
Strong Generative Capacity, Weak Generative Capacity,
and Modern Linguistic Theories

Robert C. Berwick

MIT Artificial Intelligence Laboratory
Cambridge, MA 02139

Introduction

What makes a language a natural language? A long-
standing tradition in generative grammar holds that a
language is natural just in case it is learnable under a
constellation of auxiliary assumptions about input
evidence available to children. Yet another approach
seeks some key mathematical property that distinguishes
the natural languages from all possible symbol-systems.
With some exceptions - for example, Chomsky's demon-
stration that a complete characterization of our grammat-
ical knowledge lies beyond the power of finite state
languages - the mathematical approach has not provided
clear-cut results. For example, for a variety of reasons we
cannot say that the predicate is context-free characterizes
all and only the natural languages.

Still another use of mathematical analysis in linguistics
has been to diagnose a proposed grammatical formalism as
too powerful (allowing too many grammars or languages)
rather than as too weak. Such a diagnosis was supposed
by some to follow from Peters and Ritchie's demonstration
that the theory of transformational grammar as described
in Chomsky's Aspects of the Theory of Syntax could speci-
fy grammars to generate any recursively enumerable set.
For some this demonstration marked a watershed in the
formal analysis transformational grammar. One general
reaction (not prompted by the Peters and Ritchie result
alone) was to turn to other theories of grammar designed
to explicitly avoid the problems of a theory that could
specify an arbitrary Turing machine computation. The
proposals for generalized phrase structure grammar
(GPSG) and lexical-functional grammar (LFG) have
explicitly emphasized this point. GPSG aims for gram-
mars that generate context-free languages (though there is
some recent wavering on this point; see Pullum 1984);
LFG, for languages that are at worst context-sensitive.
Whatever the merits of the arguments for this restriction
in terms of weak generative capacity - and they are far

from obvious, as discussed at length in Berwick and Wein-
berg (1983) - one point remains: the switch was prompted
by criticism of the nearly two-decades old Aspects theory.

Much has changed in transformational grammar in
twenty years. Modern transformational grammars no
longer contain swarms of individual rules such as Passive,
Raising, or Dative. The modern government-binding (GB)
theory does not reconstruct a "deep structure", does not
contain powerful deletion rules, and has introduced a
whole host of new constraints. Given these sweeping
changes, it would seem appropriate, then, to re-examine
the Peters and Ritchie result, and compare the power of
the newer GB-style theories to these other current linguis-
tic theories. That is the aim of this paper. The basic
points to be made are these:

• Since modern transformational grammars do not
contain the powerful deletion rules available in the
Aspects theory and need not explicitly reconstruct an
underlying deep structure, they are not immediately
subject to the Peters and Ritchie results. Thus the fears
recently advanced by Bresnan and Kaplan (1982:
xli-xlii) or Johnson-Laird (1983: 280) simply do not
hold.

• Because modern transformational grammars use traces
to mark the site of displaced constituents, the size of
underlying structures that need be recovered for
language recognition are just linearly larger than their
corresponding surface sentences. Indeed, it appears
that deep structures ("D-structures" in the current
theory) need not be built at all to test grammaticality.

• Modern transformational grammars seem more
restricted than theories like LFG, not less restricted, in
the sense that the agreement predicates available in a
modern transformational theory are defined solely over
unordered sets of features, rather than, as in the lexi-
cal-functional theory, over hierarchical trees. Agree-
ment ("unification") over trees adds extra power to the

Copyright 1985 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that the
copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy otherwise, or
to republish, requires a fee and/or specific permission.

0362-613X/84/030189-14503.00

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 189

Robert C. Berwick Generative Capacity and Linguistic Theory

lexical-functional formalism. The result is that there
are some strikingly unnatural grammars that lexical-
functional grammars can describe, but not GB gram-
mars. This result about strong generative capacity
shows up on the weak generative capacity side: GB
grammars cannot generate some strictly context-sensi-
tive languages that can be easily generated by lexical-
functional grammars.

This paper is organized as follows. Section 1 reviews some
of the basic formal and linguistic examples demonstrating
that the excess power of the Aspects theory comes from
unbounded deletion. It then shows why this power is not
permitted in current transformational theories. Section 2
turns to a general analysis of the power of government-
binding grammars. Section 3 compares the strong and
weak generative capacity, of lexical-functional grammar
and transformational grammars. It aims to pinpoint just
why lexical-functional grammars are more powerful than
government-binding grammars. Section 4 concludes with
some speculations about the precise formal characteriza-
tion of natural languages. More generally, these results
suggest a different role for the formal analysis of natural
languages. Instead of trying to fit natural languages into
some pre-defined mathematical or formal mold, this
revised strategy aims to discover the properties of natural
languages first, and then characterize them formally. The
results here may be regarded as the first fruits of this stra-
tegy, applied to current linguistic theories.

1. U n b o u n d e d De le t ion , Past and P r e s e n t

It has long been recognized that the possibility of
unbounded deletion is at the root of the computational
power of Aspects style transformational theories. If what a
machine must do to recognize whether or not a given
sentence (surface string) is in the language generated by
some transformational g rammar is to recover its deep
structure, and if deep structures can be arbitrarily large
compared to the surface strings derived from them, then
the recognition procedures for such languages are not even
recursive.

Before describing Peters and Ritchie's formal charac-
terization of this connection between deep structure length
and the complexity of recognition, it would be valuable to
give some insight into just why this connection should
hold. Recall that a recursive set is one where membership
in the set can be determined in some finite (though
perhaps large) amount of time. Here, the set we have in
mind is the language generated by some transformational
grammar, L(TG); given some sentence s, our job is to
calculate s ~ L(TG) and return a yes or no answer in some
finite amount of time. Also recall that a set is recursively
enumerable (r.e.) if, whenever s is in fact in L(TG), there is
a procedure such that the answer yes can come back in
some finite amount of time, but if s is not in the language,
we have no such guarantee; the procedure could just run
forever.

The key insight connecting length of deep structure to
recursive enumerability comes from examining the condi-

tions under which a computation could run forever. If we
use a standard Turing machine model of computation, one
thing that could happen is that the machine could just
keep using more and more new tape cells, moving a step
each time. This could go on forever. So one way to obtain
unbounded computation time is to use unbounded space.
If we substitute for the "tape cells" of the Turing machine
the number of embedded s or np cycles in some arbitrarily
large deep structure, and i f we must recover this deep struc-
ture in order to figure out whether or not the sentence is in
the grammar, then. we have our correspondence between
unbounded deep structures and unbounded time for
computation.

But is this the only way to achieve unboundedly long
computations? Why not just have the machine shuttle
back forth along some fixed sequence of tape cells, using
the same space but looping forever? This is certainly
possible, but in this case one can show that the number of
distinct machine configurations is bounded above by the
cross-product of a fixed number of possible moves times a
fixed number of possible cell contents. But this means we
could "shut off" the machine after this number of time
steps (counting each Turing machine move as a tick of the
clock), since the machine cannot do anything new after
this number of moves, t In other words, given an upper
bound on the space a machine uses, we can fix an upper
bound on the length of time the machine can ever use
without looping forever. 2

In short then, the only way to get non-recursive compu-
tations is by using unbounded space. In the transforma-
tional analog, Peters and Ritchie (1973) connected
recognition complexity to the possible difference in length
between deep structures and surface strings:

Let G be a transformational grammar. L e t f c be the
cycling function of G, where f o x is 0 if x is not in
L(G), and otherwise is the least number s such that G
assigns x a deep structure with s subsentences, l f f c
is bounded by an elementary (primitive) recursive
function, then L(G) is elementary (primitive) recur-
sive. (In fact, if f 6 is linear, then L(G) is in a still
smaller class.) If the cycling function is not bounded,
then L(G) is not even recursive.

It is the possibility of arbitrary deletion that makes a
surface sentence arbitrarily "shorter" than its correspond-
ing underlying deep structure. Lapointe (1977), in an
excellent review, sums up the situation:

Putnam noted that early theories of transformations
allowed grammars which could generate any r.e. language
(whether recursive or not). The chief reason for this was
that early theories allowed arbitrary deletions and substi-
tutions in the course of a derivation. Arbitrary permuta-
tions or copying could never cause a grammar to generate
a nonrecursive set, for if w i and ~i+l a r e successive steps in
a derivation such that Ti+ 1 arises through the application

i The "clock" takes up a bit of extra space - log space - since it has to
count!
2 This standard result may be found in Hoperoft and Ullman (1979:
300-301).

190 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

of a permutation or copying rule [from] ri then . . . the
number of terminal symbols in ~i+1 will be at least as
great as [the number of] terminal symbols in ~i- But this
property, that successive steps in a derivation do not
"shrink" in length, is the basic defining characteristic of
context-sensitive grammars. Therefore only the applica-
tion of rules which reduce length (that is, deletions and
substitutions) could cause a grammar to generate a non-
CS [context-sensitive rcb], and perhaps a nonrecursive,
language. (1977: 228)

We can exhibit this result in a compact form. It is well
known that any r.e. set can be described as the homo-
morphic image of the intersection of two context-free
languages (Ginsburg, Greibach] and Harrison 1967).
That is,

LO = H(CFL 1 N CFL2)

Recall that a homomorphism is simply a "respelling" of
the symbols of a language. The key point is that the
homomorphism required here permits the deletion of
unbounded strings of symbols, that is,

H(z) =

where ~ is the empty string. In fact, all the proofs demon-
strating the power of Aspects-style transformational gram-
mars make use of this erasing power in one fashion or
another. The remainder of this section reviews two of
these demonstrations in the literature, one by Peters
(1973), and one by Kimball (1967). (Another demon-
stration that Aspects-style TGs can generate any r.e.
language, given by Salomma (1971), also uses unbounded
deletion, but is similar to Kimball's approach and will not
be discussed here.) The point of going through the exam-
ples in detail is to show exactly how each proof relies on
unbounded deletion, and why it is that each does not go
through under the assumptions of the current govern-
ment-binding theory. The basic reason for the change is
that unlimited erasing or deletion is no longer allowed.
Indeed, as the next section will make clear, only a linear
amount of erasing is permitted in current theories. This
insight is the key to the analysis of the modern theory.

We begin with Peters's 1973 demonstration. Peters
gives a specific example showing just how "large" deep
structures can be associated with "short" surface
sentences. Again, copying and deletion are the culprits.
Peters's example relies on the "Equi np deletion" analysis
of sentences such as these:

1. Their sitting down promises to steady the canoe.

On this account, such sentences have an underlying
structure that explicitly reconstructs the missing np
subject of the embedded complement to promise:

2. [NP Their sitting down] promises [s [NP their sitting
down] to steady the canoe].

Note that this sentence consists of three S phrases: the root
S and two embedded S phrases (the subject NP of the
matrix clause and the subject NP of the complement of the
VP). The subject NP of the VP complement is deleted

under structural identity with the matrix subject NP. This
deletion follows the "recoverability of deletion" constraint.
Peters next builds a surface string that has a large associ-
ated deep structure by embedding this sentence recursively
in a construction of the same type, that is, a sentence that
has a matrix subject NP structurally identical to the
subject NP of a verb complement. But the subject NP has
more than two S phrases (three). Given identity between
subject NP of the matrix and the subject of the comple-
ment, it follows that at the level of deep structure the
subject NP of the complement must have the same number
of subsentences as the subject NP of the matrix, here,
three. The hew sentence given below must have a deep
structure with more than 22 = 4 S phrases in all:

3. Their sitting down promising to steady the canoe
threatens to spoil the joke.

Clearly, as Peters notes, we can carry out this embedding
over and over again. Each time the number of deep struc-
ture subsentences is at least doubled, because of the
assumption that the complement NP subject is identical to
that of the matrix subject. If we let ds(n) be the size of the
deep structure corresponding to such a sentence of length
n, then we have the inductive formula that ds(n) >
2ds(n-1). If we solve this formula, we find that the
number of deep structure subsentences grows as an expo-
nential function when compared to the length of the
surface string, exactly the sort of sentence that was to be
constructed. If the sentence recognizer must reconstruct
this entire deep structure in order to determine language
membership, then at least this much space, and hence at
least this much time, will be required, just to write down
the deep structure.

Interestingly, the argument does not work under
current versions of transformational theory. The simple
reason is that we no longer explicitly copy material to
reconstruct a deep structure; in fact, we no longer rebuild
deep structure at all. In place of the literally duplicated
subject complement NPs, we have an empty category
placeholder, PRO, indexed to the proper antecedent NP as
appropriate?

4. [NP [NP Their sitting down], promising [Pro/to steady
the canoe]]j threatens [Proj to spoil the joke]

Crucially, the indexed Pros are not "nested". What does
this mean and why does this matter? Proj is indexed to the
entire matrix subject NP their sitting down promising to
steady the canoe. But it does not contain as a subpart the
PRO corresponding to their sitting down (although it may
be indexed to a subpart of a long antecedent string). The
underlying predicate-argument structure is fixed without
building up an explicit representation of antecedents in the
embedded clause, what used to be called "deep structure."

3 The other possibility is that the empty category is a trace, the result of
the movement of an NP from an argument position like the direct object
of a transitive verb. Here the empty category is PRO rather than t r a c e

because the subject NP position in the complement is not governed by
tense or the matrix verb, but the reader may safely ignore this detail for
our purposes here.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 191

Robert C. Berwick Generative Capacity and Linguistic Theory

By changing what the representation looks like we have
avoided the problem of exponential space growth. At each
step we add just a single new element to the reconstructed
structure, the new PRO. Our new inductive equation is
simply ds (n)=ds (n -1)+ l - a linear increase in the size of
reconstructed forms, compared to the surface sentence
lengths. In fact, if we ignored the bracketing and just
counted the PROs, at each step we also add a new word
(the new verb) and the underlying representations are
always just a fixed constant larger than the corresponding
surface sentences.

One subtle point still remains. At each step we add an
indexed element, PRO/. The index itself must grow as the
number of PROs increases. If we assume a standard bina-
ry encoding, an index of size i will take log2i space to write
down, not the constant space implicitly assumed just
above. Since l o g / < i, at worst the space added for each
embedding will be proportional to i. Summed over n possi-
ble embeddings, this is at worst n 2 space, not exponential
space. In the next section we shall see how this represen-
tation of so-called "empty categories" works in general?

Peters's example centered on a "natura l" example that
exhibited exponential deep structure growth. We next
turn to a more artificial example, but one showing how
arbitrarily large deep structures may be used to generate
any r.e. language. Kimball (1967) does this by exhibiting
a transformational g rammar that meets a variant of the
Ginsburg, Greibach, and Harrison theorem (due to
Haines, cited in Kimball 1967: 185). In brief, Kimball
sets up a base context-free g rammar to generate two trees,
rooted at S 1 and S 2, corresponding to the two context-free
languages demanded by the homomorphism theorem
(C F L i and CFL2) and a third tree dominating these two
that eventually "simulates" the homomorphism H. S 1

dominates a terminal string labeled x and S 2, a terminal
string labeled y. Dominating these two subtrees is a third
tree that, besides x and y, dominates a terminal string z.
The idea is to use a single transformation to successively
check that the first member of x matches the first member
of y and z; if so, this element is erased in x and y. If all
elements match, and we are at the end of z (indicated by a
special symbol), then the two strings are identical; this
step carries out the intersection of the two context-free
languages. A final transformation performs the required
homomorphism. Figure 1 depicts the overall scheme. It is
important to point out that both S 1 and S 2 generate
context-free languages that are self-embedding, of the
general form aicaii. Thus they must exhibit recursion on
some nonterminal node in the relevant context-free gram-
mar.

As Kimball notes, the strings x and y are deleted under
identity with z, so nothing is amiss here in the Aspects

theory. X and y are arbitrarily long. The underlying
"deep structure" (the context-free base) is arbitrarily larg-
er than the resulting surface string, namely, some part of z
that remains after the homomorphism does its work.

What happens to this example in a modern transforma-
tional theory? The key point is that the modern theory

does not have a deletion operation like the one just
presented. Instead, a constituent is moved from one posi-
tion to a "landing site" within its own cyclic domain or to
the next higher cyclic domain? In English, the cyclic
nodes are S and NP. 6 When a node is moved, it leaves
behind a trace, denoted e, of the same category as the
displaced constituent, but with no phonological features.
(Thus the trace is not "pronounced" and does not show up
in the surface sentence.) The trace is co-indexed to the
displaced constituent, as indicated by a subscript. For
example, given the sentence,

5. John bought what

we could move what, yielding (after some adjustment with
the auxiliary verb),

6. What did John buy e i

Now consider Kimball 's tree structures again. Since S 1
and S 2 are true recursive sub-trees, in a trace-oriented
theory the way that we would get deletion would be to
successively move elements of x and y to higher and higher
phrases, leaving behind traces (denoted by ei) as we go.
Schematically, oar output structure would have to look
something like that in figure 2, where R indicates a cyclic
node. As it stands though, this structure is impossible
because it requires traces to be linked to elements that are
"too far away": according to a key constraint of the
modern transformational theory, the subjaceney
constraint, the linking can cross at most one cyclic node.
Since all recursion must eventually pass through S or NP
nodes, subjacency must be violated by the trees pictured in
figure 2. Put another way, the rule that "erases", for
example, x 1, now must move x I across many S or NP
nodes, and this movement is not directly possible. An
alternative is to move X i successive cyclically, up the chain
of R nodes one step at a time. But there are only two ways
to do this: either we wind up moving more and more nodes
at each step - at the n th step we move n nodes, which must
" land" at n spots at the next higher cyclic domain - or we
collapse how many nodes we move by adjoining some of
the moved elements together. Figure 3 shows both possi-
bilities.

Both solutions are ruled out in current theories of trans-
formational grammar . The movement of an arbi t rary
number of nodes in a single cycle is impossible because it
calls for an arbi t rary number of " landing sites" in domain
n+ l . In fact, there can only be a finite number of such
possibilities, as specified by a set of context-free base rules.
For example, we can move an NP to a subject or object

4 There is another solution to the index growth problem, one that will be
required later on. Suppose that each indexed NP or PRO is in effect a
distinct element of the grammar's vocabulary. Thus the grammar allows
a denumerable infinity of "'pre-indexed" elements NPi, NP 2 This
is not such a strange proposal, since the index is not used for any syntactic
process, but simply for co-indexing. As we shall see, this same proposal is
made, usually implicitly, in most current theories, for example, in the
lexical-functional theory.
5 In the next section we shall take a slightly different position and define
admissible annotated surface structures without literal movement.
6 For our purposes here, cyclic nodes are those that exhibit recursion.

192 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

Transformation:

structural condition (roughly):
[s, Xx] Yy] Zz
x = y = z; .~, y, z are terminal symbols

structural change:
delete x and y

S / \
Sl $2

/ \
CT"LL CFT,2

! I
x y

Figure 1. Kimball 's transformation to generate any r.e. set.

position, a wh phrase to a comp position (the position occu-
pied by that in I know that Mary likes ice cream). 7 But we
cannot move n nodes in a single cycle, because there will
not be enough places tO put the moved constituents.

The second solution is also ruled out. Either the
adjoined NPs linked to the traces violate subjacency (as
pictured), or else we must also adjoin at each step i a copy
of the i - 1 st trace to the i th trace. But this last method is
also barred, because we do not admit "nested" traces, or
tree structures that dominate some arbitrarily deep
sequence of nested empty elements. In other words, a
trace can be co-indexed at its "top-level" to a displaced
constituent, but is otherwise "opaque"; it has no interior
structure. There are in fact good linguistic reasons for a
principle banning nested traces (see Hornstein 1984).
Section 3 probes the formal implications of this constraint
in more detail.

It is hard then to see how the required trace structure
linking x and z could even be built. But this is just the first
step in Kimball 's proof. Enforcing equality between x and
y looks even harder. Of course, this by no means shows
that there is no way to carry out Kimball 's construction,
but it does hint at some of the difficulties in a revised
grammatical framework that does not permit the same
liberties with deletions as Aspects, and does not rely on an
explicitly reconstructed D-structure.

2. The Complexity of Modern Transformational
Grammar

As we have seen, the crux of the problem with
Aspects-style transformational grammars is deletion, and,
more pointedly, the demand to recover unboundedly large
deep structures in order to determine sentence-hood. The
proofs of intractability all hinge on the assumption that
the job of the parser is to recover a literal copy of deleted
elements. If this assumption is not needed, then the job of
the recognizer could well be easier. The modern theory
requires only the recovery of a t r ace - or PRO-augmented

7 See the next sect ion for more on " l a n d i n g s i tes ."

structure, an "annotated surface structure". This makes a
difference. As Lapointe (1977) shows, it makes the recog-
nition problem for such languages recursive. Whatever
the merits of their arguments on other grounds, Lapointe 's
result renders moot Bresnan and Kaplan ' sconcerns (1982:
xli) about the non-recursiveness of transformational theo-
ry, since their criticisms apply only to the older Aspects
theory. This is our first conclusion.

Much more than this can be said. If the recognizer
does not have to recover full deep structures, then its job
could be much easier, as observed by Peters and Ritchie
1973:

Putnam proposed that the class of transformational gram-
mars be defined so that they satisfy a "cut-elimination"
theorem. We can interpret this rather broadly to mean
that for for every grammar G 1 in a class there exists 2 such
that (i) L(G 1) = L(G2) and (ii) there is a constant k with the
property that for every x in L(G2), there is a deep phrase marker
q~ underlying x with respect to G 2 such that l[d(q~)] < kx.

(1973: 81-82)

Here, the notation l(x) stands for "length of", while d((~) is
the "debracket izat ion" of the deep structure. The
debracketization consists of terminal elements sans right
and left brackets, but with traces and PROs. As Peters
and Ritchie go on to say:

We now see that any grammar satisfying such a cut-elimi-
nation theorem generates a language which more than
being recursive is context sensitive. This is so because a
nondeterministic linear bounded automaton can determine
both that a labeled bracketing 4 is strongly generated by
a context sensitive grammar and that it underlies a given
string x if the automaton has enough tape to write 4.

(1973:82)

How would such a linearly-bounded recognizer work?
Roughly, it would use a kind of "analysis by synthesis":
given a sentence of length n, it would mark out a length of
input tape kn, k a constant depending on the t ransforma-
tional grammar . The machine would be guaranteed that
annotated surface structures could not get larger than this.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 193

Robert C. Berwick Generative Capacity and Linguistic Theory

/ S ~ I z 2 • • . Z n

S1,, $ 2 ~

R R

/ \e . /'e.
R R

/
~ e n - 1 en-- 1

. . . / . . . /

R R

el ~et

Figure 2. Traces and the Kimball construc~tion.

The machine would then use its nondeterministic power to
"guess" all possible annotated surface structures less than
or equal to this length, now with the proviso that one of
them must be a correct underlying structure if the
sentence in question is in fact in the language generated by
the grammar. Since the number of (NP or S) cycles in
each structure is bounded, we may simply try all possible
transformational rules (again nondeterministically) to
produce possible surface sentences, one at a time. If there
is a match, then the sentence is in the language; if all
structures less than our bound are tested an fail, then the
sentence is not in the language, s

What then of modern transformational grammar? We
claim that D-structure need not be reconstructed at all to
determine grammaticality. This may be a surprise for
some readers accustomed to the older picture of a transfor-
mational grammar, where annotated surface structure is
just the result of mapping from D-structure under the
operation of Move a. But it is nonetheless true. Chomsky
(1981: 91ff.) observes that annotated surface structures
may be simply defined with respect to certain admissibility
conditions (more on these shortly) without regard to an
actual movement rule that maps from one level to
another. 9

Our goal, then, will be to assume that only annotated
surface structure is built to test grammaticality. "~ We
must now define more carefully just what annotated
surface structure is in the current GB theory. We then
show that these representations are at most linearly larger
than their corresponding surface sentences.

We begin simply by describing the set of admissible
annotated surface structures without reference to D-struc-
ture. That is, we define the set of annotated surface struc-
tures statically, in the manner that Joshi and Levy (1977)
define a set of admissible tree structures. Roughly, the
annotated surface structures of a given grammar are just
the set of all well-formed labeled bracketings produced by
the constraints of X theory plus the restrictions imposed
by lexical subcategorization, plus bracketings where empty
categories appear in certain positions, governed by a fixed

set of conditions. In more detail, the well-formed anno-
tated surface structures are defined inductively as
follows: ~

(l): Following standard assumptions, constraints along
with locality conditions on subcategorization togeth-
er yield a system describable by a context-free gram-
mar (see, e.g., Gazdar and Pullum 1981). All NPs
dominate some lexical material and correspond in
one and only one way to the A positions, arguments
subcategorized by the relevant verbs, again following
the method outlined by Joshi and Levy (1977); the
positions in English are: adjacent to the verb, for an
object NP; first NP under S, for subject NP; first NP
under PP for oblique PP, and so forth. ~2 Further, all
such lexical NPs must appear in argument (A) posi-
tions, where the notion of an argument position again
depends in a strictly local way on the verb (e.g., the
subject position of s e e m in English is not an argu-
ment position). Finally, we allow a finite number of
specified lexical deletions (of particular words), such

s The details of the testing procedure a r e not given here, but may of
course add some fixed space to the kn bound required to write down the
annotated surface structures.

9 At least, this seems to be so for all cases in English. But a note of quali-
fication is required. There may be subtle examples showing that D-struc-
ture must be explicitly rebuilt in order to test grammaticality. Such
examples do not seem to arise in English, but they may in other
languages, such as Italian. So for example, it may be in Italian that the
grammaticality of such examples as was built a house may demand
explicit reference to D-structure, in order to determine whether a verb is
a real passive or merely adjectival. If so, then the conclusions in the main
text might not hold, since D-structure would have to be built.

to Note that this is true of the Marcus parser (Marcus 1982).

II Even this account is incomplete in some details, ignoring certain alter-
native formulations of the theory. But these defects can be repaired at
the cost of adding more or slightly different clauses to the definition. For
example, we omit a discussion of clitics, verb movement, government
defined as mutual c-command, or Subject-Verb agreement. This last
constraint may be defined via lexical insertion contexts, following Chom-
sky (1965) as formalized by Joshi and Levy (1977).

12 Note that all these constraints are readily checked in the manner of
Joshi and Levy (1977).

194 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

Case 1: successive elements of individual nodes
n + 1 st c y c l e :

:T I X 2 • • • X n

nth c y c l e : / / /

e n

Case 2: adjunction
n + 1 st cycle:

R

R, -1

en /] :rr(- l ~ X n . 2
/

R
i

e n - 2

. . . . i

lit
/

e l

Figure 3. Successive cyclic trace-based Kimball analyses.

as of, you, in any single phrase, as long as no other
constraints are violated. All labeled bracketings
meeting these conditions are well-formed annotated
surface structures.

(II): Any of the structures of (I) with empty categories
(e.c.'s) replacing NPs, subject to the following condi-
tions, are well-formed annotated surface structures:
(i) Every such e.c. is an atomic constituent with a

numerical index and with no internal bracket-
ing;

(ii) If the e.c is governed by some X ° (lexical
element such as verb, noun, and so on), where
X governs Y iff the first branching node domi-
nating X dominates Y, and there is no interven-
ing maximal projection (full phrase) between X
and Y then:
1. the e.c. must be c-commanded by an NP

antecedent(= element with the same numer-
ical index), where c-command is defined
just as government but dropping the clause
about maximal projections; and

2. the antecedent is either a lexical NP or
another e.c. in a non-argument (A) position
(the complement of the A positions defined
above); and

3. the e.c. must be subjacent to that antece-
dent, where subjacency is defined as usual.

(iii) Else, the e.c. is ungoverned (is a "sc PRO") and
can receive an arbitrary index. ~3

(III): Any of the structures defined by (I) and (II), and, in
addition, with a wh phrase in COMP position c-com-
manding a governed e.c., or another wh phrase in
COMP position and with the same index as that
other e.c. or phrase, is a well-formed annotated
surface structure.

(IV): Any of the structures defined by (I) - (I I I) , and, in
addition, with one of those structures with an e.c.
having an index the same as that of an element
adjoined to VP (following Baltin 1982), and c-com-
manded and subjacent to that element, is a well-
formed annotated surface structure/4 There can be
at most one such adjoined position.

(V): Any of the structures defined by (I) - (IV) conjoined
so as to meet Williams's (1978) Across the Board
(ATB) conventions is a well-formed annotated

t3 Subject to constraints dictated by "control" theory, that is. We ignore
this matter here by assuming an arbitrary index for PRO; this does not
bear in any essential way on the description of the possible annotated
surface structures. Neither c-command nor subjacency seem required for
control; hence this may fall under whatever mechanism it is that inter-
prets the indices of ordinary pronouns generally, a matter we leave
outside scope of annotated surface structure.

t4 Note that the position so adjoined to VP is not part of the obligatory
argument structure mentioned by the verb.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 195

Robert C. Berwick Generative Capacity and Linguistic Theory

surface structure. ~5 Without going into detail on the
ATB constraint, its effect is to place e.c.'s in a
conjunct if its verb or verb phrase is missing; the e.c.
is bound to a c-commanding antecedent, as before.
In the case of more complex reduced conjunctions
(The mea t is ready to heat, serve, and eat) the miss-
ing constituent sequence may be represented by a
single e.c. in each missing position, though alterna-
tive analyses are to be preferred here. ~5

~ (VI) :Nothing else is a well-formed annotated surface
structure.

We also need some technical constraints. As pointed out
above, we must assume that the actual index of an NP (as
denoted by a subscript) takes up no extra space beyond the
constant storage required for a distinct nonterminal name.
Otherwise the amount of space required to write down an
annotated structure of length proportional to n could be
at worst proportional to n logn, where the logn factor is
used to hold the number of the index n. To sidestep this
problem we assume a denumerable infinity of distinct NP
"names".

This same assumption must be made explicitly or
implicitly in any theory that assumes co-indexing but still
strives for linearity in the size of underlying structures.
Consider Kaplan and Bresnan's sketch (1982:263-267)
that lexical-functional language recognition uses only line-
ar space. In the full description of lexical-functional
languages, names are distinguished as co-referential or
not. Thus, two occurrences of, say, M a r y must be distinct.
In the LFG formalism, this is indicated by subscripts. (See
for example Kaplan and Bresnan's ' examples
1982:225-227.) But then, this means that the sheer size of
a functional structure (f-structure), the lexical-functional
analog of an annotated surface structure, could be of size
n logn, again with logn space for the indices. Just writing
down one f-structure could take more than linear space.
Kaplan and Bresnan do not say in any detail just how they
intend to check for sentence-hood using just linear space,
but since all of their descriptions involve building an
f-structure, we may assume that at least this much space
will be required. In short, in order to a linear space bound,
Kaplan and Bresnan need to adopt exactly the proposal
made above.

A second key assumption is that traces may not be nest-
ed; a trace cannot contain another trace. This ban is
required because otherwise we could build a tree represen-
tation containing just empty elements (the traces). Since
a tree can be arbitrarily large, a single NP or S domain
could have an arbitrarily large but surface-empty struc-
ture of elements, just what was to be avoided. We are now
ready to state just what we want to show.

Theorem Let G be a government-binding grammar, and
L(G) the language it generates. Let A S i be the anno-
tated surface structure) associated with sentence w i in
L(G). (I f there is more than one such annotated surface
structure, then A S i is a set of annotated surface struc-
tures; A S i is a singleton set if there is just one annotated

surface structure.) Then there is a constant k such that
for a l l sentences w i in L(G), and for all annotated
surface structures A S i underlying w i,]ASi[<_ k[wi[.

The proof proceeds by induction on the number of cycles
(S or NP domains) in an annotated surface structure
corresponding to a sentence in L(G). First we shall show
that the length of a one-cycle annotated surface structure
is linearly proportional to its corresponding surface
sentence. This will be easy, since within a single cycle (S
or NP domain), there can be movement to at most a fixed
number of "landing sites" as defined above: the ~ posi-
tions, plus COMP, plus one adjunct to a VP. The lexical
entry for a verb mentions only a finite number of such
arguments. The one additional landing site adjoined to VP
can receive only one phrase, because in order to receive
more, additional phrases would have to be adjoined in the
manner of the Kimball-type structures discussed in the
previous section. But these would violate subjacency? 6

Once we have established linearity in the base case, we
now look at annotated surface structures i and i + l cycles
deep. Assuming that structures of depth i maintain linear-
ity, we show that those of depth i + l do also. This step is
tedious, since one must go through the possible ways to
obtain the i + l cycle from the one preceding it, one by one.
The landing site analysis is exploited here, as is subjacen-
cy. The empty category analysis is also used. Subjacency
helps because there is no way to "skip" a cycle, construct-
ing structures of depth i + 2 from those of depth i directly.

Proof

Bas is step. i = 1 (bottom cycle, no embedded sentences or
NPs.) Given a surface sentence w i, we consider the length
of the corresponding annotated surface structure. Let s =
the length of the surface sentence. There are four cases.

Case 1. No e.c.'s in the S or NP cycle, and no specified
lexical deletions. Assume a context-free base with no
useless nonterminals or cycles, and with rules where the
length of the longest righthand side is p. If m = the
number of nonterminals in the derivation of a sentence
in this grammar, then m _< cs for some fixed positive
integer ¢, as may be easily verified by induction. In
addition, to write down the annotated surface structure,
we must add two bracket labels for each nonterminal
symbol. Thus IASi] = 2m + s _< 3cs. Note that if we
wanted to establish a relationship between debracketed
annotated surface structures and surface strings, then
this last step would be unnecessary.

Case 2. A finite number of specified lexical deletions with-
in this cycle, e.g, of, as in, all o f the people ~ al l the
people, or an imperative (if a root sentence). Let the

t5 For a more recent formulat ion of the ATB conventions as the l inear
union of phrase markers , see Goodall (1983). We note in passing tha t the
phrase marker union also preserves l inear i ty of annota ted surface struc-
tures.

t6 Recall tha t now we are applying subjacency as a s ta t ic const ra in t on
annota ted surface s tructures. In fact, since in the basis step we consider
only annota ted surface s t ructures one S or N P cycle deep, this case does
not arise.

196 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

maximum number of these deletions be K. Then IASil
< 3cs + 3K. For s > 1, 3cs + 3K _< 3cs + 3Ks =
(3c+3K)s. Let c r = 3c + 3K. Then IASil _< c's. Again,
we can omit the 2K factor for the debracketed case.

Case 3. Empty categories within this (S or NP) cycle, with
antecedents in the same S or NP. There are a finite
number of such positions, as described earlier: only NP
argument positions (thematically marked by the verb);
or the adjoined position to VP. Let C bound this
number from above. Then IASil < cPs + C; using the
same approach as in case 2, the righthand side of this
inequality is less than c ' s . Clearly, combinations of
cases 2 and 3 cause no problems because we can add a
constant number of deletions together with the
constants obtained from within cycle e.c.'s to obtain a
new constant factor.

Case 4. Empty categories in the cycle without antecedents
in that domain. If an empty category exists in an S or
NP without an antecedent (NP, wh, etc.) in that
domain, then clearly the corresponding surface string is
shorter than the corresponding annotated surface struc-
ture, since it does not include the empty category
symbols. However, again the addition of each empty
category symbol adds just one to the total annotated
surface structure length, and there are at most a finite
number of such positions (~'positions, such as COMP,
as described earlier). Therefore, the corresponding
annotated surface structure is just a constant longer
than the corresponding surface sentences, as in Case 3.

Well-formed annotated surface structures exhibiting
the features of gapping, VP deletion, and conjunction
reduction do not show up at this step, since they
combine two i level cycles into an i + l domain. They
are considered in the induction step. This completes the
basis step.

Induction step. Suppose that up through cycle i we have
that IASil _< ksi, where s i is the terminal length at the ith
cycle, and k is a constant. We now must show that this
relation holds for structures of depth i+1. There are five
possibilities.

Case 1. No empty categories athe top level of cycle i+1.
Then the terminal string associated with this cycle
consists of two parts, whatever terminals are introduced
directly by nonterminals in cycle i+ 1 and new elements
of cycle i+1 bound to e.c.'s in cycle i. But there are a
finite number of empty category sites for material in
the current domain, by the definition of a well-formed
annotated surface structure. Call this number C. By
the inductive hypothesis, any of these constituents
themselves meet the condition that their annotated
surface structures are bounded above by a linear multi-
ple of their terminal strings. Thus the total annotated
surface structure for the current cycle is at most C
times the bound on previous cycles, plus a constant to
accommodate the length of terminals introduced direct-
ly in cycle i+1.

i d t
A S i + 1 <_ d]~j= 1 A S j +

• i

Zt] IAS j < C ~j=l sj

Substituting, we obtain:

i tt
A S i + 1 < C Zj=I sj + k si+ 1

-< ksi+ 1

Case 2. Specified deletions in cycle i + l . If there are a
finite number of specified lexical deletions, this is just
like the basis case. This case includes the introduction
of PROs. PRO can appear in a finite number of new
positions in cycle i + l (the Subject position, if ungov-
erned).

Case 3. E.c.'s with antecedents within cycle i+1. The
demonstration proceeds as in the basis case.

Case 4. E.c.'s with antecedents in cycle i+2. Again, like
the basis case. This cannot change the linearity bound.

Case 5. Annotated surface structures with empty verb,
verb phrase, and coordinate reduction positions. This is
the only new situation that arises in the induction step
as opposed to the basis step. Suppose we have a
conjunct formed by deleting material from each of n
conjuncts. An example is the meat is ready to take out
o f the fridge, heat, and serve. The example is from
Rounds (1975:137) attributed to E. Bach. If such
constructions involved actual recovery of deleted deep
structure material, then problems could arise. The
literal material would have to be copied, and we could
get a linearity-violating Peters-type sentence.

But this problem can be avoided with an interpretive
approach governed by the "across the board"
conventions of Williams (1978). We supply indices, not
actual copied material, for the well-formed annotated
surface structure. The ATB constraint lines up the
conjuncts to be co-ordinated, one under the other. For
example, a sentence like the meat is ready to heat, serve,
and eat is factored as follows, where we have deleted
duplicate material in other conjuncts.

The meat/is ready to heat e i
1 serve 3

eat
2

We can represent term (2) as an unordered set of lexi-
cal items, for example, heat, eat, serve. Plainly, this
representation cannot be more than linearly larger than
the surface sentence? 7

Similar results hold for empty categories linked to verbs
and verb phrases. Each cyclic domain of the the associ-
ated annotated surface structure contains a constant
number of empty VP "gaps", denoted [e]; there can be
at most one main verb, VP, or auxiliary verb sequence

17 Again, the Goodall (1983) representation would be suitable here.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 197

Robert C. Berwick Generative Capacity and Linguistic Theory

per cyclic domain. Therefore, the total number of gaps
in the conjoined structure is bounded from above by a
constant times Si+l, the length of the terminal string.

This exhausts the range of possible cases, completing the
induction and the proof.

The linearity demonstration shows restricting deletions
has a powerful effect on the weak generative capacity of a
transformational grammar. The implications of that
result for linguistic description are discussed in the next
section.

3. The Root of Complexity: kexicaI-Functional
Grammars and GB grammars

The results of the previous section show something about
the weak generative capacity of modern transformational
grammars. The study of weak generative capacity is not
an end in itself, however. In the best case, we would like
weak generative capacity to be a kind of diagnostic aid to
tell us that something is amiss with a linguistic theory.
We would like our theory to be able to describe all and
only the natural languages. A theory could fail to do this
in two ways, either in terms of weak generative capacity or
in terms of strong generative capacity. A theory that is
too powerful could generate either unnatural tree struc-
tures (and so be too powerful in terms of strong generative
capacity) or it could generate unnatural sentences (and be
too powerful in terms of weak generative capacity). I f we
are interested in the rule systems (grammars) that underly
linguistic behavior, then it is ultimately strong generative
capacity that is of interest. Still, weak generative capacity
can help here to point the way to excess strong generative
capacity. We will also not want to stop at diagnosis. We
also want to determine just why a particular theory can
generate too many languages - what the source of its
excess power is. We saw that with Aspects transforma-
tional grammars the additional power lay with unbridled
deletion. What of other recent theories of grammar?

In this section we shall present an example of exactly
this kind. This will be a language that is presumably not a
natural language. We will use this language as a "probe"
into the power of current linguistic theories. We shall see
that this language can be easily generated by lexical-func-
tional grammar, but not by a GB grammar. More impor-
tant, this weak generative result has a strong generative
capacity reflex. We can use this result to locate the excess
power of the LFG system. This could be of value in
discovering restrictions for the LFG system. In terms of
strong generative capacity, the more important goal, we
shall see that the LFG theory has the ability to define
unification predicates over hierarchical tree structures,
something unavailable in the GB theory. This extension of
the traditional definition of linguistic predicates has impli-
cations for the ability of LFG to describe unnatural gram-
mars, not just unnatural languages.

Here is what we mean to show in more detail. LFGs use
a particular kind of unification machinery (described
below) in order to account for well-formed sentence struc-

tures of Dutch (Bresnan, Kaplan, Peters, Zaenen 1982).
This unification procedure is central to the construction of
the grammatical structures of lexical-functional theory.
But it is also powerful enough to describe grammars quite
unlike any natural grammatical system. By changing the
Dutch LFG only slightly we can produce a rule system that
allows "object control" via a preceding NP (as in Mary
persuaded John to leave) just in case the NP in question
and the controlled position are equally deeply embedded.
This we take to be an unnatural rule system.

To begin, we present our artificial "diagnostic"
language, the power of 2 language, L 2 = {aili is a power of
2}. L 2 is a lexical functional language, since the following
lexical-functional g rammar generates it:

1. A --,- A A

(t f ~ = ~ (i . /) =

2. A ~ a
(I J) = 1

The (I f) = ,I, functional structure constraints on the
nonterminals enforce the restriction that the same number
of A expansions be taken on each subtree; expansions are
symmetric all the way down the "words", the as. This
guarantees a power of 2 expansion; the details are left to
the reader.

We can now ask deeper questions. First, why can lexi-
cal-functional grammars generate such languages? More
on this shortly. Second, can L 2 be generated by a GB
grammar? To answer the second question first, the
answer here seems to be no, because of a property of GB
languages that is violated by L 2, namely, the constant
growth property, defined and discussed for tree adjunct
grammars by Joshi (1983). This property will only be
briefly explored below; for more complete remarks, see
Berwick and Weinberg (1984).

I f we arrange the sentences of L 2 in order of increasing
length, we see that they become farther and farther apart.
In fact, for any fixed set of constants C, we can always
find a sentence of Le, w i, say, such that there is no wj in
L2, with Iwi[= Iwjl + c, for c • C. We state this property
as follows:
Definition. A language L is said to possess the constant
growth property (or be constant growth) if and only if
there exists a constant M and a set of constants C such
that for all sentences w k • L with Iwkl > M, there exists
another sentence in L, wkr, such that w k is at most a
constant longer than Wkt, Iwkl = IWk' I ÷ c, for c • C. A
grammar is said to possess the constant growth property
iff the language it generates is constant growth. ~8

Lexical-functional grammars, then, are not constant
growth. In contrast, government-binding grammars
cannot generate such languages because they are constant
growth. Intuitively, the demonstration works much like
the linearity proof. For a full discussion, see Berwick and

18 So far as it can be now determined, constant growth seems to be a
purely mathematical property of natural languages that has no clear
"'functional" reflection. Presumably, constant growth is a derivative of
other, deeper properties of natural languages.

198 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

Weinberg (1984: Appendix A). The point is that no
government-binding grammar can generate L 2 or any
nonconstant growth language.E9

What is it that gives lexical-functional grammars their
ability to define languages like L2? LFGs can test
complete subtrees for compatibility. At a dominating
node we can check whether an entire hierarchical struc-
ture is feature compatible with another structure• This
follows from the account of functional structure unifica-
tion defined by Kaplan and Bresnan (1982). Functional
structures are hierarchical in nature; they are directed,
acyclic graphs. Functional structure well-formedness is
defined by the condition of functional structure unique-
ness. Roughly speaking, there can be no conflicts in the
assignment of feature complexes, even if those features are
in fact hierarchical structures.

This kind of feature compatibility test goes well beyond
that required for the checking of "ordinary" agreement, as
in subject-verb number agreement. When we test a
subject and verb for agreement, all that we do is check an
unordered list of features for compatibility• The number,
gender, and so forth of the subject NP must agree with
that of the verb, as percolated through the VP. It is a far
cry from this kind of agreement checking to the
"agreement" of two entire tree structures, but this is what
is implied by the lexical-functional unification procedure) °

As we saw in our earlier example, this unification
procedure is sufficient to generate the power of 2
language• A natural question to ask then is whether this
ability to compare entire functional structures is necessary.
For if all cases of functional structure unification can be
replaced by unordered feature agreement tests, then there
is no motivation for adopting the more powerful mech-
anism, at least on these grounds.

The lexical-functional theory is, perhaps, already
committed to the ability to test hierarchical functional
structures for compatibility. For functional structures are
certainly hierarchical in nature. They must encode the
hierarchical relationships between root and embedded
propositions, for example• A functional structure is used
as the input to semantic interpretation, and so must reflect
hierarchical dependencies. Otherwise we cannot decipher
the relationships in a complex sentence like John expected
Mary to persuade Bill to win. The feature checking
machinery must be designed to test for functional struc-
ture compatibility because that is the only level of repre-
sentation where features like the number of the subject are
to be found• But once we permit feature checking of func-
tional structures at a single, 'unembedded level for the
number of a subject NP, it is hard to see how we can rule it
out for a more complex functional structure.

In fact, lexical-functional researchers have proposed
natural language cases where one must check one complex
functional structure for compatibility against another.

19 Another example is the language of perfect squares.

20 Several other theories also adopt a directed, acyclic graph notation for
features, among these, Kay's (1982) unification grammar and Shieber's
(1983) PATR I1 formalism. Interestingly, Sag et al. (1984) adopt the
more restricted view of features.

Just such a case has been discussed by Bresnan, Kaplan,
Peters, and Zaenen (1982), in the analysis of certain
Dutch sentences. We will not review all the details of their
proposal here except to establish the point that hierarchi-
cal functional structure comparisons are crucially impli-
cated. The data Bresnan et al. want to account for is this.
Dutch contains infinitely many sentences of the following
sort (examples from Bresnan et al. 1982: 614):

• . . dat Jan de kinderen zag zwemmen
• . . that Jan the children saw swim
• . . that Jan saw the children swim

• . . dat Jan Piet Marie de kinderen zag helpen laten
zwemmen

• . . that Jan Peter Marie the children saw help make
swim

• . . that Jan saw Piet help Marie make the children
swim

These Dutch sentences must have a certain constituent
structure• Their proposed structure consists of two
branching "spines", one a right branching tree of VPs
containing objects and complements, the other a right
branching tree of V containing verbs without their objects
and complements. Every verb uses its lexical argument
structure to demand certain NP objects or that the verb
complement's subject be controlled by the verb's object or
subject• For example, the verb zag demands that its object
control the subject of zag's verbal complement• This is
analogous to the English case where the object of a verb,
for example, persuade, controls the subject of persuade's
complement, as in, We persuaded John to leave.

The lexical-functional system encodes this agreement in
number of verbs and NPs by forcing an identification
between the functional structure of the object of zag and
the functional structure of the verb complement of zag
(denoted VCOMP). The "equation" is written (~ VCOMP
SUB J) = (q OBJ) . The problem, of course, is that if we
have three verbs then we have three such constraints, but
the associated NPs that satisfy them lie along a distinct VP
"spine" of the constituent structure tree that is separated
from the verbs along the V spine• In other words, the
"control" equations are built up along the rightmost, V
spine of the constituent structure tree, but the NPs that
satisfy these equations lie along the left side. How can we
assemble the NP functional structures for proper checking
against the control equation demands? Because feature
checking can occur only at some common dominating
mother node, the first place where all elements are
"visible" to each other is at the first VP node completely
dominating both right and left subtrees. The way that
Bresnan et al. accomplish this task is to build up along the
rightmost subtree a functional structure representation
that encodes all of the control equations, in the form of a
hierarchical functional structure with unfilled slots for the
subjects and objects mentioned by the controlling verbs.
Note that the structure is indeed hierarchical, containing
embedded components• Along the lefthand side of the
constituent tree Bresnan et al. build up a second hierarchi-

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 199

Robert C. Berwick Generative Capacity and Linguistic Theory

cal functional structure that "merges" successfully into
the righthand one just in case the number of NPs and their
assignment to controlled positions meshes with the "slots"
left remaining in the righthand functional structure.

One must build and check a hierarchy of features
because in order to encode the possibility of an arbitrary
number of controlled NPs below the dominating VP node,
we must adopt some means of encoding a potentially arbi-
trary number of features (denoting each of the NPs and
their associated verbs). But given that the functional
structure "equations" annotating the underlying context-
free grammar are fixed once the grammar is written down,
the only way to do that is by building up some recursive
structure that mimics the constituent structure derivation
as a chain. (With only a finite number of features, we can
only encode an infinite number of different cases by means
of chains or trees.) This means that Bresnan et al. are
forced to adopt hierarchical feature checking as the means
to describe the Dutch sentences.

In contrast, the government-binding theory represents
the same pairing of NPs and verbs via a "f lat" co-indexing
scheme. Jan de kinderen zag zwemmen would be roughly,
NP/ NP 2 [p" V 1 V2] in annotated surface structure (see
Evers 1975 and Berwick and Weinberg 1984). As
outlined in Berwick and Weinberg (1984), potential co-in-
dexings can be evaluated by non-erasing pushdown trans-
ductions that test only single, unanalyzed nodes, never
building up tree-structured features as in the lexical-func-
tional grammar example. (Note again that D-structures
are not reconstructed to carry out this Check.)

The problem for the lexical-functional machinery is
that once hierarchical checking is admitted for this one
example, there is nothing to bar it in other cases. But then
the power of 2 language can be generated. One can also
build "unnatural" lexical-functionat grammars using just
the linguistically motivated control equation apparatus
and phrase structure rules proposed in the lexical-func-
tional theory. The same linguistically motivated rules
used for Dutch, combined in slightly different ways, lead
to grammars quite unlike anything ever attested or likely
to be attested in natural rule systems. The example we
give uses almost precisely the Dutch control equations, and
a slightly different context-free base.

The idea behind our unnatural g rammar is this. We
will build a grammar where a verb controls a higher object
NP just in case both the verb and that NP are essentially
equally deeply embedded along different "spines" of the
constituent structure tree. This we take to be a highly
unnatural system. There is no natural language where a
control property "counts".

We need these context-free rules and their functional
structure annotations:

1. VP --,- NP V (V)
(f s u b j) = + (f V c o m p) = ~ f =

2. VP --- NP
(f obj) =

m

3. V -~ V V
(f Vcomp) = I,

4. V --- V

5. NP -,- N

Rules (2)-(5) are precisely those used by Bresnan et al.
Rule (1) is different. (I) has the associated equation (f
subj) = ~ attached to the NP node instead of the equation
(f obj) = 4. We must also add new lexical entries for the
following "verbs":

V3: (f Vcomp subj) =
(f pred) =

V2: (4' pred) =
VI: (f pred) =

(t' obj)
V3((f subj)(t' ob)('l' Vcomp))"
V2((4' subj)(q Vcomp))
Vl(('t subj)('l' Vcomp))

The effect of this modest change is a rule system that has
exactly the properties we claimed. Consider first the func-
tional structure built up along the lefthand VP branching
spine. The last NP expansion will have the associated
equation (4' obj) = 4. Each VP demands that the VCOMP
functional structure component associated with the node
above it be identified with the functional structure built up
at that VP. The effect is to build up a hierarchical
arrangement of VCOMP functional structures, one for
every VP node that is generated except for the top and the
bottommost vP. In addition, a subject functional struc-
ture component is passed up from all NPs but the last one.

The object from the lefthand functional structure merg-
es into this righthand structure successfully if and only if it
has one level of embedding less than the righthand struc-
ture. This is our desired result. Otherwise the object
structure cannot be laid on top of the righthand structure
and overlap properly; it must coincide with the empty
object slot on the righthand side. 2~

4. The Formal Characterization of Natural
Languages

Summarizing the analysis so far, we have seen just how
modern transformational theories differ formally from
their older counterparts. We have also seen that that
difference is reflected as a weak and strong generative
capacity difference between the new theory and the lexi-
cal-functional theory.

Some questions are still unanswered. In the previous
section, we came to a partial diagnosis of the source of the
extra power of the lexical-functional theory. In this
section we would like to pin down that diagnosis. At the
same time we shall offer a different perspective on the
formal characterization of natural languages. This analy-

21 For example, suppose we interchanged V 2 and V 3. Then the control
verb V 3 is less deeply embedded than the object NP it is supposed to
control. This structure should be ruled out, and it is. The lefthand func-
tional structure will be as before. But now the righthand functional struc-
ture will not merge properly with the lefthand functional structure
because that functional structure demands that the object be embedded
inside two VCOMPs, whereas the righthand structure calls for an object
embedded inside just one. Similarly, if V 3 were embedded one more level
down, the number of VCOMPs would not match. Only when the number
of embeddings is the same (plus one) on both left- and righthand sides is
the structure well-formed.

200 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

Robert C. Berwick Generative Capacity and Linguistic Theory

sis will necessarily be more speculative. Still, it is hoped
that the discussion will provoke a fresh look at how to go
about the mathematical analysis of natural languages.

To begin, let us recall that the suspected source of extra
power in the lexical-functional theory is the unification
procedure defined over hierarchical structures (constituent
structures). We also argued that nothing like this kind of
power is required to describe natural languages. In this
section we shall investigate this claim more deeply~ We
shall look at one case, co-ordination, that might seem to
require full unification, and see that in fact hierarchical
unification is not required.

At first glance, co-ordination would seem to demand
some kind of unification predicate. The reason is that
co-ordinate structures obey a familiar principle (Williams
1978) that permits only "similar" conjuncts to be linked. 22
One way to visualize the parallelism constraint is to imag-
ine the two conjuncts being laid ~n top of one another. If
they match, then the conjunction is permitted, otherwise,
it is not permitted. Williams (1978) formalizes this condi,
tion. This process is reminiscent of the lexical-functional
unification procedure. (Compare it to the Dutch example
given earlier.) Here too, we "overlaid" two hierarchical
structures to determine well-formedness. The Dutch
sentences were legal just in case two hierarchical spines
could be so overlaid, or unified. Is unification required?

On closer inspection the analogy with unification
breaks down. It is true that the parallelism of co-ordinate
conjuncts demands a match in terms of phrasal nodes. The
key difference between lexical-functional unification and
the co-ordination constraint is that co-ordinate parallelism
need only hold at the top level of a phrasal sequence.
Internal details of the matched conjuncts do not matter.
This is in contrast to the unification predicate, which, as
the Dutch example shows, can demand a hierarchical
match. For example, the following conjunction is perfectly
grammatical, even though the conjoined VPs are internally
different, one containing an Adjectival Phrase and the
other a Noun Phrase (example from Goodall 1983): the
bouncer was muscular and was a guitarist. One can even
conjoin active and passive sentences (John went to Boston

and was taken f o r a ride). As Goodall (1983) demon-
strates, one way to describe this effect is as the union of
the top level of phrasal nodes (actually, phrase markers).

In contrast, the Kaplan and Bresnan unification proce-
dure (1982: 272), as defined by their statement (190c),
recursively defines a union over what may be an entire
tree:

(190) c. If e I e 2 are both f-structures, let A 1, A 2 be sets
of attributes e! and e2, respectively. Then a new f-struc-
ture e is constructed with e = {(a,v) I a • A 1 U A 2 and v
= merge [Locate I(el,a)], Locate [(e2,a)]]} (Locate is an
operator that actually finds the sub-f-structure with
the specified attribute structure.)

Here, (a, v) is the union of a hierarchical attribute set,
since this last step is carried out recursively to all levels of
structure. This means that there is nothing to stop us from
writing a co-ordination rule in the lexical-functional

system that demands equality in tree structure through all
levels of hierarchical detail, contrary to what is observed. 23
We might speculate then that a general property of
constraint statements in natural languages is that they are
defined in terms of predicates on linear sequences of struc-
tures (phrase markers), rather than by hierarchically
defined unification predicates. It remains to explore just
what this restriction comes to, b u t it is clear that this is
exactly where and how lexical-functional grammar
diverges from the "classical" view of generative grammar.
The classic view, outlined in Chomsky's Logical Structure
o f Linguistic Theory, defined predicates in terms of a
concatenative algebra at each of several levels of repr6sen-
tation (phonetic, syntactic, and so forth). The details are
not essential here, but one property of these algebras is:
they fixed predicates in terms of linear sequences of
elements, rather than trees. 24 The lexical-functional
system extends the power of representational description
to include the possibility of unification predicates defined
over nonlinear constituent structures. While this violation
of the usual syntactic adjacency restrictions (observed
from earliest days of generative grammar) is certainly
sufficient to describe natural languages, the examples
presented here show that it is not necessary.

This diagnosis also tells us one way to repair the lexi-
cal-functional theory. One could restrict the lexical-func-
tional theory to ban hierarchical unification predicates.
One way to do this is to simply eliminate the recursive step
of Kaplan and Bresnan's unification procedure (190c),
(1982:272) excerpted earlier. For example, feature merg-
er could be restricted to operate over just two cyclic (S or
NP) domains. One would still need a way to handle
constructions like those in Dutch, or, should they be neces-
sary, the ww constructions. Of course, it may be that other
restrictions suffice.

Whatever the outcome of these changes, a more general
question for future work centers on the status of the
concatenation algebras underpinning traditional genera-
tive grammar. While there has been some formal work in
this area (see Borgida 1983 and Berwick 1982), it remains
to be seen whether the linear predicates presupposed by
such a model do indeed characterize what it means to be a
natural grammar. If they do, then extensions to more
general unification predicates, as in LFG, unification
grammar, or PATR-II, may well be unwarranted.

Acknowledgments

Much of this research has been sparked by collaboration
with Amy S. Weinberg. Thanks to her for many
discussions on GB theory. Portions of this work have
appeared in The Grammatical Basis o f Linguistic Perform-

22 See Sag et al. (1984) for a different formulation of "similar".

23 This is true also of respectively type constructions: evidently, only the
linear union of phrase markers is required to define these sentences, not
the tree-checking power used by Kaplan and Bresnan (1982: 269-271).

24 This is true even of linear phrase markers systems that directly admit
discontinuous constituents, which Chomsky's system does not; these
include McCawley's (1982) proposal and Higgenbotham's (I 983) recent
elaboration of McCawley (1982).

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 201

Robert C. Berwick Generative Capacity and Linguistic Theory

a n c e . The research has been carried out at the MIT Arti-
ficial Intelligence Laboratory. Support for the
Laboratory's work comes in part from the Advanced
Research Projects Agency of the Department of Defense
under Office of Naval Research contract
N00014-80-C-0505.

References
Baltin, M. 1981 A Landing Site Theory of Movement Rules. Linguistic

Inquiry 13: 1-38.
Berwick, R. 1982 Locality Principles and the Acquisition of Syntactic

Knowledge. PhD dissertation, MIT Department of Electrical Engi-
neering and Computer Science, Cambridge, Massachusetts.

Berwick, R. and Weinberg, A. 1982 Parsing Efficiency, Computational
Complexity, and the Evaluation of Grammatical Theories. Linguistic
Inquiry 13: 165-191.

Berwick, R. and Weinberg, A. 1984 The Grammatical Basis of Linguis-
tic Performance. MIT Press, Cambridge, Massachusetts.

Borgida, A. 1983 Some Formal Results about Stratificational Gram-
mars and Their Relevance to Linguistics. Mathematical Systems Theo-
ry 16: 29-56.

Bresnan, J. and Kaplan, R. 1982 Introduction: Grammars as Mental
Representations of Language. In: Bresnan, J., Ed., The Mental Repre-
sentation of Grammatical Relations. MIT Press, Cambridge, Massa-
chusetts: xvii-lii.

Bresnan, J.; Kaplan, R.; Peters, S.; and Zaenen, A. 1982 Cross-serial
Dependencies in Dutch. Linguistic Inquiry 13:613-636.

Chomsky, N. 1955 The Logical Structure of Linguistic Theory. Plenum
Press, New York, New York, 1975.

Chomsky, N. 1981 Lectures on Government and Binding. Foris Publica-
tions, Dordrecht, Holland.

Evers, A. 1975 The Transformational Cycle in Dutch and German.
PhD dissertation, Department of Linguistics, Rijksuniversiteit,
Utrecht, Holland.

Ginsburg, S.; Greibach, S.; and Harrison, M. 1967 One-way Stack
Automata. Journal of the Association for Computing Machinery 14:
389-418.

Goodall, G. 1983 Coordination. Unpublished draft of thesis, University
of California at San Diego.

Higgenbotham, J. 1983 A Note on Phrase Markers. Revue Qudbdcoise
de Linguistique 13(1): 147-166.

Hopcroft, J. and Ullman, J. 1979 Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, Massachu-
setts.

Hornstein, N. 1984 Logic as Grammar. MIT Press, Cambridge, Massa-
chusetts.

Johnson-Laird, P. 1983 Mental Models. Harvard University Press,
Cambridge, Massachusetts.

Joshi, A. 1983 Some Formal Results about Tree Adjunct Grammars.
Proceedings of the 21st Annual Meeting of the Association for Compu-
tational Linguistics.

Joshi, A. and Levy, L. 1977 Constraints on Local Transformations.
• SIAM Journal of Computing 6: 272-284.

Kaplan, R. and Bresnan, J. 1982 Lexical Functional Grammar: A
Formal System for Grammatical Representation. In: Bresnan, J.,
Ed., The Mental Representation of Grammatical Relations. MIT Press,
Cambridge, Massachusetts: 173-28 I.

Kay, M. 1982 Unification Grammai'. Xerox PARC unpublished ms.
Kimball, J. 1967 Predicates Definable by Transformational Derivations

by Intersection with Regular Languages. Information and Control I 1:
177-195.

Lapointe, S. 1977 Recursiveness and Deletion. Linguistic Analysis 3:
227-265.

Marcus, M. 1982 A Theory of Syntactic Recognition for Natural
Language. MIT Press, Cambridge, Massachusetts.

McCawley, J. 1982 Parentheticals and Discontinuous Constituent
Structure. Linguistic Inquiry 13: 1.

Peters, S., 1973 On Restricting Deletion Transformations. In: Gross,
M.; Halle, M.; and Schutzenberger, M., Eds,, The Formal Analysis of
Language. Mouton, The Hague, Holland: 372-384.

Peters, S. and Ritchie, R. 1973 On the Generative Power of Transfor-
mational Grammars. Infortaation Sciences 6: 49-83.

Pullum, G. 1984 Syntactic and Semantic Parsability. Proceedings of
Coling84, Stanford, California: 112-122.

Rounds, W. 1975 A Grammatical Characterization of the Exponential
Time Languages. Proceedings of the 16th Annual Symposium on
Switching and Automata Theory: 135-143.

Salomma, A. 1971 The Generative Capacity of Transformational
Grammars of Ginsburg and Partee. Information and Control 18: 227-
232.

Sag, 1.; Gazdar, G.; Wasow, T.; and Weisler, S. 1984 Coordination and
How to Distinguish Categories. CSLI Report CLSI-84-3.

Shieber, S. 1983 Notes on the PATR-II formalism, SRI International,
Menlo Park, California.

Thiersch, C. 1978 Topics in German Syntax. PhD dissertation, MIT
Department of Linguistics and Philosophy, Cambridge, Massachu-
setts.

Williams, E. 1978 Across-the-board Rule Application. Linguistic
Inquiry 9:31-43.

202 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

