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1. I n t r o d u c t i o n  

An important  goal of modern linguistic theory is to 
characterize as narrowly as possible the class of natu- 
ral languages. One classical approach to this charac- 
terization has been to investigate the generative capac- 
ity of grammatical systems specifiable within particular 
linguistic theories. Formal results along these lines 
have already been obtained for certain kinds of Trans- 
formational Generat ive Grammars: for example, Peters 
and Ritchie 1973a showed that the theory of Transfor-  
mational Grammar presented in Chomsky's  Aspects of 
the Theory of Syntax 1965 is powerful enough to allow 
the specification of grammars for generating any re- 
cursively enumerable  language, while Rounds 
1973,1975 extended this work by demonstrating that 
moderate ly  restricted Transformat ional  Grammars  
(TGs) can generate languages whose recognition time 
is provably exponential.  1 

These moderate ly  restr icted theories of Transfor-  
mational Grammar  generate languages whose recogni- 
tion is widely considered to be computat ional ly  in- 
tractable. Whether  this "worst  case" complexity anal- 
ysis has any real import for actual linguistic study has 
been the subject of some debate (for discussion, see 
Chomsky 1980, Berwick and Weinberg 1982). Re- 
suits on generative capacity provide only a worst-case 
bound on the computat ional  resources required to 

l In R o u n d s ' s  proof ,  t r ans fo rma t ions  are sub jec t  to a 
" terminal  length non-dec reas ing"  condit ion,  as suggested by Peters  
and  Myhill  (cited in Rounds  1975).  A similar " t e rmina l  length 
increas ing"  constra int  (to the au thor ' s  knowledge first proposed by 
Petrick 1965) when coupled with a condit ion on recoverabil i ty of  
dele t ions ,  yields l anguages  that  are recurs ive  but  not  necessa ry  
recognizable in exponent ial  time. 

2 Usually,  the recognit ion procedures  presented  actually re- 
cover the s tructural  descript ion of sen tences  in the process of rec- 
ognit ion,  so that  in fact they actually parse sentences ,  rather than 
simply recognize them. 

recognize the sentences specified by a linguistic theo- 
ry. 2 But a sentence processor might not have to ex- 
plicitly reconst ruct  deep structures in an exact (but 
inverse) mimicry of a t ransformat ion derivation,  or 
even recognize every sentence generable by a particu- 
lar transformational  theory. For  example, as suggested 
by Fodor ,  Bever  and Garre t t  1974, the human sen- 
tence processor could simply obey a set of heuristic 
principles and recover the right representat ions speci- 
fied by a linguistic theory,  but not according to the 
rules of that theory. To say this much is to simply 
restate a long-standing view that a theory of linguistic 
performance could well differ from a theory of linguis- 
tic competence  - and that the relation between the 
two could vary from one of near isomorphism to the 
much weaker inpu t /ou tpu t  equivalence implied by the 
Fodor,  Bever, and Garre t t  position. 3 

In short, the study of generative capacity furnishes 
a mathematical characterization of the computational 
complexity of a linguistic system. Whether  this mathe- 
matical character izat ion is cognitively relevant  is a 
related, but distinct, question. Still, the determination 
of the computational  complexity of a linguistic system 
is an important  undertaking. For  one thing, it gives a 
precise description of the class of languages that the 

3 The phrase " i n p u t / o u t p u t  equiva lence"  simply means  that  
the two sys tems  - the linguistic g rammar  and the heurist ic princi- 
ples - produce the same (surface string, underlying s t ructure)  pairs. 
Note that  the " in ternal  cons t i tu t ion"  of the two sys tems could be 
wildly different.  The intuitive not ion of " embedd ing  a linguistic 
theory into a model  of language use"  as it is generally cons t rued  is 
much  s t ronger  than  this, since it implies that  the parsing sys tem 
follows some (perhaps  all) of  the same operat ing principles as the 
linguistic sys tem,  and makes  reference in its operat ion to the same 
sys tem of rules. This intuitive descript ion can be sha rpened  consid-  
erably. See Berwick and Weinberg  1983 for a more  detailed discus- 
sion of " t r an spa rency"  as it relates to the embeddabi l i ty  of a lin- 
guistic theory in a model of language use, in this case, a model  of  
parsing. 
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system can generate,  and so can tell us whether  the 
linguistic system is in principle descriptively adequate.  
This method of argument  was used in Chomsky ' s  orig- 
inal rejection of f inite-state languages as an adequate  
character izat ion of human linguistic competence.  Sec- 
ond, as ment ioned,  the resource bound on recognit ion 
given by a complexi ty- theoret ic  analysis tells us how 
long recognit ion will take in the worst  possible case. 

Since unrestr icted TGs can generate  computat ional -  
ly " h a r d "  languages,  then plainly, in order  to make  
TGs eff icient ly parsable ,  one must  supply addit ional  
restrictions. These could be either modificat ions to 
the theory of TG itself, or constraints  on the parsing 
mechanism.  For  example,  the current  theory of TG 
(see Chomsky  1981) contains several  restrictions on 
the way in which displaced const i tuents  such as 
wh-phrases  may  be linked to their "canonica l"  posi- 
t ion in predica te-argument  structure. (E.g., Who in 
Who did Bill kiss is assumed to be linked to a canoni-  
cal a rgument  posit ion after  the verb kiss.) As an ex- 
ample of a constraint  on the parsing mechanism,  one 
could proceed as did Marcus  1980, and posit  const-  
raints dictating that  TG-genera ted  languages must  have 
parsers  that  mee t  cer tain " local i ty  condi t ions" .  4 For  
instance, the Marcus constraints  amount  to an exten-  
sion of Knu th ' s  1965 LR(k) locality condi t ion to a 
(restricted) version of a two-s tack determinist ic push- 
down automaton.  5 

Recently,  a new theory of g rammar  has been  ad- 
vanced with the explicitly stated aim of meet ing the 
dual demands  of learnabil i ty and parsabi l i ty  - the 
Lexica l -Funct iona l  G r a m m a r s  (LFGs) of Kaplan  and 
Bresnan  1981. The theory  of Lexica l -Funct ional  
G r a m m a r  is claimed to be  at least  as descr ipt ively 
adequate  as Trans fo rma t iona l  G r a m m a r ,  if not  more  
so. Moreover ,  it is claimed to have none of TG's  com- 

4 It is important not to confuse the requirement that TG- 
generated languages have parsers that meet certain constraints with 
the claim that such parsers transparently embed TGs. As stated, 
the only requirement is one of weak inpu t /ou tpu t  equivalence - i.e., 
that the parser construct the same (surface string, underlying repre- 
sentation) pairs as the TG. Actually, one can show that a modified 
Marcus parsing system goes beyond this requirement and operates 
according to the same principles as the recent t ransformational  
theory of Chomsky. That is, such a modified Marcus parser makes 
reference to the same base constraints and representational units as 
the linguistic theory. Since it abides by the same rules and repre- 
sentations as TG, one is justified in claiming that the model embeds 
a TG. Note that the Marcus parser does not mimic earlier theories 
of TG (as presented in Aspects o f  the Theory o f  Syntax); there is no 
rule-for-rule correspondence between an Aspects grammar and the 
rules of the Marcus parser.  But neither is there a rule-for-rule 
correspondence between modern theories of TG and the Aspects 
theory. For example, there is no longer a distinct rule of "pass ive"  
or "dative movement" .  A detailed demonst ra t ion  of this claim 
would go far beyond the purpose of this paper. See Berwick and 
Weinberg forthcoming. 

5 The possible need for LR(k)- l ike  restrictions in order to 
ensure efficient processability was also suggested by Rounds 1973. 

puta t ional  unruliness,  in the sense that  it is c la imed 
that  there is a "na tu ra l "  embedding  of an LFG into a 
parsing mechan i sm (a pe r fo rmance  model)  that  ac- 
counts for human sentence processing behavior.  In 
LFG, there are no t ransformat ions  (as classically de- 
scr ibed);  the work  former ly  ascr ibed to t r ans fo rma-  
tions such as "pass ive"  is shouldered by informat ion 
stored in lexical entries associated with lexical items. 
The underlying representa t ion  of surface strings that  is 
built is also different  f rom the deep structures of clas- 
sical t ransformat ional  theory;  the representa t ion  makes  
reference to functionally defined notions of  grammati -  
cal te rms like " S u b j e c t " ,  ra ther  than  defining them 
structural ly,  as was done in classical t r ans fo rma t ion  
theory.  The el iminat ion of t r ans fo rmat iona l  power  
and the use of a different  kind of underlying repre-  
sentat ion for  sentences natural ly gives rise to the hope 
that  a lexical-functional system would be computa t ion-  
ally simpler than a t ransformat ional  one. 

An interesting question then is to determine,  as has 
already been done for  the case of certain brands  of 
T rans fo rma t iona l  G r a m m a r ,  just what  the " w o r s t  
case"  computa t ional  complexi ty  for the recognit ion of 
LFG languages is. If  the recognit ion time complexi ty  
for languages genera ted by the basic LFG theory can 
be as complex as that  for  languages genera ted by a 
modera te ly  res t r ic ted t r ans fo rmat iona l  system, then  
presumably  LFG will also have to add additional const-  
raints, beyond  those provided in its basic theory,  in 
order  to ensure  eff icient  parsabil i ty.  Just  as with 
t r ans fo rmat iona l  theories,  these could be cons t ra in ts  
on either the theory or its pe r fo rmance  model  realiza- 
tion. 

The main result of this paper  is to show that  cer- 
tain Lexica l -Func t iona l  G r a m m a r s  can genera te  lan- 
guages whose recognit ion time is very likely computa -  
tionally intractable,  at least according to our current  
understanding of algorithmic complexity.  Briefly, the 
demons t ra t ion  proceeds  by  showing how a p rob lem 
that  is widely conjectured to be computa t ional ly  diffi- 
cult - namely,  whether  there exists an assignment  of 
l ' s  and O's (or " T ' " s  and " F ' " s )  to the a toms of a 
Boolean  formula  in conjunct ive  normal  fo rm that  
makes  the formula  evaluate to " 1 "  (or " t r u e " )  - can 
be re-expressed as the prob lem of recognizing whether  
a particular string is or is not a memb er  of the lan- 
guage genera ted  by a cer ta in  Lexica l -Func t iona l  
Grammar .  This " reduc t ion"  shows that  in the worst  
case the recognit ion of LFG languages can be just as 
hard as the original Boolean  satisfiabil i ty problem.  
Since it is widely conjectured that  there cannot  be a 
polynomial - t ime algorithm for  satisfiability (the prob-  
lem is NP-comple te ) ,  there cannot  be a polynomial-  
t ime recognit ion algorithm for LFGs in general either. 
Note  that  this results sharpens  that  in Kaplan  and 
Bresnan  1981; there  it is shown only that  LFGs 

98 American Journal of Computat ional  Linguistics, Volume 8, Number 3-4, Ju ly-December 1982 



Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar 

(weakly)  generate  some subset  of the class of context-  
sensitive languages, and, therefore,  in the worst  case, 
exponential  time is known to be sufficient ( though not 
necessary) to recognize any LFG language. The result 
in Kaplan and Bresnan 1981 therefore  does not ad- 
dress the quest ion of how much time, in the worst  
case, is necessary to recognize LFG languages.  6 The 
result  of this paper  indicates that  in the worst  case 
more than polynomial  t ime will probably be necessary. 
(The reason for the hedge " p r o b a b l y "  will become  
apparent  below; it hinges upon the central  unsolved 
conjecture  of current  complexi ty  theory. )  In short  
then, this result places the LFG languages more pre- 
cisely in the complexi ty hierarchy of languages. 

It also turns out to be instructive to inquire into 
just why a lexical-functional approach can turn out to 
be computa t ional ly  difficult, and how computa t iona l  
tractabil i ty may be guaranteed.  Advocates  of lexical- 
functional theories may have thought  (and some have 
explicitly stated) that  the banishment  of t ransforma-  
tions is a computat ional ly  wise move because t ransfor-  
mat ions  are computa t ional ly  costly. El iminate  the 
t ransformations,  so this causal argument  goes, and one 
has eliminated all computat ional  problems.  Intriguing- 
ly though, when one examines the proof  to be given 
below, the ability to express co-occurrence  constraints  
over  arbi t rary  distances across terminal  tokens  in a 
string (as in Subject -Verb number  agreement) ,  when 
coupled with the possibility of alternative lexical en- 
tries, seems to be all that  is required to make the rec- 
ognition of LFG languages intractable.  

This leaves the question posed in the opening para-  
graph: just what  sorts of constraints  on natural  lan- 
guages are required in order to ensure efficient parsa-  
bility? As i t  turns out, even though general LFGs may 
well be computat ional ly  intractable,  it is easy to imag- 
ine a variety of additional constraints  for  LFG theory 
that  provide a way to avoid this problem. All of these 
additional restrictions amount  to making the LFG the- 
ory more restricted, in such a way that  the reduction 
argument  cannot  be  made to work. For  example,  one 
effective restriction is to stipulate that  there can only 
be a finite stock of features with which to label lexical 
items. In any case, the moral  of the story is an unsur- 
prising one: specificity and constraints  can absolve a 
theory of grammar  f rom computat ional  intractability. 
What  may  be more  surprising is that  the requisite 
locality constraints seem to be useful for a variety of 
theories of grammar,  f rom Transformat ional  G r a m m a r  
to Lexical-Funct ional  Grammar .  

2. A R e v i e w  of Reduct ion  A r g u m e n t s  

The demonst ra t ion  of the computa t ional  complexi ty  
of LFGs relies upon the s tandard complexi ty- theoret ic  
technique of reduction. Because this method  may  be 
unfamiliar to many  readers,  a short  review is presented 
immediately below; this is fol lowed by a sketch of the 
reduction proper.  

The idea behind the reduction technique is to take 
a difficult problem,  in this case the problem of deter-  
mining the satisfiability of Boolean formulas in con- 
junctive normal  form (CNF), and show that  the prob-  
lem can be quickly t r ans fo rmed  into the p rob lem 
whose complexi ty  remains  to be de termined,  in this 
case the problem of deciding whether  a given string is 
in the language genera ted  by  a given Lexical-  
Funct ional  Grammar .  Before the reduction proper  is 
reviewed, some definitional groundwork must be pres-  
ented. A Boolean formula  in conjunctive normal  form 
is a conjunct ion  or disjunction of literals, where  a 
literal is just an a tom (like Xi) or the negat ion of an 
a tom (Xi). A formula is satisfiable just in case there 
exists some assignment of T 's  and F ' s  (or l ' s  and O's) 
to the atoms of a formula  that  forces the evaluation of 
the entire formula to be T (true);  otherwise,  the for-  
mula is said to be unsatisfiable. For  example,  the fol- 
lowing formula is satisfiable: 

(X2VX3VX7)A(X1VX2VX4)A(X3VX1VX7)  

since the assignment of  X 2 = T ,  X 3 = F ,  X 7 = F ,  X I = T ,  
and X 4 = F  makes  the whole formula  evaluate to " T " .  
The reduct ion in the proof  be low uses a somewhat  
more restricted fo rmat  where every term comprises the 
disjunction of exact ly  three literals, so-cal led 3-CNF 
(or "3-SAT") .  7 

H o w  does a reduction show that  the LFG recogni- 
tion problem must  be at least as hard (computat ional ly  
speaking) as the original problem of Boolean satisfia- 
bility? The answer is that  any decision procedure  for 
LFG recognit ion could be used as a correspondingly 
fast  decision procedure  for 3-CNF, as follows: 
(1) Given an instance of a 3-CNF problem (the ques- 

t ion of whether  there exists a satisfying assignment 
for a given formula in 3-CNF),  apply the t ransfor-  
mat ional  algorithm provided by the reduction; this 
algorithm is itself assumed to execute  quickly, in 
polynomial  time or less. The algorithm outputs  a 
corresponding LFG decision problem,  namely: (i) 
a Lexical-Funct ional  G r a m m a r  and (ii) a string to 
be tested for membersh ip  in the language generat-  
ed by the LFG. The LFG recognit ion problem 
represents  or mimics the decision p rob lem for  
3-CNF in the sense that  the " y e s "  and " n o "  an- 
swers to both  satisfiability problem and member -  

6 This result can also be established by showing that LFGs 
can generate at least all the indexed languages as defined by Aho 
1968. See Berwick 1981 for details. 

7 This restriction entails no loss of generality (see Hopcroft 
and Ullman 1979, Chapter 12), since this restricted format can be 
easily shown to have the power to express any CNF formula. 
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ship problem must coincide (if there is a satisfy- 
ing assignment,  then the corresponding LFG deci- 
sion problem should give a " y e s "  answer,  etc.). 

(2) Solve the LFG decision problem - the str ing-LFG 
pair - output  by Step 1. If the string is in the 
LFG language, the original formula is satisfiable; 
if not, it is unsatisfiable. 8 

To see how a reduction can tell us something about  
the "wors t  case"  t ime or space complexi ty  required to 
recognize whether  a string is or is not  in an LFG lan- 
guage, suppose for example that  the decision proce-  
dure for  determining whether  a string is in an LFG 
language took only polynomial  t ime (that  is, takes t ime 
n k on a determinist ic Turing machine,  for  some integer 
k, where n is the length of the input string). Then,  
since the compos i t ion  of two polynomia l  algori thms 
can be readily shown to take only polynomia l  t ime 
(see H o p c r o f t  and Ul lman 1979, Chap te r  12), the 
entire process sketched above,  f rom input of the CNF 
formula  to the decision about  its satisfiability, will take 
only polynomial  time. 

However ,  CNF (or 3-CNF) has no known polynomi-  
al t ime algori thm, and indeed, it is considered 
exceedingly unlikely that  one could exist. Therefore ,  it 
is just as unlikely that  LFG recognit ion could be done 
(in general)  in polynomial  time. What  the reduct ion 
shows is that  LFG recognit ion is at least as hard as the 
problem of CNF. Since the latter p rob lem is widely 
considered to be difficult, the fo rmer  inherits the diffi- 
culty. 

The theory  of computa t iona l  complexi ty  has a 
much more compact  t e rm for problems like CNF: CNF 
is NP-comple te .  This label is easily deciphered: 
(1) CNF satisfiability is in the class NP. That  is, the 

problem of determining whether  an arbi t rary CNF 
formula  is satisfiable can be compu ted  by  a 
non-de termin i s t i c  Turing machine  in polynomial  
time. (Hence  the abbrevia t ion " N P " ,  for "non -  
determinist ic polynomial" .  To see that  CNF is 
indeed in the class NP, note that  one can simply 
guess all possible  combina t ions  of t ruth assign- 
ments  to literals, and check each guess in polyno-  
mial time.) 

(2) CNF is complete. That  is, all other problems in the 
class NP can be quickly reduced to some CNF 
formula.  (Roughly,  one shows that  Boolean for-  

8 Note that the grammar and string so constructed depend 
upon just what formula is under analysis; that is, for each different 
CNF formula, the procedure presented above outputs a different 
LFG grammar and string combination. In the LFG case it is 
important to remember that "grammar" really means "grammar plus 
lexicon" - as one might expect in a lexically-based theory. S. 
Peters has observed that a slightly different reduction allows one to 
keep most of the grammar fixed across' all possible input formulas, 
constructing only different-sized lexicons for each different CNF 
formula. Details are provided below. 

mulas can be used to " s imula te"  any valid compu-  
tat ion of a non-determinis t ic  Turning machine.)  

Since the class of problems solvable in polynomial  
time on a determinist ic Turing machine (convent ional-  
ly nota ted ,  P) is trivially conta ined  in the class so 
solved by  a non-de terminis t ic  Turing machine,  the 
class P must  be a subset  of the class NP. A well- 
known, well-studied, and still open question is whether  
the class P is a proper subset  of the class NP. In other  
words,  are there p rob lems  solvable in non-  
determinist ic polynomial  t ime that  cannot  be solved in 
determinis t ic  po lynomia l  t ime? Because  all of the 
several  thousand  N P - c o m p l e t e  p rob lems  now cata-  
logued have so far proved  recalci trant  to determinist ic 
polynomial  t ime solution, it is widely held that  P must  
indeed be a proper  subset  of NP, and therefore  that  
the best  possible algorithms for solving NP-comple te  
problems must  take more than polynomial  time. (In 
general,  the algorithms now known for such problems 
involve exponential  combinator ia l  search, in one fash- 
ion or another;  these are essentially methods  that  do 
no bet ter  than to brutal ly simulate - deterministically,  
of course - a non-de te rminis t ic  machine  that  
"guesses"  possible answers.)  

To repeat  the force of the reduct ion argument  then, 
if all LFG recognit ion problems were solvable in po- 
lynomial time, then the ability to quickly reduce CNF 
formulas  to LFG recogni t ion  p rob lems  would imply 
that  all N P - c o m p l e t e  p rob lems  would be solvable  in 
polynomial  time, and that  the class P = the class NP. 
This possibility seems extremely remote.  Hence ,  our 
assumption that there is a fast  (general)  procedure  for 
recognizing whether  a string is or is not in the lan- 
guage genera ted by an arbi t rary LFG must  be false. In 
the terminology of complexi ty  theory,  LFG recognit ion 
must  be NP-ha rd  - "as  hard as"  any other  NP prob-  
lem, including the NP-comple te  problems.  This means  
only that  LFG recognit ion is at least as hard as other  
NP-comple te  problems - it could still be more  difficult 
(lie in some class that  contains the class NP).  If one 
could also show that  the languages genera ted by LFGs 
are in the class NP, then LFGs would be shown to be 
NP-comple te .  This paper  stops short  of proving this 
last claim, but  simply conjectures  that  LFGs are in the 
class NP. 

3. A S k e t c h  of the  Reduct ion  

To carry out this demonst ra t ion  in detail  one must  
explicitly describe the t r ans fo rma t ion  p rocedure  that  
takes as input a formula  in CNF and outputs  a corre-  
sponding LFG decision problem - a string to be tes ted 
for membersh ip  in a LFG language and the LFG itself. 
One must  also show that  this can be done quickly, in a 
number  of steps propor t ional  to (at  most)  the length 
of the original formula  to some polynomial  power.  

100 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 



Robert C. Berwick Computat ional  Complexity and LexicaI-Functional G r a m m a r  

One caveat  is in order before  embarking on a proof  
sketch of this reduction. The g rammar  that  is output  
by the reduct ion procedure  will not look very much 
like a g rammar  for a natural  language, al though the 
grammatical  devices that  will be employed will in ev- 
ery way be those that are an essential part  of the LFG 
theory.9 In other words, al though it is most  unlikely 
that any natural language would encode the satisfiabil- 
ity p rob lem (and hence be in t ractable)  in just the 
manner  outlined below, no "exo t i c"  LFG machinery is 
used in the reduction. Indeed,  some of the more pow- 
erful LFG notational  formalisms - long-distance bind- 
ing, existential and negative feature o p e r a t o r s -  have 
not been exploited. (An earlier proof  made use of an 
existential opera tor  in the feature machinery of LFG, 
but the reduction presented here does not.) 

To make good this demonst ra t ion  one must set out 
just what  the satisfiabili ty p rob lem is and what  the 
decision problem for membersh ip  in an LFG language 
is. Recall that a formula in conjunctive normal  form is 
satisfiable just in case every conjunctive term evalu- 
ates to true, that is, at least one literal in each term is 
true. The satisfiability problem is to find an assign- 
ment  of T 's  and F ' s  to the atoms at the bo t tom (note 
that complements  of a toms are also permit ted)  such 
that the root  node at the top gets the value " T "  (for 
true). How can we get a Lexical-Funct ional  G r a m m a r  
to represent  this p roblem? What  we want  is for  
satisfying assignments  to cor respond  to well-formed 
sentences  of some corresponding Lexica l -Funct ional  
Grammar ,  and non-satisfying ass ignments  to corre-  
spond to sentences that  are not well-formed,  according 
to the LFG, as indicated in Figure 1. Since one wants 
the sa t is fying/non-sat is fying assignments of ahay par-  
ticular formula  to map  over  into wel l - fo rmed/ i l l -  
formed sentences,  one must obviously exploit the LFG 
machinery for capturing well-formedness  conditions on 
sentences. To make the discussion clear to the reader 
will require a brief account  of the LFG theory itself. 

satisfiable non-satisfiable 
formula formula 

sentence w IS sentence w IS NOT 
in LFG language L(G) in LFG language L(G) 

Figure 1. A reduction preserves  solutions to the original problem. 

Just  as in a t ransformat iona l  theory,  a Lexical-  
Funct ional  G r a m m a r  associates  with each generable  
surface string (sentence) a number  of distinct repre-  

9 These  include feature agreement ,  the lexical analog of Sub- 
ject or Object  "cont ro l" ,  lexical ambiguity,  and a garden variety 
context - f ree  base grammar .  

sentations. For  our purposes here we need to focus on 
just two of these: the const i tuent  structure of a sen- 
tence (its "c - s t ruc ture" ,  roughly, a labeled bracket ing 
of the surface string, anno ta ted  with certain fea ture  
complexes);  and the functional  structure of a sentence 
(its " f - s t r uc tu r e " ,  roughly,  a represen ta t ion  of the 
underlying predica te-argument  structure of a sentence,  
descr ibed in te rms of grammat ica l  relat ions such as 
Subject  and Object . )  Unlike a Trans fo rmat iona l  
G r a m m a r ,  however ,  a Lexica l -Funct iona l  G r a m m a r  
does not  generate  surface sentences by first specifying 
an explicit, context - f ree  deep structure fol lowed by a 
series of  ca tegor ia l ly-based  t ransformat ions .  " C a -  
t egor ia l ly -based"  simply means  that  the t r ans fo rma-  
tions move const i tuents  defined in terms of categories,  
like NP or PP.) Rather ,  predica te-argument  structure 
is mapped  directly into c-s t ructure ,  on the basis of  
predicates  that  are grounded upon grammat ica l  rela-  
tions (like Subject and Object) .  The conditions for 
this mapping are provided by a set of so-called func- 
tional equations associated with the context - f ree  rules 
for  generat ing permissible c-s t ructures ,  along with a 
set of convent ions that  in effect  convert  the functional  
equat ions into wel l - formedness  predicates  for  c- 
structures. 

In more detail, an LFG c-structure is genera ted by  
a base context - f ree  ~rammar.  A necessary condition 
for a sentence (considered as a string) to be in the 
language generated by a Lexical-Funct ional  G r a m m a r  
is that it can be generated by this base grammar;  such 
a sentence is then said to have a wel l - formed consti tu- 
ent structure. For  example,  if the base rules included 
S = > N P  VP; V P = > V  NP, then (glossing over  details 
of Noun  Phrase  rules) the sentence  John  kissed the 
baby  would be wel l - formed but John the baby  kissed 
would not. Note  that  this assumes, as usual, the exist- 
ence of a lexicon that  provides a ca tegor iza t ion  for  
each terminal item, e.g., that  baby  is of the category 
N, kissed is a V, etc. Impor tan t ly  then, this well- 
fo rmedness  condit ion requires us to provide  at least  
one legit imate parse tree for  the candidate  sentence  
that  shows how it may be derived f rom the underlying 
LFG base con tex t - f ree  grammar .  (There  could be 
more than one legitimate tree if the underlying gram- 
mar is ambiguous.)  Note  further  that  the choice of 
categorizat ion for a lexical i tem may be crucial. If  
b a b y  was assumed to be of ca tegory  V, then both  
sentences above would be ill-formed. 

Since the base grammar  is context-free ,  there are 
wel l -known algori thms for checking the well- 
formedness  of the strings it can generate  in polynomial  
time. Intractabil i ty cannot  arise on this score, then. 

A Lexica l -Funct i0nal  G r a m m a r  consists of more  
than just a base context- f ree  grammar,  however.  As 
ment ioned ,  a second major  c o m p o n e n t  of the LFG 
theory is the provision for adding a set of so-called 
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funct ional  equat ions to the base  con tex t - f ree  rules. 
The functional equations define an implicit f -s tructure 
associated with every c-structure,  and this f-s tructure 
must itself be well-formed. Part  of the linguistic role 
of f -s t ructures  is to account  for the co-occur rence  
restr ict ions that  are an obvious  par t  of natural  lan- 
guages (e.g., Subjec t -Verb  agreement) .  

H o w  exactly do the funct ional  equat ions  work?  
Their  job is to specify how the f-s t ructure of a sen- 
tence gets built. This is done by associating possibly 
complex features with lexical entries and with the non-  
terminals of specified context - f ree  rules; these features  
have values. The features  are pasted together  under  
the direct ion of the funct ional  equat ions  to fo rm f- 
structures associated with the sub-consI i tuents  of the 
sentence;  these (now possibly complex)  f - s t ruc tures  
are in turn assembled  to fo rm a mas te r  f -s t ruc ture  
associated with the root  node of the sentence.  

Note  then that  in this theory a " f e a t u r e "  can be 
something as simple as an atomic object  that  is binary 
valued; for example,  a Subiect  feature  could be either 
plural or singular in value. But denominators  can also 
have  a range of values,  and - more  crucial for  the 
purposes  of  the demons t ra t ion  here  - a fea ture  can 
itself be a complex,  hierarchical ly s t ructured objec t  
that  contains other features  as sub-const i tuents .  For  
example,  the " f e a t u r e "  that  eventually becomes  associ- 
ated with the root  node of a sentence is in fact  an 
f-s t ructure that  represents  the full proposi t ional  struc- 
ture of the sentence.  Thus if the surface string was 
the sentence,  The girl promised to kiss the baby,  then 
the f -s t ructure  associa ted with the root  node of the 
sentence is a complex " f e a t u r e "  that  itself contains an 
embedded  f-s t ructure corresponding to the embedded  
proposi t ion the girl to kiss the baby.  

As ment ioned,  wel l - formedness  is also determined 
by functional  equations,  dictating (according to certain 
conventions)  how feature  complexes are to be assem- 
bled. By and large the f-s t ructure complex at a node 
X is assembled  composi t ional ly  in terms of the f- 
structure complexes of the nodes below it in the con- 
stituent structure tree. For  example,  the root  node of 
a sentence  will have an associa ted f -s t ruc ture  with 
Subject and Predicate sub-features.  These structures 
are themselves complex - the entire Subject  NP and 
Verb-Verb  Complement  structures,  respectively. For  
instance,  the Subject  NP in turn has a sub- fea tu re  
Number ;  the Predicate contains complex sub-features  
cor responding  to the Verb  and Verb  Complements .  
The basic assembly directive is the notat ion ( 4 = 4 ) .  1° 
When at tached to a particular node X, it s tates that  
the f-s tructure of the node a b o v e  X is to share all the 
f -s t ructure  of the nodes  b e l o w  X .  The ef fec t  is to 
merge and "pass  up"  all the f-s t ructure values of the 
nodes below X to the node above X. One can also 
pass along just part icular subfields of the f-s t ructure 

be low X by specifying a subfield on the r ight -hand 
side of the expansion rule. As an example,  the notion 
( + = + N u m b e r )  a t tached to a node X states that  the 
f-s t ructure of  the node above X is to contain at least 
the value of the Number  feature.  (This "va lue"  may 
itself be an f-s tructure.)  Similarly, a particular sub- 
field of the f-s t ructure above a node X may  be speci- 
fied by providing a subfield label on the lef t -hand side 
of  the ar row notat ion.  Fo r  example ,  the nota t ion,  
( + S u b j e c t = 4 )  means  that  the Subject  subfield of the 
f-s t ructure built at the node above  X must  contain the 
f-s tructure built below X. 

A basic const ra in t  on f - s t ruc tures  is that  the f- 
structure assembled at X must  be uniquely determined;  
that  is, it cannot  contain a feature  F 1 with conflicting 
values. This entails, for  example ,  that  the Subject  
sub-f-s t ructure  that  is built at  a root-S node cannot  
have a N u m b e r  sub-f ie ld  that  is filled in f rom one 
place benea th  with the value Singular and f rom anoth-  
er place with the value Plural. More  generally, this 
res t r ic t ion means  that  two or more  f -s t ruc tures  that  
are "passed  up"  f rom below according to the dictates 
of an arrow notat ion at a single node above  must  be 
u n i f i a b l e  - any c o m m o n  sub-fields,  no ma t t e r  how 
hierarchical ly complex,  must  be  mergeab le  wi thout  
conflict. 

For  example,  consider Subjec t -Verb  agreement  and 
the sentence  the  baby  is kissin~ John.  The lexical 
entry for baby  (considered as a Noun)  might have the 
Number  feature,  with the value singular. The lexical 
entry for is might assert  that  the number  feature  of the 
Subiect above  it in the parse tree m u s t  have the value 
singular, via the annota t ion (+Subjec t=s ingu la r )  a t ta-  
ched to the verb. Meanwhile ,  the feature  values for  
Subject  are automat ica l ly  found  by  the annota t ion  
( + S u b j e c t = 4 )  associated with the Noun  Phrase  por-  
t ion of S = > N P  VP) that  grabs whatever  features  it 
finds below the NP node and copies them up above to 
the S node. Thus the S node gets the Subject  feature  
with whatever  value it has passed f rom baby  below - 
namely,  the value singular; this accords with the dic- 
tates of the verb is___z, and all is well. In contrast ,  in the 
sentence,  th_.__~e boys in the band is kissin~ John,  boys  
passes  up the number  value plural,  and this clashes 
with the verb ' s  constraint;  as a result this sentence is 
judged ill-formed, as Figure 2 shows. 

10 More generally, the assembly directive is specified via the 
notat ion (+featl=Sfeat2), where feat1 and feat2 are meta- 
variables specifying a subfield of the f-structure immediately above 
or below the node to which the the annotat ion is attached. If no 
field is given, then the entire f-structure is assumed. For example, 
the notation (+  Subject Number =  4 )  attached to a node X means 
that the Number  subfield of the Subject subfield of the f-structure 
associated with the node above X is to be filled in with the value of 
the entire f-structure below X. 
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S Subject [Number:Singular or Plural?] / \ =  
NP VP 

[Number:plural] [Number: singular] 

L-  / 
the boys in the band is kissing John 

Figure 2. Co-occurrence restrictions are enforced by feature checking in a Lexical-Functional Grammar. 

It is important  to note that the feature compatibili- 
ty check requires (1) a particular consti tuent structure 
tree (a parse tree); and (2) an assignment of terminal 
items (words) to lexical categories - e.g., in the first 
Subject -Verb agreement  example above,  baby  was 
assigned to the category N, a Noun. The tree is obvi- 
ously required because the feature-checking machinery 
propagates values according to the links specified by 
the derivation tree; the assignment of terminal items to 
categories is crucial because in most cases the values 
of features are derived from those listed in the lexical 
entry for an item (as the value of the number feature 
was derived from the lexical entry for the Noun form 
of baby). One and the same terminal item can have 
two distinct lexical entries, corresponding to distinct 
lexical categorizations; for  example, baby can be both 
a Noun and a Verb. If we had picked baby to be a 
Verb,  and hence had adopted whatever  features are 
associated with the Verb entry for baby to be propa- 
gated up the tree, then the string that was previously 
well-formed, th.__~e baby is kissin 8 John, would now be 
considered deviant. If a string is ill-formed under all 
possible derivation trees and assignments of features 
from possible lexical categorizations, than that string is 
not in the language generated by the LFG. The ability 
to have multiple derivation trees and lexical categori- 
zations for one and the same terminal item plays a 
crucial role in the reduction proof: it is intended to 
capture the satisfiability problem of deciding whether  
to given an atom X i a value of " T "  or " F " .  

Finally, LFG also provides a way to express the 
familiar pat terning of grammatical relations (e.g., 
"Sub jec t "  and " O b j e c t " )  found in natural  language. 
For  example, transitive verbs must have objects. This 
fact of life (expressed in an Aspects-style Transforma- 
tional Grammar  by subcategorizat ion restrictions) is 
captured in LFG by specifying a so-called PRED (for 
predicate) feature with a Verb; the PRED can describe 
what grammatical relations like "Sub jec t "  and 
" O b j ec t "  must be filled in after  feature passing has 
taken place in order  for  the analysis to be well- 
formed. For  instance, a transitive verb like kiss might 
have the pattern,  k i s s<(Subjec t ) (Obiec t )>  , and thus 
demand that the Subject and Object  (now considered 
to be " fea tu res" )  have some value in the final analysis. 
The values for Subject and Object  might of course be 

provided from some other  branch of the parse tree, as 
provided by the feature  propagat ion machinery;  for  
example, the Object  feature could be filled in from the 
Noun Phrase part of the VP expansion. See Figure 3. 
But if the Object  were not filled in, then the analysis is 
declared functionally incomplete, and is ruled out. This 
device is used to cast out sentences such as th._ee baby 
kissed. 

So much for the LFG machinery that is required for 
the reduction proof. (There are additional capabilities 
in the LFG theory,  such as long-distance binding, but 
these will not be called upon in the demonst ra t ion  
below.) 

What then does the LFG representat ion of the CNF 
satisfiability problem look like? Basically, there are 
three parts to the satisfiability problem that must be 
mimicked by the LFG: (1) the assignment of values to 
atoms, e.g., X 2 = > " T " ;  X 4 = > " F " ;  (2) the consisten- 
cy of value assignments in the formula; e.g., the atom 
X 2 can appear in several different  terms, but one is 
not allowed to assign it the value " T "  in one term and 
the value " F "  in another;  and (3) the preservation of 
CNF satisfiability, in that a string will be in the LFG 
language to be defined just in case its associated CNF 
formula is satisfiable. Let  us now go over how these 
components  may be reproduced  in an LFG, one by 
one. 

(1) Assignments: The input string to be tested 
for membership in the LFG will simply be the original 
formula, sans parentheses and the operators A and V; 
the terminal items are thus just a string of Xi's. Recall 
that the job of checking the string for well-formedness 
involves finding a derivation tree for the string, solving 
the ancillary co-occurrence equations (by feature pro- 
pagation),  and checking for funct ional  completeness.  
Now, the context - f ree  grammar const ructed by the 
transformation procedure will be set up so as to gener- 
ate a virtual copy of the associated formula, down to 
the point where literals X i are assigned their value of 
" T "  or " F " .  If the original 3-CNF form had n terms, 
then denoting each by the symbol Ep, p = l ,  ..., n, this 
part of the grammar would look like the following:U 

S = >  E 1 E 2 ... E n 

E p = >  Y i Y j Y k  
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S ~ features:  

NP VP 

I / N  
Sue V NP 

I I 
kiss John 

Subject : Sue 
Pred • 'k i ss<  (Subject)  (Object )  > '  
Object  : John 

Figure 3. Predicate templates can demand that a subject or object be filled in. 

( p =  1,2,...,n) 

The subscripts i, j, and k correspond to the actual 
subscripts in the original formula.  Further ,  the Yi are 
not  terminal items, but are non- terminals  that  will be 
expanded into one of the non-terminals  T i o r  Fi.12 

Note  that so far there are no rules to extend the 
parse tree down to the level of terminal items, name 
the X i. The next step does this and at the same t ime 
adds the power  to choose be tween " T "  and " F "  as- 
s ignments  to atoms.  One adds to the con tex t - f ree  
base grammar  two product ions deriving each terminal 
i tem X i, namely,  T i = > X  i and F i - ->Xi ,  corresponding 
to an assignment  of " T "  or " F "  to the a toms of the 
formula  (it is important  not to get confused here be-  
tween the a toms of the formula - these are terminal  
elements  in the Lexical-Funct ional  G r a m m a r  - and the 
non-terminals  of the grammar. )  Plainly, one must  also 
add the rules Y i = > T i ]  Fi, for each i, and rules corre-  
sponding to the assignment of t ruth-values to the neg- 
at ions of literals, T i = > X  i and Fi--->X i. No te  that  
these are not  " e x o t i c "  LFG rules: exact ly  the same 
sort  of  rule is required in the baby  case, i.e., 
N = > b a b y  or V = > b a b y ,  cor responding  to whether  
baby  is a Noun  or a Verb.  Now,  the lexical entries for 
the "T i "  categorizat ion of X i will look very different  
f rom the "F i "  categorizat ion of Xi, just as one might 
expect  the N and V forms for baby  to be different.  
Here  is what  the entries for the two categorizat ions of 
X i look like: 

Xi: T i (+Tru th-ass ignment )  = T  
(+Assign X i) = T  

11 The context-free base that is built depends upon the origi- 
nal C N F  formula that is input, since the number of terms, n, varies 
from formula to formula. In Stanley Peters 's improved version of 
the reduction proof [personal communication], the context-free base 
is fixed for all formulas with the rules: 

S = > S  S" 
S ' = > T  T T or T T F or T F F or T F T or ... 
(remaining twelve triples containing at least one " T " )  

The Peters grammar works by recursing until the right number  of 
terms is generated (any sentences that are too long or too short 
cannot be matched to the input formula). Thus, the number  of 
terms in the original C N F  formula need not be explicitly encoded 
into the base grammar. 

Xi: F i (+Assign Xi) = F  

Putting aside for the momen t  the "Tru th -a s s ignmen t "  
feature in this entry,  the feature  assignments for the 
negat ion of the literal X i must  be the complement  of 
this entry: 

Xi: T i (+Tru th-ass ignment )  = T  
(+Assign X i) = F  

Xi: F i (+Assign X i) = T  

The upward-d i rec ted  ar rows in the entr ies  ref lect  
the LFG feature  propagat ion  machine.  R e m e m b e r  that  
T i and F i are just non- terminal  categories,  like Noun  
and Verb.  For  example,  if the T i categorizat ion for  X i 
is selected,  the ent ry  says to " m a k e  the 
Tru th -ass ignment  fea ture  of  the node above  T i have  
the value T, and make the X i por t ion of the Assign 
fea ture  of  the node above  have the value T . "  This 
feature propagat ion  device reproduces  the assignment  
of T ' s  and F ' s  to the CNF literals. If  we have a triple 
of such elements,  and at least one of them is expanded 
out to Ti, then the feature  p ropaga t ion  machinery  of 
LFG will merge  the common  feature  names into one 
large structure for the node above,  reflecting the as- 
signments made;  moreover ,  the term will get a filled-in 
truth assignment value just in case at least one of the 
expansions selected a T i path. This is depicted in Fig- 
ure 4. Features  are passed t ransparent ly  through the 
in tervening Yi nodes via the LFG " c o p y "  device,  
(+ = +); this simply means that  all the features of the 
node below the node  to which the " c o p y "  up-and-  
down arrows are a t tached are to be the same as those 
of the node above the up -and-down arrows. 

It  should be plain that  this mechanism mimics the 
assignment  of values to literals required by the satisfi- 
ability problem. 

(2) Coordinat ion  of assignments:  One must  also 
guarantee  that  the X i value assigned at one place in 
the tree is not contradic ted by  the value of an X i or X i 
elsewhere.  To ensure this, we use the LFG co- 

12 This grammar will have to be slightly modified in order for 
the reduction to work, as will become apparent shortly 
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terminal 
string: 

ures: 

Yi 

i i  ~J ~ k 

X i Xj X k 

ITruth-Assignment  _=T [Xi=T] l ]  

[Xj=F1 II 
l Assign 

[Xg=F]JJ 

Figure 4. The LFG feature propagation machinery is used to percolate feature assignments from the lexicon. 

occurrence agreement machinery: the Assign feature-  
bundle is passed up from each term to the highest 
node in the parse tree (one simply adds the (+=4, )  
notation to each E i rule in order to indicate this). The 
Assign feature at this node will contain the union of all 
assign feature bundles passed up by all terms. If any 
X i values conflict,  then the resulting structure is 
judged ill-formed. Thus, only compatible X i assign- 
ments are well-formed. Figure 5 depicts this situation. 

(3) Preservation of satisfying assignments: Final- 
ly, one has to reproduce the conjunctive character  of 
the 3-CNF problem - that is, a sentence is satisfiable 
(well-formed) if and only if each term has at least one 
literal assigned the value "T" .  Part of the disjunctive 
character  of the problem has already been encoded in 
the feature propagation machinery presented so far; if 
at least one X i in a term E 1 expands to the lexical 
categorizat ion Ti, then the Truth-ass ignment  feature  
gets the value T. This is just as desired. If one, two, 
or three of the literals X i in a term select Ti, then El 'S 
Truth-assignment feature is T, and the analysis is well- 
formed. But how do we rule out the case where all 

three Xi's in a term select the " F "  path, Fi? And how 
do we ensure that all terms have at least one T below 
them? 

Both of these problems can be solved by resorting 
to the LFG functional completeness constraint. The 
trick is to add a Pred feature to a " d u m m y "  node atta- 
ched to each term; the sole purpose of this feature will 
be to refer to the feature Truth-assisnment ,  just as the 
predicate template for the transitive verb kiss mentions 
the feature  Obiect.  Since an analysis is not  well- 
formed if the "grammatical  relat ions" a Pred mentions 
are not filled in from somewhere,  this will have the 
effect  of forcing the Truth-assignment feature to get 
filled in every term. Since the " F "  lexical entry does 
not have a Truth-assignment value, if all the Xi's in a 
term triple select the F i path (all the literals are " F " ) ,  
then no Truth-ass ignment  feature  is ever picked up 
from the lexical entries, and that term never  gets a 
value for the Truth-assignment feature. This violates 
what the predicate template  demands,  and so the 
whole analysis is thrown out. (The ill-formedness is 
exactly analogous to the case where a transitive verb 
never gets an Object.)  Since this condition is applied 
to each term, we have now guaranteed that each term 
must have at least one literal below it that selects the 
" T "  path - just as desired. To actually add the new 
predicate template, one simply adds a new (but dum- 
my) branch to each term El, with the appropriate  
predicate constraint at tached to it. See Figure 6. 

S features: 

/ \  
~1 Ejk 

~7 ~7 

7 F7 
\ 

X7 X7 

~Axssign 1 
7=T or F? d 

Clash! 

(+Assign XT=T ) (+Assign XT=F ) 

Figure 5. The feature compatibility machinery of LFG can force assignments to be co-ordinated across terms. 
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lexical entry 
for ' dummy2 ' :  
( ÷ Pred) = 
' d u m m y 2 < ( ÷ T r u t h - a s s i g n m e n t )  > '  

E l 

Dummy2  y, y~ y< 
~ i Fj F k 

Xi 

features:  [ P r e d = ' d u m m y 2  < ( ÷ Truth-ass ignment)  > ']" 

[Truth-ass ignment  = T] 

( + Truth-ass ignment)  = T 

Figure 6. Predicates can be used to force at least one "T" per term. 

There  is one final subtle point  here: one must  also 
prevent the Pred and Tru th -ass ignment  fea tures  for 
each term f rom being passed up to the head " S "  node. 
The reason is that  if these features were passed up, 
then, since the LFG machinery  automat ica l ly  merges 
the values of any features with the same name at the 
topmost  node of the parse tree, the LFG machinery 
would force the union of the feature  values for  Pred 
and Tru th -ass ignment  over  all terms in the analysis 
tree. The result would be that  if any term had at least 
one " T "  (hence satisfying the Truth-ass ignment  predi- 
cate template  in at least one term),  then the Pred and 
Tru th -ass ignment  fea tures  would get filled in at the 
topmos t  node as well. The string below would be 
wel l - formed if at least one term were " T " ,  and this 
would amount  to a disjunction of disjunctions (an 
" O R "  of " O R ' s ) ,  not quite what  is sought. To elimi- 
nate this possibility, one must  add a final trick: each 
term E 1 is given separate  Pred, Truth-ass ignment ,  and 
Assign features,  but only the Assign feature is propa-  
gated to the highest node in the parse tree as such. In 
contrast ,  the Pred and Truth-ass ignment  features for 
each term are kept " p r o t e c t e d "  f rom merger  by storing 
them under separate feature  headings labeled E 1 ..... E n. 
The means by which just the Assign feature  bundle is 
lifted out is the LFG analogue of the natural  language 
phenomenon  of Subject or Object  "con t ro l " ,  whereby 
just the features of the Subject or Object  of a lower 
clause are lifted out of the lower clause to become the 
Subject of Object  of a matrix sentence;  the remaining 
features stay unmergeable  because they stay protected 
behind the individually labeled terms. 

To actually " imp lemen t "  this in an LFG, one can 
add two new branches to each term expansion in the 
base context- f ree  grammar,  as well as two "con t ro l "  
equat ion specifications that do the actual work of lift- 
ing the features f rom a lower clause to the matrix sen- 
tence. A natural  language example of this phenome-  
non is the following ( f rom Kaplan and Bresnan 1981, 
pp. 43-45):  

The girl persuaded the baby  to go. 

(part  of the) 
lexical entry for 
persuaded:  V (÷ Vcomp Subject) = (÷ Object)  

According  to this lexical entry,  the Objec t  fea ture  
s t ructure  of  a root  sen tence  containing a verb  like 
persuade is to be the same as the feature  structure of 
the Subject  of the C o m p l e m e n t  of  persuade  - a 
" con t ro l "  equation. Since this Subject  is the baby,  
this means that  the features associated with the NP the 
baby  are shared with the features  of the Objec t  of the 
matrix sentence.  

The  satisfiabil i ty analogue of this machinery  is 
quite similar to this; see Figure 7. 

As Figure 7 shows, a "con t ro l  equat ion"  should be 
a t tached to the A i node that  forces the Assign feature  
bundle f rom the C i side to be lifted up and ult imately 
merged into the Assign feature  bundle of  the E 1 node 
(and then, in turn, to become merged at the topmos t  
node of the tree by the usual full copy up-and-down 
arrows):  

( + CiAssign ) = ÷ Assign) 

The satisfiability analogue is just like the sharing of 
the Subject features  of a Verb  Complemen t  with the 
Objec t  posit ion of a matrix clause. 

To finish off  the reduct ion argument ,  it must  be 
shown that, given any 3-CNF formula,  the cor respond-  
ing LFG grammar  and string as just described can be 
constructed in a t ime that  is a polynomial  funct ion of 
the length of the original input formula.  This is not a 
difficult task, and only an informal  sketch of how it 
can be done will be given. All one has to do is scan 
the original formula  f rom left to right, output t ing an 
appropr ia te  cluster of base rules as each triple of liter- 
als is scanned:  E i = > A i C i ;  C i = > D u m m y 2  YiYjYk; 
Y i = > T i l F i  (similarly for  Yj and Yk); T i = > X i ,  
F i = > X  i (similarly for Tj and Tk). Note  that  for  each 
triple of literals in the original input formula  the ap- 
propriate  g rammar  rules can be output  in an amount  of 
t ime that  is just a constant  times n. In addition, one 
must  also mainta in  a counte r  to keep  t rack of the 
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Phrase structure tree: 

Dum m y2  Yi  Y j  Y k  

Figure 7. Phrase  s t ructure  tree required to implement  control  . 

equat ions  in C N F  analogue of natural  language case. 

number  of triples so far encountered.  This adds at 
most  a logarithmic factor,  to do the actual counting. 
At the end of processing the input formula,  one must 
also output  the rule S=>E1E2, . . . ,Em,  where m is the 
number  of triples in the CNF formula. Since rn is less 
than n, this procedure  too is easily seen to take time 
that is a polynomial  function of the length of the origi- 
nal input formula. Finally, one must  also construct  the 
lexical entry for each X i and X i. This too can be done 
as the input formula is scanned left to right. The only 
difficulty here is that  one must  check to see if the 
entry for each X i has been previously constructed.  In 
the worst  case, this involves rescanning the list of  lexi- 
cal entries built so far. Since there are at most  n such 
entries, and since the time to actually output  a single 
entry is constant,  at worst  the time spent construct ing 
a single lexical entry could be proport ional  to n. Thus 
for n entries the total time spent  in construct ion could 
be at most  of order n 2. Since the time to construct  the 
entire g rammar  is just the sum of the times spent  in 
constructing its product ion rules and its lexicon, the 
total time to t ransform the input formula is bounded 
above by some constant  times n 2. 

4. Relevance of Complexity Results and Conclusions 

The demons t ra t ion  of the previous section shows 
that LFGs have enough power  to "s imula te"  a proba-  
bly computat ional ly  intractable problem. But what  are 
we to make of this result? On the positive side, a 
complexity result such as this one places the LFG the- 
ory more precisely in the complexi ty hierarchy. If one 
conjectures,  as seems reasonable,  that  LFG language 
recognition is actually in the class NP (that is, LFG 
recognit ion can be done by a non-determinist ic  Turing 
machine in polynomial  t ime),  then the LFG languages 
are NP-complete .  This is a plausible conjecture be-  
cause a non-determinis t ic  Turing machine  should be 
able to "guess"  all candidate feature propagat ion  solu- 
tions using its non-determinist ic  power,  including any 
" long-d is tance"  binding solutions (an LFG device not 
discussed in this paper) .  Since checking candidate  
solutions is quite rapid - it can be done in n 2 t ime or 
less, as described by Kaplan and Bresnan 1981 - rec- 

ognition should be possible in polynomial  t ime on such 
a machine.  Compar ing  this result  to other  known 
language classes, note that  context-sensi t ive language 
recogni t ion is in the class of  polynomial  space 
( "PSPACE") ,  since (non-determinis t ic )  l inear space 
bounded  au tomata  genera te  exact ly  the class of 
context-sensi t ive languages. (As is well known, for  
polynomial  space the determinis t ic  and non-  
determinis t ic  classes collapse together  because  of 
Savitch's results (see Hopcro f t  and Ullman 1979) that  
any funct ion computable  in non-determinist ic  space N 
can be computed  in deterministic space N2.) Fur ther-  
more,  the class NP is clearly a subset  of  PSPACE 
(since if a function uses space N it must  use at least 
time N) and it is suspected, but not known for certain, 
that  NP is a proper  subset of  PSPACE (this being the 
P = N P  question once again). Our conclusion is that  it 
is likely that  LFGs can generate  only a proper subset  of 
the context -sens i t ive  languages.  This speculat ion is 
highly suggestive, in that  several other  "na tu ra l "  ex- 
tensions of the context - f ree  languages - notably the 
class of languages genera ted by the so-called " indexed 
g r a m m a r s "  - also genera te  strict subsets  of  the 
context -sens i t ive  languages,  including those strictly 
context-sensi t ive languages shown to be generable by 
LFGs by Kaplan and Bresnan 1981. The class of in- 
dexed languages is also known to be NP-comple te  (see 
Rounds 1973). Indeed,  a cursory look at the power  of 
indexed g rammars  suggests that  they might  subsume 
the machinery of the LFG theory, t3 On the other  side 
of the coin, how might one restr ict  the LFG theory  
further  so as to avoid potential  intractabili ty? Several 
escape  hatches  come to mind; these will s imply be 
listed here. Note  that  all of these " f ixes"  have the 
ef fec t  of  supplying addit ional  const ra in ts  to fur ther  
restrict the LFG theory. In this respect,  the LFG com- 
plexity demonst ra t ion  presented here plays the same 
role as, say Peters and Ritchie 's  earlier result about  
Transformat ional  Grammars :  it shows that  the theory 

13 For  a formal  d i scuss ion  of this  possibi l i ty,  see Berwick 
1981. Note added in proof: This  can be shown  to be false, howev-  
er; L F G s  can genera te  non- indexed  languages.  
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must be t ightened i f  one wants to avoid computa t ional  
intractability. 

1. Rule out "worst case" languages as linguistically 
(that is, empirically) irrelevant. 

The probable  computa t ional  intractabili ty of LFG rec- 
ognit ion arises because  co-occur rence  restr ict ions 
(compatible  X i assignments)  can be expressed across 
arbi t rary stretches of the terminal  string in conjunction 
with potent ia l  categorial  ambigui ty  for each terminal  
item. If some device can be found in natural  lan- 
guages that  always filters out or removes  such ambigu-  
ity locally (so that  the choice of whether  an i tem is 
" T "  or " F "  never  depends on other  items arbitrarily 
far away in the terminal  string), or if natural  languages 
never  employ such kinds of co-occurrence  restrictions, 
then the reduction is theoretically valid but linguisti- 
cally irrelevant. Note  that  such a finding would be a 
positive result, since one would be able to fur ther  nar-  
row the LFG theory in its a t tempt  to character ize all 
and only the natural  languages. This discovery would 
be on a par  with, for example,  Peters  and Ritchie 's  
observat ion that  al though the context-sensi t ive phrase 
structure rules formally advanced in linguistic theory 
have the power  to genera te  non-con tex t - f r ee  lan- 
guages, this power  has apparent ly  never  been  used in 
the grammars  that  linguists have designed (see Peters  
and Ritchie 1973b).  

2. Add "locality principles" for recognition (or parsing). 
One could simply stipulate that  LFG languages must  
meet  additional conditions known to ensure efficient 
parsabil i ty,  e.g., Knu th ' s  LR(k)  restr ict ion,  suitably 
extended to handle the LFG case. This approach is 
typified by Marcus ' s  1980 work,  which hypothes ized 
that  people normally construct  only a single derivat ion 
for  any given sentence,  and proposed  other  conditions 
that  turn out to guarantee  that  Knuth ' s  LR(k) restric- 
tion will hold. (See Berwick 1982 for fur ther  discus- 
sion.) 

3. Restrict the lexicon. 

The reduction argument  crucially depends upon having 
an infinite stock of lexical i tems and an infinite num- 
ber  of features  with which to label them. This is nec- 
essary because as CNF formulas  grow larger and larg- 
er, the number  of distinct literals can grow arbitrarily 
large, and one requires an arbitrari ly large number  of  
distinct X i features to check for co-occurrence  condi- 
tions. If, for  wha tever  reason,  the s tock of  lexical 
i tems or fea ture  labels is finite, then  the reduct ion 
me thod  works for  only f ini te-sized problems.  This 
restriction seems ad hoc in the case of lexical i tems 
(why can ' t  there be an infinite number  of words?)  but 
less so in the case of features.  (If  features  required 
"grounding"  in terms of other  sub-sys tems of knowl-  
edge, e.g, if a feature  had to be in the spanning set of 
a finite number  of some hypothe t ica l  cognit ive or 

sensory-motor  basis elements,  then the total  number  
of features would be finite.) t4 

Of course, constraints  may  be drawn f rom all three 
of these general classes in order  to make the LFG the- 
ory computat ional ly  tractable.  Even  then, it remains 
to be seen what  additional constraints  would be re- 
quired in order  to guaran tee  that  LFG recogni t ion 
takes only a small amount  of polynomial  t ime - e.g, 
cubic t ime or less, as for context - f ree  language recog-  
nition. Here  it may well turn out to be the case that  
something like the LR(k)  restrictions suffice. 
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