
Using Semantics in Non-Context-Free Parsing
of Montague Grammar 1

David Scott Warren

Department of Computer Science
S U N Y at Stony Brook
Long Island, NY 11794

Joyce Friedman

University of Michigan
Ann Arbor, MI

In natural language processing, the question of the appropriate interaction of syntax
and semantics during sentence analysis has long been of interest. Montague grammar with
its fully formalized syntax and semantics provides a complete, well-defined context in which
these questions can be considered. This paper describes how semantics can be used during
parsing to reduce the combinatorial explosion of syntactic ambiguity in Montague grammar.
A parsing algorithm, called semantic equivalence parsing, is presented and examples of its
operation are given. The algorithm is applicable to general non-context-free grammars
that include a formal semantic component. The second portion of the paper places
semantic equivalence parsing in the context of the very general definition of an interpreted
language as a homomorphism between syntactic and semantic algebras (Montague 1970).

Introduction

The close interrelat ion be tween syntax and seman-
tics in Montague grammar provides a good f ramework
in which to consider the in teract ion of syntax and
semantics in sentence analysis. Several different ap-
proaches are possible in this f ramework and they can
be developed rigorously for comparison. In this paper
we develop an approach called semantic equivalence
parsing that introduces logical translation into the on-
going parsing process. We compare this with our ear-
lier directed process implementa t ion in which syntactic
parsing is comple ted prior to t ranslat ion to logical
form.

Part I of the paper gives an algorithm that parses a
class of g rammars that contains bo th essential ly
con tex t - f ree rules and non-con tex t - f r ee rules as in
Montague ' s 1973 PTQ. Underlying this algorithm is a

1 A preliminary version of this paper was presented at the
symposium on Modelling Human Parsing Strategies at the Universi-
ty of Texas at Austin, March 24-26, 1981. The work of the first
author was supported in part by NSF grant IST 80-10834.

nondeterminis t ic syntact ic p rogram expressed as an
ATN. The algori thm introduces equivalence parsing,
which is a general execution method for nondetermin-
istic programs that is based on a recall table, a gener-
alization of the wel l - formed substring table. Semantic
equivalence, based on logical equivalence of formulas
obta ined as translations, is used. We discuss the con-
sequences of incorpora t ing semant ic processing into
the parser and give examples of bo th syntact ic and
semantic parsing. In Part II the semantic parsing al-
gori thm is related to earlier tabular context - f ree recog-
nition methods. Relating our algorithm to its prede-
cessors gives a new way of viewing the technique.
The algorithmic description is then replaced by a de-
scription in terms of refined grammars. Finally we
suggest how this notion might be generalized to the
full class of Montague grammars .

The particular version of Montague g rammar used
here is that of PTQ, with which the reader is assumed
to be conversant . The syntactic componen t of PTQ is
an essential ly con tex t - f ree grammar , augmented by
some additional rules of a different form. The non-

Copyright 1982 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0 3 6 2 - 6 1 3 X / 8 2 / 0 3 0 1 2 3 - 1 6 5 0 3 . 0 0

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 123

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

context- f ree aspects arise in the t rea tment of quantifi-
er scope and pronouns and their antecedents . Syntac-
tically each antecedent is regarded as substi tuted into
a place marked by a variable. This is not unlike the
way fillers are inser ted into gaps in G a z d a r ' s 1979
t rea tment . However , Mon tague ' s use of var iables
allows compl ica ted interact ions be tween dif ferent
var iable-antecedent pairs. Each substi tution rule sub-
stitutes a te rm phrase (NP) for one or more occurrenc-
es of a free variable in a phrase (which may be a sen-
tence, c o m m o n noun phrase, or intransi t ive verb
phrase). The first occurrence of the variable is re-
placed by the phrase; later occurrences are replaced by
appropr ia te pronouns. The translation of the resulting
phrase expresses the coreferent ia l i ty of the noun
phrase and the pronouns. With substitution, but with-
out pronouns, the only funct ion of substi tut ion is to
determine quantifier scope.

Directed P r o c e s s Approach

One computa t ional approach to processing a sen-
tence is the directed process approach, which is a se-
quential analysis that follows the three-par t presenta-
t ion in PTQ. The three steps are as follows. A purely
syntactic analysis of a sentence yields a set of parse
trees, each an express ion in the d isambiguated lan-
guage. Each parse tree is then t rans la ted by
Montague ' s rules into a formula of intentional logic to
which logical reductions are immediately applied. The
reduced formulas can then be interpreted in a model.
The directed process approach is the one taken in the
sys tem descr ibed by Fr iedman, Moran , and War ren
1978a,b.

Semantic equivalence parsing is mot iva ted by the
observa t ion that the directed process approach , in
which all of the syntactic processing is completed be-
fore any semant ic process ing begins, does not take
maximal advantage of the coupling of syntax and se-
mantics in Montague grammars . Composi t ional i ty and
the fact that for each syntactic rule there is a transla-
t ion rule suggest that it would be possible to do a
combined syntact ic-semant ic parse. In this approach,
as soon as a subphrase is parsed, its logical formula is
ob ta ined and reduced to an extensional ized normal
form. Two parses for the same phrase can then be
regarded equivalent if they have the same formula.

The approach to parsing suggested by C o o p e r ' s
1975 t rea tment of quantified noun phrases is like our
semantic equivalence parsing in storing translations as
one e lement of the tuple cor responding to a noun
phrase. Cooper ' s approach differs f rom the approach
fol lowed here because he has an in te rmedia te stage
tha t might be called an " a u t o n o m o u s syntax t ree" .
The frontier of the tree is the sentence; the scope of
the quantifier of a noun phrase is not yet indicated.
Coope r ' s approach has been fol lowed by the GPSG

system (Gawron et al. 1982) and by Rosenschein and
Shieber 1982. Nei ther of those systems treats pro-
nouns. In Mon tague ' s approach , which we follow
here, the trees produced by the parser are expressions
in the disambiguated language, so scope is determined,
pronoun antecedents are indicated, and each tree has a
unique (unreduced) translation. The descriptions of
the systems that use Cooper ' s approach seem to imply
that they use a second pass over the syntax t ree to
determine the actual quantif ier scopes in the final logi-
cal forms. Were these systems to use a single pass to
produce the final logical forms, the results described in
this paper would be directly applicable.

1. Equivalence Parsing

Ambigui ty

Ambigui ty in Montague g r ammar is measured by
the number of different meanings. In this view syn-
tactic structure is of no interest in its own right, but
only as a vehicle for mapping semantics. Syntactic
ambigui ty does not direct ly co r respond to semant ic
ambigui ty , and there may be m a n y parses with the
same semantic interpretat ion. Further , sentences with
scope ambigui ty , such as A m a n loves every woman ,

require more than one parse, because the syntact ic
derivat ion determines quantif ier scope.

In PTQ there is infinite syntact ic ambigui ty arising
f rom three sources: a lphabet ic var iants of variables ,
variable for variable substitutions, and vacuous varia-
ble substitution. However , these semantical ly unnec-
essary constructs can be eliminated, so that the set of
syntactic sources for any sentence is finite, and a par-
ser that finds the full set is possible. (This cor re-
sponds to the "var iable pr inciple" enunciated by Jans-
sen 1980 and used by Landsbergen 1980.) This ap-
p roach was the basis of our earlier PTQ parser
(Fr iedman and Warren 1978).

However , even with these reductions the number of
remaining parses for a sentence of reasonable com-
plexity is still large compared to the number of non-
equivalent t ranslat ions. In the di rected process ap-
proach this is t reated by first finding all the parses,
next finding for each parse a reduced translat ion, and
then finally obtaining the set of reduced translations.
Each reduced translat ion may, but does not necessari-
ly, represent a different sentence meaning. No mean-
ings are lost. Fur ther reductions of the set of transla-
tions would be possible, but the undecidabil i ty of logi-
cal equivalence precludes algori thmic reduct ion to a
minimal set.

The ATN Program

In the underlying parser the g rammar is expressed
as an augmented t ransi t ion ne twork (ATN) (Woods
1973). Both the syntact ic and the semantic parsers
use this same ATN. The main difficulty in construct-

124 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

ing the ATN was, as usual, the non-contex t - f ree as-
pects of the grammar, in particular the incorporat ion
of a t rea tment of substi tution rules and variables. The
grammar given in PTQ generates infinitely many deriv-
at ions for each sentence. All but finitely many of
these are unnecessary variations on variables and were
eliminated in the construct ion of the ATN. The ATN
represents only the reduced set of structures, and must
therefore be more complex.

Equiva lence Test ing

In order to say what we mean by semantic equiva-
lence parsing, we use Hare l ' s 1979 notion of execution
method for nondeterminist ic programs. An execution
me thod is a determinis t ic procedure for finding the
possible execut ion paths through a nondeterminis t ic
program given an input. For an ATN, these execution
paths correspond to different parses. Viewing parsing
in this way, the only di f ference be tween the usual
syntactic parsing and semantic equivalence parsing is a
difference in the execution method. As will be seen,
semant ic equivalence parsing uses semant ic tests as
part of the execution method.

We call the execution method we use to process a
general ATN equivalence parsing (Warren 1979).
Equivalence parsing is based on a recall table. The
recall table is a set of buckets used to organize and
hold partial syntactic structures while larger ones are
constructed. Equivalence parsing can be viewed as
processing an input sentence and the ATN to define
and fill in the buckets of the recall table. The use of
the recall table reduces the amount of redundant proc-
essing in parsing a sentence. Syntact ic s t ructures
found along one execution path through the ATN need
not be reconstructed but can be directly retr ieved f rom
the recall table and used on other paths. The recall
table is a general izat ion of the familiar wel l - formed
substr ing table (WFST) to arbi t rary programs that
contain procedure calls. Use of the WFST in ATN
parsing is noted in Woods 1973 and Bates 1978.
Bates observes that the WFST is complicated by the
HOLDs and SENDRs in the ATN. These are the ATN
actions that correspond to pa ramete r passing in proce-
dures and are required in the ATN for PTQ to correctly
treat the substitution rules.

In the Woods system the WFST is viewed as a pos-
sible optimization, to be turned on when it improves
parsing efficiency. In our system the recall table is an
intrinsic part of the parsing algorithm. Because any
ATN that naturally represents PTQ must contain left
recursion, the usual depth-f i rs t (or breadth- f i r s t or
best-f i rs t) ATN parsing algori thm would go into an
infinite loop when trying to find all the parses of any
sentence. The use of the recall table in equivalence
parsing handles lef t - recurs ive ATNs without special
considerat ion (Warren 1981). As a result there is no

need to rewrite the g rammar to eliminate left-recursive
rules as is usually necessary.

In a general nondeterminist ic program, a bucket in
the recall table corresponds to a particular subroutine
and a set of values for the calling parameters and re-
turn parameters . For an ATN a bucket is indexed by a
triple: (1) a grammatical category, that is, a subnet to
which a PUSH is made, (2) the contents of the SENDR
registers at the PUSH and the current string, and (3)
the contents of the LIFTR registers at the POP and the
then-current string. A bucket contains the members
of an equivalence class of syntactic structures; precise-
ly what they are depends on what type of equivalence
is being used.

What makes equivalence parsing applicable to non-
con tex t - f ree g rammars is that its buckets are more
general than the cells in the s tandard tabular context-
free algorithms. In the C-K-Y algori thm (Kasami
1965), for example, a cell is indexed only by the start-
ing position and the length of the parsed segment , i.e.,
the current string at PUSH and POP. The cell contents
are nonterminals. In our case all three are part of the
bucket index, which also includes SENDR and LIFTR
register values. The bucket contents are equivalence
classes of structures.

S e n t e n c e Recogni t ion

For sentence recognit ion all parses are equivalent.
So it is enough to determine, for each bucket of the
recall table, whether or not it is empty. A sentence is
in the language if the bucke t cor responding to the
sentence ca tegory (with emp ty SENDR registers and
full string, and empty LIFTR registers and null string)
is nonempty. The particular forms of the syntactic
structures in the bucket are irrelevant; the contents of
the buckets are only a superfluous record of the spe-
cific syntactic structures. The syntactic structure is
never tested and so does not affect the flow of con-
trol. Thus which buckets are nonempty depends only
on what other buckets are nonempty and not on what
those other buckets contain. For sentence recognition,
when the execution method constructs a new memb er
of a bucket that is already nonempty , it may or may
not add the new substructure, but it does not need to
use it to construct any larger syntact ic structures. This
is because the earlier member has already verified this
bucket as nonempty. Therefore this fact is already
known and is a l ready being used to de termine the
nonempt iness of o ther buckets . To find all parses,
however , equivalence parsing does use all members of
each bucket to construct larger structures.

It would be possible first to do recogni t ion and
determine all the nonempty buckets in the recall table,
and then to go back and take all variants of one single
parse that can be obta ined by replacing any substruc-
t u r e . b y ano ther subs t ruc ture f rom the same bucket .

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 125

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

This is essentially how the context- f ree parsing algor-
i thms cons t ruc ted f rom the tabular recogni t ion me-
thods work. This is not how the equivalence parsing
algorithm works. When it obtains a substructure, it
immediately tries to use it to construct larger struc-
tures.

The difference described above be tween sentence
recognit ion and sentence parsing is a difference only
in the execution methods used to execute the ATN and
not in the ATN itself. This difference is in the test for
equivalence of bucket contents. In sentence recogni-
tion any two syntactic structures in a bucket are equiv-
alent since we only care whether or not the substring
can be parsed to the given category. At the other
extreme, in finding all parses, two entries are equiva-
lent only if they are the identical structure. For most
reasonable ATNs, including our ATN for PTQ, this
would not happen; distinct paths lead to distinct struc-
tures.

Semantic parsing is ob ta ined by a g a i n m o d i f y i n g
only the equivalence test used in the execution method
to test bucket contents . For semant ic parsing two

entries are equivalent if their logical translations, af ter
logical reduction and extensionalization, are identical
to within change of bound variable.

Smal l G r a m m a r

For our examples, we introduce in Figure 1 a small
subnet of the ATN for PTQ. Arcs with fully capital-
ized labels are PUSH arcs; those with lower case labels
are CAT arcs. Structure-building operat ions are indi-
cated in parentheses. This net implements just three
rules of PTQ. Rule $4 forms a sentence by concaten-
ating a te rm phrase and an intransitive verb phrase;
S l l conjoins two sentences , and S14,i subst i tutes a
t e rm phrase for the syntact ic var iable he i in a sen-
tence. $4 and S l l are context - f ree rules; S14,i is one
of the substi tut ion rules that make the g rammar non-
context - f ree and is basic to the handling of quantifiers,
p ronouns , and antecedents . The ATN handles the
substi tution by using a LIFTR to carry the variable-
binding information. The LIFTR is not used for the
context - f ree rules.

ITE
TS

TS

IV ($4 TERM IVP)

POP SENT l

(S11 SENTI (S14,i TERM SENT)
SENT2)

TE
bte i l l POP hei

IV
biv POP IVP

Figure 1. Subnet of the ATN for PTQ,

126 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

Example 1: Bill walks

The first example is the sentence Bill walks. This
sentence has the obvious parse using only the context-
free rule $4. It also has the parse using the substi tu-
t ion rule. We will carry through the details of its
parse to show how this substitution rule is t reated in
the parsing process.

In the trace PUSHes and POPs in the syntactic anal-
ysis of this sentence are shown. The entries are in
chronological order. The PUSHes are numbered se-
quentially for identification. The PUSH number uni-
quely determines a) the category to which the PUSH is

made, b) the remainder of the sentence being parsed
at the time of the PUSH, and c) the contents of the
SENDR registers at the t ime of the PUSH, called the
PUSH envi ronment . At each POP a bucke t and an
element in that bucket are returned. The bucket name
at a POP is made up of the corresponding PUSH num-
ber, the remaining input string, and the contents of the
LIFTR registers, which are called the POP environ-
ment. The element in the bucket is the tree that is
returned. For brevi ty we use in the trace only the first
letters of the words in the sentence; for example, Bill
walks becomes Bw.

Trace of Bill walks

PUSH: Bucket: Contents:
CAT Str Env f rom Str Env Tree

1 TS Bw null

[Parsing begins with a PUSH to the sentence category passing the entire string and an empty or null environment .]

2 TE Bw null

[In the sentence subnet we first PUSH to find a TE.]

2 w null Bill

[The TE subnet finds and POPs the term Bill to return f rom PUSH 2.]

3 IV w null
3 e null walk
1 e null ($4 Bill walk)

[Now since a tree is returned to the top level, covers the whole string, and the returned envi ronment is null, the
tree is printed. The parses are always the trees in bucket 1-e-null . The execution method now backs up; there
are no more POPs f rom PUSH 3; there is another f rom PUSH 2.]

2 w (he0 B) he0

[Continuing forward with the new environment. . .]

4 IV w (he0 B)
4 e null walk

[Note that this is not the same bucket as on the previous PUSH 3 because the PUSH environments differ.]

1 e (he0 B) ($4 he0 walk)

[The tree has been returned and covers the whole string. However , the returned envi ronment is not null so the
parse fails, and the execution method backs up to seek another return f rom PUSH 1.]

1 e null (S14,0 Bill ($4 he0 walk))

[This is another element in bucket 1-e-nul l ; it is a successful parse so it is printed out. Execut ion continues but
there are no more parses of the sentence.]

Discussion

In this t race bucket t - e - n u l l is the only bucket
with more than one entry. The execution method was
syntactic parsing, so each of the two entries was re-
turned and pr inted out. For recognition, these two
entries in the bucket would be considered the same
and the second would not have been POPped. Instead
of continuing the computa t ion up in the subnet f rom
which the PUSH was made, this path would be made to
fail and the execution method would back up. For

semantic equivalence parsing, the bucke t contents
throughout would not be the syntax trees, but would
instead be their reduced extensionalized logical formu-
las. (Each such logical formula represents the equiva-
lence class of the syntactic structures that correspond
to the formula.) For example, bucket 2-w-null would
contain ~,Pp{Ab} and bucke t 3-c-null would contain
walk' . The first entry to bucket 1-E-null would be the
formula for ($4 Bill walk), that is, w a l k . ' (b) . The
entry to bucket 1-e-nul l on the last line of the trace

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 127

David Scott Warren and Joyce Friedman Using Semantics in Non-Contex t -Free Parsing

would be the formula for (S14,0 Bill ($4 he0 walk)) ,
which is also w a l k . ' (b) . Therefore , this second entry
would not be POPped.

Buckets also serve to reduce the amount of repeat-
ed computat ion. Suppose we have a second PUSH to
the same category with the same string and environ-
ment as an earlier PUSH. The buckets resulting f rom
this new PUSH would come out to be the same as the
buckets f rom the earlier PUSH. Therefore the buckets
need not be recomputed ; the results of the earlier

buckets can be used directly. This is called a
"FAKEPUSH" because we don ' t actually do the PUSH
to continue through the invoked subnet but simply do
a "FAKEPOP" using the contents of the previously
computed buckets.

Consider, as an example of FAKEPOP, the partial
t race of the syntactic parse of the sentence Bill walks
and Mary runs (or Bw&Mr for short) . The initial part
of this trace, through step 4, is essentially the same as
the trace above for the shorter sentence Bill walks.

Trace of Bill walks and Mary runs

PUSH: Bucket:
CAT Str Env f rom Str

Contents:
Env Tree

1 TS Bw&Mr null
2 TE Bw null

3 IV w null
2 w&Mr null Bill

3 &Mr null walk
1 &Mr null ($4 Bill walk)

[A tree has been returned to the top level, but it does not cover the whole sentence, so the pa th fails and the
execution method backs up.]

2 w&Mr (he0 B) he0
4 IV w&Mr (he0 B)

4 &Mr null walk
1 &Mr (he0 B ($4 he0 walk)

[Again a tree has been returned to the top level, but it does not span the whole string, nor is the re turned
envi ronment null, so we fail.]

1 &Mr null (S14,0 Bill ($4 he0 walk))

[Again we are the top level; again we do not span the whole string, so again we fail.]

5 TS Bw&Mr null

[This is the second arc f rom the TS node of Figure 1. The PUSH to TE (2 above) has complete ly failed.
However , this PUSH, TS-Bw&Mr-null has been done before; it is PUSH 1. We already have two buckets f rom
that PUSH: 1-&Mr-null containing two trees, and 1-&Mr-(he0 B) with one tree. There is no need to re-enter this
subnet; the buckets and their contents tell us what would happen. Therefore we FAKEPOP one subtree and its
bucket and follow that computa t ion to the end; later we will return to FAKEPOP the next one.]

1(5) &Mr null ($4 Bill walk)
6 TS Mr null
7 TE Mr null

7 r null Mary

[This computa t ion continues and parses the second half of this sentence. Two parses are produced:
(S11 ($4 Bill walk) ($4 Mary run)) and
(S11 ($4 Bill walk) (S14,0 Mary ($4 he0 run)))

After this, the execution method fails back to the FAKEPOP at PUSH 5, and another subtree f rom a bucket f rom
PUSH 2 is FAKEPOPped.]

1(5) &Mr null (S14,0 Bill (he0 walk))

[And the computa t ion continues, eventually producing a total of ten parses for this sentence.]

(In the earlier example of Bil l walks, these
FAKEPOPs are done, but their computa t ions immedi-

ately fail, because they are looking for a conjunct ion
but are at the end of the sentence.)

128 Amer ican Journa l of Computa t iona l Linguist ics, Vo lume 8, Number 3-4, Ju ly -December 1982

David Scot t Warren and Joyce Friedman Using Semant ics in Non-Context-Free Parsing

Results of Parsing

The sentence Bill walks and Mary runs has ten
syntactic structures with respect to the PTQ grammar.
The rules $4, S l l , and S14,i can be used in various
orders. Figure 2 shows the ten different structures in
the order they are produced by the syntactic parser.

The nodes in the trees of Figure 2 that are in italics

are the syntactic structures used for the first time.
The nodes in standard type are structures used previ-
ously, and thus either are part of an execution path in
common with an earlier parse, or are retrieved from a
bucket in the recall table to be used again. Thus the
number of italicized nodes measures in a crude way
the amount of work required to find all the parses for
this sentence.

S l l

I
I I

$4 $4

I t
i i i I

Bill walk Mary run

b.

I
Bill

I
$4

I
I

walk

S14,0 Mary

I
$11

I

I
he0

I
$4

i
I

run

e , S l l

1
I

$4

L
I I

Bill walk

I
he0

I
S14,0 Mary

I
$4

I
I

r u n

I
$4

I I
he0 walk

$14,0 Bill

I
$11

i
i

$4

f
I

Mary
I

run

e. S14,1 Mary

I
$14,0 Bill

I
$11

I
I

$4

I
I I I

he0 walk hel

I I
$4 $4

I I
I I wJlk run he0

S14,0 Bill

I
S14,1 Mary

I
S l l

I
I

$4

I
I

hel
I

run

Figure 2. Ten parses for Bill walks and Mary runs,

American Journal of Computat ional Linguist ics, Volume 8, Number 3-4, Ju ly-December 1982 129

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

g.

I
$4

I
I I

he0 walk

S14,0 Bill

I
$11

I
I

S14,1 Mary
I

$4

I
I I

hel run

$11

I
I I

$14,0 Bill $4

i I
$4

I I Mary

I I
heO walk

I
run

S14,1 Mary

I
$11

I
I I

S14,0 Bill $4

i I
S4

I I
he l

I I
heO walk

run

$11

I
he0

I I
S14,0 Bill S14,1 Mary

I I
$4 $4

I I
I I I

walk he 1 run

Figure 2. continued

Example of Semant ic Equivalence Parsing

This sentence, Bill walks and Mary runs, is one for
which semant ic parsing is substant ia l ly faster . I t is
unambiguous; its only reduced extensionalized logical
translation is " w a l k , ' (b) & r u n , ' (m) " . In the directed
process parser , all ten trees of Figure 2 are found.

They will all have the same translation. In semantic
parsing on'ly one is found. Here the method works to
advantage because bo th parses of the initial string Bill
walks result in the same envi ronment for parsing Mary
runs. These two parses go into the same bucket so
only one needs to be used to construct larger struc-
tfires. We trace the example.

PUSH: Bucket:
CAT Str Env f rom Str
=

Contents:
Env Formula ?

1 TS Bw&Mr null
2 TE Bw null

3 IV

[Fail]

4 IV

[Fail]

2
w null

3
1

2
w&Mr (he0 B)

4
1

w&Mr null)tPp{Ab} y

&Mr null walk ' y
&Mr null w a l k , ' (b) y

w&Mr (he0 B) hPP{x0} y

&Mr null walk ' y
&Mr (he0 B) walk'(Vx0) y

130 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

1 &Mr null w a l k , ' (b) n

[This formula is the translat ion of the syntactic structure using S14,0 to substi tute Bill into "he0 walks". This is
the same bucket and the same translation as obta ined at the return f rom 1 af ter PUSH 3 above, so we do not POP
(indicated by the 'n ' in the final column), but instead fail back.]

5 TS Bw&Mr null

[FAKEPOP, since this is a repeat PUSH to this category with these parameters . There are two buckets: 1-&Mr-
null, which in syntactic parsing had two trees but now has only one translation, and bucket 1-&Mr-(he0 B) with
one translation. So we FAKEPOP 1-&Mr-null.]

1(5) &Mr null w a l k , ' (b) y (FAKEPOP)
6 TS Mr null
7 TE Mr null

7 r null y
8 IV r null

8 E null y
6 e null y
1 ~ nul l y

[This is a successful parse. The top level prints out the translation and then the execution method fails back.]

9 IV r (he0 M)

Mary

run '
r u n , ' (m)
w a l k , ' (b) & r u n , ' (m)

7 (he0 M) null ~PP{x0} y

9 e null run ' y
6 E null run, ' (Vx0) y
1 E (he0 M) walk , ' (b)&run , ' (Vx0) y

[Fail because we are at the top level and the environment is not null.]

1 ~ null w a l k , ' (b) & r u n , ' (m) n

[Again we want to enter a translation into bucket 1-E-null. This translation duplicates the one already there.
it is not returned and we fail back.]

6 E null r u n , ' (m) n

[This again duplicates a bucket and its contents , so we fail back to the second FAKEPOP f rom PUSH 5.
use the other bucket: 1-&Mr-(he0 B).]

1(5) &Mr (he0 B) walk, ' (Vx0) y (FAKEPOP)
(he0 B)
(he0 B)

(he0 B)

10 TS Mr

11 r null
11 TE Mr

12 IV r

So

Now we

~P{xO} y

run ' y
r u n , ' (m) y
walk , ' (Vx0)&run , ' (m) y

12 ¢ null
10 e null
1 E (h e 0 B)

[Fail at the top level since the envi ronment is not null.]

1 e (he0 B) w a l k , ' (b) & r u n , ' (m)

[This duplicates a bucket and its contents, so we do not POP it but fail back.]

l l r (he l M) ~PP{xl}

13 e null
10 e (he l M)
1 e (he0 B)

(he l M)

13 IV r (he0 B)
(he l M)

run '
r u n , ' (~ x l)
walk , ' (~x0) &run,'(Vx 1)

(he l M) wa lk , ' (b)&run , ' (Vx l)

null w a l k , ' (b) & r u n , ' (m)

Y

[Fail at top level because envi ronment is not null.]

1 c

[Fail at top level because environment is not null.]

1 e

[Duplicate bucket and translation, so fail.]

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 131

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

1 c (h e 0 B)

[Duplicate bucket and translation, so fail.]

1 c null

[Duplicate, so fail.]

10 e null

[Duplicate, so fail.]

wa lk , ' (Vx0)&run , ' (m) n

w a l k , ' (b) & r u n , ' (m) n

r u n , ' (m) n

This completes the trace of the semantic parse of the sentence.

Results of Parsing

Figure 3 displays in graphical fo rm the syntact ic
s t ructures built during the semant ic parsing of Bill
walks and Mary runs t raced above. A horizontal line
over a part icular node in a tree indicates that the
t ranslat ion of the s t ructure duplicated a t ransla t ion
already in its bucket , so no larger structures were built

using it. Only parse a) is a full parse of the sentence
and thus it is the only parse returned. All the others
are abor ted when they are found equivalent to earlier
partial results. These points of abor t ion in the compu-
tat ion are the points in the trace above at which a POP
fails due to the duplication of a bucket and its con-
tents.

a. S l l

I
I I

$4 $4

I I
1 I I I

Bill walk Mary run

b. S14,0 Mary

S l l

I
I 1

$4 $4

I I
I I I I

Bill walk he0 run

S14,0 Mary

$4

I
I I

he0 run

d. $14,0 Bill

$11

I
I I

$4 $4

I I
I I I I

he0 walk Mary run

Figure 3. Semant ic parses of Bill walks and Mary runs.

132 American Journal of Computat ional Linguistics, Volume 8, Number 3-4, Ju ly-December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

I
$4

I
I

he0

e . S14,1 Mary

I
$14,0 Bill

I
$11

I
I

$4

I
I I I

walk he 1 run
I

he0

$14,0 Bill

I
$14,1 Mary

I
S l l

I
I I

$4 $4

I I
I I

walk he 1
I

run

g. S14,1 Mary

I
$4

I
I I

he 1 run

Figure 3. continued

Note that construct ion of parse c) is halted when a
t ranslat ion is built that duplicates the t ranslat ion of
the right $4 subtree of parse a). This corresponds to
the failure due to duplicate bucket contents in bucket
6-E-null following PUSH 9 in the trace above. Simi-
larly parse g) is abor ted before the entire tree is built.
This corresponds to the failure in the final line of the
trace due to a duplicate t ranslat ion in bucket
10-E-null. Semantic parses that would correspond to
syntactic parses h), i), and j) of Figure 2 are not con-
sidered at all. This is because bucket 1-&Mr-null con-
tains two syntactic structures, but only one translation.
Thus in semantic equivalence parsing we only do one
FAKEPOP for this bucket for PUSH 5. In syntactic
parsing the other parses are genera ted by the
FAKEPOP of the other structure in this bucket.

Reducing the Env i ronment

The potent ia l advantage of semant ic equivalence
parsing derives f rom treating partial results as an equi-
valence class in proceeding. A partial result consists
of a structure, its extensionalized reduced translation,
and a set of pa ramete r s of the parse to that point.
These parameters are the envi ronment for parsing the
phrase. Consider the sentence John loves Mary and its
parses:

(1) ($4 John ($5 love Mary))
(2) ($4 John (S16,0 Mary ($5 love he0)))
(3) (S14,0 John ($4 (he0 ($5 love Mary)))
(4) (S14,0 John ($4 he0 (S16,1 Mary

($5 love h e l))))
(plus 3 more)

On reaching the phrase love Mary in parse (3) the
parameters are not the same as they were at that point
in parse (1), because the pair (he0 John) is in the
environment . Thus the parser is not able to consult
the recall table and immedia te ly re turn the a l ready
parsed substructure. Ins tead it must reparse love Mary
in the new context.

This envi ronment problem arises because the ATN
is designed to follow PTQ in treat ing pronouns by the
non-con tex t - f r ee subst i tut ion rules. We have also
considered, but have not to this point implemented ,
al ternative ways of treat ing variables to make partial
results equal. One way would be not to pass variable
bindings down into lower nets at all. Thus the PUSH
environment would always be null. Since these bind-
ings are used to find the antecedent for a pronoun, the
way antecedents are de te rmined would have to be
changed. An implementa t ion might be as follows: On
encounter ing a pronoun during parsing, replace it by a
new he-variable. Then pass back up the tree informa-
tion concerning both the variable number used and the
p ronoun ' s gender. At a higher point in the tree, where
the substitution rule is to be applied, a determinat ion
can be made as to which of the subst i tu ted terms
could be the antecedent for the pronoun. The variable
number of the pronoun can then be changed to agree
with the variable number of its antecedent term by a
var iable-for-var iable substitution. Finally the substi tu-
tion rule can be used to substitute the term into the
phrase for all occurrences of the variable. Note that
this al ternative process would construct trees that do
have substi tution rules to substi tute variables for varia-

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 133

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

bles, contrary to the variable principle ment ioned
above. We also note that with this modificat ion a
pronoun is not associated with its antecedent when it is
first encountered. Instead the pronoun is saved and at
some later point in the parse the association is made.
This revised t rea tment is related computat ional ly to
that proposed in Cooper 1975.

Evaluation of Semantic Equivalence Parsing

The question of the interaction of syntax and se-
mantics in parsing was introduced early in computa-
tional linguistics. Winograd 1971 argued for the in-
corpora t ion of semantics as early as possible in the
recognition process, in order to reduce the amount of
syntactic processing that would be needed. Partial
parses that had no interpretat ion did not need to be
continued. The alternative posi t ion represented by
Woods ' s early work (Woods and Kaplan 1971) was
basically the inverse: less semantic processing would
be needed if only completed parses were interpreted.
This argument is based on the idea of eliminating un-
interpretable parses as soon as possible.

This advantage, if it is one, of integrated syntactic
and semantic procedures does not occur here because
the semantic aspect does not eliminate any logical
analyses. The translation of a structure to a formula is
always successful, so no partial parse is ever eliminat-
ed for lack of a translation. What happens instead is
that several partial parses are found to be equivalent
because they have the same translation. In this case
only a representat ive of the set of partial parses needs
to be carried forward.

A further expansion of equivalence parsing would
be interpretation equivalence parsing. Sentence process-
ing would take place in the context of a specified mod-
el. Two structures would be regarded as equivalent if
they had the same denota t ion in the model. More
partial structures would be found equivalent under the
equivalence relat ion than under the reduce-
extensionalize relation, and fewer structures would
need to be constructed. Further, with the interpreta-
tion equivalence relation, we might be able to use an
inconsistent denotat ion to eliminate an incorrect par-
tial parse. For example, consider a sentence such as
Sandy and Pat are running and she is talking to him. In
this case, since the gender of Sandy and Pat cannot be
determined syntactically, these words would have to
be marked in the lexicon with both genders. This
would result in multiple logical formulas for this sen-
tence, one for each gender assumption. However ,
during interpretat ion equivalence parsing, the referents
for Sandy and Pat would be found in the model and
the meaning with the incorrect coreference could be
rejected.

Logical normal forms other than the reduced, ex-
tensionalized form used above lead to other reasonable

versions of equivalence parsing. For example, we
could fur ther process the reduced, extensional ized
form to obtain a prenex normal form with the matrix
in clausal form. We would use some standard conven-
tions for naming variables, ordering sequences of the
same quantifier in the prefix, and ordering the literals
in the clauses of the matrix. This would allow the
algori thm to eliminate, for example, multiple parses
arising from various equivalent scopes and orderings of
existential quantifiers.

The semantic equivalence processor has been im-
plemented in Franz Lisp. We have applied it to the
PTQ grammar and tested it on various examples. For
purposes of compar ison the directed process version
includes syntactic parse, translation to logical formula
and reduction, and finally the reduction of the list of
formulas to a set of formulas. The mixed strategy
yields exactly this set of formulas, with one parse tree
for each. Experiments with the combined parser and
the directed parser show that they take approximately
the same time for reasonably simple sentences. For
more complicated sentences the mixed strategy usually
results in less processing time and, in the best cases,
results in about a 40 percent speed-up. The distin-
guishing characteristic of a string for which the me-
thod yields the greatest speed-up is that the environ-
ment resulting from parsing an initial segment is the
same for several distinct parses.

The two parsing method we have described, the
sequential process and the mixed process, were obvi-
ously not developed with psychological modeling in
mind. The directed process version of the system can
be immediately re jected as a possible psychological
model, since it involves obtaining and storing all the
structures for a sentence before beginning to interpret
any one of them. However , a reorganizat ion of the
p r o g r a m w o u l d make it possible to interpret each
structure immediately after it is obtained. This would
have the same cost in time as the first version, but
would not require storing all the parses.

Although semantic equivalence parsing was devel-
oped in the specific context of the grammar of PTQ, it
is more general in its applicability. The strict compos-
itionality of syntax and semantics in PTQ is the main
feature on which it depends. The general idea of equi-
valence parsing can be applied whenever syntact ic
structure is used as an intermediate form and there is a
syntax-directed translation to an output form on which
an equivalence relation is defined.

2. Input-Refined Grammars

We now switch our point of view and examine
equivalence parsing not in algorithmic terms but in
formal grammatical terms. This will then lead into
showing how equivalence parsing relates to Universal

134 American Journal of Computat ional Linguistics, Volume 8, Number 3-4, July-December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

Grammar (UG) (Montague 1970). The basic concept
to be used is an input-refined grammar. We begin by
defining this concept for con tex t - f ree g rammars and
using it to relate the tabular context - f ree recognit ion
algori thms of Ear ley 1970, C o c k e - K a s a m i - Y o u n g e r
(Kasami 1965), and Sheil 1976 to each o ther and
eventually to our algorithm.

Given a context- f ree grammar G and a string s over
the terminal symbols of G, we define f rom G and s a
new g rammar Gs, called an input-refinement of G.
This new grammar G s will bear a particular relation-
ship to G: L(Gs) = {s}nL(G), i.e., L(Gs) is the single-
ton set {s} if s is in L(G), and empty otherwise. Fur-
thermore , there is a direct one - to -one relat ionship
be tween the derivations of s in G and the derivations
of s in G s. Thus the problem of recognizing s in G is
reduced to the problem of determining emptiness for
the grammar G s. Also, the problem of parsing s with
respect to the grammar G reduces to the problem of
exhaustive generat ion of the derivations of G s (there is
at most one string). Each of the tabular context - f ree
recogni t ion algori thms can be viewed as implicitly
defining this g rammar G s and testing it for emptiness.
Emptiness testing is essentially done by reducing the
grammar , that is by eliminating useless symbols and
productions. The table-construct ing port ion of a tabu-
lar recogni t ion algori thm, in effect , constructs and
reduces the grammar Gs, thus determining whether or
not it is empty. The tabular methods differ in the
construct ion and reduction algorithm used.

In each case, to turn a tabular recognit ion method
into a parsing algorithm, the table must first be con-
structed and then reprocessed to generate all the pars-
es. This corresponds to reprocessing the grammar Gs t,
the result of reducing the g rammar Gs, and using it to
exhaustively generate all derivations in G s.

Rather than formally defining G s f rom a context-
free g rammar G and a string s in the general case, we
illustrate the definition by example. The general defi-
nition should be clear.

Let G be the following context - f ree grammar:

Terminals: {a,b}
Nonterminals: {S}
Start Symbol: S
Productions: S-~S S a

S-~b
S ~ e

(S produces the empty string)

bba. Gbb a is defined f rom G and Let s be the string
bba:

Terminals:
Nonterminals:

{a,b}

{al,a2,a3,b!,b2,b3,
(t i for t a terminal of G

and 1 < i< lcng th (s))

S123,512,51,S23,52,S 3,

(A x for each nonterminal A of G
and each x a nonempty subse-

quence of < 1,2,3 l eng th (s)>)

S°,Sl,S2,S 3 }
(A i for each nonterminal A of G

and i, 0 < i < l e n g t h (s))
Start Symbol: S123
Productions: [from G production: S-~S S a]

S123~S12S2a3
S123~S~S2a3
S123~S Sl2a 3
S 12"~ SIS a 2
S12--~ SuSla2
S 1 ~ S°S°a t
S23--~ S~52a3
$23 ~ S'S2a 3
$2~$1Sla2
$3~$2S2a3
[from G production: S-~b]

S l ~ b 1
S2~b 2
$3--~ 3
[from G production: S-~ e]
S°-~ •
s l y •
$ 2 ~ •
$ 3 ~ •

[for the terminals]
b l - ~ b
b 2 - - b

a 3 ~ a
These product ions for G s were constructed by begin-
ning with a product ion of G, adding a subscript or a
superscript to the nonterminal on the LHS to obtain a
nonterminal of Gs, adding single subscripts to all ter-
minals and sequence subscripts to some nonterminals
on the RHS so that the concatenat ion of all subscripts
on the RHS equals the subscript on the LHS. For the
RHS nonterminals without subscripts, add the appro-
pr iate subscript . Also, to handle the terminals , for
each t i add the product ion T i ~ t where t is the i th sym-
bol in s.

It is s t ra ightforward to show inductively that if a
nonterminal symbol generates any string at all it gen-
erates exactly the substring of s that its subscript de-
termines. Symbols with superscripts generate the emp-
ty string. Also a parse tree of G s can be conver ted to
a parse tree of G by first deleting all terminals (each is
dominated by the same symbol with a subscript) and
then erasing all superscripts and subscripts on all sym-
bols in the tree. Conversely, any parse tree for s in G
can be conver ted to a parse tree of s in G s by adding
appropr ia te subscripts and superscripts to all the sym-
bols of the tree and then adding the terminal symbols
at the leaves.

American Journal of Computational Linguistics, Volume 8, Number 3-4, Ju ly-December 1982 135

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

I t is clear that G s is not in general a reduced gram-
mar. G s can be reduced to Gs ~ by eliminating unpro-
ductive and unreachable symbols and the rules involv-
ing them. Reducing the g rammar will de termine
whether or not L(Gs) is empty. By the above discus-
sion, this will determine whether s is in L(G), and thus
an algorithm for construct ing and reducing the refined
grammar G s f rom G and s yields a recognit ion algor-
ithm. Also, given the reduced g rammar Gs I, it is
s t ra ight forward, in light of the above discussion, to
generate all parses of s in G: simply exhaustively gen-
erate the parse trees of Gs ~ and delete subscripts and
superscripts.

The tabular con tex t - f ree recogni t ion methods of
Cocke-Kasami-Younger , Earley, and Sheil can all be
unders tood as variat ions of this general approach. The
C-K-Y recognit ion algorithm uses the s tandard bo t tom-
up method to de te rmine empt iness of G s. I t s tarts
with the terminals and determines which G s nontermi-
nals are productive, eventually finding whether or not
the s tar t symbol is product ive . The matr ix it con-
structs is essentially the set of product ive nonterminals
of G s.

Sheil 's wel l - formed substring table algorithm is the
most obviously and directly related. His simplest al-
gori thm constructs the refined grammar and reduces it
top-down. It uses a top-down control mechanism to
determine the productivi ty only of nonterminals that
are reachable f rom the start symbol. The wel l - formed
substring table again consists essentially of the reacha-
ble, productive nonterminals of G s.

Ear ley ' s recognit ion algorithm is more complicated
because it s imultaneously constructs and reduces the
refined grammar. It can be viewed as manipulat ing
sets of subscr ipted nonterminals and sets of prod-
uctions of G s. The items on the i tem lists, however ,
cor respond quite direct ly to reachable , product ive
nonterminals of G s.

The concept of input-ref ined g rammar provides a
unified view of the tabular con tex t - f ree recogni t ion
methods. Equivalence parsing as described in Part I
above is also a tabular method, a l though it is not
context-free . It applies to context - f ree grammars and
also to some g rammars such as PTQ that are not
context-free. We next relate it to the very general
class of grammars defined by Montague in UG.

Universal Grammar and Equivalence Parsing

In the following discussion of the problem of pars-
ing in the general context of Montague ' s definitions of
a language (which might more natural ly be called a
grammar) and an interpretat ion, we assume the reader
is familiar with the defini t ions in UG (Montague
1970). We begin with a formal definition of a refine-
ment of a general disambiguated language. A part icu-
lar type of ref inement , input-ref inement , leads to an

equivalence parsing algori thm. This general izes the
procedure for input-refining a g rammar shown above
for the special case of a contex t - f ree grammar. We
then discuss the implications for equivalence parsing of
using the formal in terpreta t ion of the language. Final-
ly we show how the ATN for PTQ and semantic equi-
valence parsing fit into this general f ramework.

Recall that a disambiguated language f~ = <A, Fv,
X 8, S, 8 0 > v ~ r , ~ a can be regarded as consisting of an
a lgebra <A,F~,>~,eF, with p roper express ions A and
operat ions Fv, basic expressions X 8 for each ca tegory
index d eA, a set of syntact ic rules S, and a sentence
ca tegory index 80EA. A language is a pair <~2,R>
where ~2 is a disambiguated language and R is a binary
relat ion with domain included in A. Given a disambig-
uated language

~2 = <A, F~, X#, S, 80>~EF, ~EA,

a disambiguated language

f~v = <A, F~,Xts,, S t , 80v>~,EF, 8'EA'

is a refinement of 12 if there is a re f inement funct ion
d:AW-.A f rom the ca tegory indices of f l ' to those of f~
such that

1) Xt~ _c X d (8 ,) '

2) If <F~,<~lW,~2t 8n1>,St> E S v, then
< F ~ , < d (8 1 ') , d (~ 2 ') d (~ n ') > , d (8 ') > E S ' , and

3) d(80 ') = 60 .

(Note that the p roper express ions A, the opera t ion
indexing set F, and the operat ions Fy of ~ and 12 ~ are
the same.)

The word refinement refers to the fact that the
catgories of lZ are split into finer categories. Condi-
tion 1 requires that the basic expressions of a ref ined
category come f rom the basic expressions of the cate-
gory it refines. Condi t ion 2 requires that the new
syntactic rules be consistent with the old ones. Note
that Condi t ion 2 is not a biconditional.

If 12 t is a ref inement of ~2 with ref inement funct ion
d, < C ' 8 , > ~ , , ~ , is the family of syntact ic categories of
~2' and <C0>0E a is the family of syntact ic categories
of ~2, then C'~,-cCd(~,).

As a simple example of a ref inement , consider an
arbi t rary disambiguated language ~2 t = <A, Fy, Xts , ,
d0w>yEr,8, Ea,. NOW let ~2 be the disambiguated lan-
guage <A, Fy, Xa, S, a>yEi-, in which the set of cate-
gory names is the singleton set {a}. X a = O~,EA, X~,.
Let S be {<Fr , <a , a a > , a > : y e F and the number
of a 's agrees with the arity of F}. Then f~ is a refine-
ment of ~, with ref inement funct ion d:At-~{a}, d(8 ~)
= a for all d~¢A ~. Note that the disambiguated lan-
guage ~2 is comple te ly de te rmined by the a lgebra
<A,Fy>yeF, and is the natural d isambiguated language
to associate with it. Thus in a formal sense, we can
view a disambiguated language as a ref inement of its
algebra.

136 Amer ican Journal of Computational Linguistics, Vo lume 8, Number 3-4, Ju ly -December 1982

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

As a more intuitive example of refinement, consider
an English-like language with categories term (TE) and
intransitive verb phrase (IV) that both include singular
and plural forms. The language generated would then
allow subject-verb disagreement (assuming the ambig-
uating relation R does not filter them out). By refin-
ing category TE to TEsing and TEpl and category IV to
IVsing and IVpl, and having syntactic rules that com-
bine category TEsing with IVsing and TEpl with IVpl
only, we obtain a refined language that has subject-
verb agreement. A similar kind of ref inement could
eliminate such combinat ions as "colorless green
ideas", if so desired.

With this definition of refinement, we return to the
problem of parsing a language L = <~ , R>. The
problem can now be restated: find an algorithm that,
given a string ~, constructs a disambiguated language
~2~ that is an input-refinement of fL That is, f~ is a
ref inement in which the sentence category Cts, is ex-
actly the set of parses of ~ in L. Finding this algor-
ithm is equivalent to solving the parsing problem. For
given such an algorithm, the parsing problem reduces
to the problem of generating all members of C'80,.

In the case of a general language <~ , R>, it may
be the case that for ~ a string, the input-refined lan-
guage f~ has finitely many categories. In this case the
reduced grammar can be computed and a recursive
parsing algorithm exists. If the reduced grammar has
infinitely many categories, then the string has infinitely
many parses and we are not, in general, interested in
trying to parse such languages. It may happen, how-
ever, that ~2~ has infinitely many categories, even
though its reduction has only finitely many. In this
case, we are not guaranteed a recursive parsing algor-
ithm. However , if this reduced language can be effec-
tively constructed, a recursive parsing algorithm still
exists.

The ATN for PTQ represents the disambiguated
language for PTQ in the UG sense. The categories of
this disambiguated language correspond to the set of
possible triples: PTQ category name, contents of
SENDR registers at a PUSH to that subnet, contents of
the LIFTR registers at the corresponding POP. The
input-refined categories include the remainder of the
input string at the PUSH and POP. Thus the buckets
in the recall table are exactly the input-refined cate-
gories. The syntactic execut ion method is thus an
exhaustive generat ion of all expressions in the sen-
tence category of the input-ref ined disambiguated
language.

Semantic Equivalence Parsing in OG

In UG, Montague inclues a theory of meaning by
providing a definition of interpretat ion for a language.
Let L = <<A,F,r,Xs,S,t~0>.rEF,SEA,R> be a language.
An interpretation ,t' for L is a system <B,G~,,f>3,EF

such that <B,Gv>v~ r is an algebra similar to
<A,F./>3,eF; i.e., for each ~, E F, Fy and G./ have the
same number of arguments, and f is a function from
O,EAX 8 into B. Note that the algebra <B,G~,>.rE F
need not be a free algebra (even though <A,Fy>v¢ r
must be). B is the set of meanings of the interpreta-
tion ,I,; Gv is the semantic rule corresponding to syn-
tactic rule Fv; f assigns meanings to the basic expres-
sions Xv. The meaning assignment for L determined
by if' is the unique homomorphism g from <A,F.r>~,EF
into <B,Gy>,/E F that is an extension of f.

There are two ways to proceed in order to find all
the meanings of a sentence ~ in a language L = <f~,
R> with interpretat ion ~. The first method is to gen-
erate all members of the sentence category Cts0 , of
the input-refined language ~2~. As discussed above,
this is done in the algebra <A,F./>~,cF of ~ , using the
syntactic functions Fv to inductively construct mem-
bers of A from the basic categories of f~ and members
of A const ructed earlier and then applying g. The
second method is to use the fact that g is a homomor-
phism from <A,F.~>~,EF into <B ,G . />~ F. Because g
is a homomorphism, we can carry out the construction
of the image of the sentence category entirely in the
algebra <B,G~,>~,eF of the interpretat ion q'. We may
use the G functions to construct inductively members
of B from the basic semantic categories, that is, the
images under g (and f) of the basic syntactic categor-
ies, and members of B already constructed. The ad-
vantage of carrying out the construction in the algebra
of ,t, is that this algebra may not be free, i.e., some
element of B may have multiple construct ion se-
quences. By carrying out the construction there, such
instances can be noticed and used to advantage, thus
eliminating some redundant search. There are addi-
tional costs, however, associated with parsing in the
interpretat ion algebra q'. Usually, the cost of evaluat-
ing a G funct ion in the semantic algebra is greater
than the cost of the corresponding F function in the
syntactic algebra. Also in semantic parsing, each
member of B as it is constructed is compared to the
other members of the same refined category that were
previously constructed.

In the PTQ parsing system discussed above, the
in terpreta t ion algebra is the set of reduced transla-
tions. The semantic functions are those obtained from
the functions given in the T-rules in PTQ, and reducing
and extensionalizing their results. The directed proc-
ess version of the parser finds the meanings in this
algebra by the first method, generating all parses in
the syntactic algebra and then taking their images un-
der the interpretat ion homomorphism. Semantic equi-
valence parsing for PTQ uses the second method, car-
rying out the construct ion of the meaning ent irely
within the semantic algebra. The savings in the exam-
ple sentence Bil l walks and Mary runs comes about

American Journal of Computat ional Linguistics, Volume 8, Number 3-4, July-December 1982 137

David Scott Warren and Joyce Friedman Using Semantics in Non-Context-Free Parsing

because the algebra of reduced translations is not a
free algebra, and the redundant search thus eliminated
more than made up for the increase in the cost of
translating and comparing formulas.

S u m m a r y

We have desc r ibed a pars ing a lgor i thm for the lan-

guage o f PTQ v i e w e d as cons i s t i ng of t w o par ts , a

n o n d e t e r m i n i s t i c p r o g r a m and an e x e c u t i o n m e t h o d .

We s h o w e d how, wi th on ly a change to an e q u i v a l e n c e

r e l a t ion used in the e x e c u t i o n me thod , the parse r be -

comes a r ecogn ize r . We then d i scussed the add i t ion of

the seman t i c c o m p o n e n t of PTQ to the parser . Wi th

again only a change to the e q u i v a l e n c e r e l a t ion of the

e x e c u t i o n m e t h o d , the s e m a n t i c pa r se r is o b t a i n e d .

The semant i c e q u i v a l e n c e r e l a t ion is equa l i ty (to wi th-

in change of b o u n d va r i ab le) of r e d u c e d ex t ens iona l -

ized t rans la t ions . E x a m p l e s were g iven to c o m p a r e the

two pars ing me thods .

In the f i n a l p o r t i o n of the pape r we desc r ibed h o w

the pa r s ing m e t h o d in i t ia l ly p r e s e n t e d in p r o c e d u r a l

t e r m s can be v i e w e d in f o r m a l g r a m m a t i c a l t e rms .

T h e n o t i o n of i n p u t - r e f i n e m e n t for c o n t e x t - f r e e g ram-

mars was i n t r o d u c e d by e x a m p l e , and the t abu l a r

c o n t e x t - f r e e r e c o g n i t i o n a lgor i thms were desc r ibed in

these terms. We then ind ica ted h o w this n o t i o n o f

r e f i n e m e n t can be e x t e n d e d to the UG theo ry of lan-

guage and sugges ted how our seman t i c pa rse r is e ssen-

t ial ly pars ing in the a lgebra of an i n t e r p r e t a t i o n for the

PTQ language.

References

Bates, Madeleine 1978 The theory and practise of augmented
transition network grammars. In Bole, Ed., Natural Lanauge
Communication with Computers. New York: 191-260.

Cooper, R. 1975 Montague's semantic theory and transformation-
al syntax. Ph.D. thesis. Amherst, MA: University of Massa-
chusetts.

Earley, Jay 1970 An efficient context-free parsing algorithm.
Comm. ACM 13, 94-102.

Friedman, J., Moran, D., and Warren, D.S. 1978a Evaluating
English sentences in a logical model. Abstract 16, Information
Abstracts, 7th International Conference on Computational
Linguistics. Norway: University of Bergen (11 pp.).

Friedman, J., Moran, D., and Warren, D.S. 1978b Evaluating
English sentences in a logical model, presented to the 7th Inter-
national Conference on Computation Linguistics, University of
Bergen, Norway (August 14-18). Report N-15. Ann Arbor,
MI: University of Michigan, Computer and Communication
Sciences Department (mimeographed).

Friedman, J. and Warren, D.S. 1978 A parsing method for Mon-
tague grammars. Lingustics and Philosophy 2, 347-372.

Gawron, J.M., et al. 1982 The GPSG linguistic system. In Pro-
ceedings 20th Annual Meeting o f the Association for Computational
Linguistics, 74- 81.

Gazdar, G. 1979 English as a context-free language University of
Sussex (mimeograph).

Harel, David 1979 On the total correctness of nondeterministic
programs. IBM Research Report RC 7691.

Hintikka, J., Moravcsik, J., and Suppes, P., Eds. 1973 Approaches
to Natural Language. Dordrecht: D. Reidel.

Janssen, T.W.V. 1978 Compositionality and the form of rules in
Montague grammar. In Groenenijk, J. and Stokhof, M., Eds.,
Proceedings o f the Second Amsterdam Colloquium on Montague
Grammar and Related Topics. Amsterdam Papers in Formal
Grammar, Volume II. University of Amsterdam, 211-234.

Janssen, T.W.V. 1980 On problems concerning the quantification
rules in Montague grammar. In Roher, G., Ed., Time, Tense,
and Quantifiers. Tuebingen, Max Niemeyer Verlag.

Kasami, T. 1965 An efficient recognition and syntax-analysis
algorithm for context-free languages. Science Report AFCRL-
65-758. Bedford, MA: Air Force Cambridge Research Labora-
tory.

Landsbergen, S.P.J. 1980 Adaptation of Montague grammar to
the requirements of parsing. M.S. 11.646. Eindhoven, The
Netherlands: Philips Research Laboratories.

Montague, Richard 1970 Universal grammar (UG). Theoria 36,
373-398.

Montague, Richard 1973 The proper treatment of quantification
in ordinary English. In Hintikka, Moravcsik, and Suppes 1973.
Reprinted in Montague 1974, 247-270.

Montague, Richard 1974 Formal Philosophy: Selected Papers o f
Richard Montague. Edited and with an introduction by Rich-
mond Thomason. New Haven, CT: Yale University Press.

Rosenschein, S.J. and Shieber, S.M. 1982 Translating English into
logical form. In Proceedings 20th Annual Meeting o f the Associa-
tion for Computational Linguistics, 1-8.

Sheil, B.A. 1976 Observations on context-free parsing. Statistical
Methods in Linguistics 71-109.

Warren, David S. 1979 Syntax and semantics in parsing: an appli-
cation to Montague grammar. Ph.D. thesis. Ann Arbor, MI:
University of Michigan.

Winograd, T.A. 1972 Understanding Natural Language. New York:
Academic Press.

Woods, W.A. and Kaplan, R.M. 1971 The Lunar Sciences Natural
Language Information System. BBN Report No. 2265. Cam-
bridge, MA Bolt Beranek and Newman.

Woods, W.A. 1973 An experimental parsing system for transition
network grammars. In Rustin, R., Ed., Natural Language
Processing. New York: Algorithmics Press, Inc., 111-154.

138 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

