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In natural language processing, the question of the appropriate interaction of syntax 
and semantics during sentence analysis has long been of interest. Montague grammar with 
its fully formalized syntax and semantics provides a complete, well-defined context in which 
these questions can be considered. This paper describes how semantics can be used during 
parsing to reduce the combinatorial explosion of syntactic ambiguity in Montague grammar. 
A parsing algorithm, called semantic equivalence parsing, is presented and examples of its 
operation are given. The algorithm is applicable to general non-context-free grammars 
that include a formal semantic component. The second portion of the paper places 
semantic equivalence parsing in the context of the very general definition of an interpreted 
language as a homomorphism between syntactic and semantic algebras (Montague 1970). 

Introduction 

The close interrelat ion be tween syntax and seman-  
tics in Montague  grammar  provides a good f ramework  
in which to consider  the in teract ion of syntax and 
semantics in sentence analysis. Several different ap- 
proaches are possible in this f ramework  and they can 
be developed rigorously for comparison.  In this paper  
we develop an approach  called semantic equivalence 
parsing that  introduces logical translation into the on- 
going parsing process. We compare  this with our ear-  
lier directed process implementa t ion in which syntactic 
parsing is comple ted  prior  to t ranslat ion to logical 
form. 

Part  I of the paper  gives an algorithm that  parses a 
class of g rammars  that  contains  bo th  essential ly 
con tex t - f ree  rules and non-con tex t - f r ee  rules as in 
Montague ' s  1973 PTQ. Underlying this algorithm is a 

1 A preliminary version of this paper was presented at the 
symposium on Modelling Human Parsing Strategies at the Universi- 
ty of Texas at Austin, March 24-26, 1981. The work of the first 
author was supported in part by NSF grant IST 80-10834. 

nondeterminis t ic  syntact ic  p rogram expressed  as an 
ATN. The algori thm introduces  equivalence parsing, 
which is a general  execution method for nondetermin-  
istic programs that  is based on a recall table, a gener-  
alization of the wel l - formed substring table. Semantic 
equivalence, based on logical equivalence of formulas 
obta ined as translations, is used. We discuss the con- 
sequences  of incorpora t ing  semant ic  processing into 
the parser  and give examples  of bo th  syntact ic  and 
semantic  parsing. In Part  II  the semantic  parsing al- 
gori thm is related to earlier tabular  context - f ree  recog- 
nition methods.  Relating our algorithm to its prede-  
cessors gives a new way of viewing the technique.  
The algorithmic description is then replaced by a de- 
scription in terms of refined grammars.  Finally we 
suggest how this notion might be generalized to the 
full class of Montague  grammars .  

The particular version of Montague  g rammar  used 
here is that  of  PTQ, with which the reader  is assumed 
to be conversant .  The syntactic componen t  of PTQ is 
an essential ly con tex t - f ree  grammar ,  augmented  by 
some additional rules of a different  form. The non-  

Copyright 1982 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted 
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on 
the first page. To copy otherwise, or to republish, requires a fee a n d / o r  specific permission. 

0 3 6 2 - 6 1 3 X / 8 2 / 0 3 0 1 2 3 - 1 6 5 0 3 . 0 0  

American Journal of Computational Linguistics, Volume 8, Number  3-4, July-December 1982 123 



David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing 

context- f ree  aspects arise in the t rea tment  of quantifi-  
er scope and pronouns  and their antecedents .  Syntac-  
tically each antecedent  is regarded as substi tuted into 
a place marked  by a variable. This is not unlike the 
way fillers are inser ted into gaps in G a z d a r ' s  1979 
t rea tment .  However ,  Mon tague ' s  use of var iables  
allows compl ica ted  interact ions be tween  dif ferent  
var iable-antecedent  pairs. Each substi tution rule sub- 
stitutes a te rm phrase (NP) for one or more  occurrenc-  
es of a free variable in a phrase (which may  be a sen- 
tence,  c o m m o n  noun phrase,  or intransi t ive verb  
phrase).  The first occurrence of the variable is re- 
placed by the phrase;  later occurrences are replaced by 
appropr ia te  pronouns.  The translation of the resulting 
phrase  expresses  the coreferent ia l i ty  of the noun 
phrase and the pronouns.  With substitution, but with- 
out pronouns,  the only funct ion of substi tut ion is to 
determine quantifier  scope. 

Directed P r o c e s s  Approach 

One computa t ional  approach  to processing a sen- 
tence is the directed process approach,  which is a se- 
quential  analysis that  follows the three-par t  presenta-  
t ion in PTQ. The three steps are as follows. A purely 
syntactic analysis of a sentence yields a set of parse 
trees,  each an express ion in the d isambiguated  lan- 
guage. Each  parse tree is then t rans la ted  by 
Montague ' s  rules into a formula  of  intentional logic to 
which logical reductions are immediately applied. The 
reduced formulas can then be interpreted in a model.  
The directed process approach  is the one taken in the 
sys tem descr ibed by Fr iedman,  Moran ,  and War ren  
1978a,b. 

Semantic  equivalence parsing is mot iva ted  by the 
observa t ion  that  the directed process  approach ,  in 
which all of the syntactic processing is completed be-  
fore any semant ic  process ing begins,  does  not  take 
maximal advantage of the coupling of syntax and se- 
mantics in Montague  grammars .  Composi t ional i ty  and 
the fact  that  for each syntactic rule there is a transla- 
t ion rule suggest that  it would be possible to do a 
combined  syntact ic-semant ic  parse. In this approach,  
as soon as a subphrase is parsed,  its logical formula  is 
ob ta ined  and reduced to an extensional ized normal  
form. Two parses for  the same phrase can then be 
regarded equivalent if they have the same formula.  

The approach  to parsing suggested by  C o o p e r ' s  
1975 t rea tment  of quantified noun phrases is like our 
semantic  equivalence parsing in storing translations as 
one e lement  of  the tuple cor responding  to a noun 
phrase. Cooper ' s  approach differs f rom the approach  
fol lowed here because  he has an in te rmedia te  stage 
tha t  might  be  called an " a u t o n o m o u s  syntax t ree" .  
The frontier  of the tree is the sentence;  the scope of 
the quantifier  of a noun phrase is not yet indicated. 
Coope r ' s  approach  has been  fol lowed by the GPSG 

system (Gawron  et al. 1982) and by  Rosenschein  and 
Shieber 1982. Nei ther  of those systems treats  pro-  
nouns.  In Mon tague ' s  approach ,  which we follow 
here, the trees produced by the parser  are expressions 
in the disambiguated language, so scope is determined,  
pronoun antecedents  are indicated, and each tree has a 
unique (unreduced)  translation. The descriptions of 
the systems that  use Cooper ' s  approach  seem to imply 
that  they use a second pass over  the syntax t ree to 
determine the actual quantif ier  scopes in the final logi- 
cal forms. Were these systems to use a single pass to 
produce the final logical forms,  the results described in 
this paper  would be directly applicable.  

1. Equivalence Parsing 

Ambigui ty  

Ambigui ty  in Montague  g r ammar  is measured  by  
the number  of different  meanings.  In this view syn- 
tactic structure is of no interest  in its own right, but  
only as a vehicle for mapping  semantics.  Syntactic 
ambigui ty  does  not  direct ly co r respond  to semant ic  
ambigui ty ,  and there may  be m a n y  parses  with the 
same semantic  interpretat ion.  Further ,  sentences with 
scope ambigui ty ,  such as A m a n  loves every  woman ,  

require more  than  one parse,  because  the syntact ic  
derivat ion determines quantif ier  scope. 

In PTQ there is infinite syntact ic  ambigui ty  arising 
f rom three sources:  a lphabet ic  var iants  of  variables ,  
variable for variable substitutions,  and vacuous varia-  
ble substitution. However ,  these semantical ly unnec-  
essary constructs  can be eliminated, so that  the set of 
syntactic sources for any sentence is finite, and a par-  
ser that  finds the full set is possible.  (This cor re-  
sponds to the "var iable  pr inciple"  enunciated by  Jans-  
sen 1980 and used by Landsbergen  1980.) This ap- 
p roach  was the basis of  our earlier PTQ parser  
(Fr iedman and Warren  1978). 

However ,  even with these reductions the number  of 
remaining parses  for  a sentence  of  reasonable  com-  
plexity is still large compared  to the number  of non-  
equivalent  t ranslat ions.  In the di rected process  ap-  
proach this is t reated by  first finding all the parses,  
next finding for  each parse a reduced translat ion,  and 
then finally obtaining the set of  reduced translations.  
Each reduced translat ion may,  but  does not necessari-  
ly, represent  a different  sentence meaning.  No mean-  
ings are lost. Fur ther  reductions of the set of transla- 
tions would be possible, but the undecidabil i ty of logi- 
cal equivalence precludes  algori thmic reduct ion to a 
minimal set. 

The ATN Program 

In the underlying parser  the g rammar  is expressed 
as an augmented  t ransi t ion ne twork  (ATN) (Woods  
1973). Both the syntact ic  and the semantic  parsers  
use this same ATN. The main difficulty in construct-  
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ing the ATN was, as usual, the non-contex t - f ree  as- 
pects of the grammar,  in particular the incorporat ion 
of a t rea tment  of substi tution rules and variables. The 
grammar  given in PTQ generates infinitely many  deriv- 
at ions for  each sentence.  All but  finitely many  of 
these are unnecessary variations on variables and were 
eliminated in the construct ion of the ATN. The ATN 
represents  only the reduced set of structures,  and must 
therefore  be more complex. 

Equiva lence  Test ing  

In order to say what  we mean by semantic  equiva- 
lence parsing, we use Hare l ' s  1979 notion of execution 
method for nondeterminist ic  programs.  An execution 
me thod  is a determinis t ic  procedure  for  finding the 
possible execut ion paths through a nondeterminis t ic  
program given an input. For  an ATN, these execution 
paths correspond to different  parses. Viewing parsing 
in this way, the only di f ference be tween  the usual 
syntactic parsing and semantic  equivalence parsing is a 
difference in the execution method.  As will be seen, 
semant ic  equivalence parsing uses semant ic  tests as 
part  of the execution method.  

We call the execution method we use to process a 
general  ATN equivalence parsing (Warren  1979). 
Equivalence parsing is based on a recall table. The 
recall table is a set of buckets  used to organize and 
hold partial syntactic structures while larger ones are 
constructed.  Equivalence  parsing can be viewed as 
processing an input sentence and the ATN to define 
and fill in the buckets  of the recall table. The use of 
the recall table reduces the amount  of redundant  proc- 
essing in parsing a sentence.  Syntact ic  s t ructures  
found along one execution path through the ATN need 
not be reconstructed but can be directly retr ieved f rom 
the recall table and used on other  paths. The recall 
table is a general izat ion of the familiar  wel l - formed 
substr ing table (WFST) to arbi t rary  programs that  
contain  procedure  calls. Use of the WFST in ATN 
parsing is noted  in Woods  1973 and Bates  1978. 
Bates observes that the WFST is complicated by the 
HOLDs and SENDRs in the ATN. These are the ATN 
actions that correspond to pa ramete r  passing in proce-  
dures and are required in the ATN for PTQ to correctly 
treat  the substitution rules. 

In the Woods system the WFST is viewed as a pos- 
sible optimization,  to be turned on when it improves 
parsing efficiency. In our system the recall table is an 
intrinsic part  of the parsing algorithm. Because any 
ATN that  naturally represents  PTQ must contain left 
recursion,  the usual depth-f i rs t  (or breadth- f i r s t  or 
best-f i rs t )  ATN parsing algori thm would go into an 
infinite loop when trying to find all the parses of any 
sentence.  The use of the recall table in equivalence 
parsing handles lef t - recurs ive  ATNs without  special  
considerat ion (Warren 1981). As a result there is no 

need to rewrite the g rammar  to eliminate left-recursive 
rules as is usually necessary.  

In a general nondeterminist ic  program,  a bucket  in 
the recall table corresponds  to a particular subroutine 
and a set of values for  the calling parameters  and re- 
turn parameters .  For  an ATN a bucket  is indexed by  a 
triple: (1) a grammatical  category,  that  is, a subnet  to 
which a PUSH is made,  (2) the contents  of the SENDR 
registers at the PUSH and the current  string, and (3) 
the contents  of the LIFTR registers at the POP and the 
then-current  string. A bucket  contains the members  
of an equivalence class of syntactic structures; precise-  
ly what  they are depends on what  type of equivalence 
is being used. 

What  makes  equivalence parsing applicable to non-  
con tex t - f ree  g rammars  is that  its buckets  are more  
general than the cells in the s tandard tabular  context-  
free algorithms. In the C-K-Y algori thm (Kasami  
1965), for  example,  a cell is indexed only by the start-  
ing position and the length of the parsed segment ,  i.e., 
the current  string at PUSH and POP. The cell contents  
are nonterminals.  In our case all three are part  of the 
bucket  index, which also includes SENDR and LIFTR 
register values. The bucket  contents  are equivalence 
classes of structures. 

S e n t e n c e  Recogni t ion  

For  sentence recognit ion all parses are equivalent. 
So it is enough to determine,  for each bucket  of  the 
recall table, whether  or not it is empty.  A sentence is 
in the language if the bucke t  cor responding  to the 
sentence  ca tegory  (with emp ty  SENDR registers and 
full string, and empty  LIFTR registers and null string) 
is nonempty.  The particular forms of the syntactic 
structures in the bucket  are irrelevant;  the contents  of 
the buckets  are only a superfluous record of the spe- 
cific syntactic structures. The syntactic structure is 
never  tested and so does not affect  the flow of con- 
trol. Thus which buckets  are nonempty  depends only 
on what  other  buckets  are nonempty  and not on what  
those other  buckets  contain. For  sentence recognition, 
when the execution method constructs  a new memb er  
of a bucket  that  is already nonempty ,  it may  or may  
not add the new substructure,  but it does not need to 
use it to construct  any larger syntact ic  structures. This 
is because the earlier member  has already verified this 
bucket  as nonempty.  Therefore  this fact  is already 
known and is a l ready being used to de termine  the 
nonempt iness  of  o ther  buckets .  To find all parses,  
however ,  equivalence parsing does use all members  of 
each bucket  to construct  larger structures. 

It  would be possible first to do recogni t ion and 
determine all the nonempty  buckets  in the recall table,  
and then to go back and take all variants  of one single 
parse that  can be obta ined by replacing any substruc-  
t u r e . b y  ano ther  subs t ruc ture  f rom the same bucket .  
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This is essentially how the context- f ree  parsing algor- 
i thms cons t ruc ted  f rom the tabular  recogni t ion me-  
thods work. This is not how the equivalence parsing 
algorithm works. When it obtains a substructure,  it 
immediately tries to use it to construct  larger struc- 
tures. 

The difference described above be tween sentence 
recognit ion and sentence parsing is a difference only 
in the execution methods  used to execute the ATN and 
not in the ATN itself. This difference is in the test  for 
equivalence of bucket  contents.  In sentence recogni- 
tion any two syntactic structures in a bucket  are equiv- 
alent since we only care whether  or not the substring 
can be parsed to the given category.  At  the other  
extreme,  in finding all parses,  two entries are equiva- 
lent only if they are the identical structure. For  most  
reasonable  ATNs, including our ATN for  PTQ, this 
would not happen;  distinct paths lead to distinct struc- 
tures. 

Semantic  parsing is ob ta ined  by a g a i n m o d i f y i n g  
only the equivalence test  used in the execution method 
to test  bucket  contents .  For  semant ic  parsing two 

entries are equivalent  if their logical translations,  af ter  
logical reduction and extensionalization,  are identical 
to within change of bound variable. 

Smal l  G r a m m a r  

For  our examples,  we introduce in Figure 1 a small 
subnet  of the ATN for PTQ. Arcs with fully capital-  
ized labels are PUSH arcs; those with lower case labels 
are CAT arcs. Structure-building operat ions are indi- 
cated in parentheses.  This net implements  just three 
rules of PTQ. Rule $4 forms a sentence by concaten-  
ating a te rm phrase and an intransitive verb  phrase;  
S l l  conjoins two sentences ,  and S14,i subst i tutes  a 
t e rm phrase  for  the syntact ic  var iable  he i in a sen- 
tence. $4 and S l l  are context - f ree  rules; S14,i is one 
of the substi tut ion rules that  make the g rammar  non-  
context - f ree  and is basic to the handling of quantifiers,  
p ronouns ,  and antecedents .  The  ATN handles  the 
substi tution by  using a LIFTR to carry the variable-  
binding information.  The LIFTR is not  used for the 
context - f ree  rules. 

ITE 
TS 

TS 

IV ($4 TERM IVP) 

POP SENT l 

(S11 SENTI (S14,i TERM SENT) 
SENT2) 

TE 
bte i l l POP hei 

IV 
biv POP IVP 

Figure 1. Subnet of the ATN for PTQ, 

126 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 



David Scott  Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing 

Example 1: Bill walks 

The first example is the sentence Bill walks. This 
sentence has the obvious parse using only the context-  
free rule $4. It  also has the parse using the substi tu- 
t ion rule. We will carry  through the details of  its 
parse to show how this substitution rule is t reated in 
the parsing process. 

In the trace PUSHes and POPs in the syntactic anal- 
ysis of this sentence are shown. The entries are in 
chronological order. The PUSHes are numbered  se- 
quentially for identification. The PUSH number  uni- 
quely determines a) the category to which the PUSH is 

made,  b) the remainder  of the sentence being parsed 
at the time of the PUSH, and c) the contents  of the 
SENDR registers at the t ime of the PUSH, called the 
PUSH envi ronment .  At each POP a bucke t  and an 
element  in that  bucket  are returned.  The bucket  name 
at a POP is made up of the corresponding PUSH num- 
ber, the remaining input string, and the contents  of the 
LIFTR registers,  which are called the POP environ-  
ment.  The element in the bucket  is the tree that  is 
returned. For  brevi ty  we use in the trace only the first 
letters of the words in the sentence;  for example,  Bill 
walks becomes  Bw. 

Trace of Bill walks 

PUSH: Bucket:  Contents:  
# CAT Str Env f rom Str Env Tree 

1 TS Bw null 

[Parsing begins with a PUSH to the sentence category passing the entire string and an empty  or null environment . ]  

2 TE Bw null 

[In the sentence subnet  we first PUSH to find a TE.] 

2 w null Bill 

[The TE subnet  finds and POPs the term Bill to return f rom PUSH 2.] 

3 IV w null 
3 e null walk 
1 e null ($4 Bill walk) 

[Now since a tree is returned to the top level, covers the whole string, and the returned envi ronment  is null, the 
tree is printed. The parses are always the trees in bucket  1-e-null .  The execution method now backs up; there 
are no more POPs f rom PUSH 3; there is another  f rom PUSH 2.] 

2 w (he0 B) he0 

[Continuing forward with the new environment. . . ]  

4 IV w (he0 B) 
4 e null walk 

[Note that  this is not the same bucket  as on the previous PUSH 3 because the PUSH environments  differ.] 

1 e (he0 B) ($4 he0 walk) 

[The tree has been  returned and covers the whole string. However ,  the returned envi ronment  is not null so the 
parse fails, and the execution method backs up to seek another  return f rom PUSH 1.] 

1 e null (S14,0 Bill ($4 he0 walk))  

[This is another  element in bucket  1-e-nul l ;  it is a successful parse so it is printed out. Execut ion continues but 
there are no more parses of the sentence.]  

Discussion 

In this t race bucket  t - e - n u l l  is the only bucket  
with more than one entry. The execution method was 
syntactic parsing, so each of the two entries was re- 
turned and pr inted out. For  recognition, these two 
entries in the bucket  would be considered the same 
and the second would not have been POPped. Instead 
of continuing the computa t ion  up in the subnet  f rom 
which the PUSH was made,  this path  would be made to 
fail and the execution method would back up. For  

semantic equivalence parsing, the bucke t  contents  
throughout  would not be the syntax trees, but would 
instead be their reduced extensionalized logical formu-  
las. (Each such logical formula  represents  the equiva- 
lence class of the syntactic structures that  correspond 
to the formula.)  For  example,  bucket  2-w-null  would 
contain  ~,Pp{Ab} and bucke t  3-c-null  would contain  
walk' .  The first entry to bucket  1-E-null  would be the 
formula for ($4 Bill walk),  that  is, w a l k . ' ( b ) .  The 
entry to bucket  1-e-nul l  on the last line of the trace 
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would be the formula for (S14,0 Bill ($4 he0 walk)) ,  
which is also w a l k . ' ( b ) .  Therefore ,  this second entry 
would not be POPped. 

Buckets also serve to reduce the amount  of repeat-  
ed computat ion.  Suppose we have a second PUSH to 
the same category with the same string and environ- 
ment  as an earlier PUSH. The buckets  resulting f rom 
this new PUSH would come out to be the same as the 
buckets  f rom the earlier PUSH. Therefore  the buckets  
need not be recomputed ;  the results of  the earlier 

buckets  can be used directly. This is called a 
"FAKEPUSH" because we don ' t  actually do the PUSH 
to continue through the invoked subnet  but  simply do 
a "FAKEPOP"  using the contents  of  the previously  
computed  buckets.  

Consider,  as an example of FAKEPOP, the partial  
t race of the syntactic parse of the sentence Bill  walks 
and Mary runs (or Bw&Mr for  short) .  The initial part  
of this trace, through step 4, is essentially the same as 
the trace above for the shorter  sentence Bill  walks. 

Trace of Bill  walks and Mary  runs 

PUSH: Bucket:  
# CAT Str Env f rom Str 

Contents:  
Env Tree 

1 TS Bw&Mr null 
2 TE Bw null 

3 IV w null 
2 w&Mr null Bill 

3 &Mr null walk 
1 &Mr null ($4 Bill walk) 

[A tree has been returned to the top level, but it does not cover  the whole sentence,  so the pa th  fails and the 
execution method backs  up.] 

2 w&Mr (he0 B) he0 
4 IV w&Mr (he0 B) 

4 &Mr null walk 
1 &Mr (he0 B ($4 he0 walk) 

[Again a tree has been  returned to the top level, but it does not span the whole string, nor is the re turned 
envi ronment  null, so we fail.] 

1 &Mr null (S14,0 Bill ($4 he0 walk))  

[Again we are the top level; again we do not span the whole string, so again we fail.] 

5 TS Bw&Mr null 

[This is the second arc f rom the TS node of Figure 1. The PUSH to TE (2 above)  has complete ly  failed. 
However ,  this PUSH, TS-Bw&Mr-null has been  done before;  it is PUSH 1. We already have two buckets  f rom 
that  PUSH: 1-&Mr-null containing two trees, and 1-&Mr-(he0 B) with one tree. There  is no need to re-enter  this 
subnet;  the buckets  and their contents  tell us what  would happen.  Therefore  we FAKEPOP one subtree and its 
bucket  and follow that  computa t ion  to the end; later we will return to FAKEPOP the next one.] 

1(5) &Mr null ($4 Bill walk) 
6 TS Mr null 
7 TE Mr null 

7 r null Mary  

[This computa t ion  continues and parses the second half of this sentence. Two parses are produced:  
(S11 ($4 Bill walk) ($4 Mary  run))  and 
(S11 ($4 Bill walk) (S14,0 Mary ($4 he0 run)))  

After  this, the execution method fails back to the FAKEPOP at PUSH 5, and another  subtree f rom a bucket  f rom 
PUSH 2 is FAKEPOPped.] 

1(5) &Mr null (S14,0 Bill (he0 walk))  

[And the computa t ion  continues,  eventually producing a total of ten parses for this sentence.]  

(In the earlier example  of  Bil l  walks, these 
FAKEPOPs are done, but their computa t ions  immedi-  

ately fail, because they are looking for  a conjunct ion 
but are at the end of the sentence.)  
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Results of Parsing 

The sentence Bill walks and Mary runs has ten 
syntactic structures with respect to the PTQ grammar. 
The rules $4, S l l ,  and S14,i can be used in various 
orders. Figure 2 shows the ten different structures in 
the order they are produced by the syntactic parser. 

The nodes in the trees of Figure 2 that are in italics 

are the syntactic structures used for the first time. 
The nodes in standard type are structures used previ- 
ously, and thus either are part of an execution path in 
common with an earlier parse, or are retrieved from a 
bucket  in the recall table to be used again. Thus the 
number of italicized nodes measures in a crude way 
the amount of work required to find all the parses for 
this sentence. 

S l l  

I 
I I 

$4 $4 

I t 
i i i I 

Bill walk Mary run 

b. 

I 
Bill 

I 
$4 

I 
I 

walk 

S14,0 Mary 

I 
$11 

I 

I 
he0 

I 
$4 

i 
I 

run 

e ,  S l l  

1 
I 

$4 

L 
I I 

Bill walk 

I 
he0 

I 
S14,0 Mary 

I 
$4 

I 
I 

r u n  

I 
$4 

I I 
he0 walk 

$14,0 Bill 

I 
$11 

i 
i 

$4 

f 
I 

Mary 
I 

run 

e. S14,1 Mary 

I 
$14,0 Bill 

I 
$11 

I 
I 

$4 

I 
I I I 

he0 walk hel  

I I 
$4 $4 

I I 
I I wJlk run he0 

S14,0 Bill 

I 
S14,1 Mary 

I 
S l l  

I 
I 

$4 

I 
I 

hel  
I 

run 

Figure 2. Ten parses for Bill walks and Mary runs, 
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g. 

I 
$4 

I 
I I 

he0 walk 

S14,0 Bill 

I 
$11 

I 
I 

S14,1 Mary 
I 

$4 

I 
I I 

hel  run 

$11 

I 
I I 

$14,0 Bill $4 

i I 
$4 

I I Mary  

I I 
heO walk 

I 
run 

S14,1 Mary 

I 
$11 

I 
I I 

S14,0 Bill $4 

i I 
S4 

I I 
he l  

I I 
heO walk 

run 

$11 

I 
he0 

I I 
S14,0 Bill S14,1 Mary 

I I 
$4 $4 

I I 
I I I 

walk he 1 run 

Figure 2. continued 

Example of Semant ic  Equivalence Parsing 

This sentence,  Bill walks and Mary runs, is one for 
which semant ic  parsing is substant ia l ly  faster .  I t  is 
unambiguous;  its only reduced extensionalized logical 
translation is " w a l k , ' ( b ) & r u n , ' ( m ) " .  In the directed 
process  parser ,  all ten trees of Figure 2 are found.  

They will all have the same translation. In semantic  
parsing on'ly one is found. Here  the method  works to 
advantage because  bo th  parses of the initial string Bill 
walks result in the same envi ronment  for parsing Mary 
runs. These two parses go into the same bucket  so 
only one needs to be used to construct  larger struc- 
tfires. We trace the example.  

PUSH: Bucket:  
# CAT Str Env f rom Str 
= 

Contents:  
Env Formula  ? 

1 TS Bw&Mr null 
2 TE Bw null 

3 IV 

[Fail] 

4 IV 

[Fail] 

2 
w null 

3 
1 

2 
w&Mr (he0 B) 

4 
1 

w&Mr null )tPp{Ab} y 

&Mr null walk '  y 
&Mr null w a l k , ' ( b )  y 

w&Mr (he0 B) hPP{x0} y 

&Mr null walk '  y 
&Mr (he0 B) walk'(Vx0) y 
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1 &Mr null w a l k , ' ( b )  n 

[This formula is the translat ion of the syntactic structure using S14,0 to substi tute Bill into "he0  walks".  This is 
the same bucket  and the same translation as obta ined at the return f rom 1 af ter  PUSH 3 above,  so we do not POP 
(indicated by the 'n '  in the final column),  but instead fail back.] 

5 TS Bw&Mr null 

[FAKEPOP, since this is a repeat  PUSH to this category with these parameters .  There  are two buckets:  1-&Mr- 
null, which in syntactic parsing had two trees but now has only one translation, and bucket  1-&Mr-(he0 B) with 
one translation. So we FAKEPOP 1-&Mr-null.] 

1(5) &Mr null w a l k , ' ( b )  y (FAKEPOP) 
6 TS Mr null 
7 TE Mr null 

7 r null y 
8 IV r null 

8 E null y 
6 e null y 
1 ~ nul l  y 

[This is a successful parse. The top level prints out the translation and then the execution method fails back.] 

9 IV r (he0 M) 

Mary  

run '  
r u n , ' ( m )  
w a l k , ' ( b ) & r u n , ' ( m )  

7 (he0 M) null ~PP{x0} y 

9 e null run '  y 
6 E null run, ' (Vx0) y 
1 E (he0 M) walk , ' (b )&run , ' (Vx0)  y 

[Fail because we are at the top level and the environment  is not null.] 

1 ~ null w a l k , ' ( b ) & r u n , ' ( m )  n 

[Again we want  to enter  a translation into bucket  1-E-null. This translation duplicates the one already there. 
it is not returned and we fail back.] 

6 E null r u n , ' ( m )  n 

[This again duplicates a bucket  and its contents ,  so we fail back to the second FAKEPOP f rom PUSH 5. 
use the other bucket:  1-&Mr-(he0 B).] 

1(5) &Mr (he0 B) walk, ' (Vx0) y (FAKEPOP) 
(he0 B) 
(he0 B) 

(he0 B) 

10 TS Mr 

11 r null  
11 TE Mr 

12 IV r 

So 

Now we 

~P{xO} y 

run '  y 
r u n , ' ( m )  y 
walk , ' (Vx0)&run , ' (m)  y 

12 ¢ null 
10 e null 
1 E ( h e 0  B) 

[Fail at the top level since the envi ronment  is not null.] 

1 e (he0 B) w a l k , ' ( b ) & r u n , ' ( m )  

[This duplicates a bucket  and its contents,  so we do not POP it but fail back.] 

l l  r (he l  M) ~PP{xl} 

13 e null 
10 e (he l  M) 
1 e (he0 B) 

(he l  M) 

13 IV r (he0 B) 
(he l  M) 

run '  
r u n , ' ( ~ x l )  
walk , ' (~x0)  &run,'(Vx 1 ) 

(he l  M) wa lk , ' ( b )&run , ' (Vx l )  

null w a l k , ' ( b ) & r u n , ' ( m )  

Y 

[Fail at top level because envi ronment  is not null.] 

1 c 

[Fail at top level because environment  is not null.] 

1 e 

[Duplicate bucket  and translation, so fail.] 
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1 c ( h e 0  B) 

[Duplicate bucket  and translation, so fail.] 

1 c null 

[Duplicate, so fail.] 

10 e null 

[Duplicate, so fail.] 

wa lk , ' (Vx0)&run , ' (m)  n 

w a l k , ' ( b ) & r u n , ' ( m )  n 

r u n , ' ( m )  n 

This completes  the trace of the semantic  parse of the sentence.  

Results of Parsing 

Figure 3 displays in graphical  fo rm the syntact ic  
s t ructures  built during the semant ic  parsing of Bill 
walks and Mary runs t raced above.  A horizontal  line 
over  a part icular  node in a tree indicates that  the 
t ranslat ion of the s t ructure  duplicated a t ransla t ion 
already in its bucket ,  so no larger structures were built 

using it. Only parse a) is a full parse of the sentence 
and thus it is the only parse returned.  All the others 
are abor ted  when they are found equivalent  to earlier 
partial results. These  points of abor t ion  in the compu-  
tat ion are the points in the trace above  at which a POP 
fails due to the duplication of a bucket  and its con-  
tents. 

a. S l l  

I 
I I 

$4 $4 

I I 
1 I I I 

Bill walk Mary  run 

b. S14,0 Mary 

S l l  

I 
I 1 

$4 $4 

I I 
I I I I 

Bill walk he0 run 

S14,0 Mary 

$4 

I 
I I 

he0 run 

d. $14,0 Bill 

$11 

I 
I I 

$4 $4 

I I 
I I I I 

he0 walk Mary  run 

Figure 3. Semant ic  parses  of Bill walks and Mary runs. 
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I 
$4 

I 
I 

he0 

e .  S14,1 Mary 

I 
$14,0 Bill 

I 
$11 

I 
I 

$4 

I 
I I I 

walk he 1 run 
I 

he0 

$14,0 Bill 

I 
$14,1 Mary 

I 
S l l  

I 
I I 

$4 $4 

I I 
I I 

walk he 1 
I 

run 

g. S14,1 Mary 

I 
$4 

I 
I I 

he 1 run 

Figure 3. continued 

Note that construct ion of parse c) is halted when a 
t ranslat ion is built that  duplicates the t ranslat ion of 
the right $4 subtree of parse a). This corresponds to 
the failure due to duplicate bucket  contents  in bucket  
6-E-null  following PUSH 9 in the trace above.  Simi- 
larly parse g) is abor ted  before  the entire tree is built. 
This corresponds to the failure in the final line of the 
trace due to a duplicate t ranslat ion in bucket  
10-E-null.  Semantic parses that  would correspond to 
syntactic parses h), i), and j) of Figure 2 are not con- 
sidered at all. This is because bucket  1-&Mr-null con- 
tains two syntactic structures, but only one translation. 
Thus in semantic equivalence parsing we only do one 
FAKEPOP for this bucket  for PUSH 5. In syntactic 
parsing the other  parses  are genera ted  by the 
FAKEPOP of the other  structure in this bucket.  

Reducing the  Env i ronment  

The potent ia l  advantage  of semant ic  equivalence 
parsing derives f rom treating partial results as an equi- 
valence class in proceeding. A partial result consists 
of a structure, its extensionalized reduced translation, 
and a set of pa ramete r s  of the parse to that  point.  
These parameters  are the envi ronment  for  parsing the 
phrase. Consider  the sentence John loves Mary and its 
parses: 

(1) ($4 John ($5 love Mary) )  
(2) ($4 John (S16,0 Mary  ($5 love he0)) )  
(3) (S14,0 John ($4 (he0 ($5 love Mary) ) )  
(4) (S14,0 John ($4 he0 (S16,1 Mary  

($5 love h e l ) ) ) )  
(plus 3 more)  

On reaching the phrase  love Mary in parse (3) the 
parameters  are not the same as they were at that point  
in parse (1),  because  the pair  (he0 John)  is in the 
environment .  Thus the parser  is not able to consult  
the recall table and immedia te ly  re turn  the a l ready 
parsed substructure.  Ins tead it must  reparse love Mary 
in the new context.  

This envi ronment  problem arises because the ATN 
is designed to follow PTQ in treat ing pronouns  by the 
non-con tex t - f r ee  subst i tut ion rules. We have also 
considered,  but  have not  to this point  implemented ,  
al ternative ways of treat ing variables to make partial 
results equal. One way would be not to pass variable 
bindings down into lower nets at all. Thus the PUSH 
environment  would always be null. Since these bind- 
ings are used to find the antecedent  for a pronoun,  the 
way antecedents  are de te rmined  would have to be 
changed. An implementa t ion  might be as follows: On 
encounter ing a pronoun during parsing, replace it by a 
new he-variable.  Then pass back  up the tree informa-  
tion concerning both  the variable number  used and the 
p ronoun ' s  gender. At a higher point in the tree, where 
the substitution rule is to be applied, a determinat ion 
can be made as to which of the subst i tu ted  terms 
could be the antecedent  for the pronoun.  The variable 
number  of the pronoun can then be changed to agree 
with the variable number  of its antecedent  term by a 
var iable-for-var iable  substitution. Finally the substi tu- 
tion rule can be used to substitute the term into the 
phrase for all occurrences  of the variable. Note  that  
this al ternative process would construct  trees that  do 
have substi tution rules to substi tute variables for varia-  
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bles, contrary  to the variable principle ment ioned 
above. We also note  that with this modificat ion a 
pronoun is not associated with its antecedent  when it is 
first encountered.  Instead the pronoun is saved and at 
some later point in the parse the association is made. 
This revised t rea tment  is related computat ional ly  to 
that proposed in Cooper  1975. 

Evaluation of Semantic Equivalence Parsing 

The question of the interaction of syntax and se- 
mantics in parsing was introduced early in computa-  
tional linguistics. Winograd 1971 argued for the in- 
corpora t ion  of semantics as early as possible in the 
recognition process, in order to reduce the amount  of 
syntactic processing that would be needed.  Partial  
parses that had no interpretat ion did not need to be 
continued.  The alternative posi t ion represented  by 
Woods ' s  early work (Woods and Kaplan 1971) was 
basically the inverse: less semantic processing would 
be needed if only completed parses were interpreted. 
This argument is based on the idea of eliminating un- 
interpretable parses as soon as possible. 

This advantage, if it is one, of integrated syntactic 
and semantic procedures does not occur here because 
the semantic aspect does not  eliminate any logical 
analyses. The translation of a structure to a formula is 
always successful, so no partial parse is ever eliminat- 
ed for lack of a translation. What  happens instead is 
that several partial parses are found to be equivalent 
because they have the same translation. In this case 
only a representat ive of the set of partial parses needs 
to be carried forward. 

A further expansion of equivalence parsing would 
be interpretation equivalence parsing. Sentence process- 
ing would take place in the context  of a specified mod- 
el. Two structures would be regarded as equivalent if 
they had the same denota t ion  in the model. More  
partial structures would be found equivalent under the 
equivalence relat ion than under  the reduce-  
extensionalize relation, and fewer structures would 
need to be constructed.  Further,  with the interpreta-  
tion equivalence relation, we might be able to use an 
inconsistent denotat ion to eliminate an incorrect  par- 
tial parse. For  example, consider a sentence such as 
Sandy and Pat are running and she is talking to him. In 
this case, since the gender of Sandy and Pat cannot  be 
determined syntactically,  these words would have to 
be marked in the lexicon with both  genders. This 
would result in multiple logical formulas for  this sen- 
tence,  one for each gender  assumption. However ,  
during interpretat ion equivalence parsing, the referents  
for Sandy and Pat would be found in the model and 
the meaning with the incorrect  coreference could be 
rejected. 

Logical normal forms other  than the reduced, ex- 
tensionalized form used above lead to other  reasonable 

versions of equivalence parsing. For  example,  we 
could fur ther  process the reduced,  extensional ized 
form to obtain a prenex normal form with the matrix 
in clausal form. We would use some standard conven- 
tions for naming variables, ordering sequences of the 
same quantifier in the prefix, and ordering the literals 
in the clauses of the matrix. This would allow the 
algori thm to eliminate, for  example,  multiple parses 
arising from various equivalent scopes and orderings of 
existential quantifiers. 

The semantic equivalence processor has been im- 
plemented in Franz Lisp. We have applied it to the 
PTQ grammar and tested it on various examples. For  
purposes of compar ison the directed process version 
includes syntactic parse, translation to logical formula 
and reduction, and finally the reduction of the list of 
formulas to a set of formulas. The mixed strategy 
yields exactly this set of formulas, with one parse tree 
for each. Experiments  with the combined parser and 
the directed parser show that they take approximately 
the same time for reasonably simple sentences. For  
more complicated sentences the mixed strategy usually 
results in less processing time and, in the best cases, 
results in about  a 40 percent  speed-up. The distin- 
guishing characteristic of a string for which the me- 
thod yields the greatest  speed-up is that the environ- 
ment resulting from parsing an initial segment is the 
same for several distinct parses. 

The two parsing method  we have described,  the 
sequential process and the mixed process, were obvi- 
ously not  developed with psychological  modeling in 
mind. The directed process version of the system can 
be immediately re jected as a possible psychological  
model, since it involves obtaining and storing all the 
structures for a sentence before beginning to interpret  
any one of them. However ,  a reorganizat ion of the 
p r o g r a m w o u l d  make it possible to interpret  each 
structure immediately after  it is obtained. This would 
have the same cost in time as the first version, but  
would not  require storing all the parses. 

Although semantic equivalence parsing was devel- 
oped in the specific context  of the grammar of PTQ, it 
is more general in its applicability. The strict compos-  
itionality of syntax and semantics in PTQ is the main 
feature on which it depends. The general idea of equi- 
valence parsing can be applied whenever  syntact ic  
structure is used as an intermediate form and there is a 
syntax-directed translation to an output  form on which 
an equivalence relation is defined. 

2. Input-Refined Grammars 

We now switch our  point  of view and examine 
equivalence parsing not  in algorithmic terms but  in 
formal  grammatical  terms. This will then lead into 
showing how equivalence parsing relates to Universal 
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Grammar (UG) (Montague 1970). The basic concept  
to be used is an input-refined grammar. We begin  by 
defining this concept  for  con tex t - f ree  g rammars  and 
using it to relate the tabular  context - f ree  recognit ion 
algori thms of Ear ley  1970, C o c k e - K a s a m i - Y o u n g e r  
(Kasami  1965),  and Sheil 1976 to each o ther  and 
eventually to our algorithm. 

Given a context- f ree  grammar  G and a string s over  
the terminal symbols of G, we define f rom G and s a 
new g rammar  Gs, called an input-refinement of  G. 
This new grammar  G s will bear  a particular relation- 
ship to G: L(Gs) = {s}nL(G),  i.e., L(Gs) is the single- 
ton set {s} if s is in L(G),  and empty  otherwise. Fur-  
thermore ,  there is a direct one - to -one  relat ionship 
be tween the derivations of s in G and the derivations 
of s in G s. Thus the problem of recognizing s in G is 
reduced to the problem of determining emptiness for  
the grammar  G s. Also, the problem of parsing s with 
respect  to the grammar  G reduces to the problem of 
exhaustive generat ion of the derivations of G s ( there is 
at most  one string). Each of the tabular  context - f ree  
recogni t ion algori thms can be viewed as implicitly 
defining this g rammar  G s and testing it for emptiness.  
Emptiness  testing is essentially done by reducing the 
grammar ,  that  is by  eliminating useless symbols  and 
productions.  The table-construct ing port ion of a tabu-  
lar recogni t ion algori thm, in effect ,  constructs  and 
reduces the grammar  Gs, thus determining whether  or 
not it is empty.  The tabular  methods differ in the 
construct ion and reduction algorithm used. 

In each case, to turn a tabular  recognit ion method  
into a parsing algorithm, the table must first be con- 
structed and then reprocessed to generate  all the pars-  
es. This corresponds to reprocessing the grammar  Gs t, 
the result of reducing the g rammar  Gs, and using it to 
exhaustively generate  all derivations in G s. 

Rather  than formally defining G s f rom a context-  
free g rammar  G and a string s in the general case, we 
illustrate the definition by example.  The general defi- 
nition should be clear. 

Let  G be the following context - f ree  grammar:  

Terminals:  {a,b} 
Nonterminals:  {S} 
Start Symbol: S 
Productions: S-~S S a 

S-~b 
S ~ e  

(S produces the empty  string) 

bba. Gbb a is defined f rom G and Let  s be the string 
bba: 

Terminals:  
Nonterminals:  

{a,b} 

{al,a2,a3,b!,b2,b3, 
(t i for t a terminal of G 

and 1 < i< lcng th ( s ) )  

S123,512,51,S23,52,S 3, 

(A x for each nonterminal  A of G 
and each x a nonempty  subse- 

quence of < 1,2,3 ..... l eng th ( s )>)  

S°,Sl,S2,S 3 } 
(A i for each nonterminal  A of G 

and i, 0 < i < l e n g t h ( s ) )  
Start Symbol: S123 
Productions:  [from G production:  S-~S S a] 

S123~S12S2a3 
S123~S~S2a3 
S123~S Sl2a 3 
S 12"~ SIS a 2 
S12--~ SuSla2 
S 1 ~ S°S°a t 
S23--~ S~52a3 
$23 ~ S'S2a 3 
$2~$1Sla2 
$3~$2S2a3 
[from G production: S-~b] 

S l ~ b  1 
S2~b 2 
$3--~ 3 
[from G production: S-~ e] 
S°-~ • 
s l y •  
$ 2 ~  • 
$ 3 ~  • 

[for the terminals] 
b l - ~ b  
b 2 - - b  

a 3 ~ a  
These product ions for G s were constructed by begin- 
ning with a product ion of G, adding a subscript  or a 
superscript  to the nonterminal  on the LHS to obtain a 
nonterminal  of Gs, adding single subscripts to all ter- 
minals and sequence subscripts to some nonterminals  
on the RHS so that  the concatenat ion of all subscripts 
on the RHS equals the subscript  on the LHS. For  the 
RHS nonterminals  without subscripts, add the appro-  
pr iate  subscript .  Also, to handle the terminals ,  for  
each t i add the product ion T i ~ t  where t is the i th sym- 
bol in s. 

It  is s t ra ightforward to show inductively that  if a 
nonterminal  symbol  generates  any string at all it gen- 
erates exactly the substring of s that  its subscript  de- 
termines. Symbols with superscripts generate  the emp-  
ty string. Also a parse tree of  G s can be conver ted  to 
a parse tree of G by first deleting all terminals (each is 
dominated by the same symbol  with a subscript)  and 
then erasing all superscripts and subscripts on all sym- 
bols in the tree. Conversely,  any parse tree for s in G 
can be conver ted  to a parse tree of s in G s by  adding 
appropr ia te  subscripts and superscripts  to all the sym- 
bols of the tree and then adding the terminal symbols  
at the leaves. 
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I t  is clear that  G s is not in general a reduced gram- 
mar. G s can be reduced to Gs ~ by eliminating unpro-  
ductive and unreachable  symbols and the rules involv- 
ing them. Reducing the g rammar  will de termine  
whether  or not L(Gs) is empty.  By the above discus- 
sion, this will determine whether  s is in L(G),  and thus 
an algorithm for construct ing and reducing the refined 
grammar  G s f rom G and s yields a recognit ion algor- 
ithm. Also, given the reduced  g rammar  Gs I, it is 
s t ra ight forward,  in light of the above  discussion, to 
generate  all parses of  s in G: simply exhaustively gen- 
erate the parse trees of Gs ~ and delete subscripts and 
superscripts.  

The tabular  con tex t - f ree  recogni t ion methods  of 
Cocke-Kasami-Younger ,  Earley,  and Sheil can all be 
unders tood as variat ions of this general  approach.  The 
C-K-Y recognit ion algorithm uses the s tandard bo t tom-  
up method  to de te rmine  empt iness  of  G s. I t  s tarts  
with the terminals and determines which G s nontermi-  
nals are productive,  eventually finding whether  or not 
the s tar t  symbol  is product ive .  The matr ix  it con-  
structs is essentially the set of product ive nonterminals  
of G s. 

Sheil 's wel l - formed substring table algorithm is the 
most  obviously and directly related. His simplest al- 
gori thm constructs  the refined grammar  and reduces it 
top-down.  It  uses a top-down control  mechanism to 
determine the productivi ty only of nonterminals  that  
are reachable  f rom the start  symbol.  The wel l - formed 
substring table again consists essentially of the reacha-  
ble, productive nonterminals  of G s. 

Ear ley ' s  recognit ion algorithm is more complicated 
because it s imultaneously constructs and reduces the 
refined grammar.  It can be viewed as manipulat ing 
sets of subscr ipted nonterminals  and sets of prod-  
uctions of G s. The items on the i tem lists, however ,  
cor respond  quite direct ly to reachable ,  product ive  
nonterminals  of G s. 

The concept  of  input-ref ined g rammar  provides a 
unified view of the tabular  con tex t - f ree  recogni t ion 
methods.  Equivalence parsing as described in Part  I 
above  is also a tabular  method,  a l though it is not  
context-free .  It  applies to context - f ree  grammars  and 
also to some g rammars  such as PTQ that  are not  
context-free.  We next relate it to the very general 
class of grammars  defined by Montague  in UG. 

Universal Grammar and Equivalence Parsing 

In the following discussion of the problem of pars-  
ing in the general context  of Montague ' s  definitions of 
a language (which might  more  natural ly  be called a 
grammar)  and an interpretat ion,  we assume the reader  
is familiar  with the defini t ions in UG (Montague  
1970). We begin with a formal  definition of a refine- 
ment  of a general disambiguated language. A part icu- 
lar type of ref inement ,  input-ref inement ,  leads to an 

equivalence parsing algori thm. This general izes  the 
procedure  for input-refining a g rammar  shown above 
for the special case of a contex t - f ree  grammar.  We 
then discuss the implications for equivalence parsing of 
using the formal  in terpreta t ion of the language. Final- 
ly we show how the ATN for  PTQ and semantic  equi- 
valence parsing fit into this general  f ramework.  

Recall that  a disambiguated language f~ = <A,  Fv, 
X 8, S, 8 0 > v ~ r , ~ a  can be regarded as consisting of an 
a lgebra  <A,F~,>~,eF, with p roper  express ions  A and 
operat ions  Fv, basic expressions X 8 for  each ca tegory  
index d eA, a set of syntact ic  rules S, and a sentence 
ca tegory  index 80EA. A language is a pair <~2,R> 
where ~2 is a disambiguated language and R is a binary 
relat ion with domain included in A. Given  a disambig-  
uated language 

~2 = <A,  F~, X#, S, 80>~EF, ~EA, 

a disambiguated language 

f~v = <A,  F~,Xts,, S t , 80v>~,EF, 8'EA' 

is a refinement of 12 if there is a re f inement  funct ion 
d:AW-.A f rom the ca tegory  indices of f l '  to those of f~ 
such that  

1) Xt~ _c X d ( 8 , )  ' 

2) If <F~,<~lW,~2t ..... 8n1>,St>  E S v, then 
< F ~ , < d ( 8 1 ' ) , d ( ~ 2 ' )  ..... d ( ~ n ' ) > ,  d ( 8 ' ) >  E S ' ,  and 

3) d(80 ' )  = 60 . 

(Note  that  the p roper  express ions  A, the opera t ion  
indexing set F, and the operat ions  Fy of ~ and 12 ~ are 
the same.)  

The word refinement refers  to the fact  that  the 
catgories of lZ are split into finer categories.  Condi-  
tion 1 requires that  the basic expressions of  a ref ined 
category come f rom the basic expressions of the cate-  
gory it refines.  Condi t ion  2 requires  that  the new 
syntactic rules be consistent  with the old ones. Note  
that  Condi t ion 2 is not a biconditional.  

If  12 t is a ref inement  of ~2 with ref inement  funct ion 
d, < C ' 8 , > ~ , , ~ ,  is the family of syntact ic  categories of 
~2' and <C0>0E a is the family of syntact ic  categories 
of ~2, then C'~,-cCd(~, ). 

As a simple example  of  a ref inement ,  consider an 
arbi t rary disambiguated language ~2 t = <A,  Fy, Xts , ,  
d0w>yEr,8, Ea,. NOW let ~2 be the disambiguated lan- 
guage <A,  Fy, Xa, S, a>yEi-, in which the set of cate-  
gory names is the singleton set {a}. X a = O~,EA, X~,. 
Let  S be {<Fr ,  <a , a  ..... a > ,  a >  : y e F  and the number  
of a 's  agrees with the arity of F}. Then f~ is a refine- 
ment  of ~, with ref inement  funct ion d:At-~{a},  d(8 ~) 
= a for all d~¢A ~. Note  that  the disambiguated lan- 
guage ~2 is comple te ly  de te rmined  by the a lgebra  
<A,Fy>yeF,  and is the natural  d isambiguated language 
to associate with it. Thus in a formal  sense, we can 
view a disambiguated language as a ref inement  of its 
algebra. 
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As a more intuitive example of refinement,  consider 
an English-like language with categories term (TE) and 
intransitive verb phrase (IV) that both include singular 
and plural forms. The language generated would then 
allow subject-verb disagreement (assuming the ambig- 
uating relation R does not filter them out).  By refin- 
ing category TE to TEsing and TEpl and category IV to 
IVsing and IVpl, and having syntactic rules that com- 
bine category TEsing with IVsing and TEpl with IVpl 
only, we obtain a refined language that has subject- 
verb agreement. A similar kind of ref inement  could 
eliminate such combinat ions as "colorless  green 
ideas",  if so desired. 

With this definition of refinement,  we return to the 
problem of parsing a language L = <~ ,  R>.  The 
problem can now be restated: find an algorithm that, 
given a string ~, constructs a disambiguated language 
~2~ that is an input-refinement of fL That  is, f~ is a 
ref inement in which the sentence category Cts, is ex- 
actly the set of parses of ~ in L. Finding this algor- 
ithm is equivalent to solving the parsing problem. For  
given such an algorithm, the parsing problem reduces 
to the problem of generating all members of C'80,. 

In the case of a general language <~ ,  R>,  it may 
be the case that for ~ a string, the input-refined lan- 
guage f~ has finitely many categories. In this case the 
reduced grammar can be computed and a recursive 
parsing algorithm exists. If the reduced grammar has 
infinitely many categories, then the string has infinitely 
many parses and we are not, in general, interested in 
trying to parse such languages. It may happen, how- 
ever, that ~2~ has infinitely many categories,  even 
though its reduction has only finitely many. In this 
case, we are not guaranteed a recursive parsing algor- 
ithm. However ,  if this reduced language can be effec- 
tively constructed,  a recursive parsing algorithm still 
exists. 

The ATN for PTQ represents  the disambiguated 
language for PTQ in the UG sense. The categories of 
this disambiguated language correspond to the set of 
possible triples: PTQ category name, contents  of 
SENDR registers at a PUSH to that subnet, contents of 
the LIFTR registers at the corresponding POP. The 
input-refined categories include the remainder of the 
input string at the PUSH and POP. Thus the buckets 
in the recall table are exactly the input-refined cate- 
gories. The syntactic execut ion method is thus an 
exhaustive generat ion of all expressions in the sen- 
tence category of the input-ref ined disambiguated 
language. 

Semantic Equivalence Parsing in OG 

In UG, Montague inclues a theory of meaning by 
providing a definition of interpretat ion for a language. 
Let  L = <<A,F,r,Xs,S,t~0>.rEF,SEA,R> be a language. 
An interpretation ,t' for  L is a system <B,G~,,f>3,EF 

such that <B,Gv>v~ r is an algebra similar to 
<A,F./>3,eF; i.e., for  each ~, E F, Fy and G./ have the 
same number  of arguments, and f is a function from 
O,EAX 8 into B. Note  that  the algebra <B,G~,>.rE F 
need not be a free algebra (even though <A,Fy>v¢ r 
must be). B is the set of meanings of the interpreta- 
tion ,I,; Gv is the semantic rule corresponding to syn- 
tactic rule Fv; f assigns meanings to the basic expres- 
sions Xv. The meaning assignment for L determined 
by if' is the unique homomorphism g from <A,F.r>~,EF 
into <B,Gy>,/E F that is an extension of f. 

There are two ways to proceed in order  to find all 
the meanings of a sentence ~ in a language L = <f~, 
R> with interpretat ion ~. The first method is to gen- 
erate all members of the sentence category Cts0 , of 
the input-refined language ~2~. As discussed above, 
this is done in the algebra <A,F./>~,cF of ~ ,  using the 
syntactic functions Fv to inductively construct  mem- 
bers of A from the basic categories of f~ and members 
of A const ructed earlier and then applying g. The 
second method is to use the fact that g is a homomor-  
phism from <A,F.~>~,EF into <B ,G . />~  F. Because g 
is a homomorphism, we can carry out the construction 
of the image of the sentence category entirely in the 
algebra <B,G~,>~,eF of the interpretat ion q'. We may 
use the G functions to construct inductively members 
of B from the basic semantic categories, that is, the 
images under g (and f) of the basic syntactic categor- 
ies, and members of B already constructed. The ad- 
vantage of carrying out the construction in the algebra 
of ,t, is that this algebra may not be free, i.e., some 
element  of B may have multiple construct ion se- 
quences. By carrying out the construction there, such 
instances can be noticed and used to advantage, thus 
eliminating some redundant  search. There are addi- 
tional costs, however,  associated with parsing in the 
interpretat ion algebra q'. Usually, the cost of evaluat- 
ing a G funct ion in the semantic algebra is greater  
than the cost of the corresponding F function in the 
syntactic algebra. Also in semantic parsing, each 
member  of B as it is constructed is compared to the 
other  members of the same refined category that were 
previously constructed. 

In the PTQ parsing system discussed above,  the 
in terpreta t ion algebra is the set of reduced transla- 
tions. The semantic functions are those obtained from 
the functions given in the T-rules in PTQ, and reducing 
and extensionalizing their results. The directed proc- 
ess version of the parser finds the meanings in this 
algebra by the first method, generating all parses in 
the syntactic algebra and then taking their images un- 
der the interpretat ion homomorphism. Semantic equi- 
valence parsing for PTQ uses the second method,  car- 
rying out the construct ion of the meaning ent irely 
within the semantic algebra. The savings in the exam- 
ple sentence Bil l  walks  and  Mary  runs comes about  
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because the algebra of reduced translations is not a 
free algebra, and the redundant  search thus eliminated 
more  than made up for the increase in the cost  of 
translating and comparing formulas.  

S u m m a r y  

We have  desc r ibed  a pars ing  a lgor i thm for  the lan-  

guage  o f  PTQ v i e w e d  as cons i s t i ng  of  t w o  par ts ,  a 

n o n d e t e r m i n i s t i c  p r o g r a m  and  an e x e c u t i o n  m e t h o d .  

We  s h o w e d  how,  wi th  on ly  a change  to  an e q u i v a l e n c e  

r e l a t ion  used  in the  e x e c u t i o n  me thod ,  the  parse r  be -  

comes  a r ecogn ize r .  We  then  d i scussed  the add i t ion  of  

the seman t i c  c o m p o n e n t  of  PTQ to the  parser .  Wi th  

again  only  a change  to the e q u i v a l e n c e  r e l a t ion  of  the  

e x e c u t i o n  m e t h o d ,  the  s e m a n t i c  pa r se r  is o b t a i n e d .  

The  semant i c  e q u i v a l e n c e  r e l a t ion  is equa l i ty  ( to  wi th-  

in change  of  b o u n d  va r i ab le )  of  r e d u c e d  ex t ens iona l -  

ized  t rans la t ions .  E x a m p l e s  were  g iven  to c o m p a r e  the  

two  pars ing  me thods .  

In the f i n a l p o r t i o n  of  the  pape r  we  desc r ibed  h o w  

the  pa r s ing  m e t h o d  in i t ia l ly  p r e s e n t e d  in p r o c e d u r a l  

t e r m s  can  be  v i e w e d  in f o r m a l  g r a m m a t i c a l  t e rms .  

T h e  n o t i o n  of  i n p u t - r e f i n e m e n t  for  c o n t e x t - f r e e  g ram-  

mars  was  i n t r o d u c e d  by  e x a m p l e ,  and  the  t abu l a r  

c o n t e x t - f r e e  r e c o g n i t i o n  a lgor i thms  were  desc r ibed  in 

these  terms.  We  then  ind ica ted  h o w  this n o t i o n  o f  

r e f i n e m e n t  can  be  e x t e n d e d  to the  UG theo ry  of  lan-  

guage  and sugges ted  how our  seman t i c  pa rse r  is e ssen-  

t ial ly pars ing  in the  a lgebra  of  an i n t e r p r e t a t i o n  for  the  

PTQ language. 
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