
Book Reviews

PC-KIMMO: A Two-Level Processor for Morphological Analysis

Evan L. Antworth
(Summer Institute of Linguistics)

Dallas: Summer Institute of Linguistics,
1990, xii + 273 pp. and disks for IBM
PC or Macintosh! (Occasional
Publications in Academic Computing,
Number 16) Paperbound, ISBN
0-88312-639-7, $23.00

Reviewed by
Richard Sproat
AT& T Bell Laboratories

This package is a faithful implementation of Koskenniemi's two-level morphology,
KIMMO (Koskenniemi 1983). As with previous tools from the Summer Institute of
Linguistics (e.g., Weber, Black, and McConnel 1988), the package is primarily aimed at
field linguists with little computational expertise, but for whom morphological analysis
tools are useful. The book that accompanies the software is extremely good: among
other things, it incorporates what is in my opinion the best available introduction to
the theory and practice of two-level morphology. The package is therefore not only
useful to the audience for which it is primarily intended: it will also be of use to
those wishing to learn something about computational morphology, and would be an
excellent teaching aid for a computational linguistics course.

The book is divided into seven chapters and three appendices. Chapter 1 traces
the history of computational morphology. As is typical of such overviews, the scope is
somewhat narrow, discussing only a few Finnish projects (besides the work of Kosken-
niemi and his apostles), and work done at the Summer Institute of Linguistics. That
criticism aside, the rest of the chapter is an accurate overview of the positive and
negative aspects of KIMMO. On the negative side, Antworth cites the well-known
fact that KIMMO cannot elegantly handle nonconcatenative morphology such as in-
fixation or reduplication. He also notes limitations more particular to the PC-KIMMO
implementation, such as the lack of a rule compiler and the lack of a sensible (i.e.,
non-finite-state) model of morphotactics; both of these issues have received treatment
within the two-level school (Dalrymple et al. 1987, Bear 1986, inter alia), though with
respect to rule compilation, Antworth is justified in noting (p. 11) that "it remains to
be seen if such a project is feasible for small computers."

Chapter 2 is an introduction to PC-KIMMO, and gives a sample session of its
use. Chapters 3 through 5 describe in detail how finite state transducers (FSTs) work,

1 The software runs on IBM PCs and compatibles running MS-DOS or PC-DOS version 2.0 or higher;
minimum requirements are 256K memory (will use up to 640K); executable is about 97.5K. Versions are
available for the Macintosh, and the system has been compiled and tested under Unix System V and
4.2 BSD Unix.

Computational Linguistics Volume 17, Number 2

how to write two-level rules, how to hand-compile two-level rules into state transition
tables, how to develop a lexicon, and how to test and debug a two-level description.
The discussion of FSTs and two-level rules in Chapter 3 is particularly good, being
both extensive and clear. One important point that is stressed is that to code two-level
rules as FSTs, one needs to think in terms not of what the rules accept, but rather of
what they reject (what Koskenniemi (p. 40) calls REJECTION SETS). As Antworth notes
(p. 45) "this is one of the most difficult barriers to overcome in learning to write two-
level rules and state tables." The discussion of the technical issues in these chapters is
accurate. The only point I find myself taking issue with is the statement (pp. 28-29)
that "because two-level rules [as opposed to generative phonological rules] express
a correspondence rather than rewrite symbols, they apply in parallel rather than se-
quentially," and "thus no intermediate levels of representation [like those of generative
phonology] are created." The notions 'express a correspondence' and 'apply in parallel'
are not logically related. One can surely have a system in which rules 'express a corre-
spondence' between intermediate levels of representation, and traditional generative
phonology is formally an instance of this. Furthermore, in their FST implementation,
two-level rules work by consulting an input character and transducing it to some char-
acter (or null) in the output (see also Barton et al. 1987, p. 147). Thus, the difference
between the 'procedural' rewriting view of generative phonology and the 'declara-
tive' relational view of two-level phonology has more to do with the rhetorical style
of the practitioners of the two fields than with any deep formal differences. The only
difference is that generative descriptions allow intermediate levels of representation,
whereas two-level descriptions do not.

Chapter 6 contains some illustrative PC-KIMMO descriptions of various natural
phenomena, including Turkish vowel harmony, French consonant deletion and Tagalog
infixation and reduplication: in addition, Appendix A contains an English morphology
fragment, and Appendix B contains some further illustrations of how PC-KIMMO can
be used, including an amusing implementation of a logic puzzle. Many of the descrip-
tions in Chapter 6 and the appendices, as well as material not discussed in the text,
are distributed along with the software. The treatment of infixation and reduplication
is particularly noteworthy, since it illustrates two points rather nicely:

1. such processes can be handled in the KIMMO framework, but

2. it would be painful to implement a system of any degree of complexity.

Tagalog infixation and reduplication are both simple instances of their respective
species, yet the machines are somewhat large for hand-coding purposes. In the de-
scription of more complicated nonconcatenative processes, the machines become very
large and impractical to hand code; for Warlpiri reduplication, one would require an
FST with many thousands of states.

The PC-KIMMO software is easy to use for several reasons. First of all, the ~ser's
manual (Chapter 7) is clearly written. Second, the error messages are usefully spe-
cific. Third, a number of useful debugging and development facilities are available,
including: the ability to call up an editor of one's choice from within PC-KIMMO;
a tracing facility with several available levels of verbosity; a file comparison mode
allowing one to test the generator and recognizer on pairs of lexical and surface forms
taken from a file, thus facilitating an extensive testing of one's description. For those
wishing to develop other software that includes morphological processing capabili-
ties, a PC-KIMMO source library is included in the release. The functions are fully
documented in Appendix C, and also included is some sample code illustrating their

230

Book Reviews

use. The code runs tolerably fast: in the English fragment provided in the release,
recognition of a moderate ly long word form takes about 0.6 seconds on an AT&T 6300
Plus (and is about 17 times faster on a SPARCstation 1). As noted above, there are
some things, notably a rule compiler, that one might like ult imately to have in such a
system. Nonetheless, PC-KIMMO is already a very useful and accessible tool.

References
Barton, G. Edward; Berwick, Robert; and

Ristad, Eric (1987). Computational
complexity and natural language.
Cambridge MA: The MIT Press.

Bear, John (1986). "A morphological
recognizer with syntactic and
phonological rules." Proceedings,
International Conference on Computational
Linguistics (COLING-86), Bonn, 272-276.

Dalrymple, Mary; Kaplan, Ronald;
Karttunen, Lauri; and Koskenniemi,
Kimmo (1987). "Tools for morphological

analysis." Technical Report CSLI-87-108,
Center for the Study of Language and
Information, Stanford.

Koskenniemi, Kimmo (1983). Two-level
morphology: A general computational model
for word-form recognition and production.
Ph.D. thesis, University of Helsinki,
Helsinki.

Weber, D.; Black, H. A.; and McConnel, S.
(1988). AMPLE: A tool for exploring
morphology (Occasional publications in
academic computing). Dallas: Summer
Institute of Linguistics.

Richard Sproat is a member of the technical staff in the linguistics research department at AT&T
Bell Laboratories. He holds a doctorate in Linguistics from the Massachusetts Institute of Tech-
nology. His research interests include morphological theory, and he has done work in various
aspects of computational morphology. His address is: AT&T Bell Laboratories, 600 Mountain
Avenue (Room 2d-451), Murray Hill, NJ 07974. E-mail: rws@research.att.com

231

