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We describe a table-driven parser for unification grammar that combines bottom-up construction of 
phrases with top-down filtering. This algorithm works on a class of grammars called depth-bounded 
grammars, and it is guaranteed to halt for any input string. Unlike many unification parsers, our 
algorithm works directly on a unification grammar--it  does not require that we divide the grammar into 
a context-free "backbone" and a set of feature agreement constraints. We give a detailed proof of 
correctness. For the case of a pure bottom-up parser, our proof does not rely on the details of unification 
- - i t  works for any pattern-matching technique that satisfies certain simple conditions. 

1 INTRODUCTION 

Unrestr icted unification grammars  have the formal 
power  of  a Turing machine.  Thus there is no algorithm 
that finds all parses  of  a given sentence in any unifica- 
tion g rammar  and always halts. Some unification gram- 
mar  sys tems just  live with this problem. Any general 
parsing method for definite clause g rammar  will enter  an 
infinite loop in some cases,  and it is the task of  the 
g rammar  writer  to avoid this. General ized phrase struc- 
ture g rammar  avoids the problem because it has only 
the formal  power  of  context-free g rammar  (Gazdar  et al. 
1985), but according to Shieber (1985a) this is not 
adequate  for describing human language. 

Lexical  functional g rammar  employs  a bet ter  solu- 
tion. A lexical functional g rammar  must  include a 
finitely ambiguous context-free grammar ,  which we will 
call the context-free backbone (Barton 1987). A parser  
for lexical functional g rammar  first builds the finite set 
of  context-free parses  of  the input and then eliminates 
those that don ' t  meet  the other requirements of  the 
grammar. This method guarantees that the parser will halt. 

This solution may be adequate  for lexical functional 
grammars ,  but for other  unification grammars  finding a 
finitely ambiguous context-free backbone is a problem. 
In a definite clause grammar ,  an obvious way to build a 
context-free backbone is to keep only the topmost  
function letters in each rule. Thus the rule 

s ----> np(P ,N)  v p ( P , N )  
becomes  

s - - > n p v p  

(In this example we use the notation of  Pereira and 
Warren 1980, except  that we do not put square brackets  
around terminals,  because this conflicts with standard 
notation for context-free grammars . )  Suppose we use a 
simple X-bar  theory. Let  major-category (Type,  Bar- 
level) denote a phrase in a major  category.  A noun 
phrase may consist  of  a single noun, for instance, John.  
This suggests a rule like this: 

major-category (n,2) --~ major-category (n, 1) 
In the context-free backbone this becomes  

major-category --* major-category 
so the context-free backbone is infinitely ambiguous.  
One could devise more elaborate examples ,  but this one 
suffices to make the point: not every  natural unification 
g rammar  has an obvious context-free backbone.  There-  
fore it is useful to have a parser  that does not require us 
to find a context-free backbone,  but works  directly on a 
unification g rammar  (Shieber 1985b). 

We propose  to guarantee that the parsing problem is 
solvable by restricting ourselves to depth-bounded 
grammars .  A unification g rammar  is depth-bounded if 
for every L > 0 there is a D > 0 such that every  parse 
tree for a sentential form of  L symbols  has depth less 
than D. In other words,  the depth of  a tree is bounded 
by the length of the string it derives.  A context-free 
grammar  is depth-bounded if and only if every  string of 
symbols is finitely ambiguous.  W e  will generalize the 
notion of finite ambiguity to unification grammars  and 
show that for unification grammars ,  depth-boundedness  
is a stronger proper ty  than finite ambiguity. 
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Depth-bounded unification grammars  have more for- 
mal power  than context-free grammars .  As an example  
we give a depth-bounded g rammar  for the language xx ,  

which is not context-free.  Suppose the terminal symbols 
are a through z. We introduce function letters a '  
through z'  to represent  the terminals. The rules of  the 
g rammar  are as follows, with e denoting the empty  
string. 

s ~ x(L)x(L) 
x(cons(A,L))  ~ pre-terminal(A) x(L) 
x(nil) ~ e 
pre- terminal(a ' )  ~ a 

pre- terminal(z ' )  ~ z 

The reasoning behind the g rammar  should be c l ea r - -  
x(cons(a ' ,cons(b ' ,ni l ) ) )  derives ab ,  and the first rule 
guarantees  that every  sentence has the form xx .  The 
g r ammar  is depth-bounded because  the depth of  a tree is 
a linear function of  the length of  the string it derives.  A 
similar g rammar  can derive the crossed serial dependen- 
cies of  Swiss German,  which according to Shieber 
(1985a) no context-free  g rammar  can derive. It is clear 
where  the extra  formal  power  comes  from: a context-  
free g rammar  has a finite set of  nonterminals,  but a 
unification g rammar  can build arbitrarily large nonter- 
minal symbols .  

It  remains to show that there is a parsing algorithm 
for depth-bounded unification grammars .  We have de- 
veloped such an algorithm, based on the context-free 
parser  of  Graham et al. 1980, which is a table-driven 
parser.  I f  we generalize the table-building algorithm to a 
unification g rammar  in an obvious way,  we get an 
algorithm that is guaranteed to halt for all depth- 
bounded g rammars  (not for all unification grammars) .  
Given that the tables can be built, it is easy to show that 
the parser  halts on every  input. This is not a special 
proper ty  of  our  p a r s e r - - a  straightforward bot tom-up 
parser  will also halt on all depth-bounded grammars ,  
because  it builds partial parse trees in order  of  their 
depth. Our contr ibution is to show that a simple algo- 
ri thm will verify depth-boundedness  when in fact it 
holds. I f  the g rammar  is not depth-bounded,  the table- 
building algorithm will enter  an infinite loop, and it is up 
to the g rammar  writer  to fix this. In practice we have 
not found this t roublesome,  but it is still an unpleasant  
proper ty  of  our method.  Section 7 will describe a 
possible solution for this problem. 

Sections 2 and 3 of  this paper  define the basic 
concepts  of  our formalism. Section 4 proves  the sound- 
ness and comple teness  of  our  simplest parser,  which 
is purely bot tom-up and excludes rules with empty  
right-hand sides. Section 5 admits rules with empty  
right sides, and section 6 adds top-down filtering. Sec- 
tion 7 discusses the implementat ion and possible exten- 
sions. 

2 BASIC CONCEPTS 

The following definitions are f rom Gallier 1986. Let  S be 
a finite, nonempty  set of  sorts. An S-ranked alphabet is 
a pair (E,r) consisting of  a set E together  with a function 
r :E ~ S* x S assigning a rank (u,s) to each symbol  f i n  
~'~. The string u in S* is the arity o f f  and s is the type of 

J; 
The S-ranked alphabets  used in this paper  have  the 

following property.  For  every  sort  s E S there is a 
countably infinite set V s of  symbols  of  sort  s called 
variables. The rank of  each variable in V S is (e ,s ) ,  where 
e is the empty  string. Variables are writ ten as strings 
beginning with capitals for instance X, Y, Z. Symbols  
that are not variables are called function letters, and 
function letters whose arity is e are called constants .  
There  can be only a finite number  of  function letters in 
any sort. 

The set of  terms is defined recursively as follows. 
For  every symbol  f of  rank (Ul ...Un, S) and any terms 
t~...tn, with each ti of  sort ui, f(t~ . . . .  tn) is a term of  sort 
s. Since every sort in S includes variables,  whose arity 
is e, it is clear that there are terms of  every  sort. 

A term is called a ground te rm if it contains no 
variables. We make one further  requirement  on our 
ranked alphabets:  that every  sort  contains a ground 
term. This can be guaranteed by jus t  requiring at least 
one constant  of  every  sort. It is not clear,  however ,  that 
this solution is linguistically a ccep t ab l e - -w e  do not 
wisla to include constants  without linguistic significance 
just  to make sure that every  sort includes a ground term. 
Therefore,  we give a simple algorithm for checking that 
every sort in S includes a ground term. 

Let  T 1 be the set of  sorts in S that include a constant.  
Le t  T i + i be the union of  T i and the set of  all s in S such 
that for some function l e t t e r f o f  sort  s, the arity of  f is 
Ul. . .u  n and the sorts u~,. . . ,Un are in T i. Every  sort in T~ 
includes a ground term, and if every  sort  in T~ includes 
a ground term then every  sort in T i + l includes a ground 
term. Then for all n, every sort in T n includes a ground 
terra. The algorithm will compute  T ,  for successive 
values of  n until it finds an N such that T N = T N + 1 (this 
N must  exist, because S is finite). I f  TN = S, then every  
sort in S includes a ground term, otherwise not. 

As an illustration, let S = {phrase, person,  number}. 
Let  the function letters of  E be {np, vp, s, 1st, 2nd, 3rd, 
singular, plural}. Le t  ranks be assigned to the function 
letters as follows, omitting the variables.  

r(np) = ([person, number] ,  phrase) 
r(vp) = ([person, number] ,  phrase) 
r(s) = (e, phrase) 
r(lst)  = (e, number)  
r(2nd) = (e, number)  
r(3rd) = (e, number)  
r [(singular) = (e, person) 
r(plural) = (e,person) 

We have used the notation [a,b,c] for the string of  a, b, 
and c. Typical  terms of  this ranked alphabet  are np(ls t ,  
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singular) and vp(2nd, plural). The reader can verify, 
using the above algorithm, that every  sort includes a 
ground term. In this case, T 1 = {person, number}, T2 = 
{person, number,  phrase}, and T a = T 2. 

To summarize: we define ranked alphabets in a 
standard way, adding the requirements that every  sort 
includes a countable infinity of  variables, a finite num- 
ber of function letters, and at least one ground term. We 
then define the set of  terms in a standard way. All 
unification in this paper is unification of terms, as in 
Robinson 1965--not graphs or other  structures, as in 
much recent work (Shieber 1985b). 

A unification grammar is a five-tuple G = (S, (~,r) T, 
P,  Z) where S is a set of  sorts, (~,r) an S-ranked 
alphabet, T a finite set of  terminal symbols, and Z a 
function letter of  arity e in (~,r). Z is called the start 
symbol of  the grammar (the standard notation is S not 
Z, but by bad luck that conflicts with standard notation 
for the set of  sorts). P is a finite set of  rules; each rule 
has the form (A ~ a), where A is a term of  the ranked 
alphabet and a is a sequence of terms of  the ranked 
alphabet and symbols from T. 

We define substitution and substitution instances of 
terms in the standard way (Gallier 1986). We also define 
instances of  rules: if s is a substitution and (A ---> B l 
...B n) is a rule, then (s(A)  ---> s (B  I ) . . . s (B , ) )  is an instance 
of  the rule (A --~ B1...B,). A ground instance of  a term or 
rule is an instance that contains no variables. 

Here is an example,  using the set of  sorts S from the 
previous example. Let  the variables of  sort person  be P1,  
P2 .... and the variables of  sort n u m b e r  be N, ,N2... etc. 
Then the rule (s tar t  ---> n p ( P  1 , N l ) vp (P ,  , N ,  ) has six 
ground instances, since there are three possible substi- 
tutions for the variable Pj and two possible substitu- 
tions for N~ . 

We come now to the key definition of  this paper. Let  
G = (S, (E,r) T, P,  Z) be a unification grammar. The 
ground grammar for G is the four-tuple (N, T, P ' ,  Z), 
where N is the set of  all ground terms of  (E,r), T is the 
set of terminals of  G, P '  is the set of all ground instances 
of  rules in P,  and Z is the start symbol of G. If  N and P '  
are finite, the ground grammar is a context-free gram- 
mar. If  N or P '  is infinite, the ground grammar is not a 
context-free grammar, and it may generate a language 
that is not context-free. Nonetheless we can define 
derivation trees just  as in a cfg. Following Hopcroft  and 
Ullman (1969), we allow derivation trees with nonter- 
minals at their leaves. Thus a derivation tree may 
represent a partial derivation. We differ from Hopcroft  
and Ullman by allowing nonterminals other than the 
start symbol to label the root of  the tree. A derivation 
tree is an A-tree if the non-terminal A labels its root. 
The yield of  a derivation tree is the string formed by 
reading the symbols at its leaves from left to right. As in 
a cfg, A ~ a iff there is an A-tree with yield a. The 
language generated by a ground grammar is the set of 
terminal strings derived from the start symbol. The 

language generated by a unification grammar is the 
language generated by its gl:ound grammar. 

The central idea of  this approach is to regard a 
unification grammar as an abbreviation for its ground 
grammar. Ground grammars are not always cfgs, but 
they share many properties of cfgs. Therefore  if we 
regard unification grammars as abbreviations for ground 
grammars, our understanding of cfgs will help us to 
understand unification grammars. This is of course 
inspired by Robinson's  work on resolution, in which he 
showed how to " l i f t "  a proof  procedure  for proposi- 
tional logic up to a proof  procedure  for general first- 
order logic (Robinson 1965). 

The case of  a finite ground grammar is important, 
since it is adequate for describing many syntactic phe- 
nomena. A simple condition will guarantee that the 
ground grammar is finite. Suppose s I and s 2 are sorts, 
and there is a function letter of  sort Sl that has an 
argument of sort s2. Then we say that Sl > s2. Let  >* be 
the transitive closure of  this relation. If >* is irreflex- 
ive, and D is the number of  sorts, every term of the 
ground grammar has depth -< D. To see this, think of  a 
ground term as a labeled tree. A path from the root to a 
leaf generates a sequence of  sorts: the sorts of  the 
variables and functions letters encountered on that 
path. It is a strictly decreasing sequence according to 
>*.  Therefore,  no sort occurs twice; therefore,  the 
length of the sequence is at most D. Since there are only 
a finite number of function letters in the ranked alpha- 
bet, each taking a fixed number of  arguments, the 
number of possible ground terms of depth D is finite. 
Then the ground grammar is finite. 

A ground grammar G' is depth-bounded if for every 
integer n there exists an integer d such that every 
derivation tree in G'  with a yield of  length n has a depth 
less than d. In other  words, a depth-bounded grammar 
cannot build an unbounded amount  of  tree structure 
from a bounded number of  symbols. Remember  that 
these symbols may be either terminals or nonterminals, 
because we allow nonterminals at the leaves of a 
derivation tree. A unification grammar G is depth- 
bounded if its ground grammar is depth-bounded. 

We say that a unification grammar is finitely ambig- 
uous if its ground grammar is finitely ambiguous. We 
can now prove the result claimed above: that a unifica- 
tion grammar can be finitely ambiguous but not depth- 
bounded. In fact, the following grammar is completely 
unambiguous but still not depth-bounded. It has just  one 
terminal symbol, b, and its start symbol is s tar t .  

s tar t  ~ p(O) 

p(N) ~ p(succ(N)) 
p ( N )  ---, q ( N )  

q (succ(N)) ~ b q ( N )  
q(0) ~ e 

The function letter " s u c c "  represents the successor 
function on the integers, and the terms 0, succ(0), 
succ(succ(0)).., represent the integers 0, 1, 2... etc. For  
convenience,  we identify these terms with the integers 
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they represent.  A string of  N occurrences of  b has just 
one parse tree. In this tree the start symbol derives p(0), 
which derives p(N) by N applications of the second 
rule. p(N) derives q(N), which derives N occurrences of 
b by N applications of  the fourth rule and one applica- 
tion of  the last rule. The reader can verify that this 
derivation is the only possible one, so the grammar is 
unambiguous. Yet the start symbol derives p(N) by a 
tree of  depth N, for every  N. Thus trees whose frontier 
has only one symbol can still be arbitrarily deep. Then 
the grammar cannot  be depth-bounded. 

We have defined the semantics of  our grammar 
formalism without mentioning unification. This is delib- 
erate; for us unification is a computational tool, not a 
part of the formalism. It might be better  to call the 
formalism "subst i tut ion grammar ,"  but the other name 
is already established. 

Notation: The letters A, B, and C denote symbols of 
a ground grammar,  including terminals and nontermi- 
nals. Lowercase  Greek letters denote strings of  sym- 
bols. a [i k] is the substring of  a from space i to space k, 
where the space before the first symbol is space zero. e 
is always the empty string. We write x tO y or U(x,y) for 
the union of  sets x and y, and also (U i<j<kf l j ) )  for the 
union of  the sets flj) for all j such that i < j < k. 

If  a is the yield of  a tree t, then to every occurrence 
of  a symbol A in ~ there corresponds a leaf of  t labeled 
with A. To every node in t there corresponds an 
occurrence of  a substring in ~----the substring dominated 
by that node. Here  is a lemma about trees and their 
yields that will be useful when we consider top-down 
filtering. 

L e m m a  2.1. Suppose t is a tree with yield ~fla' and n 
is the node of  t corresponding to the occurrence o f /3  
after a in ot/3a'. Let  A be the label of n. If t' is the tree 
formed by deleting all descendants of  n from t, the yield 
of  t' is aAa ' .  

Proof: This is intuitively clear, but the careful reader 
may prove it by induction on the depth of t. 

3 OPERATIONS ON SETS OF RULES AND TERMS 

The parser must find the set of  ground terms that derive 
the input string and check whether  the start symbol is 
one of  them. We have taken the rules of a unification 
grammar as an abbreviation for the set of all their 
ground instances. In the same way, the parser will use 
sets of  terms and rules containing variables as a repre- 
sentation for sets of  ground terms and ground rules. In 
this section we show how various functions needed for 
parsing can be computed using this representation. 

A grammatical expression,  or g-expression, is either 
a term of L, the special symbol nil, or a pair of  
g-expressions. The letters u, v, w, x, y, and z denote 
g-expressions, and X, Y, and Z denote sets of  g- 
expressions.  We use the usual LISP functions and 
predicates to describe g-expressions. [x y] is another 
notation for cons (x,y). For  any substitution s, s (cons 

(x,y)) = cons (s(x),s(y)) and s(Nil) = Nil. A selector is a 
fianction from g-expressions to g-expressions formed by 
composition from the functions car, cdr, and identity. 
Thus a selector picks out a subexpression from a 
g-expression. A constructor  is a function that maps two 
g-expressions to a g-expression, formed by composit ion 
firom the functions cons, car, cdr, nil, (A x y. x), and (A 
x y. y). A constructor  builds a new g-expression from 
parts of two given g-expressions. A g-predicate is a 
function from g-expressions to Booleans formed by 
composition from the basic functions car, cdr, (A x. x), 
consP, and null. 

Let ground(X) be the set of ground instances of  g- 
expressions in X. I f f  is a selector function, let fiX) be 
the set of  all f ix)  such that x E X. If  p is a g-predicate, 
let separate (p,x)  be the set of  all x E X such that p(x). 
The following lemmas are easily established from the 
definition of s(x) for a g-expression x. 

L e m m a  2.2. I f f i s  a selector f u n c t i o n , f  (ground(X)) = 
ground (f(x)). 

L e m m a  2.3. If p is a g-predicate, separate (p,ground 
(X)) = ground(separate (p,x)). 

L e m m a  2.4. Ground (X U I") = ground (X) U ground 
(I1). 

L e m m a  2.5. I f x  is a ground term, x E ground(X) i f fx  
is an instance of some y E X. 

L e m m a  2.6. Ground (X) is empty iff X is empty. 
Proof.  A nonempty set of  terms must have a non- 

empty set of ground instances, because every  variable 
belongs to a sort and every sort includes at least one 
grotmd term. 

These lemmas tell us that if we use  sets X and Y of  
terms to represent the sets ground(X) and ground(Y) of 
grotmd terms, we can easily construct  representations 
for ./(ground(x)), separate(p,ground (X)), and ground 
(X) U ground (Y). Also we can decide whether  a given 
ground term is contained in ground(X) and whether  
ground(X) is empty.  All these operations will be needed 
in the parser. 

The parser requires one more type of  operation, 
defined as follows. 

Definition. L e t f  l a n d f  2 be selectors and g a construc- 
tor, and suppose g(x,y) is well defined whenever  f l (x)  
andJ2(y) are well defined. The symbol ic  product  defined 
by j~, f2, and g is the function 

(AX Y. { g(x,y) I x E X A y E Y A f , (x)  = f2(Y) }) 
where X and Y range over  sets of ground g-expressions. 
Note thatfl(x) = f2(Y) is considered false if either side of  
the equation is undefined. 

The symbolic product  matches every  x in X against 
every  y in Y. If f l (x)  equals f2(Y), it builds a new 
structure from x and y using the function g. As an 
example, suppose X and Y are sets of pairs of  ground 
terms, and we need to find all pairs [A C] such that for 
some B, [A B] is in X and [B C] is in Y. We can do this 
by finding the symbolic product  wi thf l  = cdr, f2 = car, 
and g = (A x y. cons(car(x), cdr(y))). To see that this is 
correct ,  notice that if [A B] is in X and [B C] is in Y, then 
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f~([A B]) = f2  ([B C]), so the p a i r g  ([A B],[B C]) = [A C] 
must  be in the answer  set. 

A second example:  we can find the intersection of 
two sets of  terms by using a symbolic product  wi thf l  = 
(A X . X), f2 = ()t X . X), and g = (A x y. x). 

I f  X is a set of  g-expressions and n an integer, 
rename(X,n) is an alphabetic variant of  X. For  all X, Y, 
m, and n, if m # n then rename(X,n) and rename(Y,m) 
have no variables in common.  The following theorem 
tells us that if we use sets of  terms X and Y to represent  
the sets ground(X) and ground(Y) of  ground terms,  we 
can use unification to compute  any symbolic product  of  
ground(X) and ground(Y). We assume the basic facts 
about  unification as in Robinson (1965). 

Theorem 2.1. I f  h is the symbolic  product  defined by 
f~, f2 and g, and X and Y are sets of  g-expressions,  then 

h (ground(X),ground(Y)) = 
ground({s(g(u ,v) ) lu  E rename(X,1) /~ v E 
rename(Y,2) 
/~ s is the m.g.u, of  fl(u) and fz(v)}) 

Proof. The first step is to show that if Z and W share no 
variables 

(1) {g(z,w) I z E ground(Z) /k  w E ground(W)/~  fl(z) 
= t"2 (w)} = ground({s(g(u,v)) I u E Z / ~  v ~ W / ~  s is 
the m.g.u, of  fl(u) and f2(v) }) 

Consider  any element  of  the right side of  equation (1). It 
must be a ground instance of  s(g(u,v)), where u E Z, v 
E W, and s is the m.g.u, o f f l ( u  ) andfz(v  ). Any ground 
instance of  s(g(u,v)) can be written as s'(s(g(u,v))), 
where s '  is chosen so that s'(s(u)) and s'(s(v)) are ground 
terms. Then s'(s(g(u,v))) = g(s'(s(u)),s'(s(v))) and 
f l(s '(s(u)))  = s'(sOCl(U))) = s'(s(f2 (v))) = f2(s'(s(v))). 
Therefore  s'(s(g(u,v))) belongs to the set on the left side 
of  equation (1). 

Next  consider any element of  the left side of  (I). It 
must  have the form g(z,w),  where z E ground(Z), w E 
ground(W), and f l  (z) = fz  (w). Then for some u E Z and 
v E W, z is a ground instance of u and w is a ground 
instance of  v. Since u and v share no variables,  there is 
a substitution s '  such that s'(u) = z and s'(v) = w. Then 
s ' ( f  l (u)) = f l  (s'(u)) = f2 (s'(v)) = s '0C2 (V)), SO there 
exists a most  general unifier s fo r f l  (u) andfz  (v), and s '  
is the composi t ion of  s and some substitution s". Then 
g( z ,w)  = g(s(s (u) )  s(s(v)))  = s (s (g(u ,v) ) ) ,  g ( z ,w )  is a 

ground term because z and w are ground terms, so 
g(z,w) is a ground instance of  s(g(u,v)) and therefore 
belongs to the set on the right side of  equation (1). 

We have proved  that if Z and W share no variables, 
(2) h(ground(Z),ground(W)) = ground({s(g(u,v))  I u 
E Z / ~  v E W / ~  s is the m.g.u, of  fl(u) and f2(v)}) 

For  any X and Y, rename(X, I) and rename(Y,2) share no 
variables.  Then we can let Z = rename(X,1) and W = 
rename(Y,2) in formula  (2). Since h(ground(X), 
ground(Y)) = h(ground(rename(X, 1)), ground(rename 
(Y,2))), the theorem follows by transitivity of  equality. 
This completes  the proof.Fq 

As an example ,  suppose X = {[a(F) b(F)]} and Y = 
{[b(G) c(G)]}. Suppose  the variables F and G belong to 

a sort s that includes jus t  two ground terms,  m and n. 
We wish to compute  the symbolic product  o f  ground(X) 
and ground(Y), us ingf l  = cdr, f2 = car, and g = (A x y. 
cons(car(x), cdr(y))) (as in our previous example) .  
ground(X) equals {[a(m) b(m)],[a(n) b(n)]} and 
ground(Y) equals {[b(m) c(m)],[b(n) c(n)]}, so the sym- 
bolic product  is {[a(m) c(m)],[a(n) c(n)]}. We will verify 
that the unification method gets the same result. Since X 
and Y share no variables,  we can skip the renaming 
step. Let  x = [a(F) b(F)] and y = [b(G) c(G)]. T h e n f  1 (x) 
= b(PO, f2 (Y) = b(G), and the most  general unifier is the 
substitution s that replaces F with G. Then g(x,y) = 
[a(F) c(G)] and s(g(x,y)) = [A(G) C(G)]. The set of  
ground instances of  this g-expression is {[A(m) C(m)], 
[A(n)C(n)]}, as desired. 

Definit ion.  Let  f be a function f rom sets of  g- 
expressions to sets of  g-expressions,  and suppose that 
when X C_ X '  and Y C_ Y ' , f ( X , Y )  C_ f (X ' ,Y ' ) .  T h e n f i s  
monotonic .  

All symbolic products  are monotonic  functions, as 
the reader  can easily show from the definition of sym- 
bolic products.  Indeed,  every function in the parser  that 
returns a set of  g-expressions is monotonic.  

4 THE PARSER WITHOUT EMPTY S Y M B O L S  

Our first parser  does not allow rules with empty  right 
sides, since these create complications that obscure  the 
main ideas. Therefore,  throughout this section let G be 
a ground g rammar  in which no rule has an empty  side. 
When we say that a derives/3 we mean that ~ derives/3 
in G. Thus a ~ e iff a = e. 

A dotted rule in G is a rule of  G with the right side 
divided into two parts by a dot. The symbols  to the left 
of  the dot are said to be before the dot, those to the right 
are after the dot. DR is the set of  all dotted rules in G. 
A dotted rule (A --> a./3) derives a string if a derives that 
string. To compute  symbolic products  on sets of  rules or 
dotted rules, we must  represent  them as g-expressions.  
We represent  the rule (A --~ B C) as the list (A B C), and 
the dotted rule (A --> B.C) as the pair [(A B C) (C) ]. 

We write A ~ B if A derives B by a tree with more 
than one node. The parser  relies on a chain t ab l e - - a  
table of  all pairs [A B] such that A :~, B. Let  C O be the 
set of  all [A B] such that A ~ B by a derivation tree of  
depth d. Clearly C1 is the set of  all [A B] such that (A 
B) is a rule of  G. I f  S l and $2 are sets of  pairs of  terms,  
define 

link(S~,S 2) = {[A C] [ (3 B. [A B] E $1/~ [B C] E $2) } 
The function link is equal to the symbolic  product  
defined by f l  = cdr, f2 = car, and g = (h x y . 
cons(car(x), cdr(y))). Therefore  we can compute  link 
($1, $2) by applying Theorem 2.1. Clearly C O ÷ i = 
link(Cd,C0. Since the g rammar  is depth-bounded,  there 
exists a number  D such that every  derivation tree whose 
yield contains exactly one symbol  has depth less than 
D. Then C D is empty.  The algorithm for building the 
chain table is this: compute  C,  for increasing values of  
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n until C n is empty• Then the union of all the C, ' s  is the 
chain table. 

We give an example from a finite ground grammar. 
Suppose the rules are 

(a ~ b) 
(b -'-> c) 
(c--, d) 
(d----> k f )  
(k ~ g) 
(f"-~ h) 

The terminal symbols are g and h . Then Cl = {[a b], 
[b c], [c d]}, C 2 : {[a c],[b d]}, and C 3 = {[a d]}. C 4 is 
empty. 

Definitions. ChainTable is the set of all [A B] such 
that A ~ B. If  S is a set of dotted pairs of symbols and 
S' a set of symbols, ChainUp(S,S') is the set of symbols 
A such that [A B] ~ S for some B ~ S'. "Cha inUp"  is 
clearly a symbolic product. If  S is a set of symbols, 
close(S) is the union of S and ChainUp(ChainTable,S). 
By the definition of ChainTable, close(S) is the set of 
symbols that derive a symbol of S. 

In the example grammar, ChainTable is the union of 
C l ,  C2, and C3--that is, the set {[ a b],[b c],[c d],[a c], 
[b d],[a d]}. ChainUp({ a}) = {}, but ChainUp({ d}) = 
{ a,b,c}, close({ a}) = { a}, while close({ at}) = { a,b,c,d}. 

Let a be an input string of length L > 0. For each a[i 
k] the parser will construct the set of dotted rules that 
derive a[i k]. The start symbol appears on the left side 
of one of these rules iff a[i k] is a sentence of G. By 
lemma 2.5 this can be tested, so we have a recognizer 
for the language generated by G. With a small modifi- 
cation the algorithm can find the set of derivation trees 
of a. We omit details and speak of the algorithm as a 
parser when strictly speaking it is a recognizer only. 

The dotted rules that derive a[i k] can be partitioned 
into two sets: rules with many symbols before the dot 
and rules with exactly one. For each a[i k], the algo- 
rithm will carry out three steps. First it collects all 
dotted rules that derive a[i k] and have many symbols 
before the dot. From this set it constructs the set of all 
symbols that derive a[i k], and from these symbols it 
constructs the set of all dotted rules that derive a[i k] 
with one symbol before the dot. The union of the two 
sets of dotted rules is the set of all dotted rules that 
derive a[i k]. Note that a dotted rule derives a[i k] with 
more than one symbol before the dot iff it can be written 
in the form (A ~ fiB./3') where/3 ~ a[ij], B ~ a[j k], and 
i < j < k (this follows because a nonempty string/3 can 
never derive the empty string in G). 

If (A --* B .  (7) derives a[ij] and B derives a[j k], then 
(A ~ B C .) derives a[i k]. This observation motivates 
the following. 

Definition. If  S is a set of dotted rules and S' a set of 
symbols, AdvanceDot(S,S')  is the set of rules (A 
aB./3) such that (A ~ a.Bfl) ~ S and B E S'. Clearly 
AdvanceDot is a symbolic product. 

For  example, AdvanceDot({( d ~ k .  fi},{ ao'}) equals 
{( d----> k f .)}. 

Suppose that for each proper substring of a[i k] we 
have already found the dotted rules and symbols that 
derive that substring. The following lemma tells us that 
we can then find the set of dotted rules that derive a[i k] 
with many symbols before the dot. 

Lemma 3.1. For i < j < k, let S(ij) be the set of 
dotted rules that derive a[i j], and S'(j,k) the set of 
symbols that derive a[j k]. The set of dotted rules that 
derive a[i k] with many symbols before the dot is 

U AdvanceDot(S(ij),S'(j ,k)) 
i < j < k  
Proof. We have 

U AdvanceDot({(B ~ /3 . /3  s) ~ DR I /3 ~ a[i j]}, 
i < j < k  

{A I A ~ a[j k]}) 

U {(B ___> /3A. /32) E DR i /3 ~ a[i j ] / \  A ~ a[j k] } i<:j<k 
by definition of AdvanceDot 

{( ]3~ f l A . & ) E D R I  ( 3 j . i < j  < k / X / 3 ~ a [ i j ] / X  
A ~ a[j k])}[~ 

As noted above, this is the set of dotted rules that derive 
a[i k] with more than one symbol before the dot. 

Definition. If S is a set of dotted rules, finished(S) = 
{ A I ( a - - , /3 . )  ~ S }. 

When the dot reaches the end of the right side of a 
rule, the parser has finished building the symbol on the 
left s ide--hence the name finished. For example, 
finislaed({( d ~ k f .),(a ~ . b)}) is the set { d}. 

The next lemma tells us that if we have the set of 
dotted rules that derive a[i k] with many symbols before 
the dot, we can construct the set of symbols that derive 
a[i k]. 

Lemma 3.2. Suppose length(a) > 1 and S is the set of 
dotted rules that derive a with more than one symbol 
before the dot. The set of symbols that derive a is 
close(finished(S)). 

Proof. Suppose first that A ~ close(finished(S)). 
Then for some B, A ~ B ,  (B ~ / 3 . )  is a dotted rule, and 
/3 ~ a. Then A ~ a. Suppose next that A derives a. We 
show by induction that if t is a derivation tree in G and 
A ~ a by t, then A E close(finished (S)). t contains more 
than one node because length(a) > 1, so there is a rule 
(A -* A l ... A n) that admits the root of t. If n > 1, (A 
At....An.) E S and A is in close(finished(S)). I fn  = 1 then 
A n -"~ a and by induction hypothesis A n ~ close(fin- 
ished(S)). Since A ~ A  1, A ~ close(finished(S)). 

In our example grammar, the set of dotted rules 
deriving a[0 2] = gh with more than one symbol before 
the dot is {(d ~ kf.)}, finished({( d ~ kf.)} ) is { d}, and 
close({ d} ) = { a,b,c,d}. It is easy to check that these are 
all the symbols that derive gh.[3 

Definitions. RuleTable is the set of dotted rules (A 
.a) such that (A ~ a) is a rule of G. If  S is a set of 
symbols, NewRules(S) is AdvanceDot(RuleTable, S). 

In our example grammar, NewRules ({k}) = {( d ~ k 
• J S } ,  

Lemma 3.3. If S is the set of symbols that derive a, 
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the set of  dotted rules that derive a with one symbol 
before the dot is NewRules(S).  

Proof. Expanding the definitions gives Advance 
Dot({( A ---> ./3l (A ---> /3)EP}, { C [  C ~ a}) = {(A --> 
C./3') (A --> C/3') E P / ~  C ~ a } .  This is the set of  dotted 
rules that derive a with one symbol before the dot. 

Let  terminals(i,k) be the set of terminals that derive 
a[i k]; that is, i f / +  1 = k then terminals(i,k) = {a[i k]}, 
and otherwise terminals(i,k) = f~. Let  a be a string of  
length L > 0. For  0 < i < k -< L, define 

dr(i,k) = 
if i +  1 = k  
then NewRules(close({ a[i i + 1]})) 

U AdvanceDot(dr( i j ) ,  else (let rules 1 = i <j  < k 

[finished(dr(j,k)) U terminals 
(j ,k)]) 

(let rules 2 = NewRules(close(finished(rules0) ) 
ruleSl U rules2)) 

Theorem 3.1. For  0 <- i < k <- L, dr(i,k) is the set of  
dotted rules that derive a[i k]. 

Proof. By induction on the length of a[i k]. If the 
length is 1, then i + 1 = k. The algorithm returns 
NewRules(close({a[i i + 1]})). close({ a[i i + 1]} ) is the 
set of  symbols that derive a[ i i + 1] (by the definition of 
ChainTable), and NewRules(close({a[i i + 1]})) is the set 
of  dotted rules that derive a[i i + 1] with one symbol 
before the dot (by lemma 3.3). No rule can derive 
a[i i + 1] with many symbols before the dot, because 
a[i i + 1] has only one symbol. Then NewRules(close 
({a[i k]})) is the set of all dotted rules that derive a[i k]. 

Suppose a[i k] has a length greater than 1. If i <j<k,  
dr(Q) contains the dotted rules that derive a[i j] and 
dr(j,k) contains the dotted rules that derive o~[j k], by 
induction hypothesis.  Then finished(drfj, k)) is the set of 
nonterminals that derive a[j k], and terminals(j,k) is the 
set of  terminals that derive a[j k], so the union of  these 
two sets is the set of all symbols that derive a[j k]. By 
lemma 3.1, rules~ is the set of dotted rules that derive 
a[i k] with many symbols before the dot. By lemma 3.2, 
close(finished(rules1)) is the set of  symbols that derive 
a[i k], so by lemma 3.3 rules2 is the set of  dotted rules 
that derive a[i k] with one symbol before the dot. The 
union of  rulesl and rules2 is the set of  dotted rules that 
derive a[i k], and this completes the proof.[]  

Suppose we are parsing the string gh with our exam- 
ple grammar. We have 

dr(O, 1) = {(k ---> g .),(d ----> k .  j")} 
dr(l,2) = {(f---> h .)} 
dr(0,2) = {(d----> k f  .),(c---> d .  ),(b ~ c .  ),(a----> b .  )} 

5 ThE PARSER WITH EMPTY SYMBOLS 

Throughout  this section, G is an arbitrary depth- 
bounded unification grammar, which may contain rules 
whose right side is empty.  If  there are empty rules in the 
grammar, the parser will require a table of  symbols that 
derive the empty string, which we also call the table of 
empty symbols. Let  E d be the set of  symbols that derive 

the empty string by a derivation of  depth d, and let E'd 
be the set of  symbols that derive the empty string by a 
derivation of  depth d or less. Since the grammar is 
depth-bounded, it suffices to construct  E d for succes- 
sive values of d until a D > 0 is found such that E D is the 
empty set. 

E I is the set of symbols that immediately derive the 
empty string; that is, the set of all A such that (A ---> e) 
is a rule. A ~ E d ÷ 1 i f f there  is a rule (A ---> B 1 ...Bn) such 
that for each i, B~ ~ e at depth di, and d is the maximum 
of the di's. In other words: A E Ed ÷ i iff there is a rule 
(A ~ aB/3) such that B E Ed and every  symbol of a and 
/3 is in E'  d. 

Let  DR be a set of dotted rules and S a set of  
symbols. Define 

AdvanceDot*(DR,S) = 
if DR = O then Q 
else (DR U AdvanceDot*(AdvanceDot(DR,S),S))  

I f  DR is the set of  ground instances of  a finite set of rules 
with variables, there is a finite bound on the length of 
the right sides of  rules in DR (because the right side of  
a ground instance of  a rule r has the same length as the 
right side of r). If L is'the length of  the right side of  the 
longest rule in DR,  then AdvanceDot*(DR,S)  is well 
defined because the recursion stops at depth L or 
before. Clearly AdvanceDot*(DR,S)  is the set of rules 
(A --> a/3.y) such that (A --> a. /33') E DR and every 
symbol of/3 is in S. 

Let  
S 1 = 

$2 = 
$ 3 =  

AdvanceDot*(RuleTable,  E'd) 
AdvanceDot(S l, E'd) 
AdvanceDot*(S2, E'o) 

S 4 = finished(S3) 
S~ is the set of  dotted rules (A ---> a./30) such that every 
symbol of a is in E'd. $2 is then the set of  dotted rules (A 
---> aB./3 0 such that B ~ Ed and every symbol of  a is in 
E'd. Therefore $3 is the set of dotted rules (A ---> aB/3./32) 
such that B E Ed and every symbol of  a and/3 is in E'd. 
Finally $4 is the set of symbols A such that for some 
rule (A ---> aBfl), B E E d and every symbol of  a and/3 is 
in E'  d. Then $4 is E d + i- In this way we can construct  Ed 
for increasing values of  d until the table of  empty 
symbols is complete.  

Here is an example grammar with symbols that 
derive the empty string: 

(a ---> e) 
(b ---> e) 
(c ---> ab) 
(k ---> cfcgc) 
Oc---> r) 
(g ~ s) 

The terminal symbols are r and s. In this grammar, E l = 
{a,b}, E2 = {c}, and E 3 = Q. 

Definitions Let  EmptyTable  be the set of  symbols 
that derive the empty string. If  S is a set of  dotted rules, 
let SkipEmpty(S) be AdvanceDot*(S,  EmptyTable) .  
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Note that SkipEmpty(S) is the set of dotted rules (A ---> 
a/3!./32) such that (A ~ a./31/32) E S and/3! ~ e. 

SkipEmpty(S) contains every dotted rule that can be 
formed from a rule in S by moving the dot past zero or 
more symbols that derive the empty string. In the 
example grammar EmptyTable = {a,b,c}, so 
SkipEmpty({( k --.-> . cfcgc)}) = {( k ---> . c fcgc) ,  (k ----> c .  
fcgc)} .  If  the dotted rules in S all derive a, then the 
dotted rules in SkipEmpty(S) also derive a. 

Let  Ca be the set of pairs [A B] such that A ~ B by a 
derivation tree in which the unique leaf labelled B is at 
depth d (note: this does not imply that the tree is of 
depth d). C~ is the set of pairs [A B] such that (A ---> aB/3) 
is a rule and every symbol of a and/3 derives the empty 
string. CI is easily computed using SkipEmpty. Also 
Ca + i = link(Ca,C0, so we can construct the chain table 
as before. 

In the example grammar there are no A and B such 
that A ~ B ,  but if we added the rule (k ~ cfc),  we would 
have k ~ f .  Note that k de r ive s fby  a tree of depth 3, but 
the path from the root of this tree to the leaf l abe ledf i s  
of length one. Therefore the pair [k]] is in C~. 

The parser of Section 4 relied on the distinction 
between dotted rules with one and many symbols before 
the dot. If  empty symbols are present, we need a 
slightly more complex distinction. We say that the 
string a derives /3 using one symbol if there is a 
derivation of/3 from a in which exactly one symbol of a 
derives a non-empty string. We say that a derives 13 
using many symbols if there is a derivation of/3 from a 
in which more than one symbol of a derives a nonempty 
string. If  a string a derives a string/3, then a derives/3 
using one symbol, or a derives/3 using many symbols, 
or both. In the example grammar, cfc  derives r using 
one symbol, and cfcg  derives rs using many symbols. 

We say that a dotted rule derives /3 using one (or 
many) symbols if the string before the dot derives /3 
using one (or many) symbols. Note that a dotted rule 
derives a[i k] using many symbols iff it can be written as 
(A --~ /3B/3'./30 w h e r e / 3 ~ a [ i j ] ,  B ~ a[j k], /3' ~ e, and 
i < j < k. This is true because whenever a dotted rule 
derives a string using many symbols, there must be a 
last symbol before the dot that derives a nonempty 
string. Let  B be that symbol; it is followed by a/3'  that 
derives the empty string, and preceded by a/3 that must 
contain at least one more symbol deriving a non-empty 
string. 

We prove lemmas analogous to 3.1, 3.2, and 3.3. 
L e m m a  4.1. For i < j  < k let S(id) be the set of dotted 

rules that derive a[ij] and S'( j ,k)  the set of symbols that 
derive a[j k ]. The set of dotted rules that derive a[i k] 

using many symbols is 

SkipEmptY(i <?< k AdvanceDot (S ( id ) , S ' ( j , k ) ) )  

Proof. Expanding definitions and using the argument 
of lemma 3.3 we have 

<~< k AdvanceDot({(B ---> /3./30 E SkipEmpty( i 
J 

DRI  / 3 ~ a [ i j ] } , { A I A  
a[j k]})) = 

SkipEmpty ({(B--->/3A./32) E DR I (3 j. i < j < k/X/3 
3 a[i j] A A ~ a[j k])}) 

This in turn is equal to 
{(B -~/3A/3'./3a) E DR [ (=1 j. i < j < k /k /3  ~ a [ i j ] /k  
A ~ a[j k]) A/3' ~ e} 

This is the set of rules that derive a[i k] using many 
symbols, as noted above. 

If we have a = rs, then the set of dotted rules that 
derive a[0 1] is 

{ff--~ r .) ,(k--~ c f  . cgc) , (k  ~ cfc  . gc)} 
The set of symbols that derive a[1 2] is {g,s}. The set of 
dotted rules that derive a[0 2] using many symbols is 

{(k ~ cfcg . c),(k--> c fcgc  .)} 
Lemma 4.1 tells us that to compute this set we must 
apply SkipEmpty to the output of AdvanceDot.  If  we 
failed to apply SkipEmpty we would omit the dotted 
rule (k ~ c fcgc  .) from our answer. 

L e m m a  4.2. Suppose length(a) > 1 and S is the set of 
dotted rules that derive a using many symbols. The set 
of symbols that derive a is close(finished(S)). 

Proof. By induction as in Lemma 3.2. 
Definitions.  Let RuleTable' be SkipEmpty({( A --> .a) 

( , 4 - ~ a )  EP})  = {(A--~ a . a ' ) E D R  [ a ~ e } . I f S i s a  
set of symbols let NewRules'(S) be SkipEmpty(Advance 
Dot(RuleTable' ,S)). 

RuleTable' is like the RuleTable defined in Section 4, 
except that we apply SkipEmpty. In the example gram- 
mar, this means adding the following dotted rules: 

(c ~ a . b) 
( c --> ab .) 
(k ~ c . f c g c )  

NewRules ' ({f})  is equal to {( k--*  c f  . cgc) , (k  ~ cfc  . 

gc)}. 
The following lemma tells us that NewRules '  will 

perform the task that NewRules performed in Section 4. 
L e m m a  4.3. If S is the set of symbols that derive a, 

the set of dotted rules that derive a using one symbol is 
NewRules ' (S) .  

Proof.  Expanding definitions gives 
SkipEmpty(AdvanceDot({(A--->/3./31) E DR I /3 ~ e } ,  
{ c I c  a})) 

SkipEmpty({(A --> tiC.&) E DR [ fl ~ e A C ~ a}) 

{ ( A ~  /3C/3'./33) E D R I  / 3 ~ e / X C ~ a / % / 3 ' ~ e }  
This is the set of dotted rules that derive a using one 
symbol, by definition. 

Let a be a string of length L. For  0 -< i < k - L, 
define 

dr(i,k) = 
if i + 1 = k 
then NewRules'(close({ a[i k]})) 
else (let rules 1 = 

226 Computational Linguistics, Volume 15, Number 4, December 1989 



Andrew Haas A Parsing Algorithm for Unification Grammar 

SkipEmptY(i < 7< k AdvanceDot(dr( i j ) ,  
[finished(drfj,k)) U terminals 
(j,k)])) 

(let rules 2 = NewRules ' (close (finished(rules0)) 
rules I tO rules2)) 

T h e o r e m  4.1. dr(i,k) is the set of  dotted rules that derive 
a[i k]. 

Proof.  By induction on the length of  a[i k] as in the 
proof  of  theorem 3.1, but with lemmas 4.1, 4.2, and 4.3 
replacing 3.1, 3.2, and 3.3, respect ively.D 

If  a = rs we find that 
dr(0,1) = {(f---~ r .),(k ~ c f  . cgc),(k ~ cfc . gc)} 
dr(l,2) = {(g--* s.)} 
dr(0,2) = {(k ~ c fcg .  c),(k ~ cfcgc .)} 

6 THE PARSER WITH ToP-DOWN FILTERING 

We have described two parsers that set dr(i,k) to the set 
of dotted rules that derive a[i k]. We now consider a 
parser that uses top-down filtering to eliminate some 
useless rules from dr(i, k). Let  us say that A follows/3 if 
the start symbol derives a string beginning with/3A. A 
dotted rule (A ~ X) follows/3 if A follows/3. The new 
algorithm will set dr(i,k) to the set of  dotted rules that 
derive a[i k] and follow a[0 i]. 

If A derives a string beginning with B, we say that A 
can begin with B. The new algorithm requires a predic- 
tion table, which contains all pairs [A B] such that A can 
begin with B. Let  P1 be the set of  pairs [A B] such that 
(A --~ /3B/3') is a rule and /3 ~ e• Let  P .  + 1 be Pn tO 
Link(P, ,  P1). 

L e m m a  5.1. The set of  pairs [A B] such that A can 
begin with B is the union of  Pn for all n -> 1. 

Proof.  By induction on the tree by which A derives a 
string beginning with B. Details are left to the reader . I ]  

Our problem is to construct  a finite representation for 
the prediction table• To see why this is difficult, con- 
sider a grammar containing the rule 

(f(a,s(X)) --~ f(a,X) g) 
Computing the P . s  gives us the following pairs of  terms: 

[f(a,s(X)) f(a,X)] 
[f(a,s(s(Y))) f(a,Y)] 
[f(a,s(s(s(Z)))) f(a,Z)] 

Thus if we try to build the prediction table in the 
obvious way, we get an infinite set of  pairs of terms. 

The key to this problem is to recognize that it is not 
necessary or even useful to predict every  possible 
feature of  the next  input. It makes sense to predict the 
presence of  traces,  but predicting the subcategorization 
frame of  a verb will cost more than it saves. To avoid 
predicting certain features,  we use a weak prediction 
table; that is, a set of  pairs of  symbols that properly 
contains the set of  all [A B] such that A ~ B. This weak 
prediction table is guaranteed to eliminate no more than 
what the ideal prediction table eliminates. It may leave 
some dotted rules in dr(i,k) that the ideal prediction 
table would remove,  but it may also cost less to use. 

Sato and Tamaki (1984) proposed to analyze the 
behavior of  Prolog programs, including parsers, by 
using something much like a weak prediction table. To 
guarantee that the table was finite, they restricted the 
depth of  terms occurring in the table• Shieber (1985b) 
offered a more selective approach--h is  program pre- 
dicts only those features chosen by the user as most 
useful for prediction. Pereira and Shieber (1987) discuss 
both approaches.  We will present a variation of  Shie- 
ber 's  ideas that depends on using a sorted language. 

To build a weak prediction table we begin with a set 
Q1 of terms such that Pi C ground(Q0.  Define 

LP(Q,Q')  = {(s [x z]) ] (3 y ,y ' .  [x y] E Q/~  [y' z] E 
Q' A s = m.g.u, of  y and y')} 

By Theorem 2.1, ground(LP(Q,Q')) = Link(ground(Q), 
ground(Q')). Let  Oi + 1 equal Oi LI LP (Oi,Ol). Then by 
lemma 2.3 and induction, 

i ~ l P i  c_ ground(i >_to l ai) 

That is, the union of  the Qi s represents a weak predic- 
tion table• Thus we have shown that if a weak prediction 
table is adequate,  we are free to choose any Q1 such that 
Pt c ground(Q 0. 

Suppose that QD subsumes LP(QD,QO. Then 
ground(LP(Qo,QO) c_ ground(QD) and ground(QD + 1) 
= ground(QD) tO ground(LP(QD, Q0) = ground(QD). 
Since ground(Q i ÷ 1) is a function of ground(Qi) for all i, 
it follows that ground(Qi) = ground(Qo) for all i -> D, so 
ground(QD) = (tO i >-- 1 ground(Qi))• That is, QD is a 
finite representation of  a weak prediction table. Our 
problem is to choose QI so that QD subsumes Qo + i for 
some D. 

Let  sl and s z be sorts. In section 2 we defined sl > s 2 
if there is a function letter of  sort s~ that has an 
argument of  sort s 2. Let  >*  be the transitive closure of  
> ;  a sort t is cyclic if t >* t ,  and a term is cyclic if its 
sort is cyclic• P~ is equal to 

{[A B] ] (A ~/3•B/3 ' )  E RuleTable'} 
so we can build a representation for P~. Let  us form Q~ 
from this representation by replacing all cyclic terms 
with new variables. More exactly,  we apply the follow- 
ing recursive transformation to each term t in the 
representation of PI: 

transformfflh.. . tn)) = 
if the sort of f is cyclic 
then new-variable0 
else f l t ransform (h)--.transform(tn)) 

whei-e new-variable is a function that returns a new 
variable each time it is called. 

Then P1 C_ ground(Ql), and Q1 contains no function 
letters of  cyclic sorts. For  example,  if the function letter 
s belongs to a cyclic sort, we will turn 

[ f(a,s(s(X))) f(a,X)] 
into 

[ f (a ,Z) f(a,  Y)] 
If Ql = {[f(a,Z)f(a, Y)]}, then Q2 = {[f(a,V)J(a,W)], so 
Qi subsumes Q2, and Q1 is already a finite representa- 
tion of  a weak prediction table. The following lemma 
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shows that in general, the Ql defined above allows us to 
build a finite representat ion of  a weak prediction table. 

Lemma 5.2. Let  Q~ be a set of  pairs of  terms that 
contains no function letters of  cyclic sorts, and let Qi be 
as defined above for all i > 1. Then for some D, QD 
subsumes LP(QD,Q O. 

Proof. Note  first that since unification never intro- 
duces a function letter that did not occur  in the input, Q~ 
contains no function letters of  cyclic sort for any i -> 1. 

Let  C be the number  of  noncyclic sorts in the 
language. Then the maximum depth of a term that 
contains no function letters of  cyclic sorts is C + 1. 
Consider a term as a labeled tree, and consider any path 
from the root  of  such a tree to one of  its leaves. The path 
can contain at most one variable or function letter of 
each noncyclic sort, plus one variable of  a cyclic sort. 
Then its length is at most C + 1. 

Consider the set S of  all pairs of  terms in L that 
contain no function letters of  cyclic sorts. Let  us 
partition this set into equivalence classes, counting two 
terms equivalent if they are alphabetic variants. We 
claim that the number of  equivalence classes is finite. 
Since there is a finite bound on the depths of  terms in S, 
and a finite bound on the number of arguments of  a 
function letter in S, there is a finite bound V on the 
number  of  variables in any term of  S. Let  v~...vK be a 
list of  variables containing V variables from each sort. 
Then there is a finite number  of  pairs in S that use only 
variables from v~...vK; let S' be the set of  all such pairs. 
Now each pair p in S is an alphabetic variant of  a pair in 
S' ,  for we can replace the variables of p one-for-one 
with variables from v~...vK. Therefore  the number of  
equivalence classes is no more than the number of  
elements in S'.  We call this number  E. We claim that QD 
subsumes LP(QD,QI) for  some D -< E. 

To see this, suppose that Qi does not subsume 
LP(Qi,Q1) for all i < E. If  Qi does not subsume 
LP(Qi,Q1), then Qi÷~ intersects more equivalence 
classes than Qi does. Since Q~ intersects at least one 
equivalence class, QE intersects all the equivalence 
classes. Therefore  QE subsumes LP(QE,QI),  which was 
to be p rove d . I ]  

This lemma tells us that we can build a weak predic- 
tion table for any grammar by throwing away all sub- 
terms of  cyclic sort. In the worst  case, such a table 
might be too weak to be useful, but our experience 
suggests that for natural grammars a prediction table of  
this kind is very effective in reducing the size of the 
dr(i,k) s. In the following discussion we will assume that 
we have a complete prediction table; at the end of this 
section we will once again consider weak prediction 
tables. 

Definitions. If  S is a set of  symbols, let first(S) = S U 
{ B I (q A E S. [A B] ~ PredTable }. If PredTable is 
indeed a complete prediction table, first(S) is the set of  
symbols B such that some symbol in S can begin with B. 
I f R  is a set of  dotted rules let next(R) = {B ] (3 A,/3,/3'. 
(A --> /3.B/3') E R }. 

Consider the following example grammar: 
starl ----> a 
a-~, rg 
c --> rh 
g - - ,  s 
h-~, s 

The terminal symbols are r and s. In this grammar 
first({start}) = {start, a,r}, and next({( a --> r .  g)}) = { g}.> 

The following lemma shows that we can find the set 
of  symbols that follow a[0 j'] if we have a prediction 
table and the sets of dotted rules that derive a[ij] for all 
i < j .  

Lemma 5.3. Let j satisfy 0 -< j -< length(a). Suppose 
that for 0 < i < j ,  S(/) is the set of  dotted rules that 
follow a[0 i] and derive a[ij] ( i f j  = 0 this is vacuous).  
Let  start be the start symbol of the grammar. Then the 
set of symbols that follow a[0 j'] is 

first(ifj  = 0 
{start} 

U next(S(i)))) (o<_i_<<j 
Proof. We show first that every  member  of  the given set 
follows a[0 Jl. If  j = 0, certainly every  member  of 
first({start}) follows a[0 0] = e. I f j  > 0, suppose that C 
follows a[0 i], (C --->/3B/3') is a rule, and/3 ~ a[i j] ;  then 
clearly B follows a[0 j]. 

Next  we show that if A follows a[0 Jl, A is in the 
given set. We prove by induction on d that if start ~ a[0 
j lAa '  by a tree t, and the leaf corresponding to the 
occula'ence of A after a[0 ./1 is at depth d in t, then A 
belongs to the given set. If d = 0, then A = start, and 
j = 0. We must prove that start E first({start}), which is 
obvious. 

If d > 0 there are two cases. Suppose first that the 
leaf n corresponding to the occurrence of  A after a[0 j] 
has younger brothers dominating a nonempty string 
(younger brothers of  n are children of  the same father 
occuJrring to the left of n). Then the father of  n is 
admitted by a rule of  the form (C-->/3A/3'). C is the label 
of  the father of  n, and /3 consists of  the labels of  the 
younger brothers of  n in order.  Then/3  ~ a[i j] ,  where 
0 --- i < j .  Removing the descendants of  n 's  father from 
t giw~s a tree t' whose yield is a[0 i]Ca'. Therefore  C 
follows a[0 i]. We have shown that (C --->/3A/3') is a rule, 
C follows a[0 i], and/3  ~ a[i j]. Then (C ---> /3.A/3') E 
S(i), A E next(S(/)), and A E (U 0-- < i < j next(S(/))). 

Finally suppose that the younger brothers of  n dom- 
inate the empty string in t. Then if C is the label of n's 
father, C can begin with A. Removing the descendants  
of' n 's father from t gives a tree t' whose yield begins 
with a[0 j]C. Then C belongs to the given set by 
induction hypothesis.  If  C E first(X) and C can begin 
with A, then A E first(X). Therefore  A belongs to the 
given set. This completes the proof. 

As an example, let a = rs. Then the set of  dotted 
rules that derive a[0 1] and follow a[0 0] is {(a ---> r .  g)}. 
The dotted rule (c ~ r .  h) derives a[0 I], but it does not 
follow a[0 0] because c is not an element of  first({start}). 
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We are finally ready to present the analogs oflemmas 
3.1, 3.2, and 3.3 for the parser with prediction. Where 
the earlier lemmas mentioned the set of symbols (or 
dotted rules) that derive a[ij], these lemmas mention 
the set of symbols (or dotted rules) that follow a[0 i] and 
derive a[i j]. 

Lemma 5.4. Let a be a nonempty string. Suppose 
that for i < j < k, S(ij) is the set of dotted rules that 
follow a[0 i] and derive a[ij], while S'(j,k) is the set of 
symbols that follow a[0 j] and derive a[j k]. The set of 
dotted rules that follow a[0 i] and derive a[i k] using 
many symbols is 

SkipEmptY(i<jU<k AdvanceDot(S(i j),S'(j,k))) 
Proof. Expanding definitions and using the same argu- 
ment as in lemma 3.1, we have 

SkipEmptY(i<jU<k AdvanceDot({(B ~/3./31) ~ DR [ B 
follows a[0 i] /k/3 ~ a[i j]} 
{n [ n follows a[0 j ] /k  n ~ a[j k]}) = 
SkipEmpty({(B ~/3A./3z) E DR [ B follows a[0 i] 
/k (3j.  i<j <k /k /3  ~ a[ i j ] /k  A follows a[0j] /k A 
a[j k])} ) 

I fB follows a[0 i], (B--->/3A/32) is a rule, and/3 ~ a[ij], 
then A follows a[0 j]. Therefore the statement that A 
follows a[0 j] is redundant and can be deleted, giving 

SkipEmpty({(B -->/3A./32) E DR I B follows a[0 i] 
/k (a j. i < j < k / k / 3  ~ a[i j ] /k  A ~ a[i k])}) 

This in turn is equal to 
{(B ~ flA/3'.fl3 ) E DR ] B follows a[O i] 
A (3 j. i< j<k  A/3 ~ a[ij] A A ~ a[j k]) A/3' ~ e }  

This is the set of dotted rules that follow a[0 i] and 
derive a[i k] using many symbols.D 

Lemma 5.5. Suppose length(a[ij]) > 1, S is the set of 
symbols that follow a[0 i], and S' is the set of dotted 
rules that follow a[0 i] and derive a[i j] using many 
symbols. Then S n close(finished(S')) is the set of 
symbols that follow a[0 i] and derive a[ij]. 

Proof. S' is a subset of the set of dotted rules that 
derive a[i j], so by lemma 4.2 and monotonicity, 
close(finished(S')) is a subset of the set of symbols that 
derive a[ij]. Therefore every symbol in S n close(fin- 
ished(S'))) derives a[ij] and follows a[0 i]. This proves 
inclusion in one direction. 

For the other direction, suppose A follows a[0 i] and 
derives a[ij]. Then by lemma 4.2 there is a dotted rule 
(B --->/3.) such that/3 ~ a[i j] using many symbols and 
A ~ B. Then B follows a[0 i], so B is in finished(S'), 
which means that A is in S n close(finished(S')).[-] 

Definition. If S is a set of symbols and R a set of 
dotted rules, filter(S,R) is the set of rules in R whose left 
sides are in S. In other words, filter(S,R) = {( A --->/3./3') 
C R I  A E S } .  

Lemma 5.6. Suppose S is the set of symbols that 
follow a[0 i], and S' is the set of symbols that follow 
a[0 i] and derive a[ij]. Then the set of rules that follow 
a[0 i] and derive a[i j] using one symbol is 
filter(S,NewRules'(S')). 

Proof: S' is a subset of the set of symbols that derive 
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a[i j]. By lemma 4.3 and monotonicity, we know that 
every dotted rule in NewRules'(S') derives a[ij] using 
one symbol. Therefore every dotted rule in filter(S,Ne- 
wRules(S')) follows a[0 i] and derives a[i j] using one 
symbol. This proves inclusion in one direction. 

For the other direction, consider any dotted rule that 
follows a[0 i] and derives a[ij] using one symbol; it can 
be written in the form (A --> flB/3'.fll), where 13 and/3' 
derive e, B derives a[i j], and A follows a[0 i]. Since 
/3 ~ e, B follows a[0 i]. Therefore B E S' and (A --> 
/3B/3'./31) is in NewRules'(S'). Since A follows a[0 i], (A 
-->/3B/3'./3 0 is in filter(S,NewRules'(S')). 

Let a be a string of length L. For O<-i<k < L, define 

pred(j) = 

first(ifj = 0 
then {Start} 
else (U 0~i<j next(dr(i,j)))) 

dr(iJ~) = 

f f i +  1 = k  
then filter(pred(i),NewRules'([pred(i) O close 

({a[i k]})])) 
else (let rules1 = 

SkipEmpty(U AdvanceDot(dr(i,j ), 
l<j <k [ finished(dr(j 2))  

U terminals(j~k) ]) 
(let zules 2 = filter(pred(i), 

NewRules'([pred(i) O 
close(finished( rules 1)) ])) 

rules I U rules~)) 

Note that the new version of dr(i,k) is exactly like the 
previous version except that we filter the output of close 
by intersecting it with pred(i), and we filter the output of 
NewRules' by applying the function filter. 

Theorem 5.6 For O<-k<-L, pred(k) is the set of sym- 
bols that follow a[0 i], and if 0-<i< k, dr(i,k) is the set of 
dotted rules that follow a[0 i] and derive a[i k]. 

Proof. This proof is similar to the proof of theorem 
3.4, but it is more involved because we must show that 
pred(k) has the desired values. Once more we argue by 
induction, but this time it is a double induction: an outer 
induction on k, and an inner induction on the length of 
strings that end at k. 

We show by induction on k that pred(k) has the 
desired value and for O<-i<k, dr(i,k) has the desired 
value. If k = 0, lemma 5.3 tells us that pred(O) is the set 
of symbols that follow a[0 0], and the second part of the 
induction hypothesis is vacuously true. 

If k > 0, we first show by induction on the length of 
a[i k] that dr(i,k) has the desired value for 0 <-i<k. This 
part of the proof is much like the proof of 3.4. If a[i k] 
has length 1, then pred(i) is the set of symbols that 
follow a[0 i] by the hypothesis of the induction on k. 
Then pred(i) n close({a[i k]}) is the set of symbols that 
follow a[0 i] and derive a[i k], so lemma 5.6 tells us that 

filter(pred (i),NewRules'(pred(i) n close({a[i k]}))) 
is the set of dotted rules that follow a[0 i] and derive 
a[i k]. 

If length(a[/k]) > 1, consider any j such that i<j<k. 
dr(i,j) and dr(j,k) have the desired values by induction 
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hypothesis. Then lemma 5.4 tells us that rules~ is the set 
of dotted rules that follow a[0 i] and derive a[i k] using 
many symbols, pred(i) is the set of symbols that follow 
a[0 i], so pred(i) fq close(finished(rulesO) i s the  set of 
symbols that follow a[0 i] and derive a[i k], by lemma 
5.5. Therefore rulesz is the set of dotted rules that follow 
a[0/] and derive a[i k] using one symbol, by lemma 5.6. 
The union of rules~ and rulesz is the set of dotted rules 
that follow a[0 i] and derive a[i k], and this completes 
the inner induction. 

To complete the outer induction, we use lemma 5.3 
to show that pred(k) is the set of symbols that follow a[0 
k]. This completes the proof.E3 

Corollary: Start E finished(dr(O,L)) iff a is a sentence 
of the language generated by G. 

Suppose we are parsing the string rs using the exam- 
ple grammar. Then we have 

pred(O) = {start,a,r} 
dr(0,1) = {(a---> r .  g)} 
pred(1) = {g,s} 
dr(l,2) = {(g ---> s .)} 
dr(0,2) = {(a ----> rg .),(start ---> a .)} 

We have proved the correctness of the parser when it 
uses an ideal prediction table. We must still consider 
what happens when the parser uses a weak prediction 
table. 

Theorem 5.7. If PredTable is a superset of the set of 
all [A B] such that A can begin with B, then start E 
finished(dr(O,L)) iff a is a sentence of the language 
generated by G. 

Proof. Note that the parser with filtering always 
builds a smaller dr(i,k) than the parser without filtering. 
Since all the operations of the parser are monotonic, 
this is an easy induction. So if the parser with filtering 
puts the start symbol in dr(O,L), the parser without 
filtering will do this also, implying that a is a sentence. 
Note also that the parser with filtering produces a larger 
dr(i,k) given a larger PredTable (again, this follows 
easily because all operations in the parser are monoton- 
ic). So if a is a sentence, the parser with the ideal 
prediction table includes Start in dr(O,L), and so does 
the parser with the weak prediction table.[] 

7 DISCUSSION AND IMPLEMENTATION NOTES 

7.1 RELATED WORK AND POSSIBLE EXTENSIONS 

The chief contribution of the present paper is to define 
a class of grammars on which bottom-up parsers always 
halt, and to give a semi-decision procedure for this 
class. This in turn makes it possible to prove a com- 
pleteness theorem, which is impossible if one considers 
arbitrary unification grammars. One can obtain similar 
results for the class of grammars whose context-free 
backbone is finitely ambiguous--what Pereira and War- 
ren (1983) called the offline-parsable grammars. How- 
ever, as Shieber (1985b) observed, this class of gram- 
mars excludes many linguistically interesting grammars 
that do not use atomic category symbols. 

230 

The present parser (as opposed to the table-building 
algorithm) is much like those in the literature. Like 
near]ty all parsers using term unification, it is a special 
case of Earley deduction (Pereira and Warren 1985). 
The tables are simply collections of theorems proved in 
advance and added to the program component of Earley 
deduction. Earley deduction is a framework for parsing 
rather than a parser. Among implemented parsers, BUP 
(Matsumota et al. 1983) is particularly close to the 
present work. It is a bottom-up left-corner parser using 
term unification. It is written in Prolog and uses back- 
tracking, but by recording its results as clauses in the 
Prolog database it avoids most backtracking, so that it is 
close to a chart parser. It also includes top-down 
filtering, although it uses only category symbols in 
filtering. The paper includes suggestions for handling 
rules with empty right sides as well. The main difference 
from the present work is that the authors do not 
describe the class of grammars on which their algorithm 
halts., and as a result they cannot prove completeness. 

Tlae grammar formalism presented here is much 
simpler than many formalisms called "unification gram- 
mars." There are no meta-rules, no default values of 
features, no general agreement principles (Gazdar et al. 
1986). We have found this formalism adequate to de- 
scribe a substantial part of English syntax--at least, 
substantial by present-day standards. Our grammar 
currently contains about 300 syntactic rules, not count- 
ing simple rules that introduce single terminals. It 
includes a thorough treatment of verb subcategorization 
and less thorough treatments of noun and adjective 
subcategorization. It covers major construction types: 
raising, control, passive, subject-aux inversion, imper- 
atives, wh-movement (both questions and relative 
clauses), determiners, and comparatives. It assigns 
parses to 85% of a corpus of 791 sentences. See Ayuso 
et al. 1988 for a description of the grammar. 

It is clear that some generalizations are being missed. 
For example, to handle passive we enumerate by hand 
tile rules that other formalisms would derive by meta- 
rule. We are certainly missing a generalization here, but 
we have found this crude approach quite practical---our 
coverage is wide and our grammar is not hard to 
maintain. Nevertheless, we would like to add meta- 
rule,~ and probably some general feature-passing princi- 
ples. We hope to treat them as abbreviation mecha- 
n i sms-we  would define the semantics of a general 
feature-passing principal by showing how a grammar 
using that principal can be translated into a grammar 
written in our original formalism. We also hope to add 
feature disjunction to our grammar (see Kasper 1987; 
Kasper and Rounds 1986). 

Though our formalism is limited, it has one property 
that is theoretically interesting: a sharp separation be- 
tween the details of unification and the parsing mecha- 
nism. We proved in Section 3 that unification allows us 
to compute certain functions and predicates on sets of 
grammatical expressions--symbolic products, unions, 
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and so forth. In Section 4 and 5 we assumed that these 
functions were available as primitives and used them to 
build bottom-up parsers. Nothing in Sections 4 and 5 
depends on the details of  unification. If  we replace 
standard unification with another  mechanism, we have 
only to re-prove the results of  Section 3 and the cor- 
rectness theorems of  Sections 4 and 5 follow at once. To 
see that this is not a trivial result, notice that we failed 
to maintain this separation in Section 6. To show that 
one can build a complete prediction table, we had to 
consider the details of  unification: we mentioned terms 
like "alphabetic  var iant"  and "subsumpt ion ."  We have 
presented a theory of  bottom-up parsing that is general 
in the sense that it does not rely on a particular 
pattern-matching mechanism-- i t  applies to any mecha- 
nism for which the results of  Section 3 hold. We claim 
that these results should hold for any reasonable 
pattern-matching mechanism; the reader must judge this 
claim by his or her own intuition. 

One drawback of this work is that depth-bounded- 
ness is undecidable. To prove this, show that any 
Turing machine can be represented as a unification 
grammar, and then show that an algorithm that decides 
depth-boundedness can also solve the halting problem. 
This result raises the question: is there a subset of  the 
depth-bounded grammars that is strong enough to de- 
scribe natural language, and for which membership is 
decidable? 

Recall the context-free backbone of  a grammar, 
described in the Introduction. One can form a context- 
free backbone for a unification grammar by keeping 
only the topmost  function letters in each rule. There is 
an algorithm to decide whether  this backbone is depth- 
bounded, and if the backbone is depth-bounded, so is 
the original grammar (because the backbone admits 
every  derivation tree that the original grammar admits). 
Unfortunately this class of  grammars is too res t r ic ted--  
it excludes rules like (major-category(n,2) ~ major- 
category(n,1)), which may well be needed in grammars 
for natural language. 

Erasing everything but the top function letter of  each 
term is drastic. Instead, let us form a " b a c k b o n e "  by 
applying the transformation of Section 6, which elimi- 
nates cyclic function letters. We can call the resulting 
grammar the acyclic backbone of  the original grammar. 
We showed in Section 6 that if we eliminate cyclic 
function letters, then the relation of alphabetic variance 
will partition the set of  all terms into a finite number of  
equivalence classes. We used this fact to prove that the 
algorithm for building a weak prediction table always 
halts. By similar methods we can construct  an algorithm 
that decides depth-boundedness for grammars without 
cyclic function letters. Then the grammars whose acy- 
clic backbones are depth-bounded form a decidable 
subset of  the depth-bounded grammars. One can prove 
that this class of grammars generates the same lan- 
guages as the off-line parsable grammars. Unlike the 
off-line parsable grammars, they do not require atomic 

category symbols. A forthcoming paper will discuss 
these matters in detail. 

7.2 THE IMPLEMENTATION 

Our implementation is a Common Lisp program on a 
Symbolics Lisp Machine. The algorithm as stated is 
recursive, but the implementation is a chart parser. It 
builds a matrix called " ru l e s "  and sets rules[/k] equal to 
dr(i,k), considering pairs [i k] in the same order  used for 
the induction argument in the proof. It also builds a 
matrix " symbo l s "  and sets symbols[ /k]  to the set of  
symbols that derive a[i k], and a matrix pred with 
pred[i] equal to the set of  symbols that follow a[0 i]. 
Currently the standard parser does not incorporate 
prediction. We have found that prediction reduces the 
size of the chart dramatically, but the cost of  prediction 
is so great that a purely bottom-up parser runs faster. 

Table 1. Chart Sizes and Total Time for Parsing with Prediction 
No 

Sentence Prediction Categories Traces 
1 524 517 248 150 
2 878 867 686 667 
3 799 713 500 387 
4 936 921 558 467 
5 283 279 145 90 
6 997 969 524 368 
7 531 525 323 247 
8 982 950 640 507 
9 1519 1503 1007 711 
10 930 920 495 400 
11 2034 2014 1128 771 
total t ime 917 2201 1538 1085 
(in seconds) 

Traces and 
Verb Form 

Table 1 presents the results of  predicting different 
features on a sample of 11 sentences. It describes 
parsing without prediction, with prediction of  categories 
only, with traces and categories, and finally with cate- 
gories, traces, and verb form information. In each case 
it lists the total number  of  entries in the matrices 
" ru le s"  and " sy m b o l s "  for every  sentence, and the 
total time to parse the 11 sentences. The reader should 
compare this table with the one in Shieber 1985. Shieber 
tried predicting subcategorization information along 
with categories. In our grammar there is a separate VP 
rule for each subcategorization frame, and this rule 
gives the categories of  all arguments of  the verb. 
Shieber eliminated these multiple VP rules by making 
the list of arguments a feature of  the verb. Therefore  by 
predicting categories alone, we get the same informa- 
tion that Shieber got by predicting subcategorization 
information. The table shows that for our grammar, 
prediction reduces the chart size drastically, but it is so 
costly that a straight bottom-up parser runs faster than 
any version of  prediction. 

The parsing tables for the present grammar are quite 
tractable. The largest table is the table of  chain rules, 
which has 2,270 entries and takes under ten minutes to 
build. A prediction table that predicts categories, 
traces, and verb forms has 1,510 entries and takes six 
minutes to build. 
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In the special case of a context-free grammar, our 
parsing program is essentially the same as the parser of 
Graham et al. (1980), in particular algorithm 2.2 of that 
paper. The only significant differences are that their 
chart includes entries for empty substrings, which we 
omit, and that we record symbols while they record 
only dotted rules. When running on a context-free 
grammar, the parser takes time proportional to the cube 
of the length n of the input string--because the number 
of symbolic products is proportional to  n 3, and the time 
for a symbolic product is independent of the input 
string. This result also holds for a grammar without 
cyclic function letters. If there are cyclic function 
letters, the size of the nonterminals built by the parser 
depends on the length of the input, so the time for 
unifications and symbolic products is no longer inde- 
pendent of the input, and the parsing time is not 
bounded by n 3. 

To save storage we use a simplified version of 
structure-sharing (Boyer and Moore 1972). Following 
the suggestion of Pereira and Warren (1983), we use 
structure-sharing only for dotted rules with symbols 
remaining after the dot. When the dot reaches the end of 
the right side of a rule, we translate the left side of the 
rule back to standard representation. This method guar- 
antees that in each resolution only one resolvent is in 
structure-sharing representation. Instead of general res- 
olution we are doing what the theorem-proving litera- 
ture calls input resolution. This allows us to represent a 
substitution as a simple association list, using the func- 
tion a s s o c  to retrieve the substitutions that have been 
made for variables. 

Pereira (1985) describes a more sophisticated version 
of structure-sharing. This method has two advantages 
over our version. First, the time to retrieve a substitu- 
tion is O(log  n), where n is the length of the derivation, 
compared to O(n) for Boyer-Moore. Second, only sym- 
bols that derive the empty string need to be translated 
from structure-sharing form to the standard representa- 
tion, and this saves storage. The first advantage may not 
be important, for two reasons. By using a single assoc  
to retrieve a substitution, we reduce the constant factor 
in O(n). Also by eliminating the structure sharing each 
time the dot reaches the end of a rule, we keep our 
derivations short--n is no more than the length of the 
right side of the longest rule. The second advantage of 
Pereira's method is more important, since our current 
parser uses a lot of storage. 

The other optimizations are fairly obvious. As usual 
we skip the occur check in our unifications (as long as 
there are no cyclic sorts, this is guaranteed to be safe). 
In each symbolic product, one set is indexed by the 
topmost function letter of the term to be matched, 
which saves a good number of failed unifications. These 
simple techniques gave us adequate performance for 
some time, but as the grammar grew the parser slowed 
down, and we decided to rewrite the program in C. This 

version, running on a Sun 4, is much more efficient. It 
parses a corpus of 790 sentences, with an average length 
of nine words, in half an hour. 
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