, such as default morphology, from the node
WORD:

(23) WORD: <mor form> == "<mor r o o t > " .

Syntactic and semantic default values such as category (n), gender (mast), case (nom),
and semantic type (en t i ty) are given at the NOUN node. Some of these values may be
overridden, for example in the definition of passager:

(24) Passager: <> == NOUN

<mor root> == passager

<sem type> == passenger.

The number and definiteness of the noun phrase are specified by the determiner when

256

Francois Andry et al. Making DATR Work for Speech

WORD

ARGS...

/_

common-nouns

Figure 2
Inheritance graph for French common nouns.

present, whereas the gender of the determiner is copied from the common noun.
Where a feature value is already specified for both noun and determiner at parse
time, the values must be the same if combination is to take place. The definitions for
GR_DETERMINER and NOUNARGS are shown in (25):

(25) GR_DETERMINER: <syn head major> == det

<order adj> == any

<order opt> == opt

<order dir> == pre.

NOUNARGS: <first> == "<syn args gr_determiner>"

<rest> == ARGS: <>.

The definition of GR_DETERMINER specifies order and optionality information as well as
the syntactic category (det). NOUNARGS defines the mapping of case-marked to order-
marked arguments, for simple determiner-noun NPs.

The inheritance graph for this set of DATR sentences is illustrated in Figure 2.
In fact, common nouns may be more complex than our example suggests; they

may have several obliques, for example. Fortunately, DATR allows the creation of
intermediate nodes between the NOUN node and the common nouns, and these nodes
specify distinctive properties of each distinct class of nouns. For example, a RELDAY
node has been created for French in order to describe common grammatical properties
for relative day references such as lendemain ('tomorrow') and veille ('the day before').
In the same spirit, NPs with genitive postmodifiers such as le numero du vol ('the number
of the flight/the flight number'), where two nouns are combined, use the node GNOUN,
which specifies general features of the arguments of the head noun.

The definition of the determiner node, DET, is simple in comparison with the NOUN
node, inheriting only from the WORD node. Example (26) shows the definition of DET,

257

Computational Linguistics Volume 18, Number 3

mor :

syn :

mor :

syn :

sem : modus

root : passager]

. form :passager]

head

args

root : le]
form : le]

major: det

head : gender : masc
def : the
number : sg

[d e f : t h e]]

major : n
case : nora
gender : masc
def : A
number : B

syn :

first :

order

sere : " type : passenger-]

Figure 3
DAG lexicon entries for le and passager.

major : det
gender" masc

head : def : A"

number : B
[opt : opt]
| d ir : pre |

[adj : any J

together with entries for le and la ('the.FEM').

(26) DET: <> == WORD

<syn head major> == det

<syn head def> == the

<syn head number> == sg

<syn head gender> == masc

<sem modus def> == the.

le: <> == DET

<mor root> == le.

la: <> == DET

<mor root> == la

<syn head gender> == fem.

The lexical entries for le and passager produced by the DAG-encoding phase of com-
pilation (see Section 4) are shown in Figure 3.

258

Francois Andry et al. Making DATR Work for Speech

4. Lexicon Generation

4.1 Obtaining the DNF Lexicon
In order to generalize across morphological instantiations, a DATR theory makes use of
nodes at the level of the lexeme. In general, the constraints in a lexeme cannot be simply
represented as a union of paths. This is due to the fact that the sentences making up
the definition of a lexeme for which morphosyntactic variations exist implicitly contain
disjunctions. Because we require the lexicon to be disjoint, our strategy is to cash out
all embedded disjunctions that reference each surface form. The lexicon thus obtained
can be described as being in disjunctive normal form (DNF). This DNF-lexicon will
contain all lexical signs, where a lexical sign incorporates both the surface form and
the corresponding lexeme.

In order to govern the expansion of information in the DATR lexicon, it is necessary
to make a closed world of the feature space defined there. The values that features
may take may be implicit in the DATR lexicon; however such implicit knowledge is not
necessarily complete. Nothing prevents arbitrary extension of the lexicon by additional
features and values, and this may lead to unwanted interactions with existing rules.
We therefore enumerate the possible values of features in a knowledge base known as
the closure definitions. This enumeration is designed to be recursive, to take into account
category-valued features such as the args list. Figure 4 gives an example of closure
definitions, for a sign with only syn and mor attributes. These state the features that
make up a sign; the definition is recursively introduced at the level of <syn args>.
A closure definition takes the form:

cdef (Feature, Fields, FieldVals, FCRs).

A complex feature is composed of fields either these are atomic valued, and enumer-
ated or declared as open class in FieldVals; or they are complex and their definitions
are to be found elsewhere.

cdef(s ign, [syn,mor] ,_ , [mor: form=>syn:vform]) .
cdef (syn , [head ,a rgs] ).
cdef (head , [major , type ,vform, tense ,number ,person] ,

[
major==[n,v ,det ,prep] ,
vform==[f in ,bse ,prp ,psp] ,
t ense==[pres ,pas t] ,
number==[sg,pl],
person==[first,second,third]
],
[vform:fin => [tense,person,number]]
).

cdef(args,setof(sign)).
cdeI(mor,[form,root],[open(form),open(root)],_).

Figure 4
Example closure definitions.

259

Computational Linguistics Volume 18, Number 3

Besides providing closure for DNF lexicon expansion, these definitions have a
number of uses:

1. they are used to determine which possible paths the compiler should try
to evaluate in order to build a DAG representation of a lexical sign. The
search proceeds depth-first through the closure definitions, ignoring
those fringes of the search space for which no evaluation is possible.
Values of paths, constraints representing unevaluable reentrancies, and
consistent combinations of these are returned;

2. they provide a filter on the output of the DATR lexicon. Only those
features present in the closure definitions are output. Constraints
incorporating functional labels such as gr_subject are no longer needed;

3. they include a complete set of knowledge definitions for our semantic
representation language (SIL), which is inheritance based. The
inheritance hierarchy for semantic types, for example, is used in bit
coding (Section 5), so that semantic selectional restrictions can be tested
during parsing;

4. they furnish a set of declarative templates against which bit coding and
DAG-term conversion may be carried out.

In addition to an enumeration of feature values, the closure definitions contain Feature
Cooccurrence Restrictions (FCRs) (Gazdar et al. 1985). In principle these could be
encoded in the DATR lexicon, for example, using the feature-value unspec to represent
negative occurrence. Their presence here is not only to restrict the possible feature
combinations that can appear at the head of a sign, but also to detect dependencies
that govern DNF expansion.

The DNF lexicon is obtained as follows. Those features on which the surface form
of a full lexical sign depend, which we shall refer to as its surface form dependency
features, may be derived from the FCRs contained in the closure definitions. Then for
each pair consisting of a DATR node A and a possible assignment to its unassigned
surface form dependency features ~, generate a new DATR node A ~, which inherits
from A and contains the feature assignments in ~. The DATR theory for A ~ is then used
to produce the set of evaluated and unevaluated constraint sentences that describe it.
For example, the base lexical entry for arrive is defined at the DATR node Arrivei ,
which is underspecified for the paths <syn head tense>, <syn head person>, and
<syn head number>. For the assignment of values pres, th i rd , sg (respectively) to
these paths, the node Arr ive l_pres th i rdsg is created.

4.2 Producing Unevaluated Paths
As we have shown, reentrancies can be specified in DATR using global inheritance; see,
for example, (15) in Section 3.4.1. However, such sentences may not appear directly
in the DAG representation, either because they include paths not derivable within the
closure definitions, or because interaction with higher-ranking exceptions may lead
to weaker equivalences being derived. Any DATR sentence that does not explicitly
introduce a value is treated as a candidate reentrancy constraint; at the stage where
constraint sentences are being derived from a DATR theory, all unevaluated constraint
sentences are retained. In the case of Arr ivel_pres thi rdsg, the following constraint
sentences are derived by inheritance from Verb:

(27) <syn args first sem> = <syn args gr_subject sem>.

<sere theagent> = <syn args gr_subject sere>.

260

Frangois Andry et al. Making DATR Work for Speech

DATR inference takes the form of successive reduction of right-hand sides; in (27),
neither sentence is further reducible--both would be ignored by a standard DATR
theorem-prover. By passing both constraints to the DAG-building procedure however,
where equality is reflexive as well as transitive (Section 4.3), the two constraints may be
combined to derive the reentrancy between <sem theagent> and <syn args first
sere>.

4.3 DAG Building and Disjunction Optimization
The constraint sentences derived for a DATR node A or for an extension of it A ~
are of the form Path = Value or Pathl = Path2. If consistent, they can be used to
build a DAG corresponding to A ~. Our DAG-building procedure is based on one
described in Gazdar and Mellish (1989). It builds DAGs by unification of constraints,
so that directionality is irrelevant. For this to succeed, the input constraints must not
contain inconsistencies. This property of correctness is only partially guaranteed by
the constraint-derivation stage, which will tolerate an unevaluated constraint whose
left-hand side is a proper prefix of an evaluated one (but not vice versa), as in (28).

(28) <sem theagent type> = object.

<sem theagent> = <syn args gr_subject sem>.

This will work so long as a contradictory type is not derivable elsewhere. The form of
encoded DAGs is known as normal form (Bouma 1990); that is, if two DAGs share a com-
mon sub-DAG, this is explicitly represented in both, with the exception of unevaluated
sharing sub-DAGs that are represented as Prolog variables. Once the DAG is built,
any remaining unwanted paths are filtered out. In the case of Arr ivel_presthirdsg,
this amounts to removing those sub-DAGs introduced at paths containing gr_subj ect
and gr_oblique 1.

Although the closure definitions ensure that the number of surface form depen-
dency feature assignments for each lexeme is finite, in practice for languages like
English where a number of morphosyntactic feature combinations map onto a smaller
set of surface forms, the DNF lexicon will have more entries than there are distinct sur-
face forms. In cases where a number of entries differ only in a single feature, a phase
of disjunction optimization serves to reduce these, according to the simple equivalence:

(41 /~42 /k...4n) V (4~ /N42 A.. .4n) -~-- (41 V4~)/k42/k.. .4n.

Apart from this optimization, the lexicon produced is in DNF form.

5. Bit Coding

5.1 Motivation and Requirements
The last step toward the production of data structures for efficient parsing and gen-
eration is the construction of two separate lexicons: a Prolog term encoding of the
DAGs and a compact bit-encoded lexicon. The motivation for two separate lexicons
is the decision to split the task of parsing into its two aspects: determining grammat-
icality and assigning an interpretation. Since in speech recognition there is also the
added complication of identifying the best-scoring sequence of words from a lattice of
hypotheses, and since an interpretation is only needed for the best sequence, not for
every acceptable one, it is more efficient to separate these tasks. This involves sepa-
rating lexical entries into those features that are constraining (i.e. which affect a sign's

261

Computational Linguistics Volume 18, Number 3

capacity to combine with others) and those that simply contribute to its eventual in-
terpretation. The former set is used to produce the bit-coded 'acceptance' lexicon, the
latter to form a term-encoded 'full' lexicon.

As well as being used in sentence interpretation, the full lexicon is also used in
sentence generation. However, we shall concentrate here on the bit-encoded acceptance
lexicon.

Since the search space when parsing a typical word hypothesis lattice is potentially
great, the acceptance lexicon must be both compact and suitable for processing by ef-
ficient low-level operations. Bit encoding allows unification of feature structures to be
performed by Boolean operations on bit strings, which enables a parser to be imple-
mented in an efficient programming language such as C; it also provides a convenient
representation of disjunctions and negations of feature values.

Two distinct kinds of bit coding are used to represent semantic types and syntactic
head features: both produce vectors of bits that can be stored as integers or lists of
integers.

5.2 Semantic Type Coding
The principal semantic type of a lexical entry is a node in a tree-structured (single-
inheritance) sortal hierarchy. Coding for types in the hierarchy is straightforward:

• a terminal node has one unique bit set;

• a nonterminal node is represented by the bitwise Boolean OR of the
codings for the nodes it dominates.

This scheme requires as many bits as there are terminal nodes in the tree and, assuming
that every nonterminal node dominates at least two subnodes, assigns a unique bit
vector to every node. (A simple example is given in Figure 5). The most specific types
are represented by a bit vector containing a single '1,' and the most general by a vector
with all its bits set. Unification of two types is performed by bitwise AND; since the
hierarchy is tree structured the result of this will be the coding of the more specific
type, or 0 indicating failure if the types are incompatible. The same coding scheme
would also serve if the hierarchy were extended to a multiple-inheritance graph, the
only difference being that bitwise AND could then result in a type distinct from either
of its arguments.

5.3 Syntactic Feature-Value Coding
Our approach to the encoding of the feature structures used to represent syntactic
categories is very similar to that proposed in Nakazawa et al. (1988) for implementing
GPSG-style grammars.

A set of features is represented by a bit vector in which for every n-valued feature,
n + 1 bits are assigned, one associated with each value and one bit indicating that the
feature is not present. A value of '0' for a bit means that the feature does not have the
corresponding value; a '1' indicates that the value is a possible one. If the value of a
feature can be specified precisely, the corresponding bit is set, and all the others for
that feature are cleared. Hence the negation of a feature-value pair can be represented
by clearing a bit, and a disjunction of values by setting more than one bit in the
representation of a feature. This fact can be utilized to pack lexical entries together:
if two entries differ only in one atomic-valued feature, they can be combined into a
single entry by this method. Unification is again performed by bitwise AND; failure
is indicated if all the bits for some feature are turned off, meaning that the structures

262

Francois Andry et al. Making DATR Work for Speech

% @

Q

Type Bit Vector
A 1111111
B 1110000
C 0001111
D 11O000O
E 0010000
F 0001000

Figure 5
Bit coding of the semantic type hierarchy.

Type Bit Vector
G 0000110
H OOOOO01
I 1O0OO0O
J O100000
K 0000100
L 0000010

being unified have no common value for this feature. Since this operat ion only turns
bits off, unification of bit vectors is order- independent (commutat ive and associative).

The bit vector representation is straightforward for encoding flat feature-value
structures, but presents difficulties when features have categories as values, given the
requirement that the possible values for all features can be enumera ted in order to
produce bit vectors of finite size. Al though a general solution can be proposed that
uses some pat tern of bits to indicate a recursive feature and associates with this feature
another bit vector of the same length (the solution adopted by Nakazawa et al. 1988),
we have chosen a more ad hoc encoding, specifying in advance which features can be
recursive and representing them by pointers to similarly coded structures. The features
that are recursive are the list of arguments of a functor sign and the slash feature used
to handle long-distance dependencies2 (This approach enables the parser to process

4 We follow GPSG in the use of the category-valued feature slash as a propagating device to handle
extraction phenomena. For example in the question 'what did you say?', the phrase "did you say?' can

263

Computational Linguistics Volume 18, Number 3

major v ~-~ I
major n
major det
major *
vform fin
vform bse
vform psp
vform prp

1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1
case *
case gen
case obj
case nora
tense *
tense past
tense pres
vform *

Figure 6
Sample bit vector for head features major, vform, tense, and case.

signs more efficiently, but unfortunately makes it partly dependent on their structure).
The bit encoding procedure takes as input a DAG representation of individual

lexical entries and is guided in its translation by the closure definitions. A set of
declarations is used to indicate which features are to be included in the acceptance
lexicon, and how they are to be encoded: using either of the bit representations dis-
cussed above, or simply as a list of encodings of their constituents. If no coding type
is specified for a feature, then it is simply ignored.

As a simple example, consider the following partially specified feature structure:

(29) [head:[maj°r : v
vform:fin]]

Assume that the closure definitions specify values for the head features major, vform,
tense and case, and the FCR"

case ~ major : n

Then if the node head is declared for bit coding, the vector shown in Figure 6 will
be produced. (The symbol "*' stands for 'not present'). Note that bits have been set
for all values of the unspecified feature tense, indicating that nothing is known about
its value, but that only the '*' bit is set for the feature case, since the FCR blocks its
presence for entries whose major feature is not n.

5.4 Variable Sharing
Although the representation of variables and their instantiation to (more or fully) spec-
ified values is straightforward, the implementation of variable sharing or reentrancy
presents a serious problem for bit coding schemes, since there is no means of rep-
resenting identifiable variables. We have adopted a two-fold solution, depending on
the type of the variable. For sign-valued variables, and other large scale structures,
sharing is achieved by means of pointers to common data objects.

This approach cannot be extended down to the level of bit-coded features, since
these involve data below the level of the machine word. Instead a solution based on

be partially characterized, in our notation, as

syn : args : [1

slash: first: [syn: [head: [major:n]]]]
indicating that it is a sentence from which a noun phrase has been extracted.

264

Frangois Andry et al. Making DATR Work for Speech

the use of bit masks has been adopted. The key to this is the recognition that variable
sharing between structures is a limited form of unification, carried out between a
restricted set of their features. If two feature structures represented by bit vectors fll
and t2 share a variable for the feature ¢, a mask # is constructed in which all the
bits representing ¢ are cleared, and all the rest are set. The values for q~ in the two bit
vectors are unified in the result of the expression:

~, A (f12 V ~)

Note that a single mask may represent more than one variable shared between two
structures.

A disadvantage of this technique is that it requires the construction of masks for
all possible feature structures within a sign between which variables may be shared.
In practice we can assume that this means only the recursively nested signs of the
args list and slash, and so need relatively few masks.

A description of the two-stage parsing procedure can be found in Andry and
Thornton (1991).

6. Implementation and Coverage

DIALEX is implemented in Quintus Prolog; benchmark tests indicate that compilation
time is linear in the size of the lexicon. Development of very large scale lexicons is
somewhat hindered by the current lack of effective debugging tools. We have, how-
ever, succeeded in constructing lexicons that cover a broad range of syntactic phe-
nomena in both French and English. For example, the English DATR lexicon covers all
distinctive lexical forms in our corpus gathered from simulations of flight enquiry dia-
logues (Fraser and Gilbert 1991). Furthermore, one of the major advantages of DATR's
inheritance-based approach is ease of adding new lexical entries. For example, a large
number of entries for cities is required in the flight information domain. With the def-
inition of a CITY_PROP node to specify general properties of proper nouns identifying
cities, individual cities such as Paris are simple and quick to define:

(30) Paris: <> == CITY_PROP

<mor root> == paris

<sem thecity value> == paris.

Extending the lexicon to include new verbs, especially verbs with idiosyncratic prop-
erties like try, takes more time and effort.

This paper has been mainly concerned with the definition and compilation of
lexicons for understanding. In fact, SUNDIAL applications are such that a produc-
tion lexicon shares a considerable portion with its recognition counterpart. To this
end, DIALEX has been adapted for compilation of a generation lexicon (Youd and
McGlashan 1992). This is derived from the same DATR definitions but differs from the
parser lexicons in that indexing is based on semantic type and complexity, rather than
the surface string, and inflection is factored away from the lexical entries.

7. Conclusion

In the design of our lexicon compilation tool, we have shown how linguistic knowl-
edge can be arranged in terms of a set of DATR structured base definitions that are

265

Computational Linguistics Volume 18, Number 3

portable across applications. Knowledge at the levels of morphology, syntax, and se-
mantics combines in a single reusable DATR database. The fact that this knowledge
is expressed in a high-level representation language does not limit its usefulness. On
the contrary, it allows the designers of base definitions or application lexicons to think
clearly about the structural relations that hold between objects in the representation
and to maximize generalizations. Default inheritance allows generalizations to trickle
down to specific instances, unless overridden. As a consequence, every good gener-
alization captured during the design of structured base definitions represents labor
saved during subsequent application-specific work.

We have also shown how high-level knowledge can be entered by the lexicon
builder at the appropriate conceptual level and then compiled into a lower level form
appropriate for a chosen application. The system we describe produces two kinds of
output: a term-encoded full lexicon for use in sentence interpretation and generation,
and a lower level bit-encoded acceptance lexicon for use in lattice pruning during
speech processing. The modular design of our system makes it particularly easy to
exchange existing coding modules for new ones, thus allowing linguistic knowledge
to be customized for a wide variety of speech or language applications.

References
Andry, Francois, and Thornton, Simon.

(1991). "A parser for speech lattices using
a UCG grammar." In Proceedings, 2nd
European Conference on Speech
Communication and Technology. Genova,
September 1991, 219-222.

Bilange, Eric. (1991). "A task independent
oral dialogue model." In Proceedings, 5th
Meeting of the European Chapter of the
Association for Computational Linguistics.
Berlin, April 1991, 83--88.

Bouma, Gosse. (1990). "Defaults in
unification grammar." In Proceedings, 28th
Annual Meeting of the Association for
Computational Linguistics. Pittsburgh, June
1990, 165-172.

Calder, Jo; Klein, Ewan; and Zeevat, Henk.
(1988). "Unification Categorial Grammar:
a consise extendable grammar for natural
language processing." In Proceedings,
COLING-88. Budapest, August 1988,
83-86.

Charniak, Eugene, and McDermott, Drew.
(1985). An Introduction to Artificial
Intelligence. Lawrence Erlbaum Associates.

Evans, Roger, and Gazdar, Gerald. (1989).
"Inference in DATR." In Proceedings, 4th
Meeting of the European Chapter of the
Association for Computational Linguistics.
Manchester, April 1989, 66-71.

Evans, Roger, and Gazdar, Gerald, eds.
(1990). The DATR Papers. Research Report
CSRP 139, School of Cognitive and
Computing Science, University of Sussex.

Flickinger, Daniel P.; Pollard, Carl J.; and
Wasow, Thomas. (1985).
"Structure-sharing in lexical
representation." In Proceedings, 23rd

Annual Meeting of the Association for
Computational Linguistics. Chicago,
262-267.

Fraser, Norman M., and Gilbert, G. Nigel.
(1991). "Effects of system voice quality on
user utterances in speech dialogue
systems." In Proceedings, 2nd European
Conference on Speech Communication and
Technology. Genova, September 1991,
57-60.

Gazdar, Gerald. (1987). "Linguistic
applications of default inheritance
mechanisms." In Linguistic Theory and
Computer Applications, edited by Peter
Whitelock; Harold Somers; Rod Johnson;
and Mary McGee Wood. Academic Press.

Gazdar, Gerald. (1990). "An introduction to
DATR." In The DATR Papers, edited by
Roger Evans and Gerald Gazdar.
Research Report CSRP 139, School of
Cognitive and Computing Science,
University of Sussex: 1-14.

Gazdar, Gerald; Klein, Ewan; Pullum,
Geoffry; and Sag, Ivan. (1985). Generalized
Phrase Structure Grammar. Harvard
University Press. Cambridge, MA.

Gazdar, Gerald, and Mellish, Chris. (1989).
Natural Language Processing in Prolog.
Addison Wesley.

Hudson, Richard A. (1990). English Word
Grammar. Basil Blackwell.

McGlashan, Scott; Fraser, Norman M.;
Gilbert, G. Nigel; Bilange, Eric;
Heisterkamp, Paul; and Youd, Nick J.
(1992). Dialogue management for
telephone information systems. In
Proceedings of the 3rd Conference on Applied
Natural Language Processing. Trento, April:
245-246.

266

Francois Andry et al. Making DATR Work for Speech

Nakazawa, Tsuneko; Neher, Laura; and
Hinrichs, Erhard W. (1988). "Unification
with disjunctive and negative values for
GPSG grammars." In Proceedings, 8th
European Conference on Artificial Intelligence.
Munich, August 1990, 467-472.

Peckham, Jeremy. (1991). "Speech
understanding and dialogue over the
telephone: an overview of the SUNDIAL
project." In Proceedings, 2nd European
Conference on Speech Communication and
Technology. Genova, September 1991,
1469-1472.

Pollard, Carl, and Sag, Ivan A. (1987).

Information-Based Syntax and Semantics.
CSLI, Stanford, CA.

Shieber, Stuart M. (1986). An Introduction to
Unification-Based Approaches to Grammar.
CSLI, Stanford, CA.

Youd, Nick J.; and McGlashan, Scott. (1992).
Generating utterances in dialogue
systems. In Aspects of Automated Natural
Language Generation: Proceedings of the 6th
International Workshop on Natural Language
Generation, edited by Robert Dale; Eduard
Hovy; Dietmar R6sner; and Olivero Stock.
Academic Press, London.

267

