
GRAMMATICAL CATEGORY DISAMBIGUATION BY

STATISTICAL OPTIMIZATION

Steven J. DeRose

Brown University and the Summer Institute of Linguistics, 7500 W. Camp Wisdom Road,
Dallas, TX 75236

Several algorithms have been developed in the past that attempt to resolve categorial ambiguities in
natural language text without recourse to syntactic or semantic level information. An innovative method
(called "CLAWS") was recently developed by those working with the Lancaster -Oslo/Bergen Corpus
of British English. This algorithm uses a systematic calculation based upon the probabilities of
co-occurrence of particular tags. Its accuracy is high, but it is very slow, and it has been manually
augmented in a number of ways. The effects upon accuracy of this manual augmentation are not
individually known.

The current paper presents an algorithm for disambiguation that is similar to CLAWS but that
operates in linear rather than in exponential time and space, and which minimizes the unsystematic
augments. Tests of the algorithm using the million words of the Brown Standard Corpus of English are
reported; the overall accuracy is 96%. This algorithm can provide a fast and accurate front end to any
parsing or natural language processing system for English.

Every computer system that accepts natural language
input must, if it is to derive adequate representations,
decide upon the grammatical category of each input
word. In English and many other languages, tokens are
frequently ambiguous. They may represent lexical items
of different categories, depending upon their syntactic
and semantic context.

Several algorithms have been developed that exam-
ine a prose text and decide upon one of the several
possible categories for a given word. Our focus will be
on algorithms which specifically address this task of
disambiguation, and particularly on a new algorithm
called VOLSUNGA, which avoids syntactic-level anal-
ysis, yields about 96% accuracy, and runs in far less
time and space than previous attempts. The most recent
previous algorithm runs in NP (Non-Polynomial) time,
while VOLSUNGA runs in linear time. This is provably
optimal; no improvements in the order of its execution
time and space are possible. VOLSUNGA is also robust
in cases of ungrammaticality.

Improvements to this accuracy may be made, per-
haps the most potentially significant being to include
some higher-level information. With such additions, the
accuracy of statistically-based algorithms will approach

100%; and the few remaining cases may be largely those
with which humans also find difficulty.

In subsequent sections we examine several disambig-
uation algorithms. Their techniques, accuracies, and
efficiencies are analyzed. After presenting the research
carried out to date, a discussion of VOLSUNGA's
application to the Brown Corpus will follow. The Brown
Corpus, described in Kucera and Francis (1967), is a
collection of 500 carefully distributed samples of Eng-
lish text, totalling just over one million words. It has
been used as a standard sample in many studies of
English. Generous advice, encouragement, and assis-
tance from Henry Kucera and W. Nelson Francis in this
research is gratefully acknowledged.

1 PREWOUS DISAMBIGUATION ALGORITHMS

The problem of lexical category ambiguity has been little
examined in the literature of computational linguistics
and artificial intelligence, though it pervades English to
an astonishing degree. About 11.5% of types (vocabu-
lary), and over 40% of tokens (running words) in English
prose are categorically ambiguous (as measured via the
Brown Corpus). The vocabulary breaks down as shown
in Table 1 (derived from Francis and Kucera (1982)).

Copyright 1988 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/88/010031-39503.00

Computational Linguistics, Volume 14, Number 1, Winter 1988 31

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

Number of words by degree of ambiguity:
Unambiguous (1 tag) 35340
Ambiguous (2-7 tags) 4100
2 tags 3760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1 ("still")

Table 1: Degrees of Ambiguity

A search of the relevant literature has revealed only
three previous efforts directed specifically to this prob-
lem. The first published effort is that of Klein and
Simmons (1963), a simple system using suffix lists and
limited frame rules. The second approach to lexical
category disambiguation is TAGGIT (Greene and Rubin
(1971)), a system of several thousand context-frame
rules. This algorithm was used to assign initial tags to
the Brown Corpus. Third is the CLAWS system devel-
oped to tag the Lancaster -Oslo/Bergen (or LOB) Cor-
pus. This is a corpus of British written English, parallel
to the Brown Corpus. Parsing systems always encoun-
ter the problem of category ambiguity; but usually the
focus of such systems is at other levels, making their
responses less relevant for our purposes here.

1.1 KLEIN AND SIMMONS

Klein and Simmons (1963) describe a method directed
primarily towards the task of initial categorial tagging
rather than disambiguation. Its primary goal is avoiding
"the labor of constructing a very large dictionary"
(p. 335); a consideration of greater import then than
n o w .

The Klein and Simmons algorithm uses a palette of
30 categories, and claims an accuracy of 90% in tagging.
The algorithm first seeks each word in dictionaries of
about 400 function words, and of about 1500 words
which "are exceptions to the computational rules used"
(p. 339). The program then checks for suffixes and
special characters as clues.

Last of all, context frame tests are applied. These
work on scopes bounded by unambiguous words, as do
later algorithms. However, Klein and Simmons impose
an explicit limit of three ambiguous words in a row. For
each such span of ambiguous words, the pair of unam-
biguous categories bounding it is mapped into a list. The
list includes all known sequences of tags occurring
between the particular bounding tags; all such se-
quences of the correct length become candidates. The
program then matches the candidate sequences against
the ambiguities remaining from earlier steps of the
algorithm. When only one sequence is possible, disam-
biguation is successful.

The samples used for calibration and testing were
limited. First, Klein and Simmons (1963) performed
"hand analysis of a sample [size unspecified] of Golden

Book Encyclopedia text" (p. 342). Later, "[w]hen it
was run on several pages from that encyclopedia, it
correctly and unambiguously tagged slightly over 90%
of the words" (p. 344). Further tests were run on small
samples from the Encyclopedia Americana and from
Scientific American.

Klein and Simmons (1963) assert that "[o]riginal
fears that sequences of four or more unidentified parts
of speech would occur with great frequency were not
substantiated in fact" (p. 3). This felicity, however, is
an artifact. First, the relatively small set of categories
reduces ambiguity. Second, a larger sample would
reveal both (a) low-frequency ambiguities and (b) many
long spans, as discussed below.

1.2 GREENE AND RUBIN (TAGGIT)

Greene and Rubin (1971) developed TAGGIT for tag-
ging the Brown Corpus. The palette of 86 tags that
TAGGIT uses has, with some modifications, also been
used in both CLAWS and VOLSUNGA. The rationale
underlying the choice of tags is described on pages 3-21
of Greene and Rubin (1971). Francis and Kucera (1982)
report that this algorithm correctly tagged approxi-
mately 77% of the million words in the Brown Corpus
(the tagging was then completed by human post-edi-
tors). Although this accuracy is substantially lower than
that reported by Klein and Simmons, it should be
remembered that Greene and Rubin were the first to
attempt so large and varied a sample.

TAGGIT divides the task of category assignment into
initial (potentially ambiguous) tagging, and disambigua-
tion. Tagging is carried out as follows: first, the program
consults an exception dictionary of about 3,000 words.
Among other items, this contains all known closed-class
words. It then handles various special cases, such as
words with initial "$" , contractions, special symbols,
and capitalized words. The word's ending is then
checked against a suffix list of about 450 strings. The
lists were derived from lexicostatistics of the Brown
Corpus. If TAGGIT has not assigned some tag(s) after
these several steps, "the word is tagged NN, VB, or JJ
[that is, as being three-ways ambiguous], in order t h a t
the disambiguation routine may have something to work
with" (Greene and Rubin (1971), p. 25).

After tagging, TAGGIT applies a set of 3300 context
frame rules. Each rule, when its context is satisfied, has
the effect of deleting one or more candidates from the
list of possible tags for one word. If the number of
candidates is reduced to one, disambiguation is consid-
ered successful subject to human post-editing. Each
rule can include a scope of up to two unambiguous
words on each side of the ambiguous word to which the
rule is being applied. This constraint was determined as
follows:

In order to create the original inventory of Context
Frame Tests, a 900-sentence subset of the Brown
University Corpus was t agged . . , and its ambiguities
were resolved manually; then a program was run

32 Computational Linguistics, Volume 14, Number 1, Winter 1988

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

which produced and sorted all possible Context
Frame Rules which would have been necessary to
perform this disambiguation automatically. The rules
generated were able to handle up to three consecu-
tive ambiguous words preceded and followed by two
non-ambiguous words [a constraint similar to Klein
and Simmons']. However, upon examination of these
rules, it was found that a sequence of two or three
ambiguities rarely occurred more than once in a
given context. Consequently, a decision was made to
examine only one ambiguity at a time with up to two
unambiguously tagged words on either side. The first
rules created were the results of informed intuition
(Greene and Rubin (1972), p. 32).

1.3 CLAWS

Marshall (1983, p. 139) describes the LOB Corpus
tagging algorithm, later named CLAWS (Booth (1985)),
as "similar to those employed in the TAGGIT
program". The tag set used is very similar, but some-
what larger, at about 130 tags. The dictionary used is
derived from the tagged Brown Corpus, rather than
from the untagged. It contains 7000 rather than 3000
entries, and 700 rather than 450 suffixes. CLAWS treats
plural, possessive, and hyphenated words as special
cases for purposes of initial tagging.

The LOB researchers began by using TAGGIT on
parts of the LOB Corpus. They noticed that

While less than 25% of TAGGIT's context frame
rules are concerned with only the immediately pre-
ceding or succeeding w o r d . . , these rules were ap-
plied in about 80% of all attempts to apply rules. This
relative overuse of minimally specified contexts in-
dicated that exploitation of the relationship between
successive tags, coupled with a mechanism that
would be applied throughout a sequence of ambigu-
ous words, would produce a more accurate and
effective method of word disambiguation (Marshall
(1983), p. 141).
The main innovation of CLAWS is the use of a matrix

of eolloeational probabilities, indicating the relative like-
lihood of co-occurrence of all ordered pairs of tags. This
matrix can be mechanically derived from any pre-tagged
corpus. CLAWS used "[a] large proportion of the
Brown Corpus", 200,000 words (Marshall (1983), pp.
141, 150).

The ambiguities contained within a span of ambigu-
ous words define a precise number of complete sets of
mappings from words to individual tags. Each such
assignment of tags is called a path. Each path is com-
posed of a number of tag collocations, and each such
collocation has a probability which may be obtained
from the collocation matrix. One may thus approximate
each path's probability by the product of the probabil-
ities of all its collocations. Each path corresponds to a
unique assignment of tags to all words within a span.
The paths constitute a span network, and the path of

maximal probability may be taken to contain the "bes t"
tags.

Marshall (1983) states that CLAWS "calculates the
most probable sequence of tags, and in the majority of
cases the correct tag for each individual word corre-
sponds to the associated tag in the most probable
sequence of tags" (p. 142). But a more detailed exami-
nation of the Pascal code for CLAWS revealed that
CLAWS has a more complex definition of "most prob-
able sequence" than one might expect. A probability
called "SUMSUCCPROBS" is predicated of each
word. SUMSUCCPROBS is calculated by looping
through all tags for the words immediately preceding,
at, and following a word; for each tag triple, an incre-
ment is added, defined by:

DownGrade(GetSucc(Tag2, Tag3), TagMark) *
Get3SeqFactor(Tagl, Tag2, Tag3)

GetSucc returns the collocational probability of a tag
pair; Get3SeqFactor returns either 1, or a special value
from the tag-triple list described below. DownGrade
modifies the value of GetSucc in accordance with RTPs
as described below.

The CLAWS documentation describes SUMSUCC-
PROBS as "the total value of all relationships between
the tags associated with this word and the tags associ-
ated with the next w o r d . . . [found by] simulating all
accesses to SUCCESSORS and ORDER2VALS which
will be made " The probability of each node of the
span network (or rather, tree) is then calculated in the
following way as a tree representing all paths through
which the span network is built:

PROB = DownGrade(GetSucc(lasttag,
currenttag), TagMark) *

Get3SeqFactor(. . .))
PROB = PROB/(predecessor's
SUMSUCCPROBS) * (predecessor's PROB)

It appears that the goal is to make each tag's proba-
bility be the summed probability of all paths passing
through it. At the final word of a span, pointers are
followed back up the chosen path, and tags are chosen
en route.

We will see below that a simpler definition of optimal
path is possible; nevertheless, there are several advan-
tages of this general approach over previous ones.

First, spans of unlimited length can be handled
(subject to machine resources). Although earlier re-
searchers (Klein and Simmons, Greene and Rubin) have
suggested that spans of length over 5 are rare enough to
be of little concern, this is not the case. The number of
spans of a given length is a function of that length and
the corpus size; so long spans may be obtained merely
by examining more text. The total numbers of spans in
the Brown Corpus, for each length from 3 to 19, are:
397111, 143447, 60224, 26515, 11409, 5128, 2161, 903,
382, 161, 58, 29, 14, 6, 1, 0, I. Graphing the logarithms

Computational Linguistics, Volume 14, Number 1, Winter 1988 33

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

of these quantities versus the span length for each,
produces a near-perfect straight line.

Second, a precise mathematical definition is possible
for the fundamental idea of CLAWS. Whereas earlier
efforts were based primarily on ad hoc or subjectively
determined sets of rules and descriptions, and employed
substantial exception dictionaries, this algorithm re-
quires no human intervention for set-up; it is a system-
atic process.

Third, the algorithm is quantitative and analog,
rather than artificially discrete. The various tests and
frames employed by earlier algorithms enforced abso-
lute constraints on particular tags or collocations of
tags. Here relative probabilities are weighed, and a
series of very likely assignments can make possible a
particular, a priori unlikely assignment with which they
are associated.

In addition to collocational probabilities, CLAWS
also takes into account one other empirical quantity:

Tags associated with w o r d s . . , can be associated
with a marker @ or %; @ indicates that the tag is
infrequently the correct tag for the associated
word(s) (less than 1 in 10 occasions), % indicates that
it is highly improbable . . . (less than I in 100 oc-
casions) The word disambiguation program cur-
rently uses these markers top devalue transition
matrix values when retrieving a value from the ma-
trix, @ results in the value being halved, % in the
value being divided by eight (Marshall (1983), p. 149).
Thus, the independent probability of each possible

tag for a given word influences the choice of an optimal
path. Such probabilities will be referred to as Relative
Tag Probabilities, or RTPs.

Other features have been added to the basic algo-
rithm. For example, a good deal of suffix analysis is
used in initial tagging. Also, the program filters its
output, considering itself to have failed if the optimal tag
assignment for a span is not "more than 90% probable".
In such cases it reorders tags rather than actually
disambiguating. On long spans this criterion is effec-
tively more stringent than on short spans. A more
significant addition to the algorithm is that

a number of tag triples associated with a scaling
factor have been introduced which may either up-
grade or downgrade values in the tree computed from
the one-step matrix. For example, the triple [1] 'be'
[2] adverb [3] past-tense-verb has been assigned a
scaling factor which downgrades a sequence contain-
ing this triple compared with a competing sequence
of [1] 'be' [2] adverb [3]-past-participle/adjective, on
the basis that after a form of 'be', past participles and
adjectives are more likely than a past tense verb
(Marshall (1983), p. 146).
A similar move was used near conjunctions, for

which the words on either side, though separated, are
more closely correlated to each other than either is to
the conjunction itself (Marshall (1983), pp. 146-147).
For example, a verb/noun ambiguity conjoined to a verb

should probably be taken as a verb. Leech, Garside,
and Atwell (1983, p. 23) describe " IDIOMTAG", which
is applied after initial tag assignment and before disam-
biguation. It was

developed as a means of dealing with idiosyncratic
word sequences which would otherwise cause diffi-
culty for the automatic tagging for example, in
order that is tagged as a single conjunction The
Idiom Tagging P rogram. . . can look at any combi-
nation of words and tags, with or without intervening
words. It can delete tags, add tags, or change the
probability of tags. Although this program might
seem to be an ad hoc device, it is worth bearing in
mind that any fully automatic language analysis sys-
tem has to come to terms with problems of lexical
idiosyncrasy.
IDIOMTAG also accounts for the fact that the prob-

ability of a verb being a past participle, and not simply
past, is greater when the following word is " b y " , as
opposed to other prepositions. Certain cases of this sort
may be soluble by making the collocational matrix
distinguish classes of ambiguities---this question is be-
ing pursued. Approximately 1% of running text is
tagged by IDIOMTAG (letter, G. N. Leech to Henry
Kucera, June 7, 1985; letter, E. S. Atwell to Henry
Kucera, June 20, 1985).

Marshall notes the possibility of consulting a com-
plete three-dimensional matrix of collocational proba-
bilities. Such a matrix would map ordered triples of tags
into the relative probability of occurrence of each such
triple. Marshall points out that such a table would be too
large for its probable usefulness. The author has pro-
duced a table based upon more than 85% of the Brown
Corpus; it occupies about 2 megabytes (uncompressed).
Also, the mean number of examples per triple is very
low, thus decreasing accuracy.

CLAWS has been applied to the entire LOB Corpus
with an accuracy of "between 96% and 97%" (Booth
(1985), p. 29). Without the idiom list, the algorithm was
94% accurate on a sample of 15,000 words (Marshall
(1983)). Thus, the pre-processor tagging of 1% of all
tokens resulted in a 3% change in accuracy; those
particular assignments must therefore have had a sub-
stantial effect upon their context, resulting in changes of
two other words for every one explicitly tagged.

But CLAWS is time- and storage-inefficient in the
extreme, and in some cases a fallback algorithm is
employed to prevent running out of memory, as was
discovered by examining the Pascal program code. How
often the fallback is employed is not known, nor is it
known what effect its use has on overall accuracy.

Since CLAWS calculates the probability of every
path, it operates in time and space proportional to the
product of all the degrees of ambiguity of the words in
the span. Thus, the time is exponential (and hence
Non-Polynomial) in the span length. For the longest
span in the Brown Corpus, of length 18, the number of
paths examined would be 1,492,992.

34 Computational Linguistics, Volume 14, Number 1, Winter 1988

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

2 THE LINEAR-TIME ALGORITHM (VOLSUNGA)

The algorithm described here depends on a similar
empirically-derived transitional probability matrix to
that of CLAWS, and has a similar definition of "optimal
path". The tagset is larger than TAGGIT's, though
smaller than CLAWS', containing 97 tags. The ultimate
assignments of tags are much like those of CLAWS.
However, it embodies several substantive changes.
Those features that can be algorithmically defined have
been used to the fullest extent. Other add-ons have been
minimized. The major differences are outlined below.

First, the optimal path is defined to be the one whose
component collocations multiply out to the highest
probability. The more complex definition applied by
CLAWS, using the sum of all paths at each node of the
network, is not used.

Second, VOLSUNGA overcomes the Non-Polyno-
mial complexity of CLAWS. Because of this change, it
is never necessary to resort to a fallback algorithm, and
the program is far smaller. Furthermore, testing the
algorithm on extensive texts is not prohibitively costly.

Third, VOLSUNGA implements Relative Tag Prob-
abilities (RTPs) in a more quantitative manner, based
upon counts from the Brown Corpus. Where CLAWS
scales probabilities by 1/2 for RTP < 0.1 (i.e., where
less than 10% of the tokens for an ambiguous word are
in the category in question), and by 1/8 for p < 0.01,
VOLSUNGA uses the RTP value itself as a factor in the
equation which defines probability.

Fourth, VOLSUNGA uses no tag triples and no
idioms. Because of this, manually constructing special-
case lists is not necessary. These methods are useful in
certain cases, as the accuracy figures for CLAWS
show; but the goal here was to measure the accuracy of
a wholly algorithmic tagger on a standard corpus.
Interestingly, if the introduction of idiom tagging were
to make as much difference for VOLSUNGA as for
CLAWS, we would have an accuracy of 99%. This
would be an interesting extension. I believe that the
reasons for VOLSUNGA's 96% accuracy without id-
iom tagging are (a) the change in definition of "optimal
path", and (b) the increased precision of RTPs. The
difference in tag-set size may also be a factor; but most
of the difficult cases are major class differences, such
as noun versus verb, rather than the fine distinction
which the CLAWS tag-set adds, such as several
subtypes of proper noun. Ongoing research with VOL-
SUNGA may shed more light on the interaction of these
factors.

Last, the current version of VOLSUNGA is designed
for use with a complete dictionary (as is the case when
working with a known corpus). Thus, unknown words
are handled in a rudimentary fashion. This problem has
been repeatedly solved via affix analysis, as mentioned
above, and is not of substantial interest here.

Computational Linguistics, Volume 14, Number 1, Winter 1988

2.1 CHOICE OF THE OPTIMAL PATH

Since the number of paths over a span is an exponential
function of the span length, it may not be obvious how
one can guarantee finding the best path, without exam-
ining an exponential number of paths (namely all of
them). The insight making fast discovery of the optimal
path possible is the use of a Dynamic Programming
solution (Dano (1975), Dreyfus and Law (1977)).

The two key ideas of Dynamic Programming have
been characterized as "first, the recognition that a given
'whole problem' can be solved if the values of the best
solutions of certain subproblems can be de te rmined . . . ;
and secondly, the realization that if one starts at or near
the end of the 'whole problem,' the subproblems are so
simple as to have trivial solutions" (Dreyfus and Law
(1977), p. 5). Dynamic Programming is closely related to
the study of Graph Theory and of Network Optimiza-
tion, and can lead to rapid solutions for otherwise
intractable problems, given that those problems obey
certain structural constraints. In this case, the con-
straints are indeed obeyed, and a linear-time solution is
available.

Consider a span of length n = 5, with the words in the
path denoted by v, w, x, y, z. Assume that v and z are
the unambiguous bounding words, and that the other
three words are each three ways ambiguous. Subscripts
will index the various tags for each word: w~ will denote
the first tag in the set of possible tags for word w. Every
path must contain vl and zl, since v and z are unambig-
uous. Now consider the partial spans beginning at v,
and ending (respectively) at each of the four remaining
words. The partial span network ending at w contains
exactly three paths. One of these must be a portion of
the optimal path for the entire span. So we save all
three: one path to each tag under w. The probability of
each path is the value found in the collocation matrix
entry for its tag-pair, namely p(v,w i) for i ranging from
one to three.

Next, consider the three tags under word x. One of
these tags must lie on the optimal path. Assume it is x~.
Under this assumption, we have a complete span of
length 3, for x is unambiguous. Only one of the paths to
x I can be optimal. Therefore we can disambiguate v . . .
w . . . x~ under this assumption, namely, as MAX
(p(v,wi)* p(wi,Xl)) for all w i.

Now, of course, the assumption that x~ is on the
optimal path is unacceptable. However, the key to
VOLSUNGA is to notice that by making three such
independent assumptions, namely for x~, x 2, and x 3, we
exhaust all possible optimal paths. Only a path which
optimally leads to one of x's tags can be part of the
optimal path. Thus, when examining the partial span
network ending at word y, we need only consider three
possibly optimal paths, namely those leading to xt, x2,
and x 3, and how those three combine with the tags of y.

At most one of those three paths can lie along the
optimal path to each tag of y; so we have 32, or 9,

35

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

The AT
man NN VB
still NN VB RB
saw NN VBD
her PPO PP$

Table 2: Sample Ambiguities

comparisons. But only three paths will survive, namely,
the optimal path to each of the three tags under y. Each
of those three is then considered as a potential path to z,
and one is chosen.

This reduces the algorithm from exponential com-
plexity to linear. The number of paths retained at any
stage is the same as the degree of ambiguity at that
stage; and this value is bounded by a very small value
established by independent facts about the English
lexicon. No faster order of speed is po,;sible if each
word is to be considered at all.

2.2. PROCESSING A SAMPLE SPAN

As an example, we will consider the process by which
VOLSUNGA would tag "The man still saw her". We
will omit a few ambiguities, reducing the number of
paths to 24 for ease of exposition. The tags for each
word are shown in Table 2. The notation is fairly
mnemonic, but it is worth clarifying that PPO indicates
a n objective personal pronoun, and PP$ the possessive
thereof, while VBD is a past-tense verb.

Examples of the various collocational probabilities
are illustrated in Table 3 (VOLSUNGA does not actu-
ally consider any collocation truly impossible, so zeros
are raised to a minimal non-zero value when loaded).

The product of 1"2"3"2"2"I ambiguities gives 24
paths through this span. In this case, a simple process of
choosing the best successor for each word in order
would produce the correct tagging (AT NN RB VBD
PPO). But of course this is often not the case.

Using VOLSUNGA's method we would first stack
" the" , with certainty for the tag AT (we will denote this
by "p(the-AT) = CERTAIN)"). Next we stack "man" ,
and look up the collocational probabilities of all tag
pairs between the two words at the top of the stack. In
this case they will be p(AT, NN) = 186, and p(AT, VB)
= 1. We save the best (in this case only) path to each of
man-NN and man-VB. It is sufficient to save a pointer
to the tag of " t he " which ends each of these paths,

NN PPO PP$ RB VB VBD
AT 186 0 0 8 1 8 9
NN 40 1 3 40 9 66 186
PPO 7 3 16 164 109 16 313
PP$ 176 0 0 5 1 1 2
RB 5 3 16 71 118 152 128
VB 22 694 146 98 9 1 59
VBD 11 584 143 160 2 1 91

Table 3: Sample Collocational Probabilities

making backward-linked lists (which, in this case, con-
verge).

Now we stack "still". For each of its tags (NN, VB,
and RB), we choose either the NN or the VB tag of
"man" as better, p(still-NN) is the best of:

p(man-NN) *p(NN,NN) = 186 *40 = 744
p(man-VB) *p(VB,NN) = 1 *22 = 22

Thus, the best path to still-NN is AT NN NN.
Similarly, we find that the best path to still-RB is AT
NN RB, and the best path to still-VB is AT NN RB.
This shows the (realistically) overwhelming effect of an
article on disambiguating an immediately following
noun/verb ambiguity.

At this point, only the optimal path to each of the tags
for "still" is saved. We then go on to match each of
those paths with each of the tags for " saw" , discovering
the optimal paths to saw-NN and to saw-VB. The next
iteration reveals the optimal paths to her-PPO and
her-PP$, and the final one picks the optimal path to the
period, which this example treats as unambiguous. Now
we have the best path between two certain tags
(AT and .), and can merely pop the stack, following
pointers to optimal predecessors to disambiguate the
sequence. The period becomes the start of the next
span.

2.3 RELATIVE TAG PROBABILITIES

Initial testing of the algorithm used only transitional
probability information. RTPs had no effect upon
choosing an optimal path. For example, in deciding
whether to consider the word " t ime" to be a noun or a
verb, environments such as a preceding article or
proper noun, or a following verb or pronoun, were the
sole criteria. The fact that " t ime" is almost always a
noun (1901 instances in the Brown Corpus) rather than
a verb (16 instances) was not considered. Accuracy
averaged 92-93%, with a peak of 93.7%.

There are clear examples for which the use of RTPs
is important. One such case which arises in the Brown
Corpus is "so that". " S o " occurs 932 times as a
qualifier (QL), 479 times as a subordinating conjunction
(CS), and once as an interjection (UH). The standard
tagging for "so that" is "CS CS", but this is an
extremely low-frequency collocation, lower than the
alternative " U H CS" (which is mainly limited to fic-
tion). Barring strong contextual counter-evidence, " U H
CS" is the preferred assignment if RTP information is
not used. By weighing the RTPs for " s o " , however, the
" U H " assignment can be avoided.

The LOB Corpus would (via idiom tagging) use "CS
CS" in this case, employing a special "ditto tag" to
indicate that two separate orthographic words consti-
tute (at least for tagging purposes) a single syntactic
word. Another example would be "so as to" , tagged
'TO TO TO". Blackwell comments that "it was difficult
to know where to draw the line in defining what
constituted an idiom, and some such decisions seemed

36 Computational Linguistics, Volume 14, Number 1, Winter 1988

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

to have been influenced by semantic factors. Nonethe-
less, IDIOMTAG had played a significant part in in-
creasing the accuracy of the Tagging Suite [i.e.,
C L A W S] . . . " (Blackwell (1985), p. 7). It may be better
to treat this class of "idioms" as lexical items which
happen to contain blanks; but RTPs permit correct
tagging in some of these cases.

The main difficulty in using RTPs is determining how
heavily to weigh them relative to collocational informa-
tion. At first, VOLSUNGA multiplied raw relative
frequencies into the path probability calculations; but
the ratios were so high in some cases as to totally
swamp collocational data. Thus, normalization is re-
quired. The present solution is a simple one; all ratios
over a fixed limit are truncated to that limit. Implement-
ing RTPs increased accuracy by approximately 4%, to
the range 95-97%, with a peak of 97.5% on one small
sample. Thus, about half of the residual errors were
eliminated. It is likely that tuning the normalization
would improve this figure slightly more.

2.4 LEARNABILITY

VOLSUNGA was not designed with psychological re-
ality as a goal, though it has some plausible character-
istics. We will consider a few of these briefly. This
section should not be interpreted as more than sugges-
tive.

First, consider dictionary learning; the program cur-
rently assumes that a full dictionary is available. This
assumption is nearly true for mature language users, but
humans have little trouble even with novel lexical items,
and generally speak of "context" when asked to de-
scribe how they figure out such words. As Ryder and
Walker (1982) note, the use of structural analysis based
on contextual clues allows speakers to compute syntac-
tic structures even for a text such as Jabberwocky,
where lexical information is clearly insufficient. The
immediate syntactic context severely restricts the likely
choices for the grammatical category of each neologism.

VOLSUNGA can perform much the same task via a
minor modification, even if a suffix analysis fails. The
most obvious solution is simply to assign all tags to the
unknown word and find the optimal path through the
containing span as usual. Since the algorithm is fast, this
is not prohibitive. Better, one can assign only those tags
with a non-minimal probability of being adjacent to the
possible tags of neighboring words. Precisely calculat-
ing the mean number of tags remaining under this
approach is left as a question for further research, but
the number is certainly very low. About 3900 of the 9409
theoretically possible tag pairs occur in the Brown
Corpus. Also, all tags marking closed classes (about
two-thirds of all tags) may be eliminated from consid-
eration.

Also, since VOLSUNGA operates from left to right,
it can always decide upon an optimum partial result, and
can predict a set of probable successors. For these
reasons, it is largely robust against ungrammaticality.

Shannon (1951) performed experiments of a similar sort,
asking human subjects to predict the next character of a
partially presented sentence. The accuracy of their
predictions increased with the length of the sentence
fragment presented.

The fact that VOLSUNGA requires a great deal of
persistent memory for its dictionary, yet very little
temporary space for processing, is appropriate. By
contrast, the space requirements of CLAWS would
overtax the short-term memory of any language user.

Another advantage of VOLSUNGA is that it requires
little inherent linguistic knowledge. Probabilities may be
acquired simply through counting instances of colloca-
tion. The results will increase in accuracy as more input
text is seen. Previous algorithms, on the other hand,
have included extensive manually generated lists of
rules or exceptions.

An obvious difference between VOLSUNGA and
humans is that VOLSUNGA makes no use whatsoever
of semantic information. No account is taken of the high
probability that in a text about carpentry, " saw" is
more likely a noun than in other types of text. There
may also be genre and topic-dependent influences upon
the frequencies of various syntactic, and hence catego-
rial, structures. Before such factors can be incorporated
into VOLSUNGA, however, more complete dictionar-
ies, including semantic information of at least a rudi-
mentary kind, must be available.

3 ACCURACY ANALYSIS:

3.1 CALIBRATION

VOLSUNGA requires a tagged corpus upon which to
base its tables of probabilities. The calculation of tran-
sitional probabilities is described by Marshall (1983).
The entire Brown Corpus (modified by the expansion of
contracted forms) was analyzed in order to produce the
tables used in VOLSUNGA. A complete dictionary was
therefore available when running the program on that
same corpus.

Since the statistics comprising the dictionary and
probability matrix used by the program were derived
from the same corpus analyzed, the results may be
considered optimal. On the other hand, the Corpus is
comprehensive enough so that use of other input text is
unlikely to introduce statistically significant changes in
the program's performance. This is especially true
because many of the unknown words would be (a)
capitalized proper names, for which tag assignment is
trivial modulo a small percentage at sentence bound-
aries, or (b) regular formations from existing words,
which are readily identified by suffixes. Greene and
Rubin (1971) note that their suffix list "consists mainly
of Romance endings which are the source of continuing
additions to the language" (p. 41).

A natural relationship exists between the size of a
dictionary, and the percentage of words in an average
text which it accounts for. A complete table showing the

Computational Linguistics, Volume 14, Number 1, Winter 1988 37

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

#Types Freq Limit

1 69,971
2 36,411
3 28,852
4 26,149
5 23,237
11 9,489
135 683
236 383
408 229
693 145
1,120 96
1,791 62
2,854 39
4,584 22
8,478 I0
16,683 4
50,406 1

Table

#Tokens

69,971
106,382
135,234
161,383
184,620
255,503
508,350
558,024
608,933
660,149
710,137
760,838
812,448
862,357
918,046
965,382
1,014,232

%Tokens

6.9
10.5
13.3
15.9
18.2
25.2
50.1
55.0
60.0
65.1
70.0
75.0
80.1
85.0
90.5
95.2
100.0

4: Number of Tokens by Frequency

relationship appears in Kucera and Francis (1967) pp.
300-307. A few representative entries are shown in
Table 4. The " # T y p e s " column indicates how many
vocabulary items occur at least "Freq Limit" times in
the Corpus. The "#Tokens" column shows how many
tokens are accounted for by those types, and the
"%Tokens" column converts this number to a percent-
age. (See also pp. 358-362 in the same volume for
several related graphs.)

3.2 OVERALL ACCURACY

Table 5 lists the accuracy for each genre from the
Brown Corpus. The total token count differs from Table
4 due to inclusion of non-lexical tokens, such as punc-
tuation. The figure shown deducts from the error count

Genre

A: Press Reportage
B: Press Editorial
C: Press Reviews
D: Religion
E: Skills/Hobbies
F: Popular Lore
G: Belles Lettres
H: Miscellaneous
J: Learned
K: General Fiction
L: Mystery/Detective
M: Science Fiction
N: Adventure/Western
P: Romance/Love Story
R: Humor
Informative Prose Total
Imaginative Prose Total
Overall Total

Size

99,165
60716
39.832
38.631
81.659

108.617
169.789
69.508

179.927
67.083
56.090
13.956
67.673
68,337
20,990

847,844
294,129

1,141,973

Table 5: VOLSUNGA Tagging Accuracy

% Accuracy

96.36
96.09
96.12
96.01
95.34
95.99
96.35
96.66
96.38
95.72
95.47
95.40
95.58
95.54
95.55
96.20
95.57
96.04

those particular instances in which the Corpus tag
indicates by an affix that the word is part of a headline,
title, etc. Since the syntax of such structures is often
deviant, such errors are less significant. The difference
this makes ranges from 0.09% (Genre L), up to 0.64%
(Genre A), with an unweighted mean of 0.31%. Detailed
breakdowns of the particular errors made for each genre
exist in machine-readable form.

4 CONCLUSION

The high degree of lexical category ambiguity in lan-
guages such as English poses problems for parsing.
Specifically, until the categories of individual words
have been established, it is difficult to construct a
unique and accurate syntactic structure. Therefore, a
method for locally disambiguating lexical items has
been developed.

Early efforts to solve this problem relied upon large
libraries of manually chosen context frame rules. More
recently, however, work on the LOB Corpus of British
English led to a more systematic algorithm based upon
combinatorial statistics. This algorithm operates en-
tirely from left to right, and has no inherent limit upon
the number of consecutive ambiguities which may be
processed. Its authors report an accuracy of 96-97%.

However, CLAWS falls prey to other problems.
First, the probabilistic system has been augmented in
several ways, such as by pre-tagging of categorially
troublesome "idioms" (this feature contributes 3%
towards the total accuracy). Second, it was not based
upon the most complete statistics available. Third, and
perhaps most significant, it requires non-polynomially
large time and space.

The algorithm developed here, called VOLSUNGA,
addresses these problems. First, the various additions
to CLAWS (i.e., beyond the use of two-place probabil-
ities and RTPs) have been deleted. Second, the program
has been calibrated by reference to 100% instead of 20%
of the Brown Corpus, and has been applied to the entire
Corpus for testing. This is a particularly important test
because the Brown Corpus provides a long-established
standard against which accuracy can be measured.
Third, the algorithm has been completely redesigned so
that it establishes the optimal tag assignments in linear
time, as opposed to exponential.

Tests on the one million words of the Brown Corpus
show an overall accuracy of approximately 96%, de-
spite the non-use of auxiliary algorithms. Suggestions
have been given for several possible modifications
which might yield even higher accuracies.

The accuracy and speed of VOLSUNGA make it
suitable for use in pre-processing natural language input
to parsers and other language understanding systems.
Its systematicity makes it suitable also for work in
computational studies of language learning.

38 Computational Linguistics, Volume 14, Number 1, Winter 1988

Steven J. DeRose Grammatical Category Disambiguation by Statistical Optimization

REFERENCES

Beale, Andrew David. 1985 Grammatical Analysis by Computer of the
Lancaster-Oslo/Bergen (LOB) Corpus of British English Texts.
Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics. University of Chicago Press, Chicago,
Illinois: 293-298.

Blackwell, Sue A. 1985 A Survey of Computer-Based English Lan-
guage Research. ICAME News 9: 3-28. (Available from the
Norwegian Computing Centre for the Humanities, Harald Harfa-
gres gate 31, P.O. Box 53, N-5014 Bergen University, Norway.)

Booth, B. M. 1985 Revising CLAWS. ICAME News 9:29-35.
Dano, Sven. 1975 Nonlinear and Dynamic Programming. Springer-

Verlag, New York.
Dreyfus, Stuart E. and Law, Averill, M. 1977 The Art and Theory of

Dynamic Programming. Academic Press, New York.
Francis, W. Nelson and Kucera, Henry. 1979 Manual of Information

to Accompany A Standard Corpus of Present-Day Edited Ameri-
can English, for Use with Digital Computers ("Revised and
Amplified" edition). Department of Linguistics, Brown Univer-
sity, Providence, Rhode Island.

Francis, W. Nelson and Kucera, Henry. 1982 Frequency Analysis of
English Usage: Lexicon and Grammar. Houghton-Mifflin Com-
pany, Boston, Massachusetts.

Greene, Barbara B. and Rubin, Gerald M. 1971 Automated Grammat-
ical Tagging of English. Department of Linguistics, Brown Uni-
versity, Providence, Rhode Island.

Hirst, Graeme. 1983 Semantic Interpretation Against Ambiguity.
Ph.D. dissertation., Department of Computer Science, Brown
University, Providence, Rhode Island.

Klein, S. and Simmons, R. F. 1963 A Computational Approach to
Grammatical Coding of English Words. JACM 10: 334-47.

Kucera, Henry and Francis, W. Nelson. 1967 Computational Analy-
sis of Present-Day American English. Brown University Press,
Providence, Rhode Island.

Leech, Geoffrey; Garside, Roger; and Atwell, Erik. 1983 The Auto-
matic Grammatical Tagging of the LOB Corpus. ICAME News 7:
13-33.

Marshall, Ian. 1983 Choice of Grammatical Word-Class Without
Global Syntactic Analysis: Tagging Words in the LOB Corpus.
Computers in the Humanities 17: 139-150.

Ryder, Joan and Walker, Edward C. T. 1982 Two Mechanisms of
Lexical Ambiguity. In Mehler, Jacques; Walker, Edward C.T.;
and Garret, Merrill, Eds., Perspectives on Mental Representation.
Lawrence Erlbaum Associates, Hillsdale, New Jersey: 134-149.

Shannon, Claude E. 1951 Prediction and Entropy of Printed English.
Bell System Technical Journal 30: 50--64.

Computational Linguistics, Volume 14, Number 1, Winter 1988 39

