
T H E C O R R E C T I O N O F I L L - F O R M E D I N P U T U S I N G H I S T O R Y - B A S E D

E X P E C T A T I O N W I T H A P P L I C A T I O N S T O S P E E C H U N D E R S T A N D I N G

Pamela K. Fink

Southwest Research Institute
6220 Culebra Road

San Antonio, TX 78284

Alan W. Biermann

Department of Computer Science
Duke University

Durham, NC 27706

A method for error correction of ill-formed input is described that acquires dialogue patterns in
typical usage and uses these patterns to predict new inputs. Error correction is done by strongly biasing
parsing toward expected meanings unless clear evidence from the input shows the current sentence is
not expected. A dialogue acquisition and tracking algorithm is presented along with a description of its
implementation in a voice interactive system. A series of tests are described that show the power of
the error correction methodology when stereotypic dialogue occurs.

This material is based upon work supported by The
National Science Foundation under Grant number MCS
7904120 and Grant number MCS 8113491 and by the
Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant 81-0221.

1 INTRODUCTION

In an environment where stereotypic discourse commonly
occurs, the repetitiveness and predictability of the inter-
actions may enable a machine to effectively anticipate
some inputs. For a speech understanding system, such
anticipation can greatly enhance the processor 's capabili-
ties for error correction so that proper action will take
place despite inaccuracies at the voice recognition phase.
This paper is concerned with the automatic construction
of a model of user behaviors in typical interactions and
the use of such a model in the correction of misrecogni-
tion errors.

It is assumed that a user approaches the machine in a
typical application with a problem to be solved. He or
she inputs a series of sentences requesting action or
information that will lead to a solution and then leaves
when the task is complete. In the early examples of such
an interaction, the machine will have little or no expecta-

tion and will be dependent on its basic capabilities for
understanding and carrying out commands. However, if
repetitive behaviors occur, the processor will effectively
use them to anticipate inputs and correct errors. This will
enable the user to speak less precisely and more quickly
while still achieving reliable performance.

Such repetitive behaviors may occur within a single
dialogue where a user may utter sentences with similar
meanings again and again (as in "Is there a plane on
Thursday? What time does it leave? Is there one on
Friday? When does it leave?"). They may also occur
when a given dialogue resembles earlier ones. The
expectation system will thus continuously monitor inputs,
looking for repetition. If no repetitious behavior occurs,
the natural language processor is allowed to proceed
without intervention in handling a dialogue. However, if
repetitiveness is detected, the expectation system will
supply the processor with anticipated behaviors which
can be used to help remove uncertainties in sentence
recognition when they occur.

In the following sections, an overview of the history-
based expectation system is given. Then a representation
for user behaviors is described, followed by an algorithm
for creating and tracking such models along with a meth-

Copyright1986 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that
the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/86 /010013-36503 .00

Computational Linguistics, Volume 12, Number 1, January-March 1986 13

Pamela K. Fink and Alan W. Biermann The Correction of IH-Formed Input

od for using them in error correction. Finally, an imple-
mentation of this methodology is described in the domain
of speech recognition and results from a series of tests
investigating the system's performance in various situ-
ations are presented.

2 A N OVERVIEW OF THE HISTORY-BASED

EXPECTATION SYSTEM

The general goal of the history-based expectation system
is to merge a series of dialogues, each of which consists
of a sequence of sentences, into a more general dialogue
that reflects the patterns that exist between and within
the separate dialogues. Thus, the expectation system
must:

- save incoming dialogues,
- f i n d patterns between and within these dialogues so

that they can be merged into a more general dialogue
which becomes a formula for a more general situation,
and

- use this information to help predict what will be said by
a user in a given situation.

This ability to predict what might be said by a user can
help error correct what is input to the natural language
system through errorful means, such as a voice recogniz-
er. We will call this ability expectation. Figure 1 shows
an overview of the structure of the history-based expec-
tation system. Expectation is acquired at two levels, the
sentence level and the dialogue level. A special parser,
called the expectation parser, is used to analyze at the
sentence level. The expected dialogue is a data structure
used to store the history-based expectation that is
acquired using an expectation acquisition algorithm. This
constitutes the dialogue level.

As each sentence is entered into the system, such as
through a speech recognition device, it is parsed and a
meaning representation is produced and saved by an
expectation acquisition algorithm in the expectation
module (see 1 in Figure 1). The parse is also output for
use in the next step in the system's processing of the
sentence. This process builds a sequence of sentence
meanings, which are then incorporated into an expected
dialogue (see 2 in Figure 1). After an expected dialogue
is partially or completely built, the expectation module
attempts to determine where the user is in a given
dialogue using information from the expected dialogue
and the current parsed sentence (see 1 and 3 in Figure
1). If it succeeds, it creates and transmits (see 4 in
Figure 1) an expected sentence set to the expectation
parser. The expectation parser will then use this infor-
mation to improve its ability to recognize the next incom-
ing sentence.

m m

I E X P E C T A T I O N I
I M O D U L E I

#r I
i

W O R D
S E Q U E N C E = > I E X P E C T A T I O N I
N E T W O R K I P A R S E R I

L . _ _ _ J

Figure 1. Overview of the history-based

expectation system.

14 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

3 A REPRESENTATION FOR USER BEHAVIORS

Suppose a user inputs the following sequence:

Sentence Label

Display my mail summary for today. S 1
Show me this letter. (with touch input) $2
(the letter appears on the screen)
Remove this letter. $3
Display the letter from JA. $4
(letter appears on the screen)
Delete it. $5
Log off. $6

We denote the meaning of each sentence Si with the
notation M(Si). The exact form of M(Si) need not be
discussed at this point; it could be a conceptual depend-
ence graph (Schank and Abelson 1977), a deep parse of
Si, or some other representation. A user behavior is
represented by a network, or directed graph, of such
meanings. At the beginning of a task, the state of the
interaction is represented by the start state of the graph.
The immediate successors of this state are the typical
opening meaning structures for this user, and succeeding
states represent, historically, paths that have been
followed by this user.

It is important that if two sentences, Si and Sj, have
approximately the same meaning this should be clear in
the representations M(Si) and M(Sj). Our algorithm,
described below, merges two meanings M(Si) and M(Sj)
into a single node in the behavior representation if they
- are sufficiently similar, and
- appear in similar contexts.
Thus, in the above example it would appear that M(S3)
and M(S5) play similar roles and could be represented by
one structure: after a letter is read, one might expect to
see it deleted.

Often, two commands will be similar except for the
instantiation of certain constituents. This is the case in
sentences $2 and $4, which request the display of,
respectively, the message indicated by a touch and the
letter from JA. Again, it is desired to represent such
similar meanings in a behavior graph with a single node if
they appear in similar environments. Thus, a routine will
be needed to find a generalization of two such sentences
that can represent their common meaning. In the exam-
ple, the generalization of $2 and $4 might be "display
(LETTER)" where "(LETTER)" is a noun group referring
to a letter.

In tracking a dialogue, we may arrive at a node in the
behavior graph with meaning M1. This means a
command is expected with meaning M2 that is either
identical to, or a special case of, M1. If such an M2 is
input at this time, we will say that M1 predicts M2 and
define the predicate:

Predicts(M1, M2) = true if and only if meaning M1
is identical or similar to M2.

It is quite possible, as with M(S2) and M(S4) above, that
a common generalization can be found for two sentences
that appear in similar contexts. Then one will be able to
merge them into a single node in the behavior graph.
Thus, it is necessary to have a predicate to check whether
these conditions hold and a function to find the desired
generalization. The following two routines do this:

Mergeable(M1, M2) = true if and only if an M can
be found such that Predicts(M, M1) and
Predicts(M, M2).

Merge(M1, M2) yields a meaning M that is identi-
cal to, or a generalization of, M1 and M2.

A user behavior is represented as a network of
sentence meanings with transitions from one meaning to
another that indicate traversals observed in actual
dialogues and their frequencies. For example, the above
six-sentence sequence could be represented as shown in
Figure 2. Each node i has a meaning Mi and a count Ci,
which gives the number of times in observed dialogues
this node has been visited. The integer on each transition
gives the number of times it has been traversed in
observed dialogues.

'(

r 2

START

M(Sl)

M(S2),M(S#)

M(SS),M(S5)

M(S6]

Figure 2. Modelling the user 's behavior.

More formally, a behavior graph B will consist of a set
of nodes named 0, 1, 2, 3 bsize-1. Each node i will
have its associated Mi and Ci and the first node will have
a special meaning M0 = 'start ' . The transitions will be
represented as triples (i, j, k) where the traversal is f rom
node i to node k and has been observed j times. The
example six-command sequence would be represented by

Computational Linguistics, Volume 12, Number 1, January-March 1986 15

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

the nodes 0 through 4 with Mi's and Ci's as shown and
with the triples

{(0,1,1) (1,1,2) (2,2,3) (3,1,2) (3,1,4)}.

Notice that the observed probability of crossing transi-
tion (i, j, k) is j /Ci , a fact that is used by the expectation

parser.

4 THE EXPECTATION MODEL BUILDING AND

TRACKING ALGORITHM

It is desired to have an algorithm to monitor the
discourse, collect the history of inputs, and invoke expec-
tation when any kind of repetition occurs. Such an algo-
rithm is described below. To do so, however, some
additional notation is needed:

current = an integer giving the state number in B corre-
sponding to the most recently recognized sentence.

bsize = the total number of states in B.

E(i) = {k I J > 0 (i , j , k) is in B}, the set of successor
states to state i, also called the expected sentence set

of i.

P(S, E(current)) = The result of the expectation parser
with input S and E(current), where S is the current
input sentence which may have errors, and E(current)
is a set of expected meanings in B, the successors of
node current. The result or output of the parse of
sentence S is its meaning M(S).

The behavior graph B begins with one state numbered
"0" and with M0 = start, C(0) = 0. Thus, the size of
the graph is bsize = 1 and the most recently recognized
sentence is assumed to be this start state, current = 0.

Suppose that the first sentence in the above sample

dialogue is read:

S1 = "Display my mail summary for today."

Then the processor will begin with no expectation since
E(0) is currently the empty set, and find

M(S1) = P(S1, {}).

This will result in the creation of a second state in B with
the following statements:

Create a NEW NODE:

Put(current, 1, bsize) into B;
(a transition to the new state is created)

C(current) := C(current) + 1; (state O's count is incremented)
current := bsize; (the new state is now the current state)
M(current) := M(S); (the new state's meaning is recorded)
C(current) := 0; (this state has not yet been visited and exited)
bsize : = bsize + 1; (the size of graph B is incremented)

Thus, the first two states shown in Figure 2 will exist
with the single transition (0, 1, 1). Sentence $2 and $3

result in similar processing, the addition of states 2 and 3,
and the creation of transitions (1, 1, 2) and (2, 1, 3) as
shown in Figure 3.

0

START

M(SI)

M(S2)

M(SS)

Figure 3. Constructing the behavior graph.

The input sentence will yield a different action,
however, if its meaning M(S) is determined to be merge-
able with the meaning of an existing node Mk on the
graph. While the details of mergeability have not yet
been discussed, let us assume for the current example
that M(S4) is mergeable with M(S2). Then a new mean-
ing will appear in the graph that is a generalization of
these two, Merge(M(S2), M(S4)), and a graph transition
will be built to this new meaning. Transfer to the exist-
ing meaning Mk would proceed as follows:

C(current) := C(current) + 1;
Mk := Merge(Mk, M(S));
Put(current, 1, k) into B;
current := k;

Figure 4 shows the updated graph. At this point, current
= 2, and the expectation set, E(2), is non-empty for the
first time. So, now we compute P(S5, {M3}), meaning
that $5 is read with the expectation that its meaning will
be " remove this one". Given this expectation, the parser
will prefer any transitions down paths that lead to some
paraphrase of this sentence and, unless the system clearly
recognizes that something else has been said, a sentence
meaning " remove this one" should be recognized. If it is,
then current will be advanced to this expected node. In
general, there may be several expected sentence mean-
ings, and the processor will select the one most similar to
the incoming utterance unless that sentence is clearly not
any member of the expected set.

16 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

'6,]
, I I

t l

START

M(SI)

M(S2).H(S4)

M(SS)

Figure 4. Merging M(S2) and M(S4).

Thus, if a successor k to the current state predicts the
incoming sentence, we track that successor. Tracking
the expected meaning Mk would proceed as follows:

C(current) := C(current) + 1;
Mk := Merge(Mk, M(S));
Increment r in (current, r, k);
current := k;

Figure 5 shows the result.

I

START

I

M(SI)

M(S2).H(S4)

M(S3) ,H(S5)

Figure 5. Merging M(S3) and M(S5).

The final sentence $6 in the dialogue will cause the
creation of a termination state and complete the graph of
Figure 2. The behavior graph creation and trackihg algo-
rithm is thus the collection of the above code segments:

if no behavior graph B exists then
begin
bsize : = 1;
M0 := start;
CO := 0;
end;

else
load B;

current := 0;
repeat

begin
read input sentence S;
M(S) := P(S, "Mk I k in E(current)");
if Predicts(Mk, M(S)) where k in E(current) then

begin
C(current) := C(current) + 1;
Mk := Merge(Mk, M(S));
Increment r in (current, r, k);
current := k;
end;

else
if Mergeable("Mk I k = 1 and/or 2 and/or ...

bsize-l", M(S)) then
begin
C(current) := C(current) + 1;
Mk := Merge("Mk I k = 1 and/or 2

and/or ... bsize-l", M(S));
Put(current, 1, k) into B;
current := k;
end;

else
create a NEW NODE;

end;
until M(S) is a dialogue termination.

This code creates a finite state model of the dialogue
based on equivalence or similarity classes defined by the
functions Predicts, Mergeable, and Merge. As will be
discussed in the next section, similarity classes are based
not only on the similarity of the sentences themselves,
but also on the environment in which they occur. Thus,

there is only one state for each such similarity class in the
finite state model created.

When the user enters the system again, this algorithm
can be reinvoked using the existing B graph. If the next
dialogue is very similar to a previous one, then the expec-
tation dialogue will powerfully support error correction.
If the next dialogue has little resemblance to previous
ones, then no expectation will be available, and the user
will be dependent on basic processor recognition capabil-
ities.

This section has given an overview of the approach to
history-based expectation processing. The details of the
method are dependent on how the functions P, Predicts,
Mergeable, and Merge are implemented. The following
sections describe our implementation, which was used to
investigate the viability of this approach and the perform-
ance it can achieve.

Computational Linguistics, Volume 12, Number 1, January-March 1986 17

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

5 AN IMPLEMENTATION 5.1 THE EXPECTATION PARSER

The usefulness of the methodology described above was
tested in the implementation of a connected speech
understanding system. An off-the-shelf speech recogni-
tion device, a Nippon Electric Corporation DP-200, was
added to an existing natural language processing system,
the Natural Language Computer (NLC) (Ballard 1979,
Biermann and Ballard 1980). The expectation system
provided the intermediate processing between the error-
ful output of the speech recognizer and the deep seman-
tics of NLC. The resulting speech understanding system
is called the Voice Natural Language Computer with
Expectation (VNLCE, Fink 1983). [The current system
should be distinguished from an earlier voice system
(VNLC, Biermann et al. 1985), which had no expectation
and which handled discrete speech where a 300 millisec-
ond pause must follow each word.]

It should be emphasized, of course, that the central
issue here is the study of expectation mechanisms and the
details of the design decisions could have been made in
rather different ways. Thus one could have implemented
expectation error correction with a typed input system or
with a speech input system that integrates voice signal
processing with higher level functions in a way not possi-
ble with a commercial recognizer. This implementation
shows only one way in which the functions P, Predicts,
Mergeable, and Merge can be constructed to achieve
expectation capabilities. The conclusion of this paper is
that in this particular situation substantial error
correction is achieved, and thus one may suspect that
similar results can be achieved in other applications.

The implementation, as in the overview of the general
system presented in section 2, consists of two major
parts, an expectation parser and an expectation module,
and their respective data structures. The expectation
parser embodies the function P, while the major func-
tions of the expectation module are Predicts, Mergeable,
and Merge. An expected sentence set, E(current), along
with the most recent input sentence S, are inputs to the
expectation parser P. The expectation parser P uses
these two inputs to determine the meaning M(S) of the
input sentence S. Thus, M(S) is a deep parse of S. The
function Predicts determines if one of the sentences in
E(current) predicts M(S). If so, then 1~(S) is merged
with this sentence meaning and dialogue tracking is
begun from that point. Otherwise the function Mergea-
ble determines how "similar" M(S) is to any other
sentences in the expected dialogue. In this implementa-
tion, the function Mergeable is actually much more
cautious about determining whether or not a set of
sentences should be merged. For the implementation, if
Mergeable determines that certain nodes in the expected
dialogue are mergeable with M(S), then it adds the
successors of these nodes to E, creating an expanded
expected sentence set. Then, if the next sentence input is
predicted by one or more of these sentences, they are
merged through the action of Predicts and Merge.

The purpose of the expectation parser in this implemen-
tation of a speech understanding system is to take input
from the scanner and the expectation module, and use
this information to determine what was said by the user.
Thus, during the parsing process, the expectation parser
must reconcile the sequence of words input from the
scanner with the expected sentence set from the expecta-
tion module, or determine that the scanner input is not
like anything that was expected and, thus, ignore
expectation. In this way, the expectation parser parses
from two inputs. It is constantly trying to maintain an
equilibrium between the input from the scanner and the
input from the expectation module. This balancing is
kept in line by a set of rating factors that are used during
the parsing procedure to help guide the search for a
reasonable sentence structure. These rating factors, at
times, will be referred to as probabilities in the following
discussion. However, in reality, the ratings are one thou-
sand times the values of the logarithms of numbers
between 0 and 1. Thus, the ratings span the values - 9 9 9
to 0, where 0 is equivalent to a probability of one. These
ratings are computed this way because they remain inte-
gral and still fairly accurately represent the correct
values. Also, they can simply be added and subtracted
rather than multiplied and divided in the hundreds of
calculations required for a single sentence parse.

The expectation parser uses an ATN-like represen-
tation for its grammar (Woods 1970). Its strategy is
top-down. The types of sentences accepted are essential-
ly those accepted by the original NLC grammar, imper-
ative sentences with nested noun groups and
conjunctions (Ballard 1979). An attempt has been made
to build as deep a parse as possible so that sentences with
the same meaning result in identical parses. Sentences
have the same "meaning" if they "result in identical tasks
being performed. The various sentence structures that

We have have the same meaning we call paraphrases.
studied the following types of paraphrasing:

1) W O R D < = > W O R D
'entry' < = > 'number'

2) ADJ NOUN < = > NOUN QUALIFIER
'positive entries' < = > 'entries which are positive'

3) NOUN NUMBER < = > DET ORDINAL NOUN
'row 2' < = > 'the second row'

4) CLASSIFIER NOUN < = > NOUN of/in CLASSIFIER
'the row 1 entries' < = > 'the entries in row 1'

5) EQUIVALENT SETS
'row 1' < = > 'entries in row 1'

6) QUANTIFIERS
'all (of) (the)entr ies ' < = > 'the entries'

7) CONJUNCTION OF NOUNS
'double rows one and two' < = > 'double row one
and row two'

18 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

8) DEFAULT CONTEXT
'the rows' < = > 'the rows in matrix 1'

9) NAMES
'column 1' < = > ' testA'

10) PRONOUNS
'it' < = > 'row 1'

11) ORDINAL NOUN < = > NOUN X in COLUMN or ROW
Y
NOUN NUMBER < = > NOUN X in COLUMN or ROW
Y
'sixth entry' < = > 'entry 2 in column 3'
'entry 6' < = > 'entry 3 in row 2'

12) NUMBER < = > ENTRY X
'9.75' < = > 'entry 3'

13) WORD < = > {WORDS}
'double' < = > 'multiply by two'

14) CONJUNCTION OF VERBS
'double row two and zero matrix one.'

< = > 'double row two. zero matrix one.'

It is obvious from this list that there are varying levels of
paraphrasing. Some arise at the vocabulary level
(number 1), some at the syntactic level (numbers 2, 3, 4,
5, 6, and 7), some at the semantic level (numbers 8, 9,
and 10), some at the current world level (numbers 11
and 12), and some at a combination of levels (numbers
13 and 14). Some are domain dependent, especially at
the vocabulary level such as entry < = > number. Others
are not, such as ADJ NOUN < = > NOUN QUALIFIER.
Those that only require knowledge of the vocabulary or
of the grammar are implemented in the current history-
based expectation system. This means that paraphrases
one through seven are handled currently as part of the
parsing process itself. The last seven may be dealt with
at some future date. However, they are somewhat more
complicated because they require temporal-type know-
ledge such as the current referent of a pronoun or the
current size of a matrix. The lexical and grammatical
paraphrases, on the other hand, will always have the
same meaning, regardless of the current state of the
world. By handling the seven lexical and syntactic para-
phrases, a stored parse can aid in recognizing many
sentences with the same "meaning" but different surface
structures.

To simplify representation of the parser output we
have developed a special notation to indicate the deep
parse of a sentence. For example, the parse of the
sentences:

Double the positive row 1 entries.
Double the positive entries in row 1.
Double the row 1 entries which are positive.
Double the entries in row 1 which are positive.

is notated as:

Double (entries (positive) (r l))

The mechanism for using the expectation information
during parsing is built into the ATN-like network. The
parser receives from the scanner a sequence of word slots.
These word slots are defined by the speech recognition
system based on the sequence of words it recognized.
Thus, there could be missing or extra word slots due to
errors made during speech recognition. To each word
slot the scanner adds other possible words based on what
words the system tends to confuse. The scanner also
rates the possibilities for each word slot by the same
scale discussed previously. During parsing, the parser
creates a template that represents the parse of the
sentence input. This template contains slots that repre-
sent the parts of a sentence such as verb, adjective, and
headnoun. At each point in the parse of a sentence,
when the expectation parser is trying to determine what
the role of the current word slot is in the sentence, five
different attempts are made to use the current word slot
as needed to fill the template slot at the current point in
the grammar network. These are:

• ADV (advance): Find a word in the current word slot
from the scanner output that will fit the needs at this
node in the grammar. If such_ a word cannot be found,
try choice 2.

• EXPADV (expectation advance): Look at the parse of
the current expected sentence to see if the template
slot that the parser is currently trying to fill is filled in
the expected sentence. If so, copy the value in the
template slot from the expected sentence to the current
parse, ignoring the word slot from the scanner. Other-
wise, try choice 3.

• SKIPWORD: Skip the current word slot from the scan-
ner output, filling the corresponding parser template
slot, when appropriate, with a NIL value to indicate
that a word has been skipped and that it was assumed
to have the function associated with the template slot.
If the parse fails later on, and the parser backs up to
this point, try choice 4.

• EXTRAWS (extra word slot): Assume that the word
slot from the scanner is an extra one due to an error in
recognition. Skip this word slot and again try choice 1.
If failure occurs, try choice 2. Finally, if failure again
occurs, try choice 5.

• LOSTWS (lost word slot): Assume that the needed
word slot from the scanner is lost due to an error in
recognition. Without advancing to the next scanner
word slot, try step 2 again. If this fails, then fill the
parser template slot, when appropriate, with a NIL
value to indicate that a word has been lost and that it
was assumed to have the function associated with that
template slot. Remain at the current scanner word slot
so that it can again be evaluated for a different func-
tion.

An example piece of the parser network is shown in
Figure 6. The five kinds of error correction were hand
coded into each network so that the special character-

Computational Linguistics, Volume 12, Number 1, January-March 1986 19

Pamela K. Fink and Alan W. Biermann The Correction of HI-Formed Input

formatted routine FILLADJ:

4257
4267
4272
4279
4556
4286
4551
5214
4885
4750

4756
4762
4769

5036

5043

START
ADV

CHEK PART ADJ
FILLSLOT ADJECTIVE QUOTE

EXPCOMP ADJ
RET

EXPADV
EXPCHEK ADJECTIVE

COPYSLOT ADJECTIVE
COPYWORD ADJECTIVE

goto 45 56
goto 4556
SKIPWORD LOG7
I FILLSLOT ADJECTIVE NIL

COPYWORD QUOTE NIL
goto 4556

EXTRAWS LOG7
goto 4267
goto 4551

LOSTWS LOG7
goto 5214
goto 4762

Figure 6. An example parse net.

istics of each grammatical structure could be accounted
for individually. Thus in some cases, certain error
correction alternatives were checked immediately while

in others it was wiser to determine whether normal proc-
essing would fail at deeper levels before attempting those
same corrections. The network represents a tree struc-
ture which is searched by the expectation parser.
Succession in the network is represented by the parent-
child relationship, which is indicated in Figure 6 by
indentation. Thus, the node containing the command
ADV is the parent of the node containing the command
CHEK PART ADJ, and so is succeeded by it. Should a
command fail, the parser backs up to the parent node of

the node that has just failed. Thus, if a check for an
adjective in CHEK PART ADJ fails, control will back up
to the node containing ADV. Choice is represented by
the sibling relationship which is indicated in Figure 6 by
the vertical lines connecting nodes. Thus, ADV,
EXPADV, SKIPWORD, EXTRAWS, and LOSTWS are all
siblings in the tree network and are choices that the
parser can make when parsing a sentence. Note that, in
this case, these five choices represent the five possible

attempts that are made in trying to parse a word slot that
were discussed above. A choice is made by picking the
siblings in the order in which they appear in the network.
Thus, when the CHEK PART ADJ fails and control backs
up to ADV, the expectation parser will back up to the

START node and then take the second choice, EXPADV,
and attempt to proceed down that chain of commands.

The scoring mechanism within the parser serves to aid
in the evaluation of the alternative paths during the parse
process and the pruning of improbable choices. A typical
spoken input to the system is

"add row one to row two"

and the speech recognition machine will often return
such errorful output as

"and row * to row".

The asterisk indicates that the device guesses the exist-
ence of a word but has failed to identify it.

The parser must be able to extract the user 's original
intent and its operation is guided by rating factors which
evaluate the quality of the path through the parser, the
word selection, the level of agreement with expectation,
and the self consistency (or compatibility) of the
sentence. These individual ratings work as follows:

1) The Transition Value
Every time the parser moves over a SKIPWORD,
EXTRAWS, or LOSTWS command a charge is made
to the value of the transition. Normally, a transition
does not cost anything, but each SKIPWORD,
EXTRAWS, and LOSTWS executed results in a lower-
ing of the transition's value. This charge is made for
the rest of the parse unless the SKIPWORD,
EXTRAWS, or LOSTWS is backed over. This charge
can be seen in the sample grammar net appearing in
Figure 6 after the words SKIPWORD, EXTRAWS, and
LOSTWS. The charge in this example for each of the
three commands is 1000*log[0.7] = - 3 5 .

2) The Word Value
We define the synophones of a given vocabulary
word to be the words a user might speak that could
possibly be recognized as that word. Because of the
nature of the dynamic programming algorithm in the
NEC machine, it yields only one guess at each word
slot. So it is necessary for our software to provide
the set of synophones for each guessed word. This,
in effect, simulates the situation where the speech
recognition device provides a larger number of possi-
ble matches. Thus, in the case of the above recog-
nizer outpu t, the following synophones would be
produced to represent the sequence of possible
words spoken:

word slot word rating

0 and lO00*log[1.O] -- 0
add lO00*log[0.8] = - 2 2

1 row 1000*log[1.0] = 0
rows 1000.1og[0.8] = - 2 2

2 * 1000*log[1.0] -- 0
3 to 1000*log[1.0] = 0

two 1000*log[1.0] = 0
into 1000.1og[0.8] -- - 2 2

20 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K . F i n k a n d A l a n W . Biermann The Correction of Ill-Formed Input

4 row 1000*log[1.0] = 0
rows 1000*log[0.8] = - 2 2

5 1000*log!l.0! = 0

Each alternative word is given a rating. The words
selected by the recognizer are given maximum
ratings and alternatives are given lower values. If
two words have the same pronunciation as with to

and two, they are given the same values.
3) The Expectation Value

This value is based on whether or not there is an
expected sentence, how well the current parse is
matching the current expected sentence from the
expected sentence set, and how much the current
parse is using this expected sentence. Whenever a
slot is filled by the parser, it is compared with the
corresponding slot in the expected sentence. If they
do not match, the expectation value decreases, other-
wise the expectation value remains the same.

4) The Compatibility Value
This value differs from the other three in that it is
simply true or false. Verb-operand, noungroup-
noungroup, and expectation are checks made during
the parse. If compatibility fails, then the expectation
parser backs up, otherwise it continues forward.

Each of these components has a value assessed at each
word slot in the incoming sentence as well as one for the
entire sentence. The word slot values are assumed to
have a top rating until the parser reaches that word slot.
Thus, the parser is always examining a best case situation
based on what it has already done. For example, all
word slot transition values are assumed, initially, to have
the value 1000*log[i] = 0. The transition value at a
word slot is only lowered if it is necessary for the parser
to execute a SKIPWORD, EXTRAWS, or LOSTWS
command in parsing that word slot. The charge made is
accOrding to the value indicated at the particular
command in the grammar network. The average of the
current values of all word slot transition values creates
the sentence transition rating for the parse so far. The
word slot and sentence values for the expectation and
word values are computed similarly. The compatibility
value differs, however, since it does not have degrees of
ratings but rather indicates acceptability or lack thereof.
Thus, it is not included in the formula for determining a
rating for the parse. Rather, if it fails, then parsing auto-
matically backs up. If it succeeds, then parsing continues
forward.

The values of the transition, word, and expectation
components are used to determine two sentence parse
ratings. At each word slot, the values of the three factors
are averaged together to produce a general word slot
parse rating. Also, the sentence values for the three
components are averaged together to obtain a general
sentence parse rating. Thus, we have the following
equations that define the various rating values, where n is
the number of word slots in the sentence:

1) The Transition Value

word slot transition value:
ws transition[x] = value of SKIPWORD, EXTRA.WS, or

LOSTWS at word slot x
sentence transition value:

transition confidence = E ws transition[i]/n
- - i=0 - -

2) The Word Value

word slot word value:
ws word[x] = value of the word chosen from the

scanner input for word slot x
sentence word value:

word confidence= E ws word[i]/n
- - i=0 - -

3) The Expectation Value

word slot expectation value:
ws expectation[x] = match of word slot x in current

parse with slot x in the expected sentence

sentence expectation value:
expectation confidence = E ws expectation[i]/n

i=0

4) The Parse Values

word slot parse value:
word slot factor[x] = (ws transition[x] +

ws word[x]+ ws expectation[x])/3

sentence parse value:
sentence factor = (transition confidence +

word confidence + expectation confidence)/3

The transition confidence, word confidence and
expectation confidence provide an average overall
value for the ws transition, ws word, and
ws expectation ratings, respectively. These average
values provide a best case rating at any point during the
parse because they assume perfect ratings for all word
slots not yet parsed. The overall parse values,
w o r d s l o t f a c t o r and sentence factor, are calculated
simply from the average of the other three rating values.
This is done so that each factor has equivalent power in
controlling the parse. If it is desirable to allow one factor
to have more control over the parse than the other two,
then this can be accomplished by manipulating the partic-
ular minimum rating values discussed below. In order to
control the expectation parsing, search is cut-off if rating
values fall below certain levels. Currently, these levels
are:

1. Minimum word slot transition value (- 5 2)
Minimum sentence transition value (- 1 2)

2. Mimmum word slot word value (- 1 5 0)
Minimum sentence word value (- 6 0)

3. Minimum word slot expectation value (- 2 3)
Mimmum sentence expectation value (- 7)

4. Minimum word slot parse value (- 1 9 0)
Minimum sentence parse value (- 6 5)

If any one of the rating factors drops below its corre-
sponding minimum value, the current search path is cut-
off and a different route through the grammar nets is
attempted. In this way, there is a control over the extent
of the search. By setting all the minimum ratings to

Computational Linguistics, Volume 12, Number 1, January-March 1986 21

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

- 9 9 9 , for example, all possibilities in the grammar are
checked. On the other hand, setting all the minimum
ratings to 0 results in the expectation parser behaving like
a normal parser since this essentially turns off the use of
the SKIPWORD, EXTRAWS, and LOSTWS commands, the
use of synophones, and expectation.

In theory, the parsing algorithm is admissible. That is,
it is capable of finding the best possible parse. The vari-
ous rating factors can initially be set high and gradually
lowered until a parse is found. This parse would have the
highest rating possible. However, this is impractical in
practice due to the amount of time required to repeatedly
search a growing space. Thus, minimum rating values are
set and the search is conducted once. In this way, the
first parse found is the "bes t" parse in the sense that it is
the first one found whose rating was higher than the
minimum pre-set value.

5.2 ROUTINES OF THE EXPECTATION MODULE

The task of the expectation module is to acquire a gener-
al dialogue from a series of dialogues spoken by a user.
The dialogues essentially contain examples of how to go
about solving a particular kind of problem. In acquiring
these dialogues and merging them into one generalized
dialogue, the expectation system learns how to solve this
particular kind of problem through examples. In a sense,
by building this generalized dialogue the expectation
system is creating a procedure that can solve a particular
subset of problems. This is a future goal of the project.
However, the current application is for the generalized
dialogue to be used as an aid in the voice recognition
process by offering predictions about what might be said
next.

The types of problems that can be learned by the
existing history-based expectation system include linear
algebra applications such as matrix multiplication, simul-
taneous linear equations, and Gaussian elimination.
Non-linear algebra problems that require matrix-type
representations can also be learned, such as gradebook
maintenance and invoice manipulation. Though the
implemented system is limited to matrix-oriented prob-
lems, the theoretical system is capable of learning a wide
range of problem types. The only requirement on the
problem or situation is that it can be entered into the
expectation system in the form of examples. Thus, for
example, it can acquire a "script" such as the one for
going to a restaurant as defined in Schank and Abelson
(1977).

The expectation module takes two inputs and produc-
es two outputs. The inputs are
• the user behavior graph discussed earlier, called the

expected dialogue D, and
• the meaning of the most recently input sentence, M(S).
Its outputs are a new expected dialogue D modified
according to the latest input sentence M(S) and an
expected sentence set E. These outputs are produced

based upon the inputs and the functions Predicts, Merge-
able, and Merge.

The role of the predicate Predicts can be best under-
stood by recalling the function of the parser P. P uses
the set of expected sentences E(current) to try to error
correct the incoming sentence S. P may do this by
discovering that some Mk in E(current) is quite similar to
M(S). If P does select such an Mk and uses it to help
parse S, then Predicts (Mk, M(S)) is true. Otherwise,
Predicts (Mk, M(S)) is false. Thus the function of
Predicts is to select the Mk which the parser used in pars-
ing S. If the parser did not use expectation, then Predicts
always is false.

If the incoming sentence was not predicted by existing
transitions in D, perhaps it can be found to be similar to
some node Mk in D and a new transition could be added
to that node. The routine Mergeable has the job of find-
ing one or more such Mk's into which the current
sentence meaning M(S) can be merged. The question of
similarity of two sentences is determined by the meanings
of the sentences themselves and the "environment" in
which they occur in the dialogue. Sentence "meanings"
are based on the sentence deep parses produced by the
expectation parser, while a sentence "environment" is
based on the meanings of the sentences preceding and
following it in the expected dialogue.

Similarity is based on the notion of "distance".
Currently two sentences are considered similar in mean-
ing if their parses differ in only one slot in the noun
group template. This means that their noun group
distance cannot be greater than one to be considered
similar. For example, the following two sentences are
similar:

M("double the first row") = double (r l)

M("double row 2") = double (r2)

The environment of one sentence matches that of another if
the sentence meanings preceding the two sentences being
compared are identical and /o r the sentence meanings
following them are identical. Clearly, these definitions
are quite arbitrary and many other strategies could be
tried. However, for the purposes of this study, they were
quite satisfactory.

Based on the question of how well the environment
and the sentence itself matches previously seen environ-
ments and sentences, five different matches are possible
between the current incoming sentence and the elements
of the expected dialogue:

1) The sentence matches a sentence meaning in the
expected dialogue exactly, but there is no match of
their environments.

2) The sentence matches a sentence meaning in the
expected dialogue similarly, but there is no match of
their environments.

3) The sentence matches a sentence meaning in the
expected sentence set exactly, which implies that
their environments also match.

22 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

4) The sentence matches a sentence meaning in the
expected sentence set similarly, which implies that
their environments also match.

5) There is no match between the sentence and any
sentence meaning in the expected dialogue.

In cases 1, 2, and 5, the sentence is determined to be new
and unique to the expected dialogue. Therefore, Mk and
M(S) are not mergeable. In such cases, M(S) is added as
a new entry in the expected dialogue D. In the other two
cases, numbers 3 and 4, the incoming sentence is deter-
mined to be the same as or similar to one already seen
previously in an exact or similar situation. Thus, Mk is
mergeable with M(S). In case 3 the sentence is automat-
ically merged with the one that it matches exactly in the
expected sentence set. In case 4, the sentence is merged
with the one that it matches similarly in the expected
sentence set only after it has passed an argument creation
algorithm test to be discussed below. Otherwise it is also
considered new and unique and added to the expected
dialogue as in cases 1, 2, and 5. The actual argument
creation occurs in the function Merge.

The notion of creating an argument is associated with
the problem of when to merge a set of similar sentences
in an expected dialogue into one sentence with a special
flag in the slot where the sentences differ. This is deter-
mined by the function Mergeable. As an example, at a
certain point in a dialogue, one may have an expected
sentence set E(i) such as the following:

double (r l) .33
double (r2) .33
double (r3) .33

The numbers indicate the probability levels, derived from
j /Ci , as discussed at the end of section 3.

In such a situation, the user's intentions may be
reflected more correctly by the following expected
sentence set:

double (rARG) 1.0

which signifies that any row may be referred to. Howev-
er, though this simplified expected sentence set may be a
good generalization of the pattern observed, it has
ramifications for error correction. Specifically, it will be
unable to fill in a row number should that value be miss-
ing in the incoming sentence. The first option also has its
drawbacks. In this case, should the row number be miss-
ing in the sentence, the expectation parser will error
correct the sentence to the most probable value, or the
first one in the set if the probabilities are equal, here the
value one for row 1. Thus, both options are imperfect in
terms of the error correction capabilities that they can
provide. The comparison that must be made to deter-
mine which option is better in a given situation is how
often the first will error correct incorrectly as opposed to
how much error correcting power we will lose by using
the second. How it is done is beyond the scope of this
paper but is explained in detail in Fink (1983).

The Merge function takes two inputs, M1 and M2,
which have been determined by the Mergeable function
to be similar in some way by considering their respective
environments and meanings. Based upon how similar the
two meanings are, Merge creates a meaning M that is a
generalization of M1 and M2, sometimes employing an
argument. Thus, there are only two possible kinds of
matches at this point between an input sentence and a
member of the expected sentence set, an exact match or
a similar match. In the case of an exact match M = M1
= M2 and M replaces M i in the expected dialogue. In
the case of a similar match, the meanings only differ by
one slot in the noun group of their deep parse represen-
tation, so a generalization of that slot to " A R G " is made,
meaning an argument is created. The function appears as
follows:

Merge (M1, M2)
begin
for each slot x in M1 and M2 do

if x(M1) != x(M2) then
x(M) := ARG;

else
x(M) := x(M1);

end;

Thus, if the sentences "Double (r l) " and "Double (r2)"
are inputs to Merge, the output would be "Double
(rARG)" .

6 EXPERIMENTAL RESULTS

An experiment was run using VNLCE to test the error
correction capabilities in different situations. These situ-
ations were simulated by making the test subjects
perform certain tasks on the system that resulted in
different dialogue structures, or schemas. The four tests
made on VNLCE in this experiment are considered to be
representative of the possible schemas that can be
produced by different dialogues in different situations.
All possible dialogue schemas actually produce a contin-
uum of patterns from totally-ordered to totally-unord-
ered. The tests described below are simply points on this
continuum.

I) Totally-Ordered Schema
This type of schema occurs whenever the system has
at most two sentences at a time in its expected
sentence set and one of these always has a probabili-
ty rating over 80%.

II) Partially-Ordered Schema
In this case, there is a general order to the sentences
being spoken, but there is not usually just one highly
probable sentence in the expected sentence set at a
time, but several with varying degrees of probability.

III) Totally-Unordered Schema
This occurs when there is no over-all order to the
sentences being spoken. Essentially any sentence in

Computational Linguistics, Volume 12, Number 1, January-March 1986 23

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

the expectation dialogue has a probability of being
spoken next.

IV) Totally-Ordered Schema with Arguments
This test is an example of a totally-ordered schema,
but the system does not know exactly what will be
said all the time because one or more of the expected
sentences contain an argument.

Each of the four tests was run on three different test
subjects to acquire data concerning how fast a user
speaks, what types of errors are produced by the voice
recognizer, and how well the expectation system acquires
and uses the expected dialogue to help error correct the
input.

To begin the experiment session, the subject trained
the voice recognizer, a NEC DP-200, on a specific vocab-
ulary of 49 different words in connected speech mode.
The DP-200 can handle only 150 word slots in connected
speech mode, so 49 allowed for some repetitive training.
The subject was then given a brief tutorial that lead
h im/her through a few features of the VNLCE system
and gave h im/her some practice in talking to the NEC
device. This training session usually took a total of about
45 minutes. The subject was then given one or more of
the test sheets representing the problems to be solved.
The number was based on the amount of time that the
subject was willing to donate to the effort.

Each test dialogue had a similar over-all structure in
that it required a certain amount of repetition, thus creat-
ing a loop structure in the expected dialogue. In all tests,
except test II, the subject was provided with the specific
sequence of sentences to be spoken. This guaranteed
that the desired level of repetition was actually achieved.
How much repetition there was in each dialogue
depended on the expected dialogue schema being
imitated. In test I, which was done to demonstrate a
totally-ordered schema, the test subject had to repeat an
identical sequence of six sentences nine times in a row
except for the seventh time when four new sentences
were inserted into the loop. A sample schema can be
seen in Figure 7. In test II, the user had much more free-
dom, since its purpose was to demonstrate a partially-
ordered schema. Here the subject had to solve six sets of
simultaneous linear equations with two equations and
two unknowns and he /she spoke whatever sentences that
seemed appropriate. A sample schema is shown in
Figure 8. Notice that in one case an argument was
created. The third test was done to show how well error
correction works when the dialogue seems random, creat-
ing a totally-unordered schema. To create such an envi-
ronment, the user was asked to repeat four sentences in
random order eight times. An example expected dialogue
schema that resulted from this test is shown in Figure 9.
In the last test, test IV, the subject was asked to repeat a
sequence of four sentences six times, each time through
changing the value of the row number spoken. This
demonstrates the argument creation facility in a totally-

ordered dialogue schema. The expected dialogue gener-
ated from this test appears in Figure 10.

Each test has associated with it three charts indicating
the results. The first graph represents the average
sentence error and correction rates, the second shows the
average word error and correction rates, while the third
illustrates the average rate-of-speech in words-per-sec-
ond spoken by the subject while doing the experiment.

The charts indicating the average error and correction
rates of the four tests reflect the loop structure of the
dialogues. Each chart is a series of bar graphs, each bar
graph representing the average error and correction rates
over the sentences spoken by the subjects in a particular
loop of the dialogue. The highest point on each of these
bars represents the raw error rate of the voice recognizer.
The different markings within the bars themselves repre-
sent the percentage of the errors that were corrected by a
particular facility of the expectation system. The hori-
zontal design associated with "loosening" indicates the
percentage of the errors that were corrected by the use of
the flexible parsing techniques, such features as the syno-
phones and the parser commands SKIPWORD,
EXTRAWS, and LOSTWS. The vertical design associated
with expectation indicates the percentage of the errors
that were corrected by use of the expected sentence set
alone. The blank area indicates the percentage of the
errors that were corrected by using both of the above
facilities. Finally, the dot design shows the percentage of
the errors that were not corrected. Thus, for example, in
the top chart in Figure 11, the eighth loop of the dialogue
had an 8 5 % sentence error rate from the voice recogniz-
er. Of those errors, 6 % were corrected using the facili-
ties associated with loosening the search, while 2 5 %
were corrected by using only expectation. Another 6 3 %
were corrected using features from both categories. Only
6 % could not be corrected.

Test I, using a totany-ordered dialogue schema, was
done to show how well the expectation system can error
correct errorful input when it can predict exactly what
will be said next. As can be seen from the graphs in
Figure 11, as the ability to predict what will be said next
increases, so does the ability to error correct. In loop
seven of the dialogue, we deliberately had each user add
four extra sentences between the fourth and fifth
sentences of the loop. This was done to show that the
expectation system had not become a complete automa-
ton, but that it was still capable of dealing with unex-
pected input. However, as can be seen from these graphs
(Figure 11), the expectation system's error correcting
power decreases in that particular loop of the dialogue
since there is no expectation at certain points to help it.

Test II, creating a partially-ordered dialogue schema,
was done to show how the expectation acquisition algo-
rithm dealt with dialogues containing some pattern and to
see how well error correction could work when expecta-
tion was not perfect. The results are shown in Figure 12.

24 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

(c r e a t e (2) (3 i)

- ~ (~ead (rl))

(d'ivide ,pos ,),c3;)

(do.io (~o,.~,.° ° (.~,;)

(.~d ,,~, (,,.()

(m u l t i p l y (c 3) (e 6)

- I 1 '

)

@obt~.ot ,.i, ,~2;)

(r2) (l a r g e s t o) ')

Figure 7. Expected dialogue schema for Test I.

Computational Linguistics, Volume 12, Number 1, January-March 1986 25

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

(m u l t i p l y (r 1) (e l (1 ' ;) r u l t i p l y (r 2) (-_

~ u b t r a c t (rl) (z~

~ iv ide (

(d i v i d e (r 2) (e l (r 2)) ~ ~ u b t z a e t (r l) (r 2)

u b t r a c t (r l) (r

~ero

(r2) (eARfi)) ~ d d (z l) (r 2)

(r2) (rl))

4 ~ d i v i d e (rl) (el))

(.,)

26

Figure 8. Expected dialogue schema for Test II.

Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

~STAR~

(...d ,.1;)
1,1

~ d i v i d e (r l) (l a r g e s t

d d (x 2) (x l

~ ' u l t i p l y (n e g a t i v e • (r 2)) (e l) ~

Figure 9. Expected dialogue schema for Test III.

Computational Linguistics, Volume 12, Number 1, January-March 1986 27

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

START)

'~ C r e a d (rARG i)

,L 6

C r e a d (x 'ARG~

Cdouble (e2 (rARG)i~

s u b t r a c t (e2 (~ARG)) (n e g a t i v e e) ~

28

Figure 10. Expected dialogue schema for Test IV.

Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of lll-Formed Input

SENTeNCE-ERROR-RATE
1 0 0 % -

LEGEND:

9o~] ~ ~ ~

lii,'""! 70% t :

L

'°" i !111iil]! ' - '

4O%

3 0 % -

o, _ ~ ~..-.'.~~ ~

% E r r o r s C o r r e c t e d b y
~ : l o o s e n i n g
~ : e x p e c t a t i o n
[- 7 : b o t h

c o r r e c t e d

1 2 3 4 5 6 7 8 9 10
LOOP NUMBER IN DIALOGUE

WORD-ERROR-RATE
100% /

90% /

80% /

70% /

60% /

50% /

40% /

30% /

20% /

1 0 % -

0 %

1 2 3 4 5 a 7 8 9 10
LOOP NUMBER IN DIALOGUE

Figure 11. Error and correction rates for Test I.

Computational Linguistics, Volume 12, Number 1, January-March 1986 29

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

S E N T E N C E - E R R O R - R A T E
1 0 0 % -

90% -

80% -

L E G E N D : % E r r o r s

r - - l :

C o r r e c t e d b y
l o o s e n i n g
e x p e c t a t i o n
b o t h
n o t c o r r e c t e d

70% -

6 0 % -

5 0 % -

4 0 % -

3 0 % -

2 0 % -

1 0 % -

0 %

1 2 3 4
LOOP NU

. n °

5
NUMBER IN

6 7

D I A L O G U E
8 9 1 0

W O R D - E R R O R - RATE
1 0 0 % -

9 0 % -

8 0 % -

70% -

6 0 % -

5 0 % -

4 0 % -

3 0 % -

2 0 % -

1 0 % -

0 %

1 2 3 4 5 6 7
LOOP NUMBER IN D I A L O G U E

8 9 1 0

30

Figure 12. Error and correction rates for Test II.

Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

SEN TEN C E - E R R O R - RATE
1 0 0 % -

90% -

8 0 % -

L E G E N D : % E : r o r s

7 0 % -

6 0 % -

5 0 % -

4 0 % -

3 0 % -

2 0 % -

1 0 % -

0 %

N

1 2 3 4

LOOP NUMBER I
5

NUMBER

!t\i;! Ii .I

6
I N D I A L O G U E

C o r r e c t e d b y
l o o s e n i n g

e x p e c t a t i o n
b o t h
n o t c o r r e c t e d

~" i " " - "

7 8 9 1 0

W O R D - E R R O R - R A T E
1 0 0 % -

9 0 % -

8 0 % -

7 0% -

6 0 % -

50% -

4 0 % -

3 0 % -

2 0 %

1 0 %

0 %

1 2 3 4 5 6 7 8
LOOP NUMBER I N D I A L O G U E

9 1 0

Figure 13. Error and correction rates for Test III.

Computational Linguistics, Volume 12, Number 1, January-March 1986 31

Pamela K. Fink and Alan W. Biermann The Correction of lll-Formed Input

S E N TEN C E - E R R O R - RATE
1 0 0 % -

9 0 % -

8 0 % -

7 0 % -

6 0 % -

5 0 % -

4 0 % -

3 0 % -

2 0 % -

1 0 % -

0 %
J

1 2

L E G E N D : % E r r o r s C o r r e c t e d b y
~ : l o o s e n i n g

~ : e x p e c t a t i o n
E Z] : b o t h
~ : n o t c o r r e c t e d

3

LOOP

UiliiI !llll

L:Z.
4 5 6 7

NUMBER I N D I A L O G U E
8 9 1 0

W O R D - E R R O R - RATE
1 0 0 % -

9 0 % -

8 0 % -

70% -

60% -

50% -

4 0 % -

3 0 % -

2 0 % -

O~ _ _ _

1 2 3 4 5 6 7
L O O P NUMBER I N D I A L O G U E

8 9 1 0

32

Figure 14. Error and correction rates for Test IV.

Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

OF WORDS/SECOND
4 -

I
3 -

I
2 -

I
1 -

I
0

T E S T I - T o t a l l y - O r d e r e d S c h ~ / /

1 2 3

OF WORDS/SECOND
4 -

I
3 -

I
2 -

I
1 -

0

4 5 6 7 8 9

LOOP NUMBER IN DIALOGUE

T E S T I I - P a r t i a l l y - O r d e r e d S c h e m a

10

1 2 3 4 $ 6 7 8 9
LOOP NUMBER IN DIALOGUE

OF WORDS/SECOND
4 -

I
3 -

I
2 -

I
1 -

I
0

T E S T I I I - T o t a l l y - U n o x d e r e d S c h e m a

10

1 2 3 4 5 6 7 8 9
LOOP NUMBER IN DIALOGUE

10

OF WORDS/SECOND
4 -

I
3 -

I
2 -

I
1 -

I
0

T E S T IV - T o t a l l y - O r d e r e d S c h e m a v i t h A r g u m e n t s

1 2 3 4 5 6 7 8 9
LOOP NUMBER IN DIALOGUE

10

Figure 15. Speech rate in the four dialogue schema tests.

Computational Linguistics, Volume 12, Number 1, January-March 1986 33

Pamela K. Fink and Alan W. Biermann The Correction of m-Formed Input

Test III demonstrates the error correction capabilities
of the system when expectation only knows that one of a
group of sentences will be said next. It produces a total-
ly-unordered dialogue schema. The results of the
systems error correction capabilities in such a situation
appear in Figure 13.

Test IV uses a totally-ordered dialogue schema, but
with a variation from test I. Each sentence sooner or
later contains an argument so that the system does not
know everything about the sentence that will be said
next. The data given in Figure 14 shows the error
correction rates for this dialogue. It clearly shows how
error correction failures increase until after the third loop
when argument creation begins so that the system no
longer error corrects incorrectly.

Figure 15 shows the graphs of the average speech rate
of the speakers for each of the four tests. Like the other
eight graphs, these graphs reflect the loop structure of
the dialogues. As can be seen, the speakers tended to
increase their speech rate as they talked to the system.
This behavior was hoped for because as the speech rate
increased, so did the error rate of the speech recognizer,
thus placing more of a burden on the error correcting
abilities of the expectation system. Note that, in all eight
graphs in Figures 11 through 14, the word and sentence
error rates from the voice recognizer generally increased
with the progress through the dialogue. This is due to the
increased rate of speech. However, the actual failure rate
of VNLCE did not increase by the same amount. These
extra errors were corrected by the expectation system.

Figure 16 gives a summary of the average error and
correction rates for each test and over all.

7 RELATED LITERATURE

A number of speech understanding systems have been
developed during the past fifteen years (Barnett et al.
1980, Dixon and Martin 1979, Erman et al. 1980, Haton
and Pierrel 1976, Lea 1980, Lowerre and Reddy 1980,
Medress 1980, Reddy 1976, Walker 1978, and Wolf and
Woods 1980). Most of these efforts concentrated on the
interaction between low level information sources from a
speech recognizer and a natural language processor to
discover the meaning of an input sentence. While some
of these systems did exhibit expectation capabilities at
the sentence level, none acquired dialogues of the kind
described here for the sake of dialogue level expectation
and error correction. A detailed description of the kinds
of expectation mechanisms appearing in these systems
appears in Fink (1983).

The problem of handling ill-formed input has been
studied by Carbonell and Hayes (1983), Granger (1983),
Jensen et al. (1983), Kwasny and Sondheimer (1981),
Riesbeek and Schank (1976), Thompson (1980), Weis-
chedel and Black (1980), and Weischedel and Sondheim-
er (1983). A wide variety of techniques have been
developed for addressing problems at the word, phrase,
sentence, and in some cases, dialogue level. However,
these methodologies have not used historical information
at the dialogue level as described here. In most cases, the
goal of these systems is to characterize the ill-formed
input into classes of errors and to correct on that basis.
The work described here makes no attempt to classify the
errors, but treats them as random events that occur at
any point in a sentence. Thus, an error in this work has
no pattern but occurs probabilistically. A verb is just as
likely to be mis-recognized or not recognized as is a
noun, adjective, determiner, etc.

T e s t I T e s t I I T e s t I I I T e s t I V O v e r - a l l

word-error-rate 18.78 11.75 11.25 12.17 13.49

c o r r e c t e d
w o r d - e r r o r - r a t e

s e n t e n c e - e r r o r - r a t e

. 5 9 1 . 5 0 1 . 5 0 4 . 1 7 1 . 9 4

6 1 . 2 2 4 0 . 8 3 5 2 . 2 5 5 6 . 3 3 5 2 . 6 6

c o r r e c t e d
s e n t e n c e - e r r o r - r a t e

3 . 2 2 6 . 0 0 5 . 3 8 1 6 , 0 0 7 . 6 5

a v e r a g e s p e a k i n g r a t e 2 . 2 7 2 . 9 5 1 . 8 5 1 . 9 7 2 . 2 6

Figure 16. Average word and sentence error rate in percent,
average speaking rate in words-spoken-per-minute.

34 Computational Linguistics, Volume 12, Number 1, January-March 1986

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

The acquisition of dialogue as implemented in VNLCE
is reminiscent of the program synthesis methodology
developed by Biermann and Krishnaswamy (1976)
where program flowcharts were constructed from traces
of their behaviors. However, the "flowcharts" in the
current project are probabilistic in nature and the prob-
lems associated with matching incoming sentences to
existing nodes has not been previously addressed.
Another dialogue acquisition system has been developed
by Ho (1984). However, that system has different goals:
to enable the user to consciously design a dialogue to
embody a particular human-machine interaction. The
acquisition system described here is aimed at dealing with
ill-formed input and is completely automatic and invisible
to the user. It self activates to bias recognition toward
historically observed patterns but is not otherwise
observable.

The VNLCE processor may be considered to be a
learning system of the tradition described, for example, in
Michalski et al. (1984). The current system learns finite
state flowcharts whereas typical learning systems usually
acquire coefficient values as in Minsky and Papert
(1969), assertional statements as in Michalski (1980), or
semantic nets as in Winston (1975). That is, the current
system learns procedures rather than data structures.
There is some literature on procedure acquisition such as
the LISP synthesis work described in Biermann et al.
(1984) and the PROLOG synthesis method of Shapiro
(1982). However, the latter methodologies have not
been applied to dialogue acquisition.

8 CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

We have shown that the ability to use expectation in the
form of knowledge about the dialogue being spoken, as
with humans, is a tremendous aid to speech recognition
by computer. Since expectation, in this research, has
been based on repetition of patterns, the expectation
system's ability to correct varies, of course, with the
repetitiveness of the dialogue itself. We have attempted,
in sections 5 and 6, to justify this decision by demon-
strating how the expectation system can acquire common
programming constructs such as loops and arguments. It
is our belief that repetitious patterns occur in everyday
life, and that the expectation system is capable of dealing
with such patterns, resulting in a generalized situation
similar to a Schankian script. Finally, we have tested the
expectation system's correction power in some represen-
tative situations, as discussed in section 6. It has been
demonstrated that the expectation system has the capa-
bilities of reducing a large sentence error rate to nearly
zero in many situations. At the word level, error rates to
the expectation system climbed as high as 47 % in certain
user dialogues when the user was speaking fast. At the
same time, the error rate leaving the expectation system
remained fairly low at between zero and fifteen percent.
On the average, the system was able to lower a sentence
error rate of 5 3 % to 8%, and a word error rate of

13.5% to 2%. The use of expectation, along with an
ability to ignore or add words to the input stream of the
parser, is all that is needed to achieve this error
correction rate on randomly erroneous input.

The parser design, with the five choices at each word
slot, has the potential to run into problems with the expo-
nential growth of the search and to result in unacceptably
long parse times. However, when the rating scheme is
used intelligently, it not only aids in finding the best
parse of a word sequence, but it also helps to lower the
search time necessary by pruning unreasonable search
choices. The average parse time for a sentence, from the
tests discussed above, was 5.1 seconds while the average
total processing time for a sentence was 10.5 seconds.
This was on a highly loaded PDP 11/70 under the UNIX 1
operating system. In the event that a particular word
sequence leads the parser down a garden path, a time-
out facility has been implemented that causes the parser
to fail after one minute of real-time. However, out of a
total of 629 sentences spoken in the above four tests, this
feature was needed only 19 times.

The research reported on here was divided into two
parts, the theory and the implementation. Most of the
theory developed was implemented in the VNLCE
system. This theory has been aimed at error correction
of random errors using expectation based on historical
information. However, there are many possible exten-
sions that could be examined in the future and added to
the implementation if the investigation indicates that it
would create a yet more usable system. These include
the following:

• use of low level knowledge from the speech recognition
phase,

• use of high level knowledge about the domain in partic-
ular and the dialogue task in general,

• a "continue" facility and an "auto- loop" facility as
described by Biermann and Krishnaswamy (1976),

• a "conditioning" facility as described by Fink et al.
(1985),

• implementation of new types of paraphrasing,
• checking a larger environment in the expectation

acquisition algorithm when deciding if an incoming
sentence is the same or similar to one already seen, and

• examining inter-speaker dialogue patterns.

All but two of these areas for expansion are aimed at
moving the expectation system from one that finds
patterns in a user's dialogues and acquires historical
knowledge about them to one that can acquire true
procedures. The first two areas for expansion have noth-
ing to do with creating a true procedure acquisition
module but would be highly desirable from the point of
view of the speech recognition application. Features
three and four would simply make the system easier to
use and would require little theoretical investigation. The
final three would require research efforts.

In conclusion, we have designed a system that is capa-
ble of correcting ill-formed input and implemented the

Computational Linguistics, Volume 12, Number 1, January-March 1986 35

Pamela K. Fink and Alan W. Biermann The Correction of Ill-Formed Input

design in the area of speech recognition. The system
performs error-correction through a mechanism also used
by humans in the same situation, that of expectation. We
have shown that the expectation algorithm is general
enough to handle almost any dialogue structure. It is
possible to predict approximately what kind of error
correction to expect from the system based on the
dialogue structure and the word error rate. We have also
shown that the theory on which the implemented expec-
tation system is based is capable of acquiring and gener-
alizing real-world, script-like situations. This research
can serve as a starting point for further research into the
field of computer expectation, procedure acquisition, and
learning.

REFERENCES

Ballard, B. 1979 Semantic Processing for a Natural Language
Programming System. Ph.D. Dissertation Report CS-1979-8, Duke
University, Durham, North Carolina.

Barnett, J.; Berstein, M.; Gillman, R.; and Kameny, I. 1980 The SDC
Speech Understanding System. In Lea 1980: 272-293.

Biermann, A. and Ballard, B. 1980 Toward Natural Language Compu-
tation. AJCL 6(2): 71-86.

Biermann, A.; Guiho, G.; and Kodratoff, Y., Eds. 1984 Automatic
Program Construction Techniques. Macmillan Publishing Co., New
York, New York.

Biermann, A. and Krishnaswamy, R. 1976 Construction of Programs
from Example Computations. IEEE Transactions on Software Engi-
neering SE-2(3): 141-153.

Biermann, A.; Rodman, R.; Rubin, D.; and Heidlage, J. 1985. Natural
Language with Discrete Speech as a Mode for Human-to-Machine
Communication. Comm. of ACM 28(6).

Carbonell, J. and Hayes, P. 1983 Recovery Strategies for Parsing
Extragrammatical Language. AJCL 9(3-4): 123-146.

Dixon, N. and Martin, T., Eds. 1979 Automatic Speech and Speaker
Recognition. IEEE Press, New York, New York.

Erman, L.; Hayes-Roth, F; Lesser, V.; and Reddy, D. 1980 The Hear-
say-II Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty. Computing Surveys, 12(2).

Fink, P. 1983 The Acquisition and Use of Dialogue Expectation in
Speech Recognition, Dissertation, Department of Computer
Science, Duke University.

Fink, P.; Sigmon, A.; and Biermann, A. 1985 Computer Control Via
Limited Natural Language. IEEE Trans SMC SMC-14(1): 54-68.

Granger, R. 1983 The NOMAD System: Expectation-Based
Detection and Correction of Errors during Understanding of
Syntactically Ill-Formed Text. AJCL 9(3-4): 188-196.

Haton, J. and Pierrel, J. 1976 Organization and Operation of a
Connected Speech Understanding System at Lexical, Syntactic and

Semantic Levels. 1976 IEEE International Conference on Acous-
tics, Speech and Signal Processing, Philadelphia, Pennsylvania:
430-433.

Ho, T.-P. 1984 The Dialogue Designing Dialogue System, Disserta-
tion, Computer Science Department, California Institute of Tech-
nology.

Jensen, K.; Heidorn, G.; Miller, L.; and Ravin, Y. 1983 Parse Fitting
and Prose Fixing: Getting a Hold on Ill-Formedness. AJCL 9(3-4):
147-160.

Kwasny, S. and Sondheimer, N. 1981 Relaxation Techniques for Pars-
ing Grammatically Ill-Formed Input in Natural Language Under-
standing Systems. AJCL 7(2): 99-108.

Lea, W., Ed. 1980 Trends in Speech Recognition. Prentice-Hall, New
Jersey.

Lowerre, B. and Reddy, R. 1980 The Harpy Speech Understanding
System. In Lea 1980: 340-360.

Medress, M. 1980 The Sperry Univac System for Continuous Speech
Recognition. In Lea 1980.

Michalski, R. 1980 Pattern Recognition as Rule-Guided Inductive
Inference. IEEE Trans. Pattern Analysis and Machine Intelligence.

Michalski, R.; Carbonell, J.; and Mitchell, T. 1984 Machine Learning.
Springer Verlag, New York.

Minsky, M. and Papert, S. 1969 Perceptrons. MIT Press, Cambridge,
Massachusetts.

Reddy, D. 1976 Speech Recognition by Machine: A Review.
Proceedings o f the IEEE 64(4): 501-531.

Riesbeck, C. and Schank, R. 1976 Comprehension by Computer:
Expectation-Based Analysis of Sentences in Context. Tech. Rep.
78, Computer Science Department, Yale University, New Haven,
Connecticut.

Schank, R. and Abelson, R. 1977 Scripts, Plans, Goals, and Under-
standing. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Shapiro, E. 1982 Algorithmic Program Debugging. MIT Press,
Cambridge, Massachusetts.

Thompson, B. 1980 Linguistic Analysis of Natural Language Commu-
nication with Computers. Proceedings of the Eighth International
Conference on Computational Linguistics, Tokyo, Japan: 190-201.

Walker, D., Ed. 1978 Understahding Spoken Language. Elsevier North-
Holland, New York, New York.

Weischedel, R. and Black, J. 1980 Responding Intelligently to Unpars-
able Inputs. AJCL 6(2): 97-109.

Weisehedel, R. and Sondheimer, N. 1983 Meta-Rules as a Basis for
Processing Ill-Formed Input. AJCL 9(3-4): 161-177.

Winston, P. 1975 Learning Structural Descriptions from Examples. In
Winston, P., Ed., Psychology of Computer Vision. McGraw-Hill, New
York, New York.

Wolf, J. and Woods, W. 1980 The HWIM Speech Understanding
System. In Lea 1980: 316-339.

Woods, W. 1970 Transition Network Grammars for Natural
Language Analysis. Comm. o f the ACM 13(10): 591-606.

NOTE

1. UNIX is a trademark of AT&T Bell Laboratories.

36 Computational Linguistics, Volume 12, Number 1, January-March 1986

