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Automatic and accurate pronunciation of personal names by parametric speech synthesizer has 
become a crucial limitation for applications within the telecommunications industry, since the 
technology is needed to provide new automated services such as reverse directory assistance 
(number to name). 

Within text-to-speech technology, however, it was not possible to offer such functionality. 
This was due to the inability of a text-to-speech device optimized for a specific language (e.g., 
American English) to accurately pronounce names that originate from very different language 
families. That is, a telephone book from virtually any section of the country will contain names 
from scores of languages as diverse as English and Mandarin, French and Japanese, Irish and 
Polish. All such non-Anglo-Saxon names have traditionally been mispronounced by a speech 
synthesizer resulting in gross errors and unintelligible speech. 

This paper describes how an algorithm for high accuracy name pronunciation was imple- 
mented in software based on a combination of cryptanalysis, statistics, and linguistics. The 
algorithm behind the utility is a two-stage procedure: (1) the decoding of the name to determine 
its etymological grouping; and (2) specific letter-to-sound rules (both segmental rules as well 
as stress-assignment rules) that provide the synthesizer parameters with sufficient additional 
information to accurately pronounce the name as would a typical speaker of American En- 
glish. Default language and thresholds are settable parameters and are also described. While 
the complexity of the software is invisible to applications writers as well as users, this function- 
ality now makes possible the automation of highly accurate name pronunciation by parametric 
speech synthesizer. 

1. Background 

There has been a great deal of interest recently in the generation of accurate phonetic 
equivalences for proper names. New and enhanced services in the telecommunica- 
tions industry as well as the increasing interest in speech I /O for the workstation 
has renewed interest in applications such as the automation of name pronunciation 
by speech synthesizer in reverse directory assistance (number to name) applications 
(Karhan et al. 1986). In addition, speech recognition research can benefit by automatic 
lexicon construction to be ultimately used in such applications as directory assistance 
(name to number) and a variety of workstation applications (Cole et al. 1989). 
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The inaccuracy of name pronunciation by parametric speech synthesizer has been 
a problem often addressed in the literature (Church 1986; Golding and Rosenbloom 
1991; Liu and Haas 1988; Macchi and Spiegel 1990; Spiegel 1985, 1990; Spiegel and 
Macchi 1990; Vitale 1987, 1989a, 1989b, and others). The difficulty stemmed from the 
fact that high-quality speech synthesizers were so optimized for a particular language 
(e.g., American English), that a non-English form such as an unassimilated or partially 
assimilated loanword would be processed according to English letter-to-sound rules 
only) Since non-Anglo-Saxon personal names fall into the category of loanwords, the 
pronunciation of these forms ranged from slightly inaccurate to grossly unintelligible. 

1.1 General Letter-to-Sound Rules 
Letter-to-sound rules are a requirement in any text-to-speech architecture and take 
slightly different forms from system to system; however, they typically follow a stan- 
dard linguistic format such as x - .  y/z,  where x is some grapheme sequence, y some 
phoneme sequence, and z the environment, usually graphemic. The following is a 
typical example of a set of letter to sound rules: 

C ~ I s /  /-{Eft,Y} 
C --* / k /  

This set would handle all such forms as CELLAR, CILIA, CY, CAT, COD, etc., but 
clearly not loanwords such as CELLO for exactly the same reasons that make the pro- 
nunciation of last names so difficult for a synthesizer having only English letter-to- 
sound rules. A number of letter-to-sound rule sets are in the public domain, (e.g., 
Hunnicutt 1976; Divay 1984, 1990). However, many rule sets that are currently in use 
in commercial speech synthesizers remain confidential. Venezky (1970) contains an 
extensive discussion of issues involving phoneme-grapheme correspondence. 

The accuracy of pronunciation of normal text in high-quality speech synthesizers 
using exclusively or primarily letter-to-sound processing can now range as high as 
9 5 + % .  2 In tests we ran, however, this accuracy (without dictionary lookup), was de- 
graded by as much as 30% or more when the corpus changed to high-frequency proper 
names. The degradation was even higher when the names were chosen at random and 
could be from any language group. Spiegel (1985) cites the average error rate for the 
pronunciation of names over four synthesizers as 28.7%, which was consistent with 
our results. 

The reason for this degradation is due to the fact that the phonological intelligence 
of a speech synthesizer for a given language cannot discriminate among loanwords 
that are not contained in its memory (i.e., dictionary). In the Case of names, these are 
really loanwords ranging from the commonly found Indo-European languages such as 
French, Italian, Polish, Spanish, German, Irish, etc. to the more "exotic" ones such as 
Japanese, Armenian, Chinese, Latvian, Arabic, Hungarian, and Vietnamese. Clearly, 
the pronunciation of these names from the many ethnic groups does not conform 
to the phonological pattern of English. For example, as pronounced by the average 
English speaker, most German names have syllable-initial stress, Japanese and Spanish 
names tend to have penultimate stress, and some French names have word-final stress. 

1 That is, phonemic rules. Obviously, the phonetics output by a synthesizer would not be sufficient for 
multiple languages. 

2 In an informal study, Klatt (personal communication) tested our rule set for English by replicating a 
study by Bill Huggins (Bolt, Beranek and Newman) using letter to sound rules without dictionary over 
1678 complex polysyllabic forms. The algorithm tested (and the one used in this study) had an error 
rate of 5.1%. The error rate using a dictionary would be much lower. 
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Chinese names tend to be monosyllabic and consequently stress is a non-issue; in 
Italian names, stress may be penultimate or antepenultimate as is the case with Slavic 
languages and certain other groups. 

But while stress patterns are relatively few in number, the letter-to-sound corre- 
spondences are extremely varied. For example, the orthographic sequence CH is pro- 
nounced [~] in English names e.g., CHILDERS, [~] in French names e.g., CHARPENTIER, 
and [k] in Italian names e.g. BRONCHETTI or the anglicized version of some German 
names e.g., BACH. This means that letter-to-sound must account for a potentially large 
number of diverse languages in order to output the correct phonetics. 

Most researchers understand that in order to process the name accurately, at least 
two parameters must be known: (1) that the string is a name and thus needs to be 
processed by a special algorithm; and (2) that the string must be identified with a 
particular set of languages or language groups such that the specifics of the pronunci- 
ation (i.e., the letter-to-sound rules) can be formally described (Church 1986; Liu and 
Haas 1988; and others). While there has been some interest in attempting to identify 
a word as a name from random text, this present work assumes a database in which 
name fields are indexed as such (e.g., a machine-readable telephone directory) and no 
further mention of this will be made. This paper simply describes an implementation 
of this two-stage process, and details the first stage - -  the correct identification of a 
name as belonging to a certain language group. It should be stressed that there have 
been other attempts to implement similar algorithms, although few descriptions of 
such implementations are available. 

1.2 Language Groups 
For purposes of identification, sets of similar languages are more efficiently grouped 
together. However, the language groups used in this study may not always corre- 
spond to the set of language families familiar to most linguists. For example, while 
Japanese or Greek may be in groups by themselves, languages such as Spanish and 
Portuguese may be grouped together into a So. Romance group and this set may be 
different from, Say, Italian, which may be grouped with Rumanian, or French, which 
may be grouped by itself. This is done to reduce the complexity of letter-to-sound (Sec- 
tion 4.1). However, the software is set up such that groupings can be moved around 
to accommodate different letter-to-sound rule sets. In addition, the number of groups 
is a variable parameter and could be modified as would the inclusion of any new rule 
sets in the letter-to-sound subsystem. Thus, for n language groups, the probability P 
of some language group Li  being the correct etymology is P ( L i )  - 1 - -  ~ .  

1.3 Etymology 
Identification of a particular language group in the United States and many countries of 
Western Europe is not an easy task. According to the United States Social Security files 
(Smith 1969), there are approximately 1.5 million different last names in the United 
States, with about one-third of these being unique in that they occur only once in 
the register. 3 Furthermore, the etymologies of the names span the entire range of the 
world's languages, although the spread of these groupings is obviously related to 
geopolitical units and historical patterns of immigration and is different in the United 
States than it is, say, in Iceland, Ireland, or Italy. 

3 Spiegel (1985) points this out. This is an excellent article that contains a number of useful statistics on 
personal names. 
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2. Role of the Dictionary 

The first step in the process was  the construct ion of a dict ionary that contained both  
c o m m o n  and unusua l  names  in their or thographic  representat ion and  phonet ic  equiv- 
alent. All sophist icated speech synthesizers  today  use: a lexical database  for dict ionary 
lookup to process words  that are, for one reason oi" another,  exceptions to the rule. 
In generic synthesizers,  these are typically functors that  undergo  vowel  or stress re- 
duction, part ial ly assimilated or unassimilated loanwords  that cannot  be processed 
by  language-specific let ter- to-sound rules, abbreviat ions that are bo th  generic and 
domain-specific,  h o m o g r a p h s  that  need  to be dis t inguished phonetically, and selected 
proper  nouns,  such as geographical  place names  or c o m p a n y  names.  

In the case of p roper  surnames ,  however ,  dict ionary lookups,  while necessary, are 
of l imited use. There are a n u m b e r  of reasons for this. First, while  the mos t  c o m m o n  
names  wou ld  have  an ext remely high hit rate (much like functors in a generic sys- 
tem), the curve  quickly becomes  asymptot ic .  Church (1986) has shown  that  while  the 
mos t  c o m m o n  2,000 names  can account  for 46% of the Kansas City te lephone book,  it 
wou ld  take 40,000 entries to obtain a 93% accuracy rate. Fur thermore ,  accuracy wou ld  
decrease if one considers that  geographic  area has a p ro found  influence on name  
grouping,  and  thus the figures for a large East or West Coast  met ropol i tan  area wou ld  
certainly be  significantly lower. It can be easily shown  that the functional  load of each 
name  changes wi th  the geographical  location. 4 The name  SCHMIDT, for example ,  is 
not  in the list of the mos t  frequent  2,000 names,  yet it appears  in the Social Security 
files as the mos t  c o m m o n  name  in Mi lwaukee  (Spiegel 1985). Liu and Haas  (1988) 
conducted a similar exper iment  that included 75 mill ion households  in the U.S. The 
first few thousand  names  account  for 60% of the database,  but  the curve  flattens out  
after 50,000 names  and  it would  take 175,000 names  in a dict ionary to cover  88.7% of 
the populat ion.  This would  m e a n  that  even wi th  an ext remely  large dict ionary (each 
entry  of which wou ld  have  to be phoneticized),  there wou ld  still be an error rate of 
over  11%. 

Even with  these limitations, dict ionary lookups  are still quite important .  Fre- 
quent ly  occurring names,  like functors,  have  a high functional  load (above). Spiegel 
(1985) claims that if the mos t  c o m m o n  5,000 names  are used  in a dict ionary for a 
popula t ion  of 10 mill ion people,  even if let ter- to-sound had  an accuracy of only  75% 
(which is ext remely low for a high-qual i ty  speech synthesizer),  the error rate wou ld  be 
< 2.5%. Most  other researchers  have  also a s sumed  a dict ionary lookup  as par t  of any  
procedure  to increase the accuracy of name  pronunciat ion.  Therefore the general  f low 
of text f rom the g r a p h e m e  space to the phonet ic  realization mus t  proceed  first th rough  
a dictionary. C o m m o n  last names  such as SMITH, JOHNSON, WILLIAMS, BROWN, JONES, 
MILLER, DAVIS, WILSON, ANDERSON, TAYLOR, etc. and  c o m m o n  names  (both first and  
last names)  f rom a var ie ty  of other languages  should be included. The size of this 
dict ionary is up  to its creator. The dict ionary used  in this sof tware contained about  
4,000 lexical entries that  were  p roper  names,  s There is, however ,  no reason to exclude 

4 Functional load here is used in a slightly different sense than in linguistics. The functional load of a 
grapheme is its frequency of occurrence, in relation to other graphemes in the language, weighted 
equally, as measured over a sizable corpus of orthographic data. 

5 In practice, the name dictionary could be contained within a larger dictionary that would be part of a 
genetic text-to-speech system. Moreover, the dictionary should be easily modifiable by an applications 
writer. Functions such as add, remove, find, modify, and the like can be used to maximize the effect of the 
dictionary, especially if some preliminary analysis has been done on population statistics. Experience 
has also shown that a programmer should be able to easily merge new word or name lists with a base 
dictionary and quickly examine a variety of statistics including the size in entries, bytes, or blocks as 

260 



Vitale Algorithm for High Accuracy Name Pronunciation 

very large dictionaries (e.g., > 50,000 words) although the choice of a search algorithm 
then becomes more important in real-time implementations. 

When a dictionary lookup is used and a match occurs, the result is simply a 
translation from graphemes to phonemes, and the phoneme string (along with many 
other acoustic parameters picked up along the way) is output to the synthesizer. 6 When 
there is no match, (i.e., most cases), however, some algorithm is needed to increase 
pronunciation accuracy. 

3. Identif icat ion Pass 

It is assumed that certain textual elements are identified as names and are intentionally 
processed as such. This algorithm does not address the identification of proper names 
in random text, although there has been some activity in this area in recent years with 
the increased attention to voice prosthesis, remote access to electronic mail, and other 
applications. In database retrieval applications this is not usually a problem, since 
names fields in a database are typically marked by some field identifier. Similarly, the 
syntax of electronic mail message headers can often be used to mark a personal name. 

The first stage in the identification procedure is the analysis of the sequence of 
graphemes that makes up the name, and its indexing as belonging to some language 
group. The concept of identification by orthographic trigram is by no means new and 
has been discussed in the literature (e.g., Church 1986; Liu and Haas 1988; and others). 
In our implementation, the identification is a complex procedure that includes filter 
rules for identification or elimination, graphemic (non-trigram) and morphological 
analysis, as well as trigram analysis. While this scheme may seem complex, it will run 
in real time, and thus the complexity is invisible to the user. 

3.1 Filter Rules  
It is well known in both linguistics and cryptanalysis that a text string from a lan- 
guage Li will have unique sequence characteristics that distinguish Li from all other 
languages in the set {Li, Lj,... Ln }. All alphabetic languages (as opposed to syllabaries 
or ideographic systems) have a quantifiable functional load of graphemes as well as 
phonemes, and this functional load will differ greatly from language to language. We 
have therefore created a set of rules that we call filter rules. Filter rules are rules that 
may positively identify a name or positively eliminate a name from further consider- 
ation. The use of nonoccurrence is not new but is refined to include a more elaborate 
filter mechanism for variable length grapheme sequences. When scanning the name to 
determine etymology, if the name cannot be positively identified, it is more efficient to 
eliminate some groups from consideration, thereby increasing the speed of the search 
(below). 

There are some unique identification characteristics of grapheme strings from cer- 
tain languages. In these cases, a grapheme G may help identify a string as being from 
Li. For example, the grapheme E in English is well known as the most common letter, 
and has a functional load of 12.4% (Daly 1987). Scrabble and similar games are interest- 
ing indicators of this and mark functional load of graphemes by values of individual 
letters; the lower the value, the higher the functional load. Naturally, quantitative dif- 
ferences occur from language to language. While z has an extremely low functional 
load in English, it is one of the most common letters in Polish. As an example of this 

well as the average length of each field of an entry. 
6 A dictionary entry in currently-used generic text-to-speech algorithms is really nothing more than a 

complex context-free letter-to-sound rule. 
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metric, if we take 1+ occurrences of the letter K in a name over  the total number  of 
unique names in a corpus, in Japanese, the frequency of this letter is 40.1%, in Ger- 
man  it is only 18.9% and in Italian, the letter does :not occur. Since the distribution 
of letters in proper  names will differ from that of the general lexicon, statistics on 
letter f requency in names should be compiled independent ly  but  could be used for 
determining probabilities. Similarly, the or thographic  length of a name, like the length 
of a common  noun,  could, in a more  elaborate scheme, be also used as a factor in 
determining probabilities. In the dict ionary used in this study, both names and non- 
names together had an average length of slightly under  7.5 graphemes.  This coincides 
with the findings of Daly (1987), in which normal  words  had an average length of 7.35 
graphemes.  7 Nei ther  of these were used as factors in determining probabilities in this 
implementat ion.  

Sequences of graphemes  are much  more  useful in determining the identification 
of a language group. Sequences of 2 or more  letters including larger morphological  el- 
ements  within a name may  be considered characteristic of a language group al though 
each of these may  also effectively exclude a set of other  language groups. For exam- 
ple, sequences such as cz ,  PF, SH, EE (or longer ones) unambiguous ly  define certain 
language groups. A trivial example of this would  be the sequence #MC (where # is 
a word-boundary) ,  which unambiguous ly  identifies the word  as Irish resulting in a 
probabil i ty of 1 for the identification of the corresponding language group.  

However ,  even if a sequence cannot  identify a language group unambiguously,  the 
filter rules often eliminate one or more groups from consideration, thereby drastically 
altering the statistical chances of an incorrect guess. As might  be expected, the longer 
the (legal) sequence in Li, the less likely it is to occur in another  language group. In 
some languages, either alphabetic ones or those that are transliterated into alphabetic 
systems (e.g., Japanese), certain letters do not occur. For example,  the letter L does not  
occur in Japanese, x does not occur in Polish, J does not  occur in Italian, and so on. 
The occurrence of any of these graphemes  in a name string would  then immediate ly  
eliminate that language from consideration. Thus, if m language groups have been 
eliminated, the probabili ty of some language group Li being the correct e tymology is 
now P(Li) = ~_-~. Analysis has shown that the filter rules eliminate an average of 54% 
of all possible language groups, s 

Filter rules, therefore, consist of (a) identification rules and (b) elimination rules. 
Identification rules match a grapheme sequence against an identical sequence in the 
name. A match is a positive identification and the filter routines stop. Elimination rules 
also match a g rapheme sequence against an identical g rapheme sequence in the name. 
A match eliminates that language group from consideration. There are a number  of 
different ways these rules could be applied. One of the more  efficient methods  is to 
create a hash table of g rapheme strings and search for substrings for identification and 
elimination at the same time. Whichever  way  a compiler  for these rules is written, it is 
clear that the routines stop after a positive identification occurs. The benefit  of using 
filter rules prior  to the t r igram analysis (below) is one of speed. 

One minor  problem that had to be examined was the fact that m an y  names have 
been anglicized from their original form, resulting in varied and disparate pronuncia-  

7 The average length of an English word is 3.98 letters when the words are weighted by frequency of 
appearance (Daly 1987) clearly due to the shorter length of commonly occurring forms such as function 
words. While no similar statistics have been compiled for names, it is doubtful whether the 
discrepancy in length between weighted and unweighted would be as large. 

8 The ISO-Latin character set (or an equivalent) could also be utilized in situations where proper names 
can be written with special symbols (e.g., i~, o, 6 and others), since these orthographic symbols could 
be used to eliminate or positively identify language groups. 
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tions (not to mention some rather strange spellings, including graphemes that do not 
exist in the source language). For example, a Polish name such as ALEXANDROWICZ 
contains the grapheme x, although x does not occur in Polish (i.e. KS --* X). The ortho- 
graphic sequence scI (= [~]) in Italian is occasionally anglicized as SH even through 
the sequence StI does not occur in the language. Therefore, the elimination rules have 
to be carefully tailored to take such phenomena into consideration. Sequences that 
positively identify a language must also be carefully screened for the same reason. 
Names like O'SHINSKI are not uncommon. 9 In this case, whether the name is consid- 
ered Irish or Polish may not matter in terms of the phonemic output, but there are 
cases where it would make enough of a difference to cause intelligibility problems in 
the final output. 

3.2 Trigram Analysis 1° 
The job of the filter is to positively identify a language or to effectively eliminate one or 
more groups within the set of possible language groups when positive identification is 
not possible. Elimination obviously reduces the complexity of the task of the remaining 
analysis of the input name. Assuming that no language group is positively identified 
as the language group of origin by the filter, some further analysis is needed. This 
further analysis is performed by a trigram analyzer, which receives the input name 
string and a vector of uneliminated language groups. The trigram analyzer parses the 
string into trigrams. If word boundary symbols are included as part of the string, then 
the number of trigrams in the string will always be equal to the number of elements 
(graphemes). Thus, the name SMITH ==~ #SMITH# will contain five trigrams: #SM, SMI, 
MIT, ITH, a n d  TH#. 

A trigram table is a four-dimensional array of trigram elements and language 
group. This array contains numbers that are probabilities (generated from a large 
reference corpus of names labeled as belonging to a particular language group) that 
the trigram is a member of that language group. Probabilities are taken only to four 
decimal places, although there is no empirical reason for this. 

3.2.1 Creation of Trigram Databases. The creation of a trigram database would be an 
extensive and time-consuming task if it were to be done manually. Nevertheless, it 
was initially necessary to hand-label a large list of names with language group tags 
associated with each name. Fortunately, this was expedited with country-specific per- 
sonnel lists from a large company. 11 Once these lists were completed, computational 
analysis was performed on the list, decomposing each name into grapheme sequences 
of varying lengths, including trigrams, and searching for recurring morphological ele- 
ments as well. This analysis, in turn, created a set of tables (language-specific n-grams, 
trigrams, etc.), which was then used for further analysis. The language identifier itself 
can be utilized as a tool to pre-filter a new database in order to refine the probability 
table. This is illustrated in Figure 1. The name, language group tag, and statistics from 
the language identifier are received as input. This analysis block takes this information 
and outputs the name and language group tag to a master language file and produces 
rules to a filter rule-set. In this way, the database of the system is expanded as new 

9 Murray Spiegel (personal communication) has pointed out that there are 79 households in the U.S. that 
have this name. 

10 For our purposes here, trigram will be used synonymously with the term trigraph. Trigram analysis is 
by no means new and has been discussed often in the literature (e.g., Church 1986). 

11 Although these had to be carefully verified because of the increasing numbers of expatriates living and 
working in any given country. 
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Figure 1 
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input names are processed so that new names can be more accurately recognized. 
The filter rule store provides the filter rules to the filter module for identification or 
elimination. 

3.2.2 Trigram Array and Statistical Analysis. The final trigram table itself then has 
four dimensions: one for each grapheme of the trigram and one for the language group. 
The trigram probabilities are sent to the language group blocks, phonetic realization 
block, and to the trigram analysis, which produces a vector of probabilities that the 
grapheme string belongs to the various language groups. 

The master file contains all grapheme strings and their language group tag. The 
trigram probabilities are arranged in a data structure designed for ease of searching a 
given input trigram. For example, if we use an n-deep three-dimensional matrix where 
n is the number of language groups, then trigram probabilities can be computed from 
the master file using the following algorithm: 

compute total number of occurrences of each trigram for 

all language groups L (l-n) 

for all grapheme strings S in L 

for all trigrams T in S 

if (count [T] [L] = O) 

uniq [L] + = 1 

count [T] [L] + = i 

for all possible trigrams T in master 

sum= 0 

for all language groups L 

sum + = count [T] [L] /uniq [L] 

for all language groups L 

if sum > 0, prob[T] [L]=count [T] [L] /uniq [L] /sum 

else prob[T] [L]=O.O; 

264 



Vitale Algorithm for High Accuracy Name Pronunciation 

Table 1 
Sample matrix of probabilities. 

Trigram Li L i ... Ln 
#VI .0679 . 4 6 5 9  . . . .  2093 
VIT .0263 . 4 1 4 5  . . . .  0000 
ITA .0490 . 7 8 5 1  . . . .  0564 
TAL .1013 . 4 4 2 2  . . . .  2384 
ALE .0867 . 2 6 0 2  . . . .  2892 
LE# .1884 . 3 1 8 1  . . . .  0688 
AV. .0866 . 4 4 7 7  . . . .  1437 

In any case, the result of the trigram analysis is a vector of probabilities for a given 
trigraph over the number of language groups. Table 1 shows an example of what the 
probability matrix would look like for the name string VITALE. 

In the matrix shown in Table 1, L is a language group, and n is the number of 
language groups not eliminated by the filter rules. The probability that the grapheme 
string #VITALE# belongs to a particular language group is actually produced as a vector 
of probabilities from the total probability line. In this case, the trigram #vI has a 
probability of .0679 of being from language group Li .4659 of being from the language 
group Lj and only .2093 of being from the language group Ln. The average of the 
probability table entries identifies Lj as being the most probable language group. In 
this case, Lj was Italian. 

The probability of a trigram being a member of a particular language group can 
be derived by a number of different methods. For example, one could use a standard 
Bayesian formula that would derive the probability of a language group, given a 
trigraph T, as P(LilT) where 

P(TILi)P(Li) 
P(Li)IT) = Y~,k P(TILk)P(Lk) 

Furthermore, where x is the number of times the token T occurred in the language 
group Li and y is the number of uniquely occurring tokens in the language group Li, 
always, where n is the number of language groups (nonoverlapping). Therefore, 

P(Li]T) - 
P(TILi) P(TfLi) 

~k=l P(~ ~Lk) Ek=l P(TILk) 

While this is not the most mathematically optimal or elegant method (since averag- 
ing tends to favor a noneven distribution of trigram probabilities) and is certainly a 
simplistic method of performing such calculations, it works reasonably well and is 
computationally inexpensive. It should be noted, however, that multiplying proba- 
bilities, calculating and adding log probabilities, or even averaging the two highest 
probabilities, may all work, but each of these approaches assumes that trigrams are 
independent of one another. It is beyond the scope of this paper to discuss the elegance 
of one mathematical solution over another but it would be interesting to examine other 
options, such as higher order conditional probabilities, e.g., 

P(LiIT1, T2, T3) = P(TIlT2, T3, Li)P(T21T3, Li)P(T3 Li)P(Li) 
P(T1, T2, T3) 

although these would clearly be computationally quite expensive. 
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Table 2 
Name pronunciation statistics. 

Name Identified Language Highest Probability 
Partington English .4527 
Bischeltsrieder German 1.000 
Villalobos Spanish .4377 
Kuchenreuther German .6973 
O'Banion Irish 1.000 
Zecchitella Italian 1.000 
Pederson English .3258 
Hashiguchi Japanese 1.000 
Machiorlatti Italian 1.000 
Andruszkiewicz Polish 1.000 
Fujishima Japanese 1.000 
Macutkiewicz Polish .6153 
Fauquembergue French .4619 
Zwischenberger German 1.000 
Youngblood English .8685 
Laracuente Italian .2675 
Laframboise French .3778 
McAllister Irish 1.000 
Abbruzzese Italian .5113 
Rodriguez Spanish .6262 
Yanagisako Japanese .7074 
Migneault French 1.000 
Znamierowski Polish 1.000 
Shaughnessy Irish .6239 

Table 2 is an example of the ou tpu t  of the language group identification module.  
The table consists of twenty-four  proper  names randomly  but  equally selected from 
the eight separate language groups. 12 Twenty-three out  of twenty-four  were correctly 
identified. The only error is on the name LARACUENTE, which is the lowest  score and 
is identified as Italian instead of Spanish. 

Note also that .2675 is the lowest score in the list. In practice, this would  not  
have presented a problem, since the letter-to-sound rules for language groups such as 
Italian and Spanish are very  similar (e.g., the stress pat tern would  be penult imate,  etc.) 
and thus the phonetic  realization would  be almost identical. When pronuncia t ion is 
included in the evaluation, the scores would  be slightly higher  in certain cases, since 
an incorrect identification does not always result in an incorrect pronunciat ion.  

3.3 Thresholding 
Since the output  of the e tymology analyzer is a vector of probabilities and only the 
highest score is chosen (i.e., a best guess), a number  of different situations can arise 
regarding the total spread among the numbers,  the difference in spread between any 
two numbers,  or the spread between some number  and 0 (i.e. an absolute comparison).  
For this reason, and to make use of this information, thresholding has been applied. 

Essentially, thresholding allows for analysis to be made  over  the vector of proba- 
bilities such that statistical information can be used to help determine the confidence 
level for the language group with the highest score (i.e., the best guess). Two types of 
threshold criteria have been applied: absolute and relative. 

12 Randomly selected from names over 7 graphemes in length to increase complexity somewhat. 
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3.3.1 Absolute Thresholding. Absolute thresholding can apply when the highest prob- 
ability determined by the trigram analyzer is less than a predetermined threshold that 
is variable or can be set programmatically. This would mean that the trigram analyzer 
could not determine, from among the language groups, a single language group with 
a specified degree of confidence. For example, if empirical evidence (i.e., over a given 
corpus) suggests that P < n (where P is the highest probability and n is some number 
predetermined to be too low for an adequate confidence level), then some other action 
should be taken, n should be set by analysis of data. While this "other action" is vari- 
able, one approach would be to choose a default language that may or may not be the 
same as the language group identified by the highest probability. Evidence suggests 
that typically it is not. 

As an example, if the absolute threshold were set at P < .1000 and the highest 
score were .0882 for some language Li, then the default language is chosen whether 
or not this is the same as Li. There may be circumstances where the accuracy might be 
able to be tuned by adjusting the absolute threshold. 13 However, this parameter should 
be construed more as a partial filter which, if set to some reasonable value, will filter 
out only scores showing a very low confidence level, and thus it would rarely affect 
the result. 

3.3.2 Relative Thresholding. Another type of thresholding scheme that was imple- 
mented is a relative thresholding. In this case, A spans a number of probabilities 
provided that the distance between the highest score and the default language is < n. 
Therefore, if Pj was the probability assigned to the default language group, no matter 
where this occurred relative to the best guess Pi, if A(Pi, Pj) < n, the default language 
is chosen. (Typically, n is a smaller number than it was for absolute thresholding.) This 
is, of course, empirical and should be judged according to an analysis of the database 
used. It is our impression that if the default language group falls within the A, the 
algorithm should force a choice of the default language. 

It should be noted, however, that there are other ways in which relative threshold- 
ing could have been implemented, e.g., when the distance in probabilities between the 
language group identified as having the highest probability and that identified as hav- 
ing the second highest probability is < n, where again n is some number determined 
by analysis of the data. Thus where Pi is the highest probability and Pj the second 
highest, then, if A(Pi, Pj), < n, the default language is chosen. The problem with this 
approach is that it would result in two close scores (i.e. between similar languages), 
forcing a default to a third and possibly structurally dissimilar language. For example, 
a name for which the scores for Italian or Spanish fell within the A might then be 
forced into the default language, say English. This is clearly not optimal for a generic 
use of the algorithm, although it might be useful under certain application-specific 
circumstances. 

3.4 Default Language 
To solve practical application problems of name pronunciation, it was necessary to 
define a default language group. The concept of using a default language proves 
to be useful for several reasons: (1) it is consistent with the philosophy that where 

13 Such a priori probabilities for thresholding can either be adjusted once early in the application or may 
even be biased by a running average based on the population that used the application within some 
particular time frame. 
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mistakes are made, they will reflect human errors in pronunciation; 14 (2) the software 
underlying this algorithm is designed to be used in speech communities anywhere in 
the world; and (3) the default language could be adjusted for communities in the U.S. 
or elsewhere where one language group predominates. 

If Pi or A(Pi~Pj) falls within some range, it signals, for whatever reason, a low 
confidence level. Humans, when faced with a decision in these circumstances, often 
opt for the "familiar," in this case, some predefined default pronunciation. This would 
almost always be the language of the speech community in which the application is 
running. In other words, if the confidence level is measured as low via some thresh- 
olding mechanism, then a conservative approach would be to default to some "safe" 
language group, even if this might result in an error in the correct pronunciation (see 
fn. 14). 

Secondly, whether an application is running in Berlin, Paris, Dublin, or Milan, the 
default language setting could be changed to reflect the predominant language group. 
In Germany, for example, in cases where threshold confidence level scores are too low 
for the language group identifier, the default (presumably German) would reflect a 
reasonable guess. 

The default language parameter could also be used in other cases where the pre- 
dominant linguistic base of an area is known to be different from that of the wider 
speech community. In telecommunications applications, for example, telephone num- 
ber prefixes are unambiguous indicators of geographical areas, some of which are 
relatively homogeneous in ethnic makeup. In cases like these, an application might 
make use of an automatic default language change for calls pertaining to these areas. 
Thus, in a Hispanic neighborhood, the default would be to Spanish. This could also 
be used for homographic first and last names in an elaboration of this system such 
that ambiguities like JULIO, JESUS, and the like could be resolved. The default lan- 
guage setting is certainly the most important of any of the settable parameters, since 
it determines the base language that is used in all cases of low confidence. 

4. Letter-to-Sound Rules 

Much of the discussion of this paper has been devoted to an explanation of the identifi- 
cation of the etymology of the name. While this is certainly the more difficult problem 
to solve, there is a great deal more that needs to be done to arrive at some reasonable 
approximation of a phonetic realization. The identifier merely takes an orthographic 
sequence and adds a tag that marks it as a member of a particular language group. 
The output remains a graphemic sequence. It is the tag, however, that forces the name 
through one of a special set of letter-to-sound rules optimized for the languages of 
that particular group. Therefore, the sole difference between a name run through the 
identifier and a word from generic English text is that the name is tagged as a special 
case and undergoes different letter-to-sound rules. 

4.1 Optimization of Rule Sets 
The letter-to-sound module is a knowledge-rich complex subsystem that takes a graph- 
eme input and converts it into its appropriate phonemic equivalent. In normal letter- 
to-sound systems that apply to generic text (see Klatt 1987 p. 767ff), an orthographic se- 
quence is, according to some rule set, converted into symbols that typically correspond 

14 As Spiegel (1985) has pointed out, "the guiding principal behind all work should be that the synthesis 
rules should make errors that are similar to human mistakes." 
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to segmental phonemes and stress patterns for that form. In this case, however, the 
task becomes much more complex because of the many language groups involved 
(Section 1.1). 

When the tag (above) is attached to some name thereby identifying it as belonging 
to some language group Li, the orthographic sequence is funneled through a special 
set of letter-to-sound rules for Li, and similarly for Lj, . . . ,  Ln. Figure 2 is a block di- 
agram of the entire flow of the procedure with the letter-to-sound modules (slightly 
oversimplified) occurring after identification has been completed. 

While the concept of separate rule sets is a valid one, in practice this would be 
an unnecessarily complex system since it is obvious that there would be a great deal 
of redundancy and overlapping of rules from one rule set to the other. For example, 
the simple rule (K ~ / k /  might be valid for many of the language groups. This 
would fail to capture the generalization that this rule can be shared by a subset of the 
total number of language groups, would therefore waste computing resources, and 
consequently is architecturally suboptimal. 

As a result of this need for rule-sharing, a slightly different strategy can be devised. 
Using a complex rule-set, a single rule can contain from 1 to n language identifica- 
tion tags, n again being equal to the total number of language groups. In practice, 
there are rarely more than four tags on a single rule. However, this does reduce the 
computational complexity and redundancy of having separate rule sets. 
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5. Some Further Issues 

5.1 First Names 
Historically, su rnames  in m a n y  par ts  of the wor ld  are s imply  extensions of the first 
n a m e  to dist inguish different owners  of the same first name.  As a consequence of this, 
first names  have  a higher  f requency of occurrence than su rnames  since the list of first 
names  is a smaller  set for mos t  languages.  ~s Therefore, m a n y  of these are appropr ia te ly  
included in the lexicon or dictionary. In addit ion,  the same first n a m e  m a y  span  a wide  
var ie ty  of languages.  C o m m o n  European  first names  are found  in disparate  regions 
of the world ,  due  to extralinguistic factors such as the g e o g r a p h y  of fo rmer  colonial 
powers .  Put  another  way, more  people  in ang lophone  countries have  the first n a m e  
JOHN than  have  the last name  SMITH. 16 For this reason, the mos t  c o m m o n  first names  
in each language  g roup  are included in the dictionary. However ,  in the event  that  
there is no dict ionary match  on first names ,  they should still be processed,  like the 
surname,  by  the language  identification m odu le  (below). 

Processing the first name  can be done  independen t ly  or, in an elaborat ion of the 
algori thm, m a y  be done  in conjunction with  the surname.  For example ,  if the name  
YUKIO KOBAYASHI were  processed and  one name  was  found  by  a dict ionary lookup,  
that identification could assist in the identification of the other. If the probabi l i ty  of 
both  names  were  low but  the best  guess showed  the same language  g roup  identified 
for both,  this could also be  used  as a factor in the de te rmina t ion  of the correct ety- 
mology. In this scheme,  caution mus t  be used  especially wi th  female names  in m a n y  
countries wi th  a he te rogeneous  ethnic m a k e u p  (e.g. the Uni ted States) since a su rname  
(taken f rom a husband)  and  female  first n a m e  will often be  f rom different language  
groups.  This, of course, can be overcome by  mark ing  such names  in the lexicon as 
female. However ,  it was  found  that  such addit ional  loading is not  necessary since 
the e tymology  of names  can be accurately ascertained wi thout  utilizing informat ion  
outside of the name  itself. 

5.2 Hyphenated Surnames 
H y p h e n a t e d  names  would  be processed as if they were  two separate  names.  Again,  
this is because of the potent ial  confusion that  could occur where  par t  of the hyphena ted  
n a m e  is a mar r ied  name  and the other a bir th name.  Thus,  su rnames  such as ARRO¥O- 
PETERSEN, MAHONEY-RIZZO, KILBURY-MEISNER, and the like should be  treated as if the 
h y p h e n  were  a language  separator.  Fur thermore ,  in such combinat ions,  the sequence 
is often unpredictable.  Some cultures adop t  the convent ion  (for women)  of bir th  name-  
marr ied  name  (e.g., English, Polish), while others have  the opposi te  order  of mar r ied  
name-b i r th  name  (e.g., German) .  17 

5.3 Homographs 
A classic p rob lem that  faces let ter- to-sound algor i thms is the existence of homographs .  
These are words  that are spelled the same but  have  two different pronunciat ions,  usu-  
ally signaling a difference in fo rm class. English contains, in its general  vocabulary,  

15 Certain languages, however, have a more open-ended system than those of the familiar Indo-European 
languages. In Chinese languages, for example, individuals have a wide variety of names which derive 
from the general lexicon. A female name might be WANG MEI HWA where WANG is the surname, 
MEI "beautiful' and HWA 'flower'. Her sister might be WANG MEI YEH "beautiful leaves.' 

16 Liu and Haas (1988) point out that the name SMITH occurs 676,080 times for a database of 75 million 
households in the U.S. representing 1% of the total. 

17 In certain Slavic languages, names function as adjectives and are marked for gender. In Polish, for 
example, the common name KOWALSKA is the female counterpart of the male name KOWALSKI. 
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over 300 of these, some of which are high frequency forms. Examples of this are DE- 
LIBERATE, ARITHMETIC, REFUSEr PRODUCE, COORDINATE, SOW, BASS, and many others. 
Modern-day text-to-speech systems do not yet process these automatically. An even 
more difficult problem faces a proper name pronunciation algorithm. Whereas one 
could, in principle, devise a method for generic text using form class or part of speech 
to distinguish pairs such as those just mentioned, it is not always possible to predict 
which variant will occur in a proper name. TM 

5.4 Free Variation and Cross-Language Variation 
5.4.1 Homographic Variation and Cross-Language Variation. Different pronuncia- 
tions may occur in either free variation or in cross-language variation, with the two 
occasionally overlapping. Free variation occurs when the same last name occurs with 
two or more different pronunciations but these are from the same language group. 
One person with the name BERNSTEIN may pronounce it [br'nstaYn], whereas a second 
person may pronounce it [br.'nstl~n]. This is true free variation where typically one pro- 
nunciation represents something closer to the source language. In a slightly different 
type of variation, one name may indeed be from a different language group or else the 
alternation reflects a radical anglicization of the name, e.g., PACE may be pronounced 
either [pds] or [pd~i]. Stress patterns also vary greatly depending upon the degree of 
assimilation into English. For example, Slavic names show a great deal of variation 
from penultimate stress (which is the canonical stress pattern) to antepenultimate (the 
assimilated pattern). E.g., ANDRUSZKIEWICZ could be [andru~kY6vi~] or [andrt~kYevi~]. 
Often, cues such as orthography may give a hint as to the degree of assimilation. If 
the native Slavic phoneme Iv] is written orthographically as W, for example, it has a 
higher chance of retaining the source (i.e. penultimate) stress pattern than if the same 
phoneme were written orthographically as V. 

Cross-language variation causes greater problems in this regard, since names are 
listed in the dictionary in only one way. However, this algorithm is not language- 
specific but can be used anywhere in the world. While the entry could be modified, 
no procedure that would allow for different lexical entries for the same spelling has 
been implemented. In any case, names like ROBERT could be [rdbrt] or [rob&] depend- 
ing upon whether the name is English or French. Similarly, names like JULIO, PETER, 
WALTER, GILES, BERNARD, GUY, RICHARD, JAN, CLAUDE, and hundreds of others have 
different segmental forms or stress patterns depending upon where they originate 
from and whether the name has been assimilated into English. One way in which this 
could be handled is by marking these in a dictionary and then using the 'loading" 
strategy of last name etymology as discussed above (Section 5.1). Another method is 
simply to adopt one variant as the default with the others also listed as homographs 
and marked for language type with the corresponding phonetic equivalents. Since the 
default language is a settable parameter (Section 3.4), multiple phonetic entries could, 
in principle, be used. 

5.5 Loanword Assimilation and Segmental Modification 
It is obvious that the segmental phonetic output of letter-to-sound rules is restricted 
to the inventory of allophones of the synthesizer. That is, an English-based speech 
synthesizer should not be expected to make a French uvular [R] or a German velar 
fricative. Moreover, it would be counterproductive to even attempt to approximate 

18 Distinguishing non-name homographs automatically could, in principle, be done with a front-end 
parser, which would provide the syntactic information necessary to choose one pronunciation or the 
other. 
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these sounds, since the listener would not be expecting this and intelligibility of the 
name would certainly decrease. For this same reason, even the segmental phonemes 
of the source language can distract the listener's attention and reduce intelligibility. 
For example, while the name CARBONE must have penultimate stress to be considered 
correct, it would be inappropriate to phonemicize the final orthographic vowel as a mid 
front / e / ,  as would be the case in the target language (i.e., Italian). This is because 
the assimilation of this and other similar names into English has raised the vowel 
phonemically t o / i /  (and diphthongized it phonetically to [iy]. Thus, while CARBONE 
would b e / k a r b 6 n e / i n  Italian, it would be / k a r b 6 n i / i n  anglophone countries such 
as the United States. 

Furthermore, the different degrees of assimilation can be formally described in 
an elaboration of the algorithm presented here. For example, assuming allophones as 
produced by a speech synthesizer are optimized to American English, one could apply 
a number of rules to the name CARBONE as follows: 

1. Orthography --* (CARBONE) 

2. Phonemicization ~ /karb6ne/  

3. Assimilation Rule 1 --+ /karb6ni/  

4. Assimilation Rule 2 (optional) ~ /karb6n/  

Thus, we can place different degrees of assimilation on the target language (i.e. 
English) using formal (ordered) rules. This would allow a generic synthesizer's letter 
to sound (and allophonic) rules the ability to change degree of assimilation in much 
the same way that we will eventually be able to specify shifts in style and register 
within text-to-speech systems. 

6. Testing and Evaluation 

6.1 Performance 
The performance goal of the software developed around this algorithm was real-time 
processing. We benchmarked the performance on a Digital Equipment Corporation 
Vax 8800 running VMS V5.1. A total of 34,337 names were processed in 25 minutes 
and 27 seconds, or equivalently 22.65 names per second. After some code optimization 
and streamlining of the filter rules, we later ran similar tests using the same databases 
on an 33 MHz PC running MS-DOS V5.0. While these tests were run on the iden- 
tification portion only, we were able to process several thousand names per second. 
Large commercial applications will have similar compute power, and thus real-time 
processing is not a problem. It should be noted that many applications do not require 
real-time processing since the processed name and address can be simply stored in a 
separate field in the database. The routines can thus be used to create a database of 
phonemicized names by preprocessing the name, storing the phonemic equivalent of 
the name in some field, and sending that field to the synthesizer at some later time. 

6.2 Pronunciation Accuracy 
A number of different tests were conducted for accuracy of pronunciation. Accuracy 
here was measured in terms of the level of segmental and suprasegmental (i.e., stress 
placement) output determined by a linguist to be reasonable behavior. A more elabo- 
rate (and possibly more practical) criterion for accuracy might include the transcrip- 
tion (by a linguist) of a number of pronunciation tokens provided by nonlinguists. 
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Table 3 
Names vs. generic lexical items. 

Lexical type % Error before % Error after Dictionary 
All function words 
2000 common surnames 
Complex poly test 
828 Single L-group surnames 

0 0 + 
31.9 0 + 

5.1 5.1 - 
92 6.3 - 

Our  reasoning was that the output  should minimally model  human  behavior. How-  
ever, because the algorithm contains more linguistic information than is known by the 
average person, the software has the potential  to be more accurate than a person (i.e., 
make fewer gross pronunciat ion errors). Testing of human  vs. computer  pronunciat ion 
of names from a test database is being conducted independent ly  at the present  time 
within the artificial intelligence communi ty  (Golding and Rosenbloom 1991) as well 
as within the telephone industry. 

One of the problems we faced is a definition of what  constitutes correctness. Very 
often, more than one pronunciat ion is acceptable and m an y  readers of this paper  
have had their own names pronounced  differently by other individuals. Even profes- 
sional linguists faced with names such as MOUDRY, FUCHS, SOUTO, D'ANGELO, BADKE, 
DUJMUCH, SMYTHE, and others cannot say definitively whether  one pronunciat ion is 
correct or not (Hochberg et al. 1990). For the purposes  of our  evaluation, in cases 
like these, a pronunciat ion was accepted if linguists felt that the segmental  phonemic  
output  and stress placement  were reasonable. Again, another  and possibly more  re- 
alistic approach might  be to phonemicize a set of names from the pronunciat ion of 
a group of individuals who are not owners of the name. These pronunciat ions could 
then be phonemicized by  a linguist and correctness could then be evaluated by a 
simple matching of the majority pronunciation. In any case, both [fyuks] and [fu6] 
were considered correct for FUCHS but  [ffi~iz] and [f^ks] were not; [smaYO] and [smIO] 
for SMYTHE but  not  [smIOiI; [diY~njelo] and [degnjelo] for D'ANGELO but not  [daenj61o] 
and so on. Similarly, because of homographic  variation (Section 5.4.1) and the at tempt  
to make errors replicate what  humans  might  say, we would accept certain pronunci-  
ations for names that we knew came from two very  different sources as long as one 
were reasonable. For example, [p6s] would be an acceptable pronunciat ion for PACE 
even if the first name were Antonio. In fact, often one cannot say definitively that 
one pronunciat ion or the other is the one used wi thout  asking the person who owns 
the name. Again, with the loading strategy factoring in first name (above), one might  
increase the probabili ty of a reasonable pronunciation. 

Testing was done with several databases that were not used to compile the tri- 
grams. Some degradat ion was expected when  using a new (test) database. However ,  
as shown in Figure 1, after testing, a new database could be merged  with the reference 
database, and new and more complete tr igram statistics calculated. 

Table 3 shows the error rate with and without  a dict ionary over  different subsets 
of a corpus. The dictionary covered all functors and the 2000 most  common surnames. 
The complex polysyllabic test (see fn. 3) is simply a benchmark for the generic letter 
to sound rules without  use of a dictionary. The last line of the table suggests the 
improvement  possible in name pronunciat ion (in this case, Japanese names were used). 
Note  the degradat ion in performance (without the name pronunciat ion software) from 
common  names to Japanese names. 
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Table 4 
Database tests - -  no dictionary. 

Database % Error no ident. % Error with ident. 
Reference - set 1 18% 8% 
Reference - set 2 24% 8% 
Test - hardcopy 32% 15% 
Test - softcopy 22% 12% 

Table 5 
First, last, and street names. 

Word type No dictionary Dictionary 
Last names 12% 7% 
Street names 24% 7% 
First names 23% 1% 

In a second test, we  had  a subject r a n d o m l y  choose two sets of 100 names  f rom 
our  reference database  and two fur ther  sets of 100 names  f rom each of two te lephone 
books.  One  te lephone book  was  ha rdcopy  f rom a large region in the East and  the 
second was  an on-line directory f rom a large region in the mid-West.  In the case of the 
ha rdcopy  listings, the data  were  pu t  on line to be  analyzed.  The sof tcopy was  edited to 
r emove  u n w a n t e d  mate r iaU 9 We included the sof tcopy database  to min imize  any  bias, 
conscious or otherwise,  that  the subject m a y  have  had  and  these names  were  chosen 
wi th  a s imple  p r o g r a m  that  pul led out  the required n u m b e r  of names  f rom the name  
field. In spite of the fact that t r igrams tend to be repeated  over  a database  (above), we  
nevertheless  expected some degrada t ion  going to new test lists, as the data  in Table 4 
illustrate. The error rate was  calculated with  and  wi thout  the identification a lgor i thm 
on four  databases  of 100 names  each using no dictionary lookup. 

Because of the high functional load of dict ionary entries (see Section 2), scores were  
expected to be considerably higher  w h e n  the dict ionary lookup  modu le  was  included. 
We tested this hypothes is  and  found  that  w h e n  the dict ionary was  included in the 
sof tcopy test-database analysis (above), the error rate was  reduced  f rom 12% to 7%. 
Other  tests also indicated that  the use of a dict ionary cuts the error rate approx imate ly  
in half. 

Due to the fact that  m a n y  applicat ions wri t ten a round  this software will require the 
accurate pronuncia t ions  of first name  and street name  as well  as last name,  we  decided 
to examine the accuracy for each of these categories as well. The anticipat ion was  that  
the accuracy rate for first names  (using a dictionary) wou ld  be slightly higher than  that  
of last names  and that  the accuracy rate for street names  wou ld  be slightly lower. This is 
because of the higher f requency of occurrence of first names  (above) as well  as the fact 
that  the pronuncia t ion  of street names  tends to be ext remely variable and,  like place 
names,  has been  observed  to va ry  be tween  local and  non-local popula t ion  groups.  
Table 5 indicates the error rates of the first n a m e  and street n a m e  tests compa red  wi th  
the last name  tests ment ioned  above,  run  over  the test da tabase  wi th  and  wi thout  a 
dictionary. 

19 Telephone listings typically contain a variety of information including, inter alia, the telephone number 
and street number, demarcation of upper case (e.g., MC*ADOO) special symbols for unlisted numbers 
and so on. 
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Note that both street names and first names have much  lower accuracy than last 
names wi thout  the use of a dictionary. First names, like functors and irregular verb 
forms, exhibit unusual  behavior  in terms of the canonical segmental phonology  of the 
language, e.g., THOMAS, where  the first segment is / t /  rather  than / (9 / ,  MICHAEL, 
where  orthographic CH, is / k /  and not  /~ / ,  and so on. In the case of street names, 
m any  are the same as place names (OTTAWA BLVD), first names (JOYCE ST.), or last 
names (EISENHOWER AVE). In any event, note that the use of the dict ionary with these 
name fields is crucial to the success of the algorithm, much more so than in the 
case of surnames. In fact, the non-Anglo-Saxon surnames (LUELLA, LEONARDO, etc.) 
are handled quite adequately wi thout  use of a dict ionary lookup. In the case of first 
names, the error rate is extremely low since the vast majority of these would  be found 
in the dictionary. 

Naturally, the final and most  crucial test of accuracy is the overall intelligibility of 
the name, that is, whether  an individual  on the receiving end of a te lephone line (with 
its reduced bandwidth)  can hear, repeat, and correctly transcribe (in normal  orthogra- 
phy) a person's  name and address. These tests and others remain for future research. 
We set out s imply to a t tempt  to improve pronunciat ion accuracy of proper  names by 
creating a more  intelligent front-end processor and a more complex letter-to-sound rule 
set that would take into account the variability of the text to be processed. Tests indicate 
that an algorithm can be successfully implemented  to significantly increase accuracy 
of name pronunciation. This helps make possible applications in which proper  names 
are ou tput  intelligibly using a speech synthesizer, as well as text-processing functions 
such as the construction of a name dictionary for automatic speech recognition. The 
algorithm has, in fact, been implemented for speech synthesis and is current ly being 
used in a commercially available product  within the telecommunications industry. 
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