
CATEGORIAL SEMANTICS AND SCOPING

F e r n a n d o C. N. P e r e i r a

AT & T Bell Laboratories

600 Mounta in Ave.
Murray Hill, N J 07974

Certain restrictions on possible scopings of quantified noun phrases in natural language are usually expressed
in terms of formal constraints on binding at a level of logical form. Such reliance on the form rather than the
content of semantic interpretations goes against the spirit of compositionality. I will show that those scoping
restrictions follow from simple and fundamental facts about functional application and abstraction, and can
be expressed as constraints on the derivation of possible meanings for sentences rather than constraints of
the alleged forms of those meanings.

1 AN OBVIOUS CONSTRAINT. 9

Treatments of quantifier scope in Montague grammar
(Montague 1973; Dowty et al. 1981; Cooper 1983), trans-
formational grammar (Reinhart 1983; May 1985; Heim
1982; Roberts 1987), and computational linguistics (Hobbs
and Shieber 1987; Moran 1988; Alshawi et al. 1989) have
depended implicitly or explicitly on a constraint on possible
logical forms to explain why examples 1 such as

1. *A woman who saw every man disliked him

are ungrammatical, and why in examples such as

2. Every man saw a friend of his
3. Every admirer of a picture of himself is vain

the every . . , noun phrase must have wider scope than the a
• . . noun phrase if the pronoun in each example is assumed
to be bound by its antecedent. What exactly counts as
bound anaphora varies between different accounts of the
phenomena, but the rough intuition is that semantically a
bound pronoun plays the role of a variable bound by the
logical form (a quantifier) of its antecedent. Example (1)
above is then "explained" by noting that its logical form
would be something like

3 w.woman(w) /k (Vm.man(m) ~ saw(w, m))
/~ disliked(w, m)

but this is "ill-formed" because variable m occurs as an
argument of disliked outside the scope of its binder Vm.2
As for Examples (2) and (3), the argument is similar: wide
scope for the logical form of the a . . . noun phrase would
leave an occurrence of the variable that the logical form of
every . . , binds outside the scope of this quantifier• For lack
of an official name in the literature for this constraint, I will
call it here the free-variable constraint•

In accounts of scoping possibilities based on quantifier
raising or storage (Cooper 1983; van Eijck 1985; May

1985; Hobbs and Shieber 1987) the free-variable con-
straint is enforced either by keeping track of the set of free
variables free (q) in each raisable (storable) term q and
when x ~ free (q) blocking the raising of q from any
context Bx.t in which x is bound by some binder B, or by
checking after all applications of raising (unstoring) that
no variable occurs outside the scope of its binder.

The argument above is often taken to be so obvious and
uncontroversial that it warrants only a remark in passing, if
any (Cooper 1983; Reinhart 1983; Partee and Bach 1984;
May 1985; van Riemsdijk and Williams 1986; Williams
1986; Roberts 1987), even though it depends on nontrivial
assumptions on the role of logical form in linguistic theory
and semantics.

First of all, and most immediately, there is the require-
ment for a logical-form level of representation, either in the
predicate-logic format exemplified above or in some tree
format as is usual in transformational grammar (Heim
1982; Cooper 1983; May 1985; van Riemsdijk and Williams
1986; Williams 1986; Roberts 1987).

Second, and most relevant to Montague grammar and
related approaches, the constraint is given in terms of
restrictions on formal objects (logical forms), which in turn
are related to meanings through a denotation relation•
However, compositionality as it is commonly understood
requires meanings of phrases to be functions of the mean-
ings rather than the forms of their constituents• This is a
problem even in accounts based on quantifier storage (Coo-
per 1983; van Eijck 1985), which are precisely designed, as
van Eijck puts it, to "avoid all unnecessary reference to
properties o f . . . formulas" (van Eijck 1985, p. 214). In
fact, van Eijck proposes an interesting modification of
Cooper storage that avoids Cooper's reliance on forbidding
vacuous abstraction to block out cases in which a noun
phrase is unstored while a noun phrase contained in it is still
in store• However, this restriction does not deal with the
case being addressed here.

Computational Linguistics Volume 16, Number 1, March 1990 1

Fernando C . N . Pereira Categorial Semantics and Scoping

It is also interesting to observe that a wider class of
examples of forbidden scopings would have to be consid-
ered if raising out of relative clauses were allowed, for
example in

4. An author who John has read every book by arrived

In this example, if we did not assume the restriction against
raising from relative clauses, the every . . . noun phrase
could in principle be assigned widest scope, but this would
be blocked by the free-variable constraint as shown by the
occurrence of a free as an argument of book-by in

Vb.book-by(b, a) =:- (3 a.author(a)
A has-read(john, b) A arrived(a))

That is, the alleged constraint against raising from rela-
tives, for which many counterexamples exist (Vanlehn
1978), blocks some derivations in which otherwise the
free-variable constraint would be involved, specifically those
associated to syntactic configurations of the form

[N P i " " " N[g- • • [N P j . • • X i • • .] - • -] " • -]

where X~ is a pronoun or trace coindexed with NPt and NPj
is a quantified noun phrase. Since some of the most exten-
sive Montague grammar fragments in the literature (Dowty
et al. 1981; Cooper 1983) do not cover the other major
source of the problem, PP complements of noun phrases
(replace S by PP in the configuration above), the question is
effectively avoided in those treatments.

Conversely, it could be argued that the free-variable
constraint is responsible for forcing a quantifier to raise
outside a relative clause in examples such as

5. The slush fund that every minister needs is kept by his
private secretary.

Here, the coindexing of every minister and his forces the
former to be scoped outside the main clause, and thus
outside the relative clause in which it occurs.

The main goal of this paper is to argue that the free-
variable constraint is actually a consequence of basic seman-
tic properties that hold in a semantic domain allowing
functional application and abstraction, and are thus inde-
pendent of a particular logical-form representation. As a
corollary, I will also show that the constraint is better
expressed as a restriction on the derivations of meanings of
sentences from the meanings of their parts rather than a
restriction on logical forms. The resulting system is related
to the earlier system of conditional interpretation rules
developed by Pollack and Pereira (1988), but avoids that
system's use of formal conditions on the order of assump-
tion discharge.

2 CURRY'S CALCULUS OF FUNCTIONALITY

Work in combinatory logic and the k-calculus is concerned
with the elucidation of the basic notion of functionality:
how to construct functions, and how to apply functions to

their arguments. There is a very large body of results in this
area, of which I will need only a very small part.

One of the simplest and most elegant accounts of func-
tionality, originally introduced by Curry and Feys (1968)
and further elaborated by other authors (Stenlund 1972;
Lambek 1980; Howard 1980) involves the use of a logical
calculus to describe the types of valid functional objects. In
a natural-deduction format (Prawitz 1965), the calculus
can be simply given by the following two rules:

a a - -" /5 /5

The first rule states that the result of applying a function
from objects of type a to objects of type/5 (a function of
type ,~ ---*/5) to an object of type a is an object of type/5.
The second rule states that if from an arbitrary object of
type a it is possible to construct an object of type/5, then
one has a function from objects of type a to objects of type
/5. In this rule and all that follow, the parenthesized formula
at the top indicates the discharge of an assumption intro-
duced in the derivation of the formula below it. Precise
definitions of assumption and assumption discharge are
given below.

The typing rules can be directly connected to the use of
the k-calculus to represent functions by restating them as
follows:

(x : ~)

u : a v : a - - . / 5 u:/5
[app] . v(u) :/5 [abs] : kx.u : a --"/3

A formula u: a will be called a type assignment, assigning
the type a to term u. Thus, the two rules above state that if
u has type a and v has type a --~/5 then v(u) has type/5, and
if by assuming that x has type a, we can show that u
(possibly containing x) has type/5, then the function repre-
sented by kx.u has type a--~/5. In the rest of this paper, the
term functionality rules will refer to these rules.

Notation As usual in categorial analyses of natural lan-
guage, types are built from the basic types e for individuals
and 1: for propositions. In function types, the constructor
associates to the right. Following this type system (no tuple
types) expressions will be written in a "curried" notation.
For example, a binary relation r over individuals will have
type o ~ e ----- t and its application to arguments x and y
will be written r (x) (y) . Since the usual semantic analysis
has a transitive verb combining first with its object and then
with its subject, the meaning of sentence such as "John
loves Mary" will be represented by loves(m)(j).

For a first example of how the functionality rules may be
used in semantic interpretation, I will consider the deriva-
tion in Figure 1 of a simplified meaning for the topicalized

2 Computational Linguistics Volume 16, Number 1, March 1990

Fernando C. N. Pereira Categoriai Semantics and Scoping

John j:..e

hates hates: e---,e-,t x: e 1

Mary m: e [app] hates(~ e--~t

[app! hates(x)(m): t

[abs] Lx.hates(x)(m): e--,t 1
/

[app] hates(j)(m): t

Figure 1 Using the Functionality Rules.

sentence "John, Mary hates". 3 The derivation is repre-
sented by a tree in which leaf nodes are labeled by assump-
tions and nonleaf nodes are labeled by the results of rule
applications. Several aspects of the overall approach ap-
pear in this example. Each type assignment in the deriva-
tion is associated to one phrase whose meaning it repre-
sents, and is derived by applying the functionality rules to
type assignments associated with the constituents of the
phrase. The meanings of words in the sentence enter as
assumptions in the derivation, which are left undischarged.
In the figure, type assignments are labeled either by the
lexical item that led to their introduction as assumptions or
by the name of the rule applied to derive the type assign-
ment. Superscripts are used to link the result of an applica-
tion of rule [abs] to the assumptions discharged by that
application. The derivation follows closely the syntax of the
sentence. Specifically, the assumptions j : e, m : e, and
hates : e --~ e ~ i correspond to the words "John," "Mary,"
and "hates" in the sentence, and the assumption x : e
corresponds to the topicalization trace.

To make precise what inferences are possible in the
calculus of functionality, we need a precise notion of deriva-
tion. It turns out that seemingly small differences in this
have important consequences as to what type assignments
can be derived. The following definition is adapted from
that of Prawitz (1965). A derivation is a tree with each
node n labeled by a type assignment q~(n) (the conclusion of
the node) and by a set F(n) of type assignments giving the
assumpt ions o f ~(n) . In addition, a derivation D satisfies
the following conditions:

1. Each leaf node n has its labeling type assignment as
single assumption, that is F(n) = {q~(n)}.
2. Each nonleaf node n corresponds either to an applica-
tion of [app], in which case it has two daughters m and m'
with (a(m) =- u : a, 4~(m') =- v: a --~ /3, 4~(n) =- v (u) : 13
and F(n) = r (m) U r (m ') , or to an application of [abs],
in which case n has a single daughter m, and q~(m) ~- u :/3,
4~(n) =- Xx.u : a ~ / 3 , and r (n) = F(m) - {x : a}.
3. No node assumption set contains two assumptions x : a
and x :/3 for the same variable x.

If n is the root node of a derivation D, we say that D is a
derivation of ~b(n) from the assumptions r (n) and write
r(n) k ~(n).

Condition 2 allows empty abstraction, that is, the appli-
cation of rule [abs] to some type assignment u : 13 even if x:
a is not one of the assumptions of u :/3. This is necessary for
the Curry calculus, which describes all typed X-terms,
including those with vacuous abstraction, such as the poly-
morphic K combinator Xx.Xy.x : a --~ (/3 --~ a). However, in
the present work, every abstraction needs to correspond to
an actual functional dependency of the interpretation of a
phrase on the interpretation of one of its constituents.
Condition 2 can be easily modified to block vacuous abstrac-
tion by requiring that x : a ~ r (m) for the application of
the [abs] rule to a derivation node m.

Condition 3 is a technical restriction to ensure that a
given variable is not abstracted more than once. That this
restriction does not affect the class of well-typed functions
follows immediately from the observation that any Mterm
can be a-converted to an equivalent one in which all bound
variables are distinct.

The definition of derivation can be generalized to arbi-
trary rules with n premises and one conclusion by defining a
rule of inference as a n + 1-place relation on pairs of type
assignments and assumption sets. For example, elements of
the [app] relation would have the general form ((u : a,
r l) , iv : a-~-/3, r2), i v (u) :/3, F 1 U r2)) , while elements
of the [abs] rule without vacuous abstraction would have
the form ((u :/3, r) , (kx.u : a--~/3, r - {x :a})) when-
ever x : a ~ F. This definition should be kept in mind when
reading the derived rules of inference presented informally
in the rest of the paper.

The natural-deduction format we have been using is
intuitively quite appealing but does not make it easy to
discriminate among different possible treatments of assump-
tions, and their effects on what types are derivable. For this,
it is better to use a Gentzen-style sequent format in which
the assumptions for a type assignment are carried explic-
itly. In a fairly general setting, a sequent r k A is a pair of a
sequence F of assumptions and a type assignment A, with
the intuitive meaning that A follows from the assumptions
I ~. The rules of application and abstraction take then the
form

x : a , F k u : / 3 F F u : a A k v : a - - ~ / 3

r k Xx.u : a --* fl r , A ~ v(u) : fl

It is easy to see that, except for the use of sequences rather
than sets, these two rules correspond directly to the opera-
tions of type assignments and assumptions sets described
under condition 2 above. Furthermore, condition 1 corre-
sponds in this system to making each sequent A I- A, where
A is some type assignment, an axiom. Finally, the fact that
we are interested in assumptions sets rather than assump-
tion sequences is encoded by the following three s t ruc tura l
rules (Girard et al. 1989):

r , A , B, A k C
[exchange] : F, B, A, A l- C

Computational Linguistics Volume 16, Number 1, March 1990 3

Fernando C. N. Pereira Categorial Semantics and Scoping

A,A, FF B
[c o n t r a c t i o n] .

A, FFB

F b B
[weakening] : A, F b B

The exchange rule allows us to ignore assumption order, so
the collection of assumptions forms a bag rather than a set.
Adding contraction permits us to ignore the number of
occurrences of an assumption, that is, the assumption
collection is treated as a set. Without contraction, no
variable can have more than one occurrence. Finally, weak-
ening allows irrelevant elements to be added to the assump-
tions without changing what follows from them. Without it,
vacuous abstraction is not possible, since weakening pro-
vides the only means of introducing a variable in an assump-
tion without having it also in the conclusion (as axioms
require).

Choices of structural rules and other constraints on
allowed sequents lead to a categorial hierarchy whose
members are systems with varying semantic powers of
semantic combination (Moortgat 1988; van Bentham 1989).
If we ignore the associated X-expressions and consider only
the types, the types derivable using the full set of rules are
exactly the consequences of the three axioms a ---- a,

~ (3--* a), and (a - -* (3- -" 3')) --~ ((a- -~ 3) --*
(a--~ y)), which are the polymorphic types of the three
combinators I, K, and S that generate all the closed typed
X-calculus terms. Furthermore, if we interpret --~ as impli-
cation, these theorems are exactly those of the pure implica-
tional fragment of intuitionistic propositional logic (Curry
and Feys 1968; Anderson and Belnap Jr. 1975). In con-
trast, without weakening (vacuous abstraction) we have the
weaker system of pure relevant implication R ~ (Anderson
and Belnap 1975).

3 SEMANTIC COMBINATIONS AND THE
CURRY CALCULUS

In one approach to the definition of allowable semantic
combinations, the possible meanings of a phrase are exactly
those whose type can be derived by the rules of a semantic
calculus from axioms giving the types of the lexical items in
the phrase. However, this is far too liberal in that the
possible meanings of English phrases do not depend only on
the types involved but also on the syntactic structure of the
phrases. A possible way out is to encode the relevant
syntactic constraints in a more elaborate and restrictive
system of types and rules of inference. The prime example
of a more constrained system is the Lambek calculus
(Lambek 1958) and its more recent elaborations within
categorial grammar and semantics (van Benthem 1986a,
1986b; Hendriks 1987; Moortgat 1988). In particular,
Hendriks (1987) proposes a system for quantifier raising,
which however is too restrictive in its coverage to account
for the phenomena of interest here.

Instead of trying to construct a type system and type

rules such that free application of the rules starting from
appropriate lexical axioms will generate all and only the
possible meanings of a phrase, I will instead take a more
conservative route related to Montague grammar and early
versions of GPSG (Gazdar 1982), and use syntactic analy-
ses to control semantic derivations.

First, a set of derived rules will be used in addition to the
basic rules of application and abstraction. Semantically,
the derived rules will add no new inferences, since they will
merely codify inferences already allowed by the basic rules
of the calculus of functionality. However, they provide the
semantic counterparts of certain syntactic rules.

Second, the use of some semantic rules must be licensed
by a particular syntactic rule and the premises in the
antecedent of the semantic rule must correspond in a
rule-given way to the meanings of the constituents com-
bined by the syntactic rule. As a simple example using a
context-free syntax, the syntactic rule S ~ NP VP might
license the function application rule [app] with e the type
of the meaning of the NP and e ~ t the type of the
meaning of the VP.

Third, the domain of types will be enriched with a few
new type constructors, in addition to the function type
constructor ---~. From the semantic point of view, these type
constructors add no new types, but allow a convenient
encoding of rule applicability constraints motivated by
syntactic considerations. This enrichment of the formal
universe of types for syntactic purposes is familiar from
Montague grammar (Montague 1973), where it is used to
distirguish different syntactic realizations of the same se-
mantic type, and from categorial grammar (Lambek 1958;
Steeclman 1987), where it is used to capture syntactic word
order constraints.

Together, the above refinements allow the syntax of
language to restrict what potential semantic combinations
are actually realized. Any derivations will be sound with
respect to lapp] and [abs], but many derivations allowed
by these rules will be blocked.

4 DERIVED RULES

For the derived rules, we enrich the type system with a
formal type constructor quant (q), where q is a quantifier,
that is, a value of type (e ----, t) ---, t, and two type constants
(nullary constructors) pron for pronoun assumptions and
trace, for traces in relative clauses. It is important to
observe that the types resulting from the application of
these constructors are not to be taken as being subtypes of
e, and thus the rules involving them should not be seen as
type subsumption rules. Instead, the new formal type con-
structors serve to constrain possible derivations in a similar
way to the directed function type constructors of Lambek
calc~:lus (Lambek 1958) or the extraction constructor used
by Moortgat to handle long-distance dependencies (Moort-
gat 1988).

Because of their particular nature, the formal type con-
structors are handled in a special way diverging somewhat

4 Computational Linguistics Volume 16, Number 1, March 1990

Fernando C. N. Pereira Categorial Semantics and Seeping

from the usual structure of natural-deduction proof sys-
tems. Specifically, each formal type constructor is intro-
duced as an assumption by appropriate syntactic licensing.
However, the types resulting from the formal constructors
do not combine with any other types, so the only way of
having the associated variables participate in a derivation is
to apply immediately licensing rules that replace the for-
mal type by an appropriate semantic type (e in all cases
considered here). Paired with these rules we have abstrac-
tion rules that discharge formal type assumptions by ab-
straction. Nevertheless, we will see that from a derivation
involving these rules where all the formal type assumptions
have been discharged, it is straightforward to construct a
derivation in the functionality calculus starting from the
same lexical assumptions and yielding the same result.

4.1 TRACE LICENSING AND ABSTRACTION

The following two rules deal with traces and the meaning of
relative clauses:

(x : trace)

x : t r a c e r : t
[t r a c e - l i c] : [t r a c e - a b s] :

x : e hx. r : e--~ t

Rule [t race- l ic] is licensed by the occurrence of a trace in
the syntax, and rule [t race-abs] by the construction of a
relat ive clause f rom a sentence containing a trace. 4

Since no rule can derive an expression of type trace,
expressions of that type can only appear as assumptions.
Furthermore, no rule except [trace-lie] accepts premises of
that type. Therefore, in a completed derivation any occur-
rence of an expression of type trace must be a premise of
[trace- l ie] and be later discharged by a use of [t r a c e - a b s] .
That is, use of the trace rules will always lead to derivations
matching the following schema

x : t race]

x : e

Consequently, any type assignment derived with the help of
the trace rules could already have been derived with lapp]
and [abs] alone, as was claimed in the previous section.

Figure 2 shows the application of the trace rules to the
derivation of an interpretation for the N "car that John
owns," with the assumption that the relative pronoun "that"
has type that: (e - - * t) --* (e- -~ t) --- (e - - * t), that is, a
function that combines two properties into a property.
With the further assumption that " that" corresponds in
this case to property conjunction

that ~ Xr.Xn.Xx.n(x) /~ r(x),

the result of the derivation can be reduced to the more
familiar form

Xx.car(x) A own(x)(j)

that is, the property of being a car that John owns.

4.2 BOUND ANAPHORA LICENSING AND
ABSTRACTION

The analysis of bound anaphora brings up a wide range of
issues in syntax, semantics, and pragmatics, most of which
I will ignore in this paper. I will assume that possible
coreferences are determined elsewhere and that the role of
the bound anaphora rules here is simply to derive the
appropriate semantic interpretation for phrases involving
pronouns. Two approaches are possible here. Working with
the functionality rules alone, a noun phrase will be associ-
ated to an assumption of the form u : e. The interpretation
of a pronoun coindexed with that noun phrase will be
another occurrence of the assumption. When the anteced-
ent is a trace or a quantified noun phrase (interpretation of
quantified noun phrases is discussed in the next section),
the assumption will eventually be discharged. The defini-
tion of derivation in Section 2 ensures that all occurrences
of u will be bound by the same application of [abs].

The second approach relies on a pair of derived rules,
pronoun licensing and abstraction. These rules of course do
not add new semantic consequences, but facilitate the
representation of the syntactic licensing of bound ana-

r : t

Xx.r : e - - - ~ t l

But this can be mapped directly into the schematic deriva-
tion

x : e I

r : t

Ax.r : e ---* t 1

y: trace

I
owns own: e-->e-~t y: e [trace-lie]

John j : e own(y):~--~t [appl

own(y)O): t [appl
I

that that:(~--~t)--*(e~t)-~(e~t) ~.y.own(y)(j): e--~t [trace-ebsl

car car:~--~t that(~.y.own(y)(j)): (e---~t)~(e~t) [app]

that(~.y.own~)(j))(car): e--~t [appl

Figure 2 Using the Trace Rules.

Computational Linguistics Volume 16, Number 1, March 1990 5

Fernando C. N. Pereira Categoriai Semantics and Seoping

phora. The two rules are as follows:

(x : pron)

x : p r o n s : . a u : f l
[pron-lic] : x : e [pron-abs] : (~ x . s) (u) : ot

The pronoun resolution rule [pron-abs] applies only when
u : fl is an undischarged assumption ofs : a such that either
fl is trace or quant (q) for some quantifier q, or the
assumption is licensed by some proper noun.

These rules deal only with the construction of the mean-
ing of phrases containing bound anaphora. In a more
detailed grammar, the licensing of both rules would be
further restricted by linguistic constraints on coreference--
for instance, those usually associated with c-command
(Reinhart 1983), which seem to need access to syntactic
information (Williams 1986). In particular, the rules as
given do not by themselves enforce any constraints on the
possible antecedents of reflexives.

The soundness of the rules can be seen by noting that the
schematic derivation

x : pron ~

x : e

S:o/ U:~

(X x . s) (u) : a t

corresponds simply to a schematic derivation involving
multiple uses of the assumption u : fl

u : ~ . . . u : #

six~u] : ,~

where s [x /u] denotes the result of substituting u for every
free occurrence of x in s.

Figure 3 shows a simple derivation involving the pronoun
rules. The last derivation node in the figure is the applica-
tion of [pron-abs] to the assumption to be discharged
x : pron and the antecedent assumption j : e, with result
(kx.bored (x) (j)) (j) --- bored (j) (j) . A more interesting
case, involving interactions between pronoun and quantifier
assumptions, occurs in the derivation of Figure 5 for sen-
tence (2).

4.3 QUANTIFIER RAISING

The rules discussed earlier provide some of the auxiliary
machinery required to illustrate the free-variable con-
straint. However, the main burden of enforcing the con-

bored

John

himself x:. pron l

I
b o r e d ~ e [pron-lie]

j : ~ e--~t [app]

bored(x)(j): t [app]

bored(j)(j): tl [pron-abs]

Figure 3 Using the Pronoun Rules.

straint falls on the rules responsible for quantifier raising,
and therefore I will cover in somewhat greater detail the
derivation of those rules from the basic rules of functional-
ity.

I will follow here the standard view (Montague 1973;
Barwise and Cooper 1981) that the meanings of natural
language determiners are generalized quantifiers, with
type (e ---* t) ---, (e ---* t) ~ t. For example, the meaning of
every would be Xr.ks .Vx.r(x) =~ s (x) , and the meaning of
the noun phrase every man h s .Vx .man(x)=~ s (x) . To
interpret the combination of a quantified noun phrase with
the phrase containing it that forms its scope, we apply the
meaning of the noun phrase to a property s derived from the
meaning of the scope. The purpose of devices such as
quantifying-in in Montague grammar, Cooper storage, or
quantifier raising in transformational grammar is to deter-
mine a scope for each noun phrase in a sentence. From a
semantic point of view, the combination of a noun phrase
with its scope, most directly expressed by Montague's
quantifying-in rules, s corresponds to the following sche-
matic derivation in the functionality calculus

x : e 1

s : t

X x . s : e ~ t 1 q : (e ~ t) - - * t
6. q(Xx.s) : t

where the assumption x : e is introduced in the derivation
at a position corresponding to the occurrence in the sen-
tence of the noun phrase with meaning q. In Montague
grammar, this correspondence is enforced by using a notion
of syntactic combination that does not respect the syntactic
structure of sentences with quantified noun phrases. Coo-
per storage was in part developed to cure this deficiency.
The following derived rules achieve the same effect:

6 Computational Linguistics Volume 16, Number 1, March 1990

Fernando C. N. Pereira Categorial Semantics and Seoping

[q u a n t - l i c] :
q : (e ~ t) ~ t x : q u a n t (q)

x : e

(x : quant(q))

form

y : a I

s : t
[quant-abs] : q(Xx . s) : t

Rule [quant-lic] is licensed by a quantified noun phrase.
Rule [quant-abs] is not keyed to any particular syntactic
construction, but instead may be applied whenever its
premises are satisfied. It is easy to see that any use of
[quant-lic] and [quant-abs] in a derivation

q : (e - - ~ t) ~ t x : q u a n t (q) 2

x : e

U:f l 1

q : (e - - - * t) ~ t x : q u a n t (q) l

x : e

s : t

q(Xx . s) : t 1

can be justified by translating it into an instance of the
schematic derivation (6). Furthermore, quantifier assump-
tions can only arise and be discharged in this way.

Figure 4 shows the use of the quantification rules in a
derivation for the preferred reading of the sentence "Every
guest brought a dish." The other reading could be derived
in a similar manner.

Now, the free-variable constraint plays a role in situa-
tions in which the quantifier itself depends on assumptions
that must be discharged, and forbids derivations of the

every guest
every: (e-->t)-->(e--~t)--~t guest: e ~ t

[appl every(guest): (e-*t)--*t g. quant(every(guest)) 2

a dish
[quanl-lie] g: e a: (e-.-~t)---~(e-~t)--4t dish: e--->t

~ ~ d:quant(a(dish)) t
~ brought

X ~ g h t : ~ d:e

[app] b r o u g h ~ e ~ t

I
[quant-abs] a(dish)(7~d.brought(d)(g)): t 1

I
[quant-abs] every(guest)O.g.a(dish)(Xd.brought(d)(g))): t

Figure 4 Using the Quantifier Rules.

s : t

q(Xx . s) : t z

that is, derivations in which an assumption is discharged
after assumptions it depends on. But such a derivation
maps to the following in the functionality calculus:

x : e 2

v:-y
(a)

Xy.v : a --~ 71

u : ~ (b) y : a l

s : t
Xx . s : e ---- t 2 q : (e ---, t) --, t

q(Xx . s) : t

The problem with this derivation is that assumption y : a is
discharged at (a), but it is not an assumption for the
premise v : 3' of (a). Even if we allow vacuous abstraction so
that an assumption y : a can be discharged at that point,
that discharge will not include the assumption y : a (b) for
the quantifier q, which will thus be left undischarged. In the
Gentzen-style rules given in Section 2, step (a) can only
arise after an application of weakening to introduce y :/3,
but on the other hand, assumption (b) can only, be elimi-
nated independently by abstraction, since the alternative of
combining it by contraction with the other occurrence of
y : a is only available after the assumptions for the left and
right premises of the application of q to its scope. But that is
too late, because the other occurrence of y : /3 has been
discharged by then. Therefore, there is no choice but to

Computational Linguistics Volume 16, Number 1, March 1990 7

Fernando C. N. Pereira Categorial Semantics and Scoping

discharge (b) after q is combined with its scope. Put in
another way, q cannot be raised outside the scope of
abstraction for the variable y occurring free in q, which is
exactly what is going on in Example (4) ("An author who
John has read every book by arrived.") A correct schematic
derivation is then

x : e 1 (b) yct 2

s : t

Xx.s : e - - ~ t I q : (e - - - , t) - - , t

q(Xx.s) : t

u:#
Xy .u : . ~ ~ ~

The free-variable constraint is reduced to a constraint on
derivations imposed by the basic theory of functionality,
dispensing with a logical-form representation of the con-
straint. Figure 5 shows a derivation for the only possible
scoping of sentence (2) when every man is selected as the
antecedent of his. To allow for the selected coreference, the
pronoun assumption must be discharged before the quanti-
fier assumption (a) for every man. Furthermore, the con-
straint on dependent assumptions requires that the quanti-
fier assumption (c) for a f r iend o f his be discharged before
the pronoun assumption (b) on which it depends. It then
follows that assumption (c) will be discharged before as-
sumption (a), forcing wide scope for every man.

every man his
every: (e~t)~(e~t)---~t rnan:e-~t h pron

friend of
nt'ever man 3 [app] every(man): (e--*t)--*t m: qua t Y()) f r i e n d - o f : ~ h : e

a
[quant-lic] m: e a: (e--4t)---~(e~t)--*t [app] fi'iend-of(h): e--*t

~ lapp] a(friend-of(h)): (e-~t)~t f: quant(a(friend-of(h)))

\

[appl saw(/) (re)it

[quant-abs] a(friend-of(h))(Zf.saw([)(m)): t 1

I
[pron-abs] a(friend-of(m))(~.f.saw(f)(m)): t z

I
[quant-abs] every(man)(km.a(friand-of(m))(~.saw(l)(m))): t 3

Figure 5 Derivation Involving Anaphora and
Quantification.

5 DISCUSSION

The approach to semantic interpretation outlined above
avoids the need for manipulations of logical forms in deriv-
ing the possible meanings of quantified sentences. It also
avoids the need for such devices as distinguished variables
(Gazdar 1982; Cooper 1983) to deal with trace abstraction.
Instead, specialized versions of the basic rule of functional
abstraction are used. To my knowledge, the only other
approaches to these problems that do not depend on formal
operations on logical forms are those based on specialized
logics of type change, usually restrictions of the Curry or
Lambek systems (van Benthem 1986a; Hendriks 1987;
Moortgat 1988). In those accounts, a phrase P with mean-
ing p of type T is considered to have also alternative
meaning p' of type T', with the corresponding combination
possibi]ities, if p': T' follows from p: T in the chosen logic.
The central problem in this approach is to design a calculus
that will cover all the actual semantic alternatives (for
instance, all the possible quantifier scopings) without intro-
ducing spurious interpretations. For quantifier raising, the
system of Hendriks seems the most promising so far, but it
is at present too restrictive to support raising from noun-
phrase complements.

Formal types and derived rules are a rather special-
purpose mechanism for constraining semantic derivations.
A more general view, based on a notion of the possible
relationships between syntactic and semantic algebra is
desirable here, maybe following from the notion of projec-
tion proposed for lexical-functional grammar (Halvorsen
and Kaplan 1988).

An important question I have finessed here is that of the
compositionatity of the proposed semantic calculus. It is
clear that the application of semantic rules is governed only
by the existence of appropriate syntactic licensing and by
the availability of premises of the appropriate types. In
other words, no rule is sensitive to the f o r m of any of the
meanings appearing in its premises. However, there may be
some doubt as to the status of the basic abstraction rule and
those derived from it. After all, the use of X-abstraction in
the consequent of those rules seems to imply the constraint
that the abstracted object should formally be a variable.
However, this is only superficially the case. I have used the
formal operation of X-abstraction to represent functional
abstraction in this paper, but functional abstraction itself is
independent of its formal representation in the X-calculus.
All that is required is a calculus of functional objects in
which those objects satisfy their usual algebraic properties,
such as what is provided by X-Prolog (Miller and Nadathur
1986). For instance, in a X-Prolog realization of the pro-
posed system, abstractions arising from the [abs] rule or its
derived rule surrogates could be calculated through a com-
bination of universal quantification in the metalanguage
(the language in which the proof system is described) and
higher-order functional equations solved by higher-order
unification (Felty and Miller 1988). Syntactic manipula-

8 Computational Linguistics Volume 16, Number 1, March 1990

Fernando C. N. Pereira Categorial Semantics and Scoping

t ion of object- level var iables and b inders would be ne i ther
necessary nor possible.

The invest igat ion reported in this paper was mot ivated
by the use of the f ree-var iable cons t ra in t in an ear l ier
system of semant ic - in te rpre ta t ion rules (Pol lack and Perei ra
1988; Pere i ra and Pol lack in press). Those rules operate on
objects formal ly analogous to sequents , with assumpt ions
for quant i f ied noun phrases and p ronouns as well as for
some other purposes. I t would be worth seeing to what
ex tent those formal operat ions on sequent- l ike objects can
be mapped onto the sequent rules for some version of the
func t iona l i ty calculus.

Verb-phrase ellipsis and gapping cons t ruc t ions provide
ano ther possible area of appl ica t ion for the k ind of catego-
rial semant ics sketched in this paper. A semant ic account
of those cons t ruc t ions requires the extract ion of the m ean -
ing of el ided mate r ia l f rom the m e a n i n g of a source clause.
I n t e rmed ia t e results of appropr ia te type in der ivat ions of
the m e a n i n g of the source clause m a y provide the possible
mean ings of the elided mater ia l . In other words, possible
an teceden t mean ings would be obta ined by semant ic reanal -
ysis of the source clause, where a semant ic reanalysis of the
source clause is jus t an a l te rna t ive categoria l der ivat ion of
the source clause 's mean ing . In i t ia l results a long these l ines
will be reported elsewhere (Da l rymple et al. 1990).

ACKNOWLEDGMENTS

The work described here was carried out in part at SRI International and
supported by a contract with the Nippon Telephone and Telegraph
Corporation and a gift from the Systems Development Foundation as part
of a coordinated research effort with the Center for the Study of Language
and Information, Stanford University, Stanford, CA. Mary Dalrymple,
David Israel, Aravind Joshi, Dale Miller, Martha Pollack, and Stuart
Shieber made useful suggestions and comments. This paper is a revised
and expanded version of "A Calculus for Semantic Composition and
Scoping" presented at the 1989 meeting of the Association for Computa-
tional Linguistics (Pereira 1989).

REFERENCES

Anderson, A. R. and Belnap, Jr., N. D. 1975 Entailment: The Logic of
Relevance and Necessity, Volume I. Princeton University Press, Prince-
ton, NJ.

Alshawi, H.; Carter, D. M.; van Eijck, J.; Moore, R. C.; Moran, D. B.;
Pereira, F. C. N.; Pulman, S. G.; and Smith, A. G. 1989 "Research
Programme in Natural Language Processing: Final Report." Technical
report, Cambridge Research Centre, SRI International, Cambridge,
U.K.

Barwise, J. and Cooper, R. 1981 "Generalized Quantifiers and Natural
Language." Linguistics and Philosophy, 4:159-219.

Curry, H. B. and Feys, R. 1968 Combinatory Logic, Volume L North-
Holland, Amsterdam, Netherlands.

Cooper, R. 1983 Quantification and Syntactic Theory. D. Reidel,
Dordrecht, Netherlands.

Dalrymple, M.; Shieber, S. M.; and Pereira, F. C. N. 1990 "Ellipsis and
Higher-Order Unification," Unpublished paper, 1990.

Dowty, D. R.; Wall, R. E.; and Peters, S. 1981 "Introduction to Montague
Semantics," Volume 11 of Synthese Language Library. D. Reidel,
Dordrecht, Netherlands.

Felty, A. and Miller, D. 1988 Specifying Theorem Provers in a Higher-
Order Logic Programming Language. Technical Report MS-CIS-88-

12, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA.

Gazdar, G. 1982 "Phrase Structure Grammar," In P. Jacobson and G. K.
Pullum (eds.), The Nature of Syntactic Representation, D. Reidel,
Dordrecht, Netherlands, 131-186.

Girard, J.-Y.; Lafont, Y.; and Taylor, P. 1989 Proofs and Types, Volume
7 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, U.K.

Helm, I. R. 1982 The Semantics of Definite and Indefinite Noun Phrases.
Ph.D. Thesis, Department of Linguistics, University of Massachusetts,
Amherst, MA.

Hendriks, H. 1987 "Type Change in Semantics: The Scope of Quantifica-
tion and Coordination," In E. Klein and J. van Benthem (eds.), Catego-
ries, Polymorphism and Unification, Centre for Cognitive Science,
University of Edinburgh, Edinburgh, U.K., 95-120.

Halvorsen, P.-K. and Kaplan, R. M. 1988 "Projections and Semantic
Description in Lexical-Functional Grammar," In Proceedings of the
International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, 1116-1122.

Howard, W. A. 1980 The Formulae-As-Types Notion of Construction,"
In J. P. Seldin and J. R. Hindley (eds.), To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Academic
Press, London, 479-490.

Hobbs, J. R. and Shieber, S. M. 1987 "An Algorithm for Generating
Quantifier Scopings." Computational Linguistics, 13:47-63.

Lambek, J. 1958 "The Mathematics of Sentence Structure." American
Mathematical Monthly, 65:154-170.

Lambek, J. 1980 "From X-Calculus to Cartesian Closed Categories," In
J. P. Seldin and J. R. Hindley (eds.), To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Academic
Press, London, 375-402.

May, R. 1985 Logical Form: Its Structure and Derivation, Volume 12 of
Linguistic Inquiry Monographs. MIT Press, Cambridge, MA.

Miller, D. A. and Nadathur, G. 1986 "Higher-Order Logic Programming,"
In E. Shapiro (ed.), Third International Conference on Logic Program-
ming, Springer-Verlag, Berlin.

Montague, R. 1973 "The Proper Treatment of Quantification in Ordinary
English," In R. H. Thomason (ed.), Formal Philosophy. Yale Univer-
sity Press, New Haven, CT.

Moortgat, M. 1988 Categorial Investigations: Logical and Linguistic
Aspects of the Lambek Calculus. Ph.D. Thesis, University of Amster-
dam, Amsterdam, Netherlands.

Moran, D. B. 1988 "Quantifier Scoping in the SRI Core Language
Engine," Proceedings of the 26th Annual Meeting of the Association
for Computational Linguistics, 33-47.

Partee, B. and Bach, E. 1984 "Quantification, Pronouns and VP
Anaphora," In J. A. G. Groenendijk, T. M. V. Janssen, and M. B. J.
Stokhof (eds.), Truth, Interpretation and Information, Foris, Dordrecht,
Netherlands, 99-130.

Pereira, F. C. N. 1989 "A Calculus for Semantic Composition and
Scoping," Proceedings of the 27th Annual Meeting of the Association
for Computational Linguistics, 152-160.

Pollack, M. E. and Pereira, F. C. N. 1988 "An Integrated Framework for
Semantic and Pragmatic Interpretation," Proceedings of the 26th
Annual Meeting of the Association for Computational Linguistics,
75-86.

Pereira, F. C. N. and Pollack, M. E. "Incremental Interpretation,"
Artificial Intelligence, in press.

Prawitz, D. 1965 Natural DeductiorL" A Proof-Theoretical Study. Almqvist
and Wiksell, Uppsala, Sweden.

Reinhart, T. 1983 Anaphora and Semantic Interpretation. Croom Helm,
London.

Roberts, C. 1987 Modal Subordination, Anaphora and Distributivity.
Ph.D. Thesis, Department of Linguistics, University of Massachusetts,
Amherst, MA.

Stenlund, S. 1972 Combinators, h-Terms and Proof Theory. D. Reidcl,
Dordrecht, Netherlands.

Computational Linguistics Volume 16, Number 1, March 1990 9

Fernando C. N. Pereira Categorial Semantics and Scoping

Steedman, M. 1987 "Combinatory Grammars and Parasitic Gaps."
Natural Language and Linguistic Theory, 5(3):403-439.

Vanlchn, K. A. 1978 Determining the Scope of English Quantifiers. M.S.
thesis, Massachusetts Institute of Technology, Cambridge, MA.

van Benthem, J. 1986a "Categorial Grammar and Lambda Calculus," In
D. Skordev (ed.), Mathematical Logic and its Application, Plenum
Press, New York, 39-60.

van Benthem, J. 1986b "Essays in Logical Semantics," Volume 29 of
Studies in Linguistics and Philosophy. D. Reidel, Dordrecht, Nether-
lands.

van Bcnthem, J. 1989 "Categoriat Grammar and Type Theory." Journal
of Philosophical Logic, In press, 1990.

van Eijck, J. 1985 Aspects of Quantification in Natural Language. Ph.D.
Thesis, University of Groningen, Groningen, Netherlands.

van Riemsdijk, H. and Williams, E. 1986 Introduction to the Theory of
Grammar, Volume 12 of Current Studies in Linguistics. MIT Press,
Cambridge, MA.

Williams, E. 1986 "A Reassignment of the Functions of LF." Linguistic
Inquiry, 17(2):265-299.

N O T E S

1. In all the examples that follow, the pronoun and its intended anteced-
ent are italicized. As usual, starred examples are supposed to be
ungrammatical.

2. In fact, this is a perfectly good open well-formed formula and

therefore the precise formulation of the constraint is more delicate
than seems to be realized in the literature.

3. This particular example and its analysis were chosen just as the
shortest plausible example requiring both application and abstrac-
tion, not as making substantive linguistic or semantic claims.

4. These rules are quite similar to the extraction introduction rule of
Mcortgat (1988).

5. In :general, quantifying-in has to apply not only to proposition-type
scopes but also to property-type scopes (meanings of common noun
phrases and verb phrases). Extending the argument that follows to
those cases offers no difficulties.

10 Computational Linguistics Volume 16, Number 1, March 1990

