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implementation in a voice interactive system. A series of tests are described that show the power of 
the error correction methodology when stereotypic dialogue occurs. 
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1 INTRODUCTION 

In an environment where stereotypic discourse commonly 
occurs, the repetitiveness and predictability of the inter- 
actions may enable a machine to effectively anticipate 
some inputs. For a speech understanding system, such 
anticipation can greatly enhance the processor 's capabili- 
ties for error correction so that proper action will take 
place despite inaccuracies at the voice recognition phase. 
This paper is concerned with the automatic construction 
of a model of user behaviors in typical interactions and 
the use of such a model in the correction of misrecogni- 
tion errors. 

It is assumed that a user approaches the machine in a 
typical application with a problem to be solved. He or 
she inputs a series of sentences requesting action or 
information that will lead to a solution and then leaves 
when the task is complete. In the early examples of such 
an interaction, the machine will have little or no expecta- 

tion and will be dependent on its basic capabilities for 
understanding and carrying out commands. However,  if 
repetitive behaviors occur, the processor will effectively 
use them to anticipate inputs and correct errors. This will 
enable the user to speak less precisely and more quickly 
while still achieving reliable performance. 

Such repetitive behaviors may occur within a single 
dialogue where a user may utter sentences with similar 
meanings again and again (as in "Is there a plane on 
Thursday? What time does it leave? Is there one on 
Friday? When does it leave?").  They may also occur 
when a given dialogue resembles earlier ones. The 
expectation system will thus continuously monitor inputs, 
looking for repetition. If no repetitious behavior occurs, 
the natural language processor is allowed to proceed 
without intervention in handling a dialogue. However,  if 
repetitiveness is detected, the expectation system will 
supply the processor with anticipated behaviors which 
can be used to help remove uncertainties in sentence 
recognition when they occur. 

In the following sections, an overview of the history- 
based expectation system is given. Then a representation 
for user behaviors is described, followed by an algorithm 
for creating and tracking such models along with a meth- 
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od for using them in error correction. Finally, an imple- 
mentation of this methodology is described in the domain 
of speech recognition and results from a series of tests 
investigating the system's performance in various situ- 
ations are presented. 

2 A N  OVERVIEW OF THE HISTORY-BASED 

EXPECTATION SYSTEM 

The general goal of the history-based expectation system 
is to merge a series of dialogues, each of which consists 
of a sequence of sentences, into a more general dialogue 
that reflects the patterns that exist between and within 
the separate dialogues. Thus, the expectation system 
must: 

- save incoming dialogues, 
- f i n d  patterns between and within these dialogues so 

that they can be merged into a more general dialogue 
which becomes a formula for a more general situation, 
and 

- use this information to help predict what will be said by 
a user in a given situation. 

This ability to predict what might be said by a user can 
help error correct what is input to the natural language 
system through errorful means, such as a voice recogniz- 
er. We will call this ability expectation. Figure 1 shows 
an overview of the structure of the history-based expec- 
tation system. Expectation is acquired at two levels, the 
sentence level and the dialogue level. A special parser, 
called the expectation parser, is used to analyze at the 
sentence level. The expected dialogue is a data structure 
used to store the history-based expectation that is 
acquired using an expectation acquisition algorithm. This 
constitutes the dialogue level. 

As each sentence is entered into the system, such as 
through a speech recognition device, it is parsed and a 
meaning representation is produced and saved by an 
expectation acquisition algorithm in the expectation 
module (see 1 in Figure 1). The parse is also output for 
use in the next step in the system's processing of the 
sentence. This process builds a sequence of sentence 
meanings, which are then incorporated into an expected 
dialogue (see 2 in Figure 1). After an expected dialogue 
is partially or completely built, the expectation module 
attempts to determine where the user is in a given 
dialogue using information from the expected dialogue 
and the current parsed sentence (see 1 and 3 in Figure 
1). If it succeeds, it creates and transmits (see 4 in 
Figure 1) an expected sentence set to the expectation 
parser. The expectation parser will then use this infor- 
mation to improve its ability to recognize the next incom- 
ing sentence. 

m m  
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I M O D U L E  I 

#r I 
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W O R D  
S E Q U E N C E = >  I E X P E C T A T I O N  I 
N E T W O R K  I P A R S E R  I 

L . _ _ _  J 

Figure 1. Overview of the history-based 

expectation system. 
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3 A REPRESENTATION FOR USER BEHAVIORS 

Suppose a user inputs the following sequence: 

Sentence Label 

Display my mail summary for today. S 1 
Show me this letter. (with touch input) $2 
(the letter appears on the screen) 
Remove this letter. $3 
Display the letter from JA. $4 
(letter appears on the screen) 
Delete it. $5 
Log off. $6 

We denote the meaning of each sentence Si with the 
notation M(Si). The exact form of M(Si) need not be 
discussed at this point; it could be a conceptual depend- 
ence graph (Schank and Abelson 1977), a deep parse of 
Si, or some other representation. A user behavior is 
represented by a network, or directed graph, of such 
meanings. At the beginning of a task, the state of the 
interaction is represented by the start state of the graph. 
The immediate successors of this state are the typical 
opening meaning structures for this user, and succeeding 
states represent, historically, paths that have been 
followed by this user. 

It is important that if two sentences, Si and Sj, have 
approximately the same meaning this should be clear in 
the representations M(Si) and M(Sj). Our algorithm, 
described below, merges two meanings M(Si) and M(Sj) 
into a single node in the behavior representation if they 
- are sufficiently similar, and 
- appear in similar contexts. 
Thus, in the above example it would appear that M(S3) 
and M(S5) play similar roles and could be represented by 
one structure: after a letter is read, one might expect to 
see it deleted. 

Often, two commands will be similar except for the 
instantiation of certain constituents. This is the case in 
sentences $2 and $4, which request the display of, 
respectively, the message indicated by a touch and the 
letter from JA. Again, it is desired to represent such 
similar meanings in a behavior graph with a single node if 
they appear in similar environments. Thus, a routine will 
be needed to find a generalization of two such sentences 
that can represent their common meaning. In the exam- 
ple, the generalization of $2 and $4 might be "display 
(LETTER)" where "(LETTER)" is a noun group referring 
to a letter. 

In tracking a dialogue, we may arrive at a node in the 
behavior graph with meaning M1. This means a 
command is expected with meaning M2 that is either 
identical to, or a special case of, M1. If such an M2 is 
input at this time, we will say that M1 predicts M2 and 
define the predicate: 

Predicts(M1, M2) = true if and only if meaning M1 
is identical or similar to M2. 

It is quite possible, as with M(S2) and M(S4) above, that 
a common generalization can be found for two sentences 
that appear in similar contexts. Then one will be able to 
merge them into a single node in the behavior graph. 
Thus, it is necessary to have a predicate to check whether 
these conditions hold and a function to find the desired 
generalization. The following two routines do this: 

Mergeable(M1, M2) = true if and only if an M can 
be found such that Predicts(M, M1) and 
Predicts(M, M2). 

Merge(M1, M2) yields a meaning M that is identi- 
cal to, or a generalization of, M1 and M2. 

A user behavior is represented as a network of 
sentence meanings with transitions from one meaning to 
another that indicate traversals observed in actual 
dialogues and their frequencies. For example, the above 
six-sentence sequence could be represented as shown in 
Figure 2. Each node i has a meaning Mi and a count Ci, 
which gives the number of times in observed dialogues 
this node has been visited. The integer on each transition 
gives the number of times it has been traversed in 
observed dialogues. 

'( 

r 2 

START 

M(Sl) 

M(S2),M(S#) 

M(SS),M(S5) 

M(S6] 

Figure 2. Modelling the user 's behavior. 

More formally, a behavior graph B will consist of a set 
of nodes named 0, 1, 2, 3 . . . . .  bsize-1. Each node i will 
have its associated Mi and Ci and the first node will have 
a special meaning M0 = 'start ' .  The transitions will be 
represented as triples (i, j, k) where the traversal is f rom 
node i to node k and has been observed j times. The 
example six-command sequence would be represented by 
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the nodes 0 through 4 with Mi's and Ci's as shown and 
with the triples 

{(0,1,1) (1,1,2) (2,2,3) (3,1,2) (3,1,4)}. 

Notice that the observed probability of crossing transi- 
tion (i, j, k) is j /Ci ,  a fact that is used by the expectation 

parser. 

4 THE EXPECTATION MODEL BUILDING AND 

TRACKING ALGORITHM 

It is desired to have an algorithm to monitor the 
discourse, collect the history of inputs, and invoke expec- 
tation when any kind of repetition occurs. Such an algo- 
rithm is described below. To do so, however, some 
additional notation is needed: 

current = an integer giving the state number in B corre- 
sponding to the most recently recognized sentence. 

bsize = the total number of states in B. 

E(i) = {k I J > 0 ( i , j , k )  is in B}, the set of successor 
states to state i, also called the expected sentence set 

of i. 

P(S, E(current))  = The result of the expectation parser 
with input S and E(current),  where S is the current 
input sentence which may have errors, and E(current) 
is a set of expected meanings in B, the successors of 
node current. The result or output of the parse of 
sentence S is its meaning M(S). 

The behavior graph B begins with one state numbered 
"0"  and with M0 = start, C(0) = 0. Thus, the size of 
the graph is bsize = 1 and the most recently recognized 
sentence is assumed to be this start state, current = 0. 

Suppose that the first sentence in the above sample 

dialogue is read: 

S1 = "Display my mail summary for today."  

Then the processor will begin with no expectation since 
E(0) is currently the empty set, and find 

M(S1) = P(S1, {}). 

This will result in the creation of a second state in B with 
the following statements: 

Create a NEW NODE: 

Put(current, 1, bsize) into B; 
(a transition to the new state is created) 

C(current) := C(current) + 1; (state O's count is incremented) 
current := bsize; (the new state is now the current state) 
M(current) := M(S); (the new state's meaning is recorded) 
C(current) := 0; (this state has not yet been visited and exited) 
bsize : = bsize + 1; (the size of graph B is incremented) 

Thus, the first two states shown in Figure 2 will exist 
with the single transition (0, 1, 1). Sentence $2 and $3 

result in similar processing, the addition of states 2 and 3, 
and the creation of transitions (1, 1, 2) and (2, 1, 3) as 
shown in Figure 3. 

0 

START 

M(SI) 

M(S2) 

M(SS) 

Figure 3. Constructing the behavior graph. 

The input sentence will yield a different action, 
however, if its meaning M(S) is determined to be merge- 
able with the meaning of an existing node Mk on the 
graph. While the details of mergeability have not yet 
been discussed, let us assume for the current example 
that M(S4) is mergeable with M(S2). Then a new mean- 
ing will appear in the graph that is a generalization of 
these two, Merge(M(S2),  M(S4)),  and a graph transition 
will be built to this new meaning. Transfer to the exist- 
ing meaning Mk would proceed as follows: 

C(current) := C(current) + 1; 
Mk := Merge(Mk, M(S));  
Put(current,  1, k) into B; 
current := k; 

Figure 4 shows the updated graph. At this point, current 
= 2, and the expectation set, E(2),  is non-empty for the 
first time. So, now we compute P(S5, {M3}), meaning 
that $5 is read with the expectation that its meaning will 
be " remove this one".  Given this expectation, the parser 
will prefer any transitions down paths that lead to some 
paraphrase of this sentence and, unless the system clearly 
recognizes that something else has been said, a sentence 
meaning " remove this one"  should be recognized. If it is, 
then current will be advanced to this expected node. In 
general, there may be several expected sentence mean- 
ings, and the processor will select the one most similar to 
the incoming utterance unless that sentence is clearly not 
any member  of the expected set. 
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'6,] 
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M(SI) 

M(S2).H(S4) 

M(SS) 

Figure 4. Merging M(S2) and M(S4). 

Thus, if a successor k to the current state predicts the 
incoming sentence, we track that successor. Tracking 
the expected meaning Mk would proceed as follows: 

C(current) := C(current) + 1; 
Mk := Merge(Mk, M(S));  
Increment r in (current, r, k); 
current := k; 

Figure 5 shows the result. 

I 

START 

I 

M(SI )  

M(S2).H(S4) 

M(S3) ,H(S5)  

Figure 5. Merging M(S3) and M(S5). 

The final sentence $6 in the dialogue will cause the 
creation of a termination state and complete the graph of 
Figure 2. The behavior graph creation and trackihg algo- 
rithm is thus the collection of the above code segments: 

if no behavior graph B exists then 
begin 
bsize : = 1; 
M0 := start; 
CO := 0; 
end; 

else 
load B; 

current := 0; 
repeat 

begin 
read input sentence S; 
M(S) := P(S, "Mk I k in E(current)"); 
if Predicts(Mk, M(S)) where k in E(current) then 

begin 
C(current) := C(current) + 1; 
Mk := Merge(Mk, M(S)); 
Increment r in (current, r, k); 
current := k; 
end; 

else 
if Mergeable("Mk I k = 1 and/or 2 and/or ... 

bsize-l", M(S)) then 
begin 
C(current) := C(current) + 1; 
Mk := Merge("Mk I k = 1 and/or 2 

and/or ... bsize-l", M(S)); 
Put(current, 1, k) into B; 
current := k; 
end; 

else 
create a NEW NODE; 

end; 
until M(S) is a dialogue termination. 

This code creates a finite state model of the dialogue 
based on equivalence or similarity classes defined by the 
functions Predicts, Mergeable, and Merge. As will be 
discussed in the next section, similarity classes are based 
not only on the similarity of the sentences themselves, 
but also on the environment in which they occur. Thus, 

there is only one state for each such similarity class in the 
finite state model created. 

When the user enters the system again, this algorithm 
can be reinvoked using the existing B graph. If the next 
dialogue is very similar to a previous one, then the expec- 
tation dialogue will powerfully support error correction. 
If the next dialogue has little resemblance to previous 
ones, then no expectation will be available, and the user 
will be dependent on basic processor recognition capabil- 
ities. 

This section has given an overview of the approach to 
history-based expectation processing. The details of the 
method are dependent on how the functions P, Predicts, 
Mergeable, and Merge are implemented. The following 
sections describe our implementation, which was used to 
investigate the viability of this approach and the perform- 
ance it can achieve. 
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5 AN IMPLEMENTATION 5.1 THE EXPECTATION PARSER 

The usefulness of the methodology described above was 
tested in the implementation of a connected speech 
understanding system. An off-the-shelf speech recogni- 
tion device, a Nippon Electric Corporation DP-200, was 
added to an existing natural language processing system, 
the Natural Language Computer (NLC) (Ballard 1979, 
Biermann and Ballard 1980). The expectation system 
provided the intermediate processing between the error- 
ful output of the speech recognizer and the deep seman- 
tics of NLC. The resulting speech understanding system 
is called the Voice Natural Language Computer  with 
Expectation (VNLCE, Fink 1983). [The current system 
should be distinguished from an earlier voice system 
(VNLC, Biermann et al. 1985), which had no expectation 
and which handled discrete speech where a 300 millisec- 
ond pause must follow each word.] 

It should be emphasized, of course, that the central 
issue here is the study of expectation mechanisms and the 
details of the design decisions could have been made in 
rather different ways. Thus one could have implemented 
expectation error correction with a typed input system or 
with a speech input system that integrates voice signal 
processing with higher level functions in a way not possi- 
ble with a commercial recognizer. This implementation 
shows only one way in which the functions P, Predicts, 
Mergeable, and Merge can be constructed to achieve 
expectation capabilities. The conclusion of this paper is 
that in this particular situation substantial error 
correction is achieved, and thus one may suspect that 
similar results can be achieved in other applications. 

The implementation, as in the overview of the general 
system presented in section 2, consists of two major 
parts, an expectation parser and an expectation module, 
and their respective data structures. The expectation 
parser embodies the function P, while the major func- 
tions of the expectation module are Predicts, Mergeable, 
and Merge. An expected sentence set, E(current),  along 
with the most recent input sentence S, are inputs to the 
expectation parser P. The expectation parser P uses 
these two inputs to determine the meaning M(S) of the 
input sentence S. Thus, M(S) is a deep parse of S. The 
function Predicts determines if one of the sentences in 
E(current) predicts M(S). If so, then 1~(S) is merged 
with this sentence meaning and dialogue tracking is 
begun from that point. Otherwise the function Mergea- 
ble determines how "similar" M(S) is to any other 
sentences in the expected dialogue. In this implementa- 
tion, the function Mergeable is actually much more 
cautious about determining whether or not a set of 
sentences should be merged. For the implementation, if 
Mergeable determines that certain nodes in the expected 
dialogue are mergeable with M(S), then it adds the 
successors of these nodes to E, creating an expanded 
expected sentence set. Then, if the next sentence input is 
predicted by one or more of these sentences, they are 
merged through the action of Predicts and Merge. 

The purpose of the expectation parser in this implemen- 
tation of a speech understanding system is to take input 
from the scanner and the expectation module, and use 
this information to determine what was said by the user. 
Thus, during the parsing process, the expectation parser 
must reconcile the sequence of words input from the 
scanner with the expected sentence set from the expecta- 
tion module, or determine that the scanner input is not 
like anything that was expected and, thus, ignore 
expectation. In this way, the expectation parser parses 
from two inputs. It is constantly trying to maintain an 
equilibrium between the input from the scanner and the 
input from the expectation module. This balancing is 
kept in line by a set of rating factors that are used during 
the parsing procedure to help guide the search for a 
reasonable sentence structure. These rating factors, at 
times, will be referred to as probabilities in the following 
discussion. However, in reality, the ratings are one thou- 
sand times the values of the logarithms of numbers 
between 0 and 1. Thus, the ratings span the values - 9 9 9  
to 0, where 0 is equivalent to a probability of one. These 
ratings are computed this way because they remain inte- 
gral and still fairly accurately represent the correct 
values. Also, they can simply be added and subtracted 
rather than multiplied and divided in the hundreds of 
calculations required for a single sentence parse. 

The expectation parser uses an ATN-like represen- 
tation for its grammar (Woods 1970). Its strategy is 
top-down. The types of sentences accepted are essential- 
ly those accepted by the original NLC grammar, imper- 
ative sentences with nested noun groups and 
conjunctions (Ballard 1979). An attempt has been made 
to build as deep a parse as possible so that sentences with 
the same meaning result in identical parses. Sentences 
have the same "meaning" if they "result in identical tasks 
being performed. The various sentence structures that 

We have have the same meaning we call paraphrases.  
studied the following types of paraphrasing: 

1) W O R D < = > W O R D  
'entry' < = >  'number'  

2) ADJ NOUN < = >  NOUN QUALIFIER 
'positive entries' < = > 'entries which are positive' 

3) NOUN NUMBER < = >  DET ORDINAL NOUN 
'row 2' < = >  'the second row' 

4) CLASSIFIER NOUN < = > NOUN of/in CLASSIFIER 
'the row 1 entries' < = >  'the entries in row 1' 

5) EQUIVALENT SETS 
'row 1' < = >  'entries in row 1' 

6) QUANTIFIERS 
'all (of) ( the)entr ies '  < = >  'the entries' 

7) CONJUNCTION OF NOUNS 
'double rows one and two' < = >  'double row one 
and row two' 
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8) DEFAULT CONTEXT 
'the rows' < = >  'the rows in matrix 1' 

9) NAMES 
'column 1' < = >  ' testA' 

10) PRONOUNS 
'it' < = > 'row 1' 

11) ORDINAL NOUN < = >  NOUN X in COLUMN or ROW 
Y 
NOUN NUMBER < = > NOUN X in COLUMN or ROW 
Y 
'sixth entry' < = >  'entry 2 in column 3' 
'entry 6' < = > 'entry 3 in row 2' 

12) NUMBER < = >  ENTRY X 
'9.75' < = >  'entry 3' 

13) WORD < = >  {WORDS} 
'double' < = > 'multiply by two' 

14) CONJUNCTION OF VERBS 
'double row two and zero matrix one.' 

< =  > 'double row two. zero matrix one.' 

It is obvious from this list that there are varying levels of 
paraphrasing. Some arise at the vocabulary level 
(number 1), some at the syntactic level (numbers 2, 3, 4, 
5, 6, and 7), some at the semantic level (numbers 8, 9, 
and 10), some at the current world level (numbers 11 
and 12), and some at a combination of levels (numbers 
13 and 14). Some are domain dependent, especially at 
the vocabulary level such as entry < = > number. Others 
are not, such as ADJ NOUN < = >  NOUN QUALIFIER. 
Those that only require knowledge of the vocabulary or 
of the grammar are implemented in the current history- 
based expectation system. This means that paraphrases 
one through seven are handled currently as part of the 
parsing process itself. The last seven may be dealt with 
at some future date. However, they are somewhat more 
complicated because they require temporal-type know- 
ledge such as the current referent of a pronoun or the 
current size of a matrix. The lexical and grammatical 
paraphrases, on the other hand, will always have the 
same meaning, regardless of the current state of the 
world. By handling the seven lexical and syntactic para- 
phrases, a stored parse can aid in recognizing many 
sentences with the same "meaning" but different surface 
structures. 

To simplify representation of the parser output we 
have developed a special notation to indicate the deep 
parse of a sentence. For example, the parse of the 
sentences: 

Double the positive row 1 entries. 
Double the positive entries in row 1. 
Double the row 1 entries which are positive. 
Double the entries in row 1 which are positive. 

is notated as: 

Double (entries (positive) (r l ))  

The mechanism for using the expectation information 
during parsing is built into the ATN-like network. The 
parser receives from the scanner a sequence of word slots. 
These word slots are defined by the speech recognition 
system based on the sequence of words it recognized. 
Thus, there could be missing or extra word slots due to 
errors made during speech recognition. To each word 
slot the scanner adds other possible words based on what 
words the system tends to confuse. The scanner also 
rates the possibilities for each word slot by the same 
scale discussed previously. During parsing, the parser 
creates a template that represents the parse of the 
sentence input. This template contains slots that repre- 
sent the parts of a sentence such as verb, adjective, and 
headnoun. At each point in the parse of a sentence, 
when the expectation parser is trying to determine what 
the role of the current word slot is in the sentence, five 
different attempts are made to use the current word slot 
as needed to fill the template slot at the current point in 
the grammar network. These are: 

• ADV (advance): Find a word in the current word slot 
from the scanner output that will fit the needs at this 
node in the grammar. If such_ a word cannot be found, 
try choice 2. 

• EXPADV (expectation advance): Look at the parse of 
the current expected sentence to see if the template 
slot that the parser is currently trying to fill is filled in 
the expected sentence. If so, copy the value in the 
template slot from the expected sentence to the current 
parse, ignoring the word slot from the scanner. Other- 
wise, try choice 3. 

• SKIPWORD: Skip the current word slot from the scan- 
ner output, filling the corresponding parser template 
slot, when appropriate, with a NIL value to indicate 
that a word has been skipped and that it was assumed 
to have the function associated with the template slot. 
If the parse fails later on, and the parser backs up to 
this point, try choice 4. 

• EXTRAWS (extra word slot): Assume that the word 
slot from the scanner is an extra one due to an error in 
recognition. Skip this word slot and again try choice 1. 
If failure occurs, try choice 2. Finally, if failure again 
occurs, try choice 5. 

• LOSTWS (lost word slot): Assume that the needed 
word slot from the scanner is lost due to an error in 
recognition. Without advancing to the next scanner 
word slot, try step 2 again. If this fails, then fill the 
parser template slot, when appropriate, with a NIL 
value to indicate that a word has been lost and that it 
was assumed to have the function associated with that 
template slot. Remain at the current scanner word slot 
so that it can again be evaluated for a different func- 
tion. 

An example piece of the parser network is shown in 
Figure 6. The five kinds of error correction were hand 
coded into each network so that the special character- 
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formatted routine FILLADJ: 

4257 
4267 
4272 
4279 
4556 
4286 
4551 
5214 
4885 
4750 

4756 
4762 
4769 

5036 

5043 

START 
ADV 

CHEK PART ADJ 
FILLSLOT ADJECTIVE QUOTE 

EXPCOMP ADJ 
RET 

EXPADV 
EXPCHEK ADJECTIVE 

COPYSLOT ADJECTIVE 
COPYWORD ADJECTIVE 

goto 45 56 
goto 4556 
SKIPWORD LOG7 
I FILLSLOT ADJECTIVE NIL 

COPYWORD QUOTE NIL 
goto 4556 

EXTRAWS LOG7 
goto 4267 
goto 4551 

LOSTWS LOG7 
goto 5214 
goto 4762 

Figure 6. An example parse net. 

istics of each grammatical structure could be accounted 
for individually. Thus in some cases, certain error 
correction alternatives were checked immediately while 

in others it was wiser to determine whether normal proc- 
essing would fail at deeper levels before attempting those 
same corrections. The network represents a tree struc- 
ture which is searched by the expectation parser. 
Succession in the network is represented by the parent- 
child relationship, which is indicated in Figure 6 by 
indentation. Thus, the node containing the command 
ADV is the parent of the node containing the command 
CHEK PART ADJ, and so is succeeded by it. Should a 
command fail, the parser backs up to the parent node of 

the node that has just failed. Thus, if a check for an 
adjective in CHEK PART ADJ fails, control will back up 
to the node containing ADV. Choice is represented by 
the sibling relationship which is indicated in Figure 6 by 
the vertical lines connecting nodes. Thus, ADV, 
EXPADV, SKIPWORD, EXTRAWS, and LOSTWS are all 
siblings in the tree network and are choices that the 
parser can make when parsing a sentence. Note that, in 
this case, these five choices represent the five possible 

attempts that are made in trying to parse a word slot that 
were discussed above. A choice is made by picking the 
siblings in the order in which they appear in the network. 
Thus, when the CHEK PART ADJ fails and control backs 
up to ADV, the expectation parser will back up to the 

START node and then take the second choice, EXPADV, 
and attempt to proceed down that chain of commands. 

The scoring mechanism within the parser serves to aid 
in the evaluation of the alternative paths during the parse 
process and the pruning of improbable choices. A typical 
spoken input to the system is 

"add row one to row two" 

and the speech recognition machine will often return 
such errorful output as 

"and row * to row". 

The asterisk indicates that the device guesses the exist- 
ence of a word but has failed to identify it. 

The parser must be able to extract the user 's original 
intent and its operation is guided by rating factors which 
evaluate the quality of the path through the parser, the 
word selection, the level of agreement with expectation, 
and the self consistency (or compatibility) of the 
sentence. These individual ratings work as follows: 

1) The Transition Value 
Every time the parser moves over a SKIPWORD, 
EXTRAWS, or LOSTWS command a charge is made 
to the value of the transition. Normally, a transition 
does not cost anything, but each SKIPWORD, 
EXTRAWS, and LOSTWS executed results in a lower- 
ing of the transition's value. This charge is made for 
the rest of the parse unless the SKIPWORD, 
EXTRAWS, or LOSTWS is backed over. This charge 
can be seen in the sample grammar net appearing in 
Figure 6 after the words SKIPWORD, EXTRAWS, and 
LOSTWS. The charge in this example for each of the 
three commands is 1000*log[0.7] = - 3 5 .  

2) The Word Value 
We define the synophones of a given vocabulary 
word to be the words a user might speak that could 
possibly be recognized as that word. Because of the 
nature of the dynamic programming algorithm in the 
NEC machine, it yields only one guess at each word 
slot. So it is necessary for our software to provide 
the set of synophones for each guessed word. This, 
in effect, simulates the situation where the speech 
recognition device provides a larger number of possi- 
ble matches. Thus, in the case of the above recog- 
nizer outpu t, the following synophones would be 
produced to represent the sequence of possible 
words spoken: 

word slot word rating 

0 and lO00*log[1.O] -- 0 
add lO00*log[0.8] = - 2 2  

1 row 1000*log[1.0] = 0 
rows 1000.1og[0.8] = - 2 2  

2 * 1000*log[ 1.0] -- 0 
3 to 1000*log[ 1.0] = 0 

two 1000*log[1.0] = 0 
into 1000.1og[0.8] -- - 2 2  

20 Computational Linguistics, Volume 12, Number 1, January-March 1986  



Pamela K .  F i n k  a n d  A l a n  W .  Biermann The Correction of  Ill-Formed Input 

4 row 1000*log[1.0] = 0 
rows 1000*log[0.8] = - 2 2  

5 1000*log!l.0! = 0 

Each alternative word is given a rating. The words 
selected by the recognizer are given maximum 
ratings and alternatives are given lower values. If 
two words have the same pronunciation as with to 

and two, they are given the same values. 
3) The Expectation Value 

This value is based on whether or not there is an 
expected sentence, how well the current parse is 
matching the current expected sentence from the 
expected sentence set, and how much the current 
parse is using this expected sentence. Whenever a 
slot is filled by the parser, it is compared with the 
corresponding slot in the expected sentence. If they 
do not match, the expectation value decreases, other- 
wise the expectation value remains the same. 

4) The Compatibility Value 
This value differs from the other three in that it is 
simply true or false. Verb-operand, noungroup- 
noungroup, and expectation are checks made during 
the parse. If compatibility fails, then the expectation 
parser backs up, otherwise it continues forward. 

Each of these components has a value assessed at each 
word slot in the incoming sentence as well as one for the 
entire sentence. The word slot values are assumed to 
have a top rating until the parser reaches that word slot. 
Thus, the parser is always examining a best case situation 
based on what it has already done. For example, all 
word slot transition values are assumed, initially, to have 
the value 1000*log[i] = 0. The transition value at a 
word slot is only lowered if it is necessary for the parser 
to execute a SKIPWORD, EXTRAWS, or LOSTWS 
command in parsing that word slot. The charge made is 
accOrding to the value indicated at the particular 
command in the grammar network. The average of the 
current values of all word slot transition values creates 
the sentence transition rating for the parse so far. The 
word slot and sentence values for the expectation and 
word values are computed similarly. The compatibility 
value differs, however, since it does not have degrees of 
ratings but rather indicates acceptability or lack thereof. 
Thus, it is not included in the formula for determining a 
rating for the parse. Rather, if it fails, then parsing auto- 
matically backs up. If it succeeds, then parsing continues 
forward. 

The values of the transition, word, and expectation 
components are used to determine two sentence parse 
ratings. At each word slot, the values of the three factors 
are averaged together to produce a general word slot 
parse rating. Also, the sentence values for the three 
components are averaged together to obtain a general 
sentence parse rating. Thus, we have the following 
equations that define the various rating values, where n is 
the number of word slots in the sentence: 

1) The Transition Value 

word slot transition value: 
ws transition[x] = value of SKIPWORD, EXTRA.WS, or 

LOSTWS at word slot x 
sentence transition value: 

transition confidence = E ws transition[i]/n 
- -  i=0  - -  

2) The Word Value 

word slot word value: 
ws word[x] = value of the word chosen from the 

scanner input for word slot x 
sentence word value: 

word confidence= E ws word[i]/n 
- -  i=0  - -  

3) The Expectation Value 

word slot expectation value: 
ws expectation[x] = match of word slot x in current 

parse with slot x in the expected sentence 

sentence expectation value: 
expectation confidence = E ws expectation[i]/n 

i=0  

4) The Parse Values 

word slot parse value: 
word slot factor[x] = (ws transition[x] + 

ws word[x]+ ws expectation[x])/3 

sentence parse value: 
sentence factor = (transition confidence + 

word confidence + expectation confidence)/3 

The transition confidence, word confidence and 
expectation confidence provide an average overall 
value for the ws transition, ws word, and 
ws expectation ratings, respectively. These average 
values provide a best case rating at any point during the 
parse because they assume perfect ratings for all word 
slots not yet parsed. The overall parse values, 
w o r d s l o t f a c t o r  and sentence factor, are calculated 
simply from the average of the other three rating values. 
This is done so that each factor has equivalent power in 
controlling the parse. If it is desirable to allow one factor 
to have more control over the parse than the other two, 
then this can be accomplished by manipulating the partic- 
ular minimum rating values discussed below. In order to 
control the expectation parsing, search is cut-off if rating 
values fall below certain levels. Currently, these levels 
are: 

1. Minimum word slot transition value ( - 5 2 )  
Minimum sentence transition value ( - 1 2 )  

2. Mimmum word slot word value ( - 1 5 0 )  
Minimum sentence word value ( - 6 0 )  

3. Minimum word slot expectation value ( - 2 3 )  
Mimmum sentence expectation value ( - 7 )  

4. Minimum word slot parse value ( - 1 9 0 )  
Minimum sentence parse value ( - 6 5 )  

If any one of the rating factors drops below its corre- 
sponding minimum value, the current search path is cut- 
off and a different route through the grammar nets is 
attempted. In this way, there is a control over the extent 
of the search. By setting all the minimum ratings to 
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- 9 9 9 ,  for example, all possibilities in the grammar are 
checked. On the other hand, setting all the minimum 
ratings to 0 results in the expectation parser behaving like 
a normal parser since this essentially turns off the use of 
the SKIPWORD, EXTRAWS, and LOSTWS commands, the 
use of synophones, and expectation. 

In theory, the parsing algorithm is admissible. That is, 
it is capable of finding the best possible parse. The vari- 
ous rating factors can initially be set high and gradually 
lowered until a parse is found. This parse would have the 
highest rating possible. However,  this is impractical in 
practice due to the amount of time required to repeatedly 
search a growing space. Thus, minimum rating values are 
set and the search is conducted once. In this way, the 
first parse found is the "bes t"  parse in the sense that it is 
the first one found whose rating was higher than the 
minimum pre-set value. 

5.2 ROUTINES OF THE EXPECTATION MODULE 

The task of the expectation module is to acquire a gener- 
al dialogue from a series of dialogues spoken by a user. 
The dialogues essentially contain examples of how to go 
about solving a particular kind of problem. In acquiring 
these dialogues and merging them into one generalized 
dialogue, the expectation system learns how to solve this 
particular kind of problem through examples. In a sense, 
by building this generalized dialogue the expectation 
system is creating a procedure that can solve a particular 
subset of problems. This is a future goal of the project. 
However,  the current application is for the generalized 
dialogue to be used as an aid in the voice recognition 
process by offering predictions about what might be said 
next. 

The types of problems that can be learned by the 
existing history-based expectation system include linear 
algebra applications such as matrix multiplication, simul- 
taneous linear equations, and Gaussian elimination. 
Non-linear algebra problems that require matrix-type 
representations can also be learned, such as gradebook 
maintenance and invoice manipulation. Though the 
implemented system is limited to matrix-oriented prob- 
lems, the theoretical system is capable of learning a wide 
range of problem types. The only requirement on the 
problem or situation is that it can be entered into the 
expectation system in the form of examples. Thus, for 
example, it can acquire a "script" such as the one for 
going to a restaurant as defined in Schank and Abelson 
(1977). 

The expectation module takes two inputs and produc- 
es two outputs. The inputs are 
• the user behavior graph discussed earlier, called the 

expected dialogue D, and 
• the meaning of the most recently input sentence, M(S). 
Its outputs are a new expected dialogue D modified 
according to the latest input sentence M(S) and an 
expected sentence set E. These outputs are produced 

based upon the inputs and the functions Predicts, Merge- 
able, and Merge. 

The role of the predicate Predicts can be best under- 
stood by recalling the function of the parser P. P uses 
the set of expected sentences E(current) to try to error 
correct the incoming sentence S. P may do this by 
discovering that some Mk in E(current) is quite similar to 
M(S). If P does select such an Mk and uses it to help 
parse S, then Predicts (Mk, M(S)) is true. Otherwise, 
Predicts (Mk, M(S)) is false. Thus the function of 
Predicts is to select the Mk which the parser used in pars- 
ing S. If the parser did not use expectation, then Predicts 
always is false. 

If the incoming sentence was not predicted by existing 
transitions in D, perhaps it can be found to be similar to 
some node Mk in D and a new transition could be added 
to that node. The routine Mergeable has the job of find- 
ing one or more such Mk's  into which the current 
sentence meaning M(S) can be merged. The question of 
similarity of two sentences is determined by the meanings 
of the sentences themselves and the "environment"  in 
which they occur in the dialogue. Sentence "meanings"  
are based on the sentence deep parses produced by the 
expectation parser, while a sentence "environment"  is 
based on the meanings of the sentences preceding and 
following it in the expected dialogue. 

Similarity is based on the notion of "distance". 
Currently two sentences are considered similar in mean- 
ing if their parses differ in only one slot in the noun 
group template. This means that their noun group 
distance cannot be greater than one to be considered 
similar. For example, the following two sentences are 
similar: 

M("double  the first row")  = double ( r l )  

M("double  row 2")  = double (r2) 

The environment of  one sentence matches that of  another if 
the sentence meanings preceding the two sentences being 
compared are identical and /o r  the sentence meanings 
following them are identical. Clearly, these definitions 
are quite arbitrary and many other strategies could be 
tried. However,  for the purposes of this study, they were 
quite satisfactory. 

Based on the question of how well the environment 
and the sentence itself matches previously seen environ- 
ments and sentences, five different matches are possible 
between the current incoming sentence and the elements 
of the expected dialogue: 

1) The sentence matches a sentence meaning in the 
expected dialogue exactly, but there is no match of 
their environments. 

2) The sentence matches a sentence meaning in the 
expected dialogue similarly, but there is no match of 
their environments. 

3) The sentence matches a sentence meaning in the 
expected sentence set exactly, which implies that 
their environments also match. 
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4) The sentence matches a sentence meaning in the 
expected sentence set similarly, which implies that 
their environments also match. 

5) There is no match between the sentence and any 
sentence meaning in the expected dialogue. 

In cases 1, 2, and 5, the sentence is determined to be new 
and unique to the expected dialogue. Therefore, Mk and 
M(S) are not mergeable. In such cases, M(S) is added as 
a new entry in the expected dialogue D. In the other two 
cases, numbers 3 and 4, the incoming sentence is deter- 
mined to be the same as or similar to one already seen 
previously in an exact or similar situation. Thus, Mk is 
mergeable with M(S). In case 3 the sentence is automat-  
ically merged with the one that it matches exactly in the 
expected sentence set. In case 4, the sentence is merged 
with the one that it matches similarly in the expected 
sentence set only after it has passed an argument creation 
algorithm test to be discussed below. Otherwise it is also 
considered new and unique and added to the expected 
dialogue as in cases 1, 2, and 5. The actual argument 
creation occurs in the function Merge. 

The notion of creating an argument is associated with 
the problem of when to merge a set of similar sentences 
in an expected dialogue into one sentence with a special 
flag in the slot where the sentences differ. This is deter- 
mined by the function Mergeable. As an example, at a 
certain point in a dialogue, one may have an expected 
sentence set E(i) such as the following: 

double ( r l )  .33 
double (r2) .33 
double (r3) .33 

The numbers indicate the probability levels, derived from 
j /Ci ,  as discussed at the end of section 3. 

In such a situation, the user's intentions may be 
reflected more correctly by the following expected 
sentence set: 

double ( rARG) 1.0 

which signifies that any row may be referred to. Howev-  
er, though this simplified expected sentence set may be a 
good generalization of the pattern observed, it has 
ramifications for error correction. Specifically, it will be 
unable to fill in a row number should that value be miss- 
ing in the incoming sentence. The first option also has its 
drawbacks. In this case, should the row number be miss- 
ing in the sentence, the expectation parser will error 
correct the sentence to the most probable value, or the 
first one in the set if the probabilities are equal, here the 
value one for row 1. Thus, both options are imperfect in 
terms of the error correction capabilities that they can 
provide. The comparison that must be made to deter- 
mine which option is better in a given situation is how 
often the first will error correct incorrectly as opposed to 
how much error correcting power we will lose by using 
the second. How it is done is beyond the scope of this 
paper but is explained in detail in Fink (1983). 

The Merge function takes two inputs, M1 and M2, 
which have been determined by the Mergeable function 
to be similar in some way by considering their respective 
environments and meanings. Based upon how similar the 
two meanings are, Merge creates a meaning M that is a 
generalization of M1 and M2, sometimes employing an 
argument. Thus, there are only two possible kinds of 
matches at this point between an input sentence and a 
member  of the expected sentence set, an exact match or 
a similar match. In the case of an exact match M = M1 
= M2 and M replaces M i  in the expected dialogue. In 
the case of a similar match, the meanings only differ by 
one slot in the noun group of their deep parse represen- 
tation, so a generalization of that slot to " A R G "  is made, 
meaning an argument is created. The function appears as 
follows: 

Merge (M1, M2) 
begin 
for each slot x in M1 and M2 do 

if x(M1) != x(M2) then 
x(M) := ARG; 

else 
x(M) := x(M1); 

end; 

Thus, if the sentences "Double ( r l ) "  and "Double (r2)" 
are inputs to Merge, the output would be "Double 
( rARG)" .  

6 EXPERIMENTAL RESULTS 

An experiment was run using VNLCE to test the error 
correction capabilities in different situations. These situ- 
ations were simulated by making the test subjects 
perform certain tasks on the system that resulted in 
different dialogue structures, or schemas. The four tests 
made on VNLCE in this experiment are considered to be 
representative of the possible schemas that can be 
produced by different dialogues in different situations. 
All possible dialogue schemas actually produce a contin- 
uum of patterns from totally-ordered to totally-unord- 
ered. The tests described below are simply points on this 
continuum. 

I) Totally-Ordered Schema 
This type of schema occurs whenever the system has 
at most two sentences at a time in its expected 
sentence set and one of these always has a probabili- 
ty rating over 80%.  

II) Partially-Ordered Schema 
In this case, there is a general order to the sentences 
being spoken, but there is not usually just one highly 
probable sentence in the expected sentence set at a 
time, but several with varying degrees of probability. 

III) Totally-Unordered Schema 
This occurs when there is no over-all order to the 
sentences being spoken. Essentially any sentence in 
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the expectation dialogue has a probability of being 
spoken next. 

IV) Totally-Ordered Schema with Arguments 
This test is an example of a totally-ordered schema, 
but the system does not know exactly what will be 
said all the time because one or more of the expected 
sentences contain an argument. 

Each of the four tests was run on three different test 
subjects to acquire data concerning how fast a user 
speaks, what types of errors are produced by the voice 
recognizer, and how well the expectation system acquires 
and uses the expected dialogue to help error correct the 
input. 

To begin the experiment session, the subject trained 
the voice recognizer, a NEC DP-200, on a specific vocab- 
ulary of 49 different words in connected speech mode. 
The DP-200 can handle only 150 word slots in connected 
speech mode, so 49 allowed for some repetitive training. 
The subject was then given a brief tutorial that lead 
h im/her  through a few features of the VNLCE system 
and gave h im/her  some practice in talking to the NEC 
device. This training session usually took a total of about 
45 minutes. The subject was then given one or more of 
the test sheets representing the problems to be solved. 
The number was based on the amount of time that the 
subject was willing to donate to the effort. 

Each test dialogue had a similar over-all structure in 
that it required a certain amount of repetition, thus creat- 
ing a loop structure in the expected dialogue. In all tests, 
except test II, the subject was provided with the specific 
sequence of sentences to be spoken. This guaranteed 
that the desired level of repetition was actually achieved. 
How much repetition there was in each dialogue 
depended on the expected dialogue schema being 
imitated. In test I, which was done to demonstrate a 
totally-ordered schema, the test subject had to repeat an 
identical sequence of six sentences nine times in a row 
except for the seventh time when four new sentences 
were inserted into the loop. A sample schema can be 
seen in Figure 7. In test II, the user had much more free- 
dom, since its purpose was to demonstrate a partially- 
ordered schema. Here the subject had to solve six sets of 
simultaneous linear equations with two equations and 
two unknowns and he /she  spoke whatever sentences that 
seemed appropriate. A sample schema is shown in 
Figure 8. Notice that in one case an argument was 
created. The third test was done to show how well error 
correction works when the dialogue seems random, creat- 
ing a totally-unordered schema. To create such an envi- 
ronment, the user was asked to repeat four sentences in 
random order eight times. An example expected dialogue 
schema that resulted from this test is shown in Figure 9. 
In the last test, test IV, the subject was asked to repeat a 
sequence of four sentences six times, each time through 
changing the value of the row number spoken. This 
demonstrates the argument creation facility in a totally- 

ordered dialogue schema. The expected dialogue gener- 
ated from this test appears in Figure 10. 

Each test has associated with it three charts indicating 
the results. The first graph represents the average 
sentence error and correction rates, the second shows the 
average word error and correction rates, while the third 
illustrates the average rate-of-speech in words-per-sec- 
ond spoken by the subject while doing the experiment. 

The charts indicating the average error and correction 
rates of the four tests reflect the loop structure of the 
dialogues. Each chart is a series of bar graphs, each bar 
graph representing the average error and correction rates 
over the sentences spoken by the subjects in a particular 
loop of the dialogue. The highest point on each of these 
bars represents the raw error rate of the voice recognizer. 
The different markings within the bars themselves repre- 
sent the percentage of the errors that were corrected by a 
particular facility of the expectation system. The hori- 
zontal design associated with "loosening" indicates the 
percentage of the errors that were corrected by the use of 
the flexible parsing techniques, such features as the syno- 
phones and the parser commands SKIPWORD, 
EXTRAWS, and LOSTWS. The vertical design associated 
with expectation indicates the percentage of the errors 
that were corrected by use of the expected sentence set 
alone. The blank area indicates the percentage of the 
errors that were corrected by using both of the above 
facilities. Finally, the dot design shows the percentage of 
the errors that were not corrected. Thus, for example, in 
the top chart in Figure 11, the eighth loop of the dialogue 
had an 8 5 %  sentence error rate from the voice recogniz- 
er. Of those errors, 6 %  were corrected using the facili- 
ties associated with loosening the search, while 2 5 %  
were corrected by using only expectation. Another  6 3 %  
were corrected using features from both categories. Only 
6 %  could not be corrected. 

Test I, using a totany-ordered dialogue schema, was 
done to show how well the expectation system can error 
correct errorful input when it can predict exactly what 
will be said next. As can be seen from the graphs in 
Figure 11, as the ability to predict what will be said next 
increases, so does the ability to error correct. In loop 
seven of the dialogue, we deliberately had each user add 
four extra sentences between the fourth and fifth 
sentences of the loop. This was done to show that the 
expectation system had not become a complete automa- 
ton, but that it was still capable of dealing with unex- 
pected input. However,  as can be seen from these graphs 
(Figure 11), the expectation system's error correcting 
power decreases in that particular loop of the dialogue 
since there is no expectation at certain points to help it. 

Test II, creating a partially-ordered dialogue schema, 
was done to show how the expectation acquisition algo- 
rithm dealt with dialogues containing some pattern and to 
see how well error correction could work when expecta- 
tion was not perfect. The results are shown in Figure 12. 
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Figure 7. Expected dialogue schema for Test I. 
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Figure 8. Expected dialogue schema for Test II. 
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Figure 9. Expected dialogue schema for Test III. 
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Figure 10. Expected dialogue schema for Test IV. 
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Figure 11. Error and correction rates for Test I. 
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Figure 12. Error and correction rates for Test II. 
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Figure 13. Error and correction rates for Test III. 
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Figure 14. Error and correction rates for Test IV. 
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Figure 15. Speech rate in the four dialogue schema tests. 
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Test III demonstrates the error correction capabilities 
of the system when expectation only knows that one of a 
group of sentences will be said next. It produces a total- 
ly-unordered dialogue schema. The results of the 
systems error correction capabilities in such a situation 
appear in Figure 13. 

Test IV uses a totally-ordered dialogue schema, but 
with a variation from test I. Each sentence sooner or 
later contains an argument so that the system does not 
know everything about the sentence that will be said 
next. The data given in Figure 14 shows the error 
correction rates for this dialogue. It clearly shows how 
error correction failures increase until after the third loop 
when argument creation begins so that the system no 
longer error corrects incorrectly. 

Figure 15 shows the graphs of the average speech rate 
of the speakers for each of the four tests. Like the other 
eight graphs, these graphs reflect the loop structure of 
the dialogues. As can be seen, the speakers tended to 
increase their speech rate as they talked to the system. 
This behavior was hoped for because as the speech rate 
increased, so did the error rate of the speech recognizer, 
thus placing more of a burden on the error correcting 
abilities of the expectation system. Note that, in all eight 
graphs in Figures 11 through 14, the word and sentence 
error rates from the voice recognizer generally increased 
with the progress through the dialogue. This is due to the 
increased rate of speech. However, the actual failure rate 
of VNLCE did not increase by the same amount. These 
extra errors were corrected by the expectation system. 

Figure 16 gives a summary of the average error and 
correction rates for each test and over all. 

7 RELATED LITERATURE 

A number of speech understanding systems have been 
developed during the past fifteen years (Barnett et al. 
1980, Dixon and Martin 1979, Erman et al. 1980, Haton 
and Pierrel 1976, Lea 1980, Lowerre and Reddy 1980, 
Medress 1980, Reddy 1976, Walker 1978, and Wolf and 
Woods 1980). Most of these efforts concentrated on the 
interaction between low level information sources from a 
speech recognizer and a natural language processor to 
discover the meaning of an input sentence. While some 
of these systems did exhibit expectation capabilities at 
the sentence level, none acquired dialogues of the kind 
described here for the sake of dialogue level expectation 
and error correction. A detailed description of the kinds 
of expectation mechanisms appearing in these systems 
appears in Fink (1983). 

The problem of handling ill-formed input has been 
studied by Carbonell and Hayes (1983), Granger (1983), 
Jensen et al. (1983), Kwasny and Sondheimer (1981), 
Riesbeek and Schank (1976), Thompson (1980), Weis- 
chedel and Black (1980), and Weischedel and Sondheim- 
er (1983). A wide variety of techniques have been 
developed for addressing problems at the word, phrase, 
sentence, and in some cases, dialogue level. However, 
these methodologies have not used historical information 
at the dialogue level as described here. In most cases, the 
goal of these systems is to characterize the ill-formed 
input into classes of errors and to correct on that basis. 
The work described here makes no attempt to classify the 
errors, but treats them as random events that occur at 
any point in a sentence. Thus, an error in this work has 
no pattern but occurs probabilistically. A verb is just as 
likely to be mis-recognized or not recognized as is a 
noun, adjective, determiner, etc. 

T e s t  I T e s t  I I  T e s t  I I I  T e s t  I V  O v e r - a l l  

word-error-rate 18.78 11.75 11.25 12.17 13.49 

c o r r e c t e d  
w o r d - e r r o r - r a t e  

s e n t e n c e - e r r o r - r a t e  

. 5 9  1 . 5 0  1 . 5 0  4 . 1 7  1 . 9 4  

6 1 . 2 2  4 0 . 8 3  5 2 . 2 5  5 6 . 3 3  5 2 . 6 6  

c o r r e c t e d  
s e n t e n c e - e r r o r - r a t e  

3 . 2 2  6 . 0 0  5 . 3 8  1 6 , 0 0  7 . 6 5  

a v e r a g e  s p e a k i n g  r a t e  2 . 2 7  2 . 9 5  1 . 8 5  1 . 9 7  2 . 2 6  

Figure 16. Average word and sentence error rate in percent, 
average speaking rate in words-spoken-per-minute. 
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The acquisition of dialogue as implemented in VNLCE 
is reminiscent of the program synthesis methodology 
developed by Biermann and Krishnaswamy (1976) 
where program flowcharts were constructed from traces 
of their behaviors. However,  the "flowcharts" in the 
current project are probabilistic in nature and the prob- 
lems associated with matching incoming sentences to 
existing nodes has not been previously addressed. 
Another dialogue acquisition system has been developed 
by Ho (1984). However,  that system has different goals: 
to enable the user to consciously design a dialogue to 
embody a particular human-machine interaction. The 
acquisition system described here is aimed at dealing with 
ill-formed input and is completely automatic and invisible 
to the user. It self activates to bias recognition toward 
historically observed patterns but is not otherwise 
observable. 

The VNLCE processor may be considered to be a 
learning system of the tradition described, for example, in 
Michalski et al. (1984). The current system learns finite 
state flowcharts whereas typical learning systems usually 
acquire coefficient values as in Minsky and Papert 
(1969), assertional statements as in Michalski (1980), or 
semantic nets as in Winston (1975). That is, the current 
system learns procedures rather than data structures. 
There is some literature on procedure acquisition such as 
the LISP synthesis work described in Biermann et al. 
(1984) and the PROLOG synthesis method of Shapiro 
(1982). However,  the latter methodologies have not 
been applied to dialogue acquisition. 

8 CONCLUSIONS AND AREAS FOR FUTURE RESEARCH 

We have shown that the ability to use expectation in the 
form of knowledge about the dialogue being spoken, as 
with humans, is a tremendous aid to speech recognition 
by computer. Since expectation, in this research, has 
been based on repetition of patterns, the expectation 
system's ability to correct varies, of course, with the 
repetitiveness of the dialogue itself. We have attempted, 
in sections 5 and 6, to justify this decision by demon- 
strating how the expectation system can acquire common 
programming constructs such as loops and arguments. It 
is our belief that repetitious patterns occur in everyday 
life, and that the expectation system is capable of dealing 
with such patterns, resulting in a generalized situation 
similar to a Schankian script. Finally, we have tested the 
expectation system's correction power in some represen- 
tative situations, as discussed in section 6. It has been 
demonstrated that the expectation system has the capa- 
bilities of reducing a large sentence error rate to nearly 
zero in many situations. At the word level, error rates to 
the expectation system climbed as high as 47 % in certain 
user dialogues when the user was speaking fast. At the 
same time, the error rate leaving the expectation system 
remained fairly low at between zero and fifteen percent. 
On the average, the system was able to lower a sentence 
error rate of 5 3 %  to 8%,  and a word error rate of 

13.5% to 2%.  The use of expectation, along with an 
ability to ignore or add words to the input stream of the 
parser, is all that is needed to achieve this error 
correction rate on randomly erroneous input. 

The parser design, with the five choices at each word 
slot, has the potential to run into problems with the expo- 
nential growth of the search and to result in unacceptably 
long parse times. However,  when the rating scheme is 
used intelligently, it not only aids in finding the best 
parse of a word sequence, but it also helps to lower the 
search time necessary by pruning unreasonable search 
choices. The average parse time for a sentence, from the 
tests discussed above, was 5.1 seconds while the average 
total processing time for a sentence was 10.5 seconds. 
This was on a highly loaded PDP 11/70 under the UNIX 1 
operating system. In the event that a particular word 
sequence leads the parser down a garden path, a time- 
out facility has been implemented that causes the parser 
to fail after one minute of real-time. However,  out of a 
total of 629 sentences spoken in the above four tests, this 
feature was needed only 19 times. 

The research reported on here was divided into two 
parts, the theory and the implementation. Most of the 
theory developed was implemented in the VNLCE 
system. This theory has been aimed at error correction 
of random errors using expectation based on historical 
information. However,  there are many possible exten- 
sions that could be examined in the future and added to 
the implementation if the investigation indicates that it 
would create a yet more usable system. These include 
the following: 

• use of low level knowledge from the speech recognition 
phase, 

• use of high level knowledge about the domain in partic- 
ular and the dialogue task in general, 

• a "continue" facility and an "auto- loop"  facility as 
described by Biermann and Krishnaswamy (1976), 

• a "conditioning" facility as described by Fink et al. 
(1985), 

• implementation of new types of paraphrasing, 
• checking a larger environment in the expectation 

acquisition algorithm when deciding if an incoming 
sentence is the same or similar to one already seen, and 

• examining inter-speaker dialogue patterns. 

All but two of these areas for expansion are aimed at 
moving the expectation system from one that finds 
patterns in a user's dialogues and acquires historical 
knowledge about them to one that can acquire true 
procedures. The first two areas for expansion have noth- 
ing to do with creating a true procedure acquisition 
module but would be highly desirable from the point of 
view of the speech recognition application. Features 
three and four would simply make the system easier to 
use and would require little theoretical investigation. The 
final three would require research efforts. 

In conclusion, we have designed a system that is capa- 
ble of correcting ill-formed input and implemented the 
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design in the area of speech recognition. The system 
performs error-correction through a mechanism also used 
by humans in the same situation, that of expectation. We 
have shown that the expectation algorithm is general 
enough to handle almost any dialogue structure. It is 
possible to predict approximately what kind of error 
correction to expect from the system based on the 
dialogue structure and the word error rate. We have also 
shown that the theory on which the implemented expec- 
tation system is based is capable of acquiring and gener- 
alizing real-world, script-like situations. This research 
can serve as a starting point for further research into the 
field of computer expectation, procedure acquisition, and 
learning. 
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