
Technical Correspondence On the Utility of Computing Inferences in Data Base Query Systems

these implementa t ions were significantly more effi-
cient, but checked a somewhat narrower class of pre-
sumptions than CO-OP.

6. Damerau mentions that queries with non-empty
responses can also make presumptions. This is cer-
tainly true, even in more subtle ways than noted. (For
example, "What is the younges t assistant professors
salary?" presumes that there is more than one assistant
professor.) Issues such as these are indeed currently
under investigation.

Overall, we are pleased to see that Damerau has
raised some very important issues and we hope that
this exchange will be helpful to the natural language
processing community.

Aravind K. Joshi
Dept. of Compute r and
Informat ion Science
University of Pennsylvania
Philadelphia, Pennsylvania 19104

S. Jerrold Kaplan
Compute r Science Depar tment
Stanford Universi ty
Stanford, California 94305

Reply to Joshi and Kaplan

In general, there is little to disagree with in Joshi
and Kaplan ' s comments , but perhaps a couple of
points could be clarified.

As Joshi and Kaplan suspected (point 3), the users
of this system did indeed thoroughly understand the
data base. This makes quite a difference in thinking
about the relative importance of facilities in a natural
language query system. In particular, such users tend
to check strange answers, so that a reply of "no" , as
in their point 4, would p robab ly result in an additional
question of " H o w many parcels ... "

With regard to their remarks on implementa t ions
that incur no additional cost (points 2 and 5), I would
be interested in seeing how presupposi t ion analysis can
be done without extra data base retrievals. It would
seem that the system would either have to make spe-
cial retrievals at marked times, as in CO-OP, or would
have to make the relevant retrievals for every question
so as to have the results available when needed. How-
ever, even if the execution time increase were to be
zero, we still have a great many other things which we
would like to add to our system before we add infer-
ence checking.

Fred J. Damerau

Book Reviews

L o g i c For P r o b l e m S o l v i n g

Robert Kowalsk i

Elsevier North Holland, New York, 1979,
287 pp., Paperback, $9.95, ISBN 0-444-00365-7.

This is a t ex tbook introduction to logic program-
ming. Logic programming is based on the premise that
programming a task on a computer should begin with a
precise formulat ion of what is wanted. This formula-
tion defines the task clearly; it serves as a theory of
the task which can be studied for its implications and
limitations. Usually this formulat ion is computat ional-
ly inefficient if implemented straightforwardly, but it
can be re formula ted so that it becomes an efficient
program when interpreted by a theorem prover. In
this form the logic program is closer to the theory than
a P A S C A L or LISP program would be, making it easi-
er to verify its correctness and also easier to under-
stand directly.

Logic p rogramming has been applied most ly to
formal software specifications, data base systems and
problem solving, but it is being applied increasingly to

natural language understanding systems [1,2,4,5,6]. In
these systems axioms specify the relationship between
the input text and whatever representa t ion it is to be
parsed into, and be tween this and whatever the output
is to be (e.g., an updated database or the answer to a
quest ion). Since these axioms specify the relat ion
between the text and its representat ion, they form a
grammar for the text language, and, as such, are com-
parable to the rules in a linguist 's grammar. When
in terpre ted by a suitable theorem prover , such as a
version of P R O L O G , they can t ransform a text into its
representat ion (and often a representa t ion into a text)
with practical efficiency.

With logic programming the computat ional linguist
may be able to develop theories of language that are
both conceptually well-organized and practical to com-
pute, but this book includes only the most e lementary
introduction to natural language processing. It uses
parsing as an example to show that problems can be
solved in ways that correspond to top-down parsing,
bo t tom-up parsing, or an arbi trary mixture of the two,
all depending on how the theorem prover decides to

American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981 45

Book Reviews Logic for Problem Solving

apply the axioms. But Kowalski ' s examples do not
show how to build up a representat ion structure for a
sentence; to learn how to do that it is necessary to
consult the natural language papers cited above.

This book is organized into three parts. The first
part introduces logic syntax and semantics. The nota-
tion is the clausal form of logic, in which all axioms
look like implications. This form allows the elimina-
t ion of ' no t ' as an explicit logical opera tor , which
makes the form psychologically easier to understand; it
is in fact a disguised form of the clauses used in reso-
lution theorem proving. This in t roduct ion to logic
includes a discussion about clauses and semantic net-
works. Clauses can be embedded in networks if the
arcs corresponding to the atomic formulas are grouped
together in a set, and the arcs are fur ther grouped
according to their roles. By restricting all a tomic for-
mulas to be binary relations, clauses become a linear
represen ta t ion of a simple ne twork structure. This
embedding of clauses is thus a practical way to build
logical inference into semantic ne twork-based knowl-
edge systems. (cf. [3].)

The second part of the book explores various infer-
ence procedures and heuristics for logic programming
and applicat ions of logic p rogramming to p rob lem
solving. Most of the procedures are seen to be appli-
cations to the clausal formalism of wel l -known heuris-
tics and search procedures, such as pre-processing the
problem-independent parts of the computat ion, using
evaluation functions, indicating when an axiom is to be
applied in a forward manner and when in a backward
manner , choosing the path that branches the least, etc.
This part of the book is thus an introduction to the
heuristic search methods of ten covered in introductory
courses on artificial intelligence. Most of this section
limits the clauses to those having only one conclusion;
these are called Horn clauses and have direct interpre-
tations as programs and as rules for problem reduc-
tion. Several chapters discuss the problems and tech-
niques for processing axioms in full clausal form, how-
ever, which shows that this book presents logic pro-
gramming as a concept that is independent of any
particular P R O L O G implementat ion.

The last part of the book introduces more advanced
topics. These include extensions of logic programming
to the s tandard form of logic, addition and deletion of
redundant goals, t raps to prevent useless looping, al-
lowing the provabil i ty of some formulas to depend on
the unprovabil i ty of others, and the combining of ob-
ject language with meta- language. The final chapter
axiomatizes the four ways that an informat ion system
or belief system might change when a new fact is add-
ed to it. Only the top level axioms are given, howev-
er; many of the relations named in the axioms need to
be fur ther defined before there is a full theory of ra-
tional belief maintenance.

This book is intended to be a t ex tbook that intro-
duces the undergraduate to logic, problem solving and
computer programming. Except for one chapter that
compares Horn clauses to convent ional p rogramming
languages, it assumes the student has no background
in any of these areas. It covers many topics, but cov-
ers most of them briefly, so that one has to look up
some of the many references if one wants more than
an e lementary t reatment .

Daniel Chester, Universi ty of Delaware

References

[1] Colmerauer, A. Metamorphosis Grammars. in L. Bolc, ed.,
Natural Language Communication with Computers, Springer-
Verlag, Berlin, 1978, 133-189.

[2] Dahl, Veronica. Quantification in a Three-valued Logic for
Natural Language Question-answering Systems. Proceedings o f
the Sixth International Joint Conference on Artificial Intelligence,
Tokyo, August 1979, 182-187.

[3] Deliyanni, Amaryllis, and Kowalski, Robert A. Logic and
Semantic Networks. Comm. A C M 22, 3, (March 1979), 184-
192.

[4] LeVine, Sharon H. Questioning English Text with Clausal
Logic. M.A. Thesis, University of Texas at Austin, December
1980.

[5] Pereira, F.C.N., and Warren, D.H.D. Definite Clause Gram-
mars for Language Analysis - A Survey of the Formalism and a
Comparison with Augmented Transition Networks. Artificial
Intelligence 13, 3, (May 1980), 231-278.

[6] Silva, Georgette, and Dwiggins, Don. Toward a PROLOG Text
Grammar. ACM Sigart Newsletter 73, (October 1980), 20-25.

46 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 7, Number 1, January -March 1981

