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A theory of understanding (parsing) texts as a process of collecting simple textual 
propositions into thematically and causally related units is described, based on the concept 
of macrostructures as proposed by Kintsch and van Dijk. These macrostructures are 
organized into tree hierarchies, and their interrelationships are described in rule-based 
story grammars related to the Kowalski logic based on Horn clauses. A procedure for 
constructing and synthesizing such trees from semantic network forms is detailed. The 
implementation of this procedure is capable of understanding and summarizing any story it 
can generate using the same basic control structure. 

1. Introduction 

One of the most difficult tasks in the field of com- 
putational linguistics is that of processing (parsing or 
understanding) bodies of connected textual material, 
from simple narratives like fairy tales and children's 
stories, to complex technical articles like textbooks 
and encyclopedia articles. When effective parsers 
were created capable of processing single sentences 
(Woods, 1970), (Schank, 1975b), (Norman and Ru- 
melhart, 1975), (Winograd, 1972), it was quickly real- 
ized that these same techniques were not in themselves 
adequate for the larger task of processing sequences of 
sentences. The understanding of paragraphs involves 
more knowledge than and different knowledge from 
that necessary for sentences, and the structures prod- 
uced by a text parser need not look like the structures 
of the sentences parsed individually. 

However, the original impetus for current trends in 
text processing was the effort to solve problems of 
reference at the sentential level, in particular anaphora 
and ellipsis (Charniak, 19722). For example, in the 
paragraph 

John wanted to marry Mary. He asked 
her if she would marry him, but she refused. 
John threatened to foreclose the mortgage on 
the house where Mary's old sick father lived. 
They were married in June. 

Simple-minded syntactic techniques are generally in- 
sufficient to resolve referents of the form of the 
"they" in the last sentence above. The human under- 
stander - and potentially the computer understander as 

well - requires real-world knowledge about threats, 
familial ties and marriage to realize that "they" refers 
to John and Mary. 

Experiments with text processing led to such proce- 
dural constructs as frames (Minsky, 1975; Charniak 
and Wilks, 1976; Bobrow and Winograd, 1977), 
scripts and plans (Schank and Abelson, 1977), focus 
spaces (Grosz, 1977), and partitioned networks 
(Hendrix, 1976), among others. These efforts in- 
volved conceptual structures consisting of large, cogni- 
tively unified sets of propositions. They modelled 
understanding as a process of filling in or matching the 
slots in a particular structure with appropriate entities 
derived from input text. 

There have also been rule-based approaches to the 
text processing problem, most notably the 
template/paraplate notion of Wilks (1975), and the 
story grammars of Rumelhart (1975). Although both 
approaches (procedures and rules) have their merits, it 
is a rule-based approach which will be presented here. 

This paper describes a rule-based computational 
model for text comprehension, patterned after the 
theory of macrostructures proposed by Kintsch and 
van Dijk (1978). The rules are notationally and con- 
ceptually derived from the Horn clause, especially as 
described by Kowalski (1979). Each rule consists of 
sets of thematically, causally, or temporally related 
propositions. The rules are organized into a network 
with the macrostructures becoming more generalized 
approaching the root. The resulting structure, called 
the Story Tree, represents a set of textual structures. 
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The process of generating f rom this ne twork  con- 
sists of choosing one of the rules to serve as the root  
of a particular s tory tree and recursively instantiating 
its descendants  until terminal  proposi t ions  are prod-  
uced (Simmons and Correira,  1979). These proposi-  
tions form the text of the generated story, requiring 
only a final phase to produce English sentences f rom 
the proposit ions.  Conversely,  a text is unders tood if 
its input  sentences ,  parsed  into proposi t ions ,  can be 
mapped  onto rules and these rules recursively mapped  
onto more abst ract  rules until a single node (the root)  
is achieved. Parsing and generating use the same rules 
in a similar manner  for  pe r fo rming  their  respect ive  
tasks, and the rules lend themselves to a uniform tree 
structure possessing an inherent  summarizing property .  

2. M a c r o s t r u c t u r e s  and Story  G r a m m a r  Rules 

In this section the fundamenta l  notion of macro-  
structure,  as p roposed  and used by Kintsch and van 
Dijk, is presented and then analyzed f rom a computa -  
tional, ra ther  than a psychological ,  s tandpoint .  An 
effect ive  represen ta t ion  for  macros t ruc tures ,  der ived 
f rom Horn  clauses and organized into s tory trees, is 
described, as well as a data  base for the representa-  
tion. 

2.1 M a c r o s t r u c t u r e s  

Kintsch and van Dijk (1975) present  a system for 
organizing an entire discourse into a hierarchy of ma-  
crostructures ,  which are essential ly metapropos i t ions .  
The lowest  level of a discourse textual representa t ion  
is the set of input proposi t ions that  corresponds se- 
mantically to the text  sentences,  clauses a n d / o r  phras-  
es. Proposit ions are conjoined by links of implication: 
if proposi t ion A implies proposi t ion B, then A and B 
are connec ted ,  and the link is marked  with the 
s trength of the connection,  ranging f rom (barely) pos-  
sible to (absolutely) necessary.  The proposi t ions and 
their connect ions reside in a text  base. A text  base 
can be ei ther  explicit, if all the implied in format ion  
necessary for coherence  is made explicit, or implicit, if 
proposi t ions that  can be assumed to be known or im- 
plied are omitted, m text  is an explicit data base by 
itself, and all summaries  of that  text are implicit data 
bases. A college physics text  would have a much more  
explicit text  base  than af ter-dinner  conversat ion.  The 
simple narrat ive texts examined in this paper  have a 
text base be tween  these two "ext remes ."  

The sense in which "coherence"  is used above  is 
not defined precisely. Kintsch and van Dijk argue that  
coherence ,  or " semant ic  we l l - fo rmedness" ,  in a text  
requires, for  each proposi t ion in the text, that  it be 
linked with one or more  preceding proposit ions.  This 
connect ion must  exist for some reader  in some context  
constrained by convent ions  for  knowledge-shar ing and 

assumption-shar ing valid for  that  person in that  con- 
text. 

The result of this linking is a linear text base which 
is then mapped  into a hierarchical structure in which 
proposi t ions high in the structure are more  likely to be 
recalled (via summaries)  than those low in the struc- 
ture. At the top of the hierarchy can be found propo-  
sitions corresponding to rhetorical  categories,  such as 
" p r o b l e m "  and "solu t ion ,"  or  nar ra t ive  categories ,  
such as " in t roduc t ion , "  " compl i ca t i on , "  and 
"re solution." 

Kintsch and van Dijk introduce a number  of rules 
for relating these macrost ructures  to sets of input tex- 
tual proposi t ions:  in format ion  reduct ion (genera l iza-  
t ion),  deletion (of  less impor tant  proposi t ions) ,  inte- 
grat ion (combining events  with their  pre-  and post-  
condit ions),  and construct ion (which relates complex 
proposi t ions to their componen t  sub-proposi t ions) .  

There  are two conditions that  are always true re- 
garding these macrostructures:  a macros t ructure  must  
be implied by  its subordina te  propos i t ions  (i.e. en-  
counter ing  the subordina te  propos i t ions  implies the 
existence of the macros t ructure) ,  and ordered sets of 
macrost ructures  collected together  fo rm a meaningful  
summary  of the text. Kintsch and van Dijk believe 
that  it is pr imari ly  macros t ruc tures  that  are re ta ined 
when a text is unders tood by  a human  reader  and that  
the macros t ruc tures  are c rea ted  as the text  is being 
processed. 

2.2 M a c r o s t r u c t u r e s  as C o m p u t a t i o n a l  Const ruc ts  

As evidence in support  of  their theory,  Kintsch and 
van Dijk present  a number  of  psychological  experi-  
ments  in recall and summary  with human  subjects  
using as a text  a 1600-word  nar ra t ive  t aken  f rom 
Boccaccio 's  Decameron (the Rufolo story).  As a com- 
putat ional  entity,  a macros t ructure  is a node in a s tory 
tree whose immediate  descendants  consist of the sub- 
ordinate  proposi t ions  by which the node is implied, 
and is itself a descendan t  of  the macros t ruc tu re  it 
(partially) implies. Every  macros t ructure  in this tree is 
the root  of a derivat ion tree whose terminals are sim- 
ple proposit ions.  

Each level of  the tree shares the at t r ibute of sum- 
marizabi l i ty ,  i.e. a summary  of the text  may  be ex- 
t racted f rom any level of  the tree, becoming  less spe- 
cific as the summary  level approaches  the root.  The 
lowest  level summary  is the original text  itself; the 
highest level (the root)  is a title for the text. 

The ability to give meaningful  (coherent)  summar-  
ies for  a text  is one a t t r ibute  of  comprehens ion  for  
that  text,  and any procedure  yielding trees possessing 
the summary  proper ty  can be said to partially under-  
stand the text. Considera t ion must  also be given to 
classification schemas and rules for  paraphrase ,  ana-  
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phora,  and question-answering.  Fur thermore ,  given an 
appropr ia te  data  base  internalizing the relat ionships 
be tween a macrost ructure  and its subordinate macros-  
tructures or simple proposit ions (microstructures)  and 
a summary derived f rom a story tree, it is possible for 
a procedure to reconstruct  to a certain degree of detail 
the original text f rom which the tree was derived. The 
degree of detail recovered is directly dependent  on the 
relative distance f rom the nodes forming the summary  
to the original input proposit ions (the leaves) of the 
text tree. 

H o w  is this subordinate relationship among propo-  
sitions to be described formal ly  to a computa t iona l  
process? One simple formulat ion is in the form of a 
rule 

A < =  B,C,D 

meaning "you may assert the truth (presence) of ma-  
crostructure A if you can find the (nearly) contiguous 
proposit ions B, C, and D present  in the input text ."  
"Near ly"  means  that  an al lowable level of "noise ,"  
perhaps  in the form of irrelevant side information,  may  
be present  be tween the specified proposi t ions (a prob-  
lem not addressed here).  

This rule form closely resembles in structure and 
meaning the Horn  clause notation. The general clause 
has the format  

C[1] ..... C[m] < =  A[1] ..... A[n] 

where C[1] ..... C[m] are e lementary  proposit ions form-  
ing the consequent ,  and A[1] ..... A[n] are e lementary  
proposit ions forming the antecedent.  If  the proposi-  
tions in a clause contain the variables x[1] ..... x[i], then 
the clause has the interpretat ion 

for  all x[1] ..... x[i], 
A[1] and ... A[n] implies 
C [ 1 ]  o r  ... C [ m ]  

If  the subscript m for a clause is zero or one, then that  
clause is referred to as a Horn  clause. If  m = l  and 
n = 0 ,  the Horn  clause is called an assertion. 

There  are several differences be tween the Kowalski 
logic and the logic adopted here. One of these has to 
do with the ordering of the antecedent  proposit ions.  
In a true Horn  clause, the ordering is irrelevant and 
A < =  B,C,D is as good a rule as A < =  C,D,B, etc., 
i.e. the antecedents  can be proved in any order. The 
ordering in the system described here is governed by 
rules of coherence.  For  example,  the rule: 

(TRADINGVOYAGE A RUFOLO WITH GOODS 

IN SHIP TO CYPRUS) 

<= (BUY A RUFOLO TH SHIP) 

(BUY A RUFOLO TH GOODS) 

(LOAD A RUFOLO TH SHIP WITH GOODS) 

(SAIL A RUFOLO TO CYPRUS MEANS SHIP) 

is a meaningful  rule. (Here  case notat ion is used: A 
for Agent ,  T H  for  THeme ,  etc.) On the other  hand, 

(TRADINGVOYAGE A RUFOLO WITH GOODS 

IN SHIP TO CYPRUS) 

<: (SAIL A RUFOLO TO CYPRUS MEANS SHIP) 

(LOAD A RUFOLO TH SHIP WITH GOODS) 

(BUY A RUFOLO TH GOODS) 

(BUY A RUFOLO TH SHIP) 

is nonsensical.  The rules of coherence that  order the 
an teceden t  proposi t ions  may  involve several  criteria: 
causal  connec tedness  (B causes / i s  the result  of  C, 
which causes / i s  the result of D),  or temporal  ordering 
(B happens  b e f o r e / a f t e r  C, which happens  b e f o r e /  
af ter  D),  etc. Note  that  the ordering of antecedent  
proposi t ions  can be tied to textual  order  within the 
f ramework  of ordinary Horn  clauses by adding extra 
arguments  to the proposit ions.  This has been  done in 
the theory  of definite clause grammars (Colmerauer ,  
1978; Pereira and Warren,  1980). 

The above T R A D I N G V O Y A G E  rule can be inter- 
pre ted  in ei ther  of  two ways.  If  we are given the 
proposi t ion 

(TRADINGVOYAGE A RUFOLO WITH GOODS 

IN SHIP TO CYPRUS) 

in a text, or a summary  of a text, we may infer the 
chain of events  

(BUY A RUFOLO TH SHIP) 

(BUY A RUFOLO TH GOODS) 

(LOAD A RUFOLO TH SHIP WITH GOODS) 

(SAIL A RUFOLO TO CYPRUS MEANS SHIP) 

and, if given these events  in order in a text, we may 
infer that  Rufolo  was performing a T R A D I N G V O Y -  
AGE.  

Because of this capabil i ty for use in two directions, 
this rule form can be used both  in parsing and generat-  
ing tasks. A parser  can avail itself of these rules to 
group sets of proposi t ions in a text  into units headed 
by macrostructures  (which are the consequents  of the 
rules). These can be fur ther  grouped into more gener-  
alized macrostructures  recursively to yield a story tree. 
A generator  can proceed in the other  direction, start-  
ing with the top node of a tree and expanding it and 
its const i tuents  downward  recursively (by using the 
rules that  operate  on the precondi t ion proposit ions)  to 
arrive at a tree whose terminals form a coherent  text. 

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 137 



Alfred Correira Computing Story Trees 

2.3 Extended Horn Clauses 

After  several early experiments  with this rule form 
on a simple text (the Margie story - Rumelhar t ,  1975) 
it was discovered that  this simple rule form, al though 
capable  of  handling the computat ions  necessary for  the 
text  at hand, did not bring out several inherent  at tr ib-  
utes that  macrost ructures  generally have in common.  
For  example,  in a T R A D I N G V O Y A G E  rule, several  
divisions can be recognized.  In order  to go on a 
T R A D I N G V O Y A G E ,  Rufolo  must  have the money  
for  a ship and goods and the necessary  knowledge  
about  compet i t ion  to make  a profit.  Given these, Ru-  
folo will follow a certain sequence of actions; he will 
obta in  a ship and goods,  load the goods onto  the ship 
and then sail to Cyprus.  The result of  this effor t  will 
be  that  Rufolo  is in a posi t ion to sell or t rade his 
goods (and perhaps  make  a profit) .  Therefore ,  we can 
break  the T R A D I N G V O Y A G E  rule into several  natu-  
ral groupings: 

TRADINGVOYAGE RULE : 

HEAD : 

(TRADINGVOYAGE A RUFOLO WITH GOODS 

IN SHIP TO CYPRUS) 

PRE : 

(POSSESS A RUFOLO TH WEALTH) 

EXP : 

(MAKE A RUFOLO TH 

(CALCULATIONS MOD MERCHANTS 

TYPE USUAL) ) 

(BUY A RUFOLO A SHIP) 

(BUY A RUFOLO TH GOODS) 

(LOAD A RUFOLO TH SHIP WITH GOODS) 

(SAIL A RUFOLO TH SHIP TO CYPRUS) 

POST : 

(MAKE A RUFOLO TH PROFIT) 

Structurally, this rule form will be referred to as an 
"ex tended"  Horn  clause (EHC) .  The first par t  of  the 
rule is the H E A D  of the rule, and represents  the ma-  
crostructure pattern.  The second part  is the PREcon-  
dition for  the rule. The proposi t ions in the precondi-  
tion are the conditions which must  be true, or can be 
made true, before  Rufolo can embark  on an episode of 
T R A D I N G V O Y A G E .  The third par t  is the EXPan-  
sion of the rule. If  Rufo lo  goes on a T R A D I N G -  
V O Y A G E ,  then  these are the (p robab le )  act ions he 
will take in doing so. The final par t  of the rule is the 
POSTconditic~n of the rule, which consists of the prop-  
osit ions t h a t ' w i l l  b ecom e  true upon  the successful  
complet ion (instantiation) of the T R A D I N G V O Y A G E  
rule. 

The resulting rule form is related conceptual ly and 
historically to the not ion of a script as developed by 
Schank and Abelson (1977)  (el. No rm an  and Rumel-  
hart,  1975). The precondi t ion sets the stage for  the 
invocat ion of a rule. I t  describes the setting and the 

roles of the characters  involved in the rule. The ex- 
pansion consists of the actions normally taken  during 
the invocat ion of the rule. The postcondi t ion is the 
result  of  these actions.  When  used in a script- l ike 
role, a rule is act ivated when its precondi t ion has been  
satisfied, and its expans ion  can then  be sequent ia l ly  
instantiated.  

A rule can also be  used as a plan. A plan is a data  
structure that  suggests actions to be  taken  in pursuit  of  
some goal. This corresponds  to activating a rule ac- 
cording to its postcondit ion,  i.e. employing a rule be-  
cause its postcondi t ion contains the desired effect.  If  
one has the goal " m a k e  m o n e y "  one might  wish to 
employ the T R A D I N G V O Y A G E  rule to achieve it. 

This extension of the Horn  clause structure serves 
two purposes.  First, by  separat ing the proposi t ions 
subsumed under  a macros t ructure  into three parts ,  the 
E H C  rule fo rm renders  it unnecessa ry  to label  the 
roles that  the individual proposi t ions  play in the ma-  
crostructure.  A macros t ructure  will usually have pre-  
condit ions,  expans ion(s ) ,  and a pos tcondi t ion  set,  
which would have to be labeled (probably  funct ional-  
ly) in a simple Horn  clause system. Secondly,  it serves 
as a means  of separa t ing  those  propos i t ions  which 
must  be  true before  a rule can be invoked 
(precondi t ions)  f rom those whose  success or  failure 
follows the invocat ion of the rule. 

A rule may  have multiple precondi t ions if there are 
several  sets of  c i rcumstances under  which the rule can 
be invoked. Thus a rule for  watching a drive-in movie 
could have the fo rm 

WATCH DRIVE-IN MOVIE RULE: 

HEAD : 

(WATCH A PERSON TH DRIVE-IN MOVIE) 

PRE : 

(OR ((PERSON IN CAR) (CAR IN DRIVE-IN)) 

((SEE A PERSON TH SCREEN) 

(CAN A PERSON TH 

(READ A PERSON TH LIPS)))) 

A rule may  also have several  expansions a t tached 
to it, one for each potent ial  instantiat ion of the rule. 
Thus if a couple  want  a child they  could employ  a 
rule: 

POSSESS RULE : 

HEAD : 

(POSSESS A COUPLE TH CHILD) 

EXP : 

(OR (CONCEIVE A COUPLE TH CHILD) 

(ADOPT A COUPLE TH CHILD) 

(STEAL A COUPLE TH CHILD) 

(BUY A COUPLE TH CHILD)) 

where each of the propositions, CONCEIVE, ADOPT, 
STEAL, BUY expands by a complex rule of the same 
fo rm as the POSSESS rule. 
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A rule can have but a single postcondition, com- 
posed of simple propositions, since by definition the 
postcondit ion is the set of propositions that are true if 
the rule succeeds. If a postcondit ion could contain an 
expandable  proposit ion,  then that  proposi t ion could 
fail independently of the rule for  which it is part of the 
postcondition - since it could have its own precondi- 
tions - thus contradicting the definition of the post- 
condition. 

2.4 Indexed Rule Network of Extended Horn Clauses 

The rules are stored in memory in a semantic net-  
work. However ,  unlike the usual semantic networks 
for  case predicates,  where the individual nodes 
( tokens)  are connec ted  by case relations (Simmons 
and Chester ,  1977),  the semantic links in the E H C  
rule network are based on the story tree structure. 

Each rule node (or instantiat ion of one)  in the 
network may have an arc for  each part of an E H C  
rule: precondition, expansion, and postcondition. All 
the case relations in the head of the proposit ion are 
kept in a single list at tached to the node as arc-value 
pairs. Negation is marked by embedding the node in a 
(NOT OF ...) proposition form. For  example, if a 
point is reached in a narrative where John is expected 
to kiss Mary but  he does not,  then the story tree 
would contain at that point a node that would print as 
(NOT OF (KISS A JOHN T H  MARY)) .  

Each node in the database represents either a class 
object  or an instance of a class object.  Every class 
object  points to all of the tokens subsumed by it in the 
network. For  example, the class object  representing 
D O G  would have pointers  to each of its tokens,  
DOG1,  DOG2,  DOG3,  etc., which represent  individual 
objects of the class DOG. 

The database retrieval functions utilize a kind of 
" fuzzy"  partial matching to retrieve potential  rules to 
be applied to a proposition. Partial matching allows 
the rule-writer to combine rules that only differ in one 
or two minor arc names, but which all share the same 
major arc names; only one rule need be written, speci- 
fying the major case relations and ignoring the minor 
ones (which can be checked for in the preconditions of 
the rules). Partial matching allows the generator  to 
bring more operators to bear at a given point in the 
story construction. However ,  the parser pays the price 
for this flexibility by having to examine more alterna- 
tives at each point in its parsing where rules apply. 

The funct ion which queries the database for the 
existence of facts ( instantiatcd proposi t ions) ,  uses a 
"comple te"  pa t te rn-matching algorithm, since "John  
ate cake last night" is not  deemed a sufficient answer 
to the quest ion "Who ate all the cake last night at 
Mary 's  place?".  

3. Story Analysis Using Extended Horn Clauses 

This section describes the use of the Extended 
Horn  Clause rule form and illustrates the process of 
rule-writing using several paragraphs from the Rufolo 
story as an example. The notion of rule failure is also 
presented as an integral feature of parsing and gener- 
ating narrative texts. 

3.1 Writ ing Rules Using Extended Horn Clauses 

The E H C  rule form divides the propositions sub- 
sumed by a macrostructure into three categories: the 
preconditions,  the expansions, and the postconditions. 
The preconditions define the applicability of a particu- 
lar r u l e .  When a precondit ion has been satisfied, then 
a rule's expansions and postcondi t ion correspond 
roughly to the traditional add /de le te  sets of problem- 
solving systems. The add set consists of the ordered 
list of actions to be taken as a result of the rule's invo- 
cat ion plus the postcondi t ion states of the actions. 
Members of the delete set are propositions of the form 
(NOT OF N O D E )  appearing in the expansion and 
postcondit ion of a rule. 

The question then becomes one of mapping a text 
into rules of this structure. To illustrate this process 
consider the following streamlined version of two par- 
agraphs from the Rufolo story: 

Rufolo made the usual calculations that mer- 
chants make. He purchased a ship and loaded it 
with a cargo of goods that he paid for out of his 
own pocket.  He sailed to Cyprus. When he got 
there he discovered other  ships docked carrying 
the same goods as he had. Therefore  he had to 
sell his goods at bargain prices. He was thus 
brought to the verge of  ruin. 

He found a buyer  for  his ship. He bought  a 
light pirate vessel. He  fi t ted it out  with the 
equipment  best suited for his purpose. He then 
applied himself to the systematic looting of other  
people 's  proper ty ,  especially that  of the Turks.  
After  a year he seized and raided many Turkish 
ships and he had doubled his fortune.  

At the top level of the story we have two complex 
actions taking place: a trading voyage and a pirate 
voyage. A T R A D I N G V O Y A G E  requires a merchant,  
a ship, some trade goods and a destination on a sea- 
coast (for example, an island). So we embody this in 
the rule 

TRADINGVOYAGE RULE : 

HEAD : 

(TRADINGVOYAGE** A X TH Y TO Z) 

PRE : 

(X ISA MERCHANT) 

(Z ISA ISLAND) 

(Y ISA GOODS) 

(W ISA SHIP) 
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Given that these conditions are true, then Rufolo  plans 
his strategy, obtains both ship and goods and sails to 
Cyprus with them (the funct ion of the asterisks is 
notational only and is used to distinguish those predi- 
cates that have rule expansions from those that do 
not): 

TRADINGVOYAGE RULE : 

HEAD : 

(TRADINGVOYAGE** A X TH Y TO Z) 

PRE : 

(POSSESS* A X TH U) 

EXP : 

(MAKE* A X TH 

(CALCULATIONS MOD MERCHANT 

NBR PL TYPE USUAL)) 

(PURCHASE** A X RI W R2 Y) 

(LOAD* A X TH W WITH Y) 

(SAIL* A X TH W TO Z) 

(TRADE** A X TH Y FOR 

(PROFIT MODAL EXPEC)) 

POST: 

(NOT OF (WANT* A X TH 

(DOUBLE* A X TH U))) 

PURCHASE RULE : 

HEAD : 

(PURCHASE** A X RI Y R2 Z) 

PRE : 

(POSSESS* A X TH (W ISA WEALTH)) 

EXP : 

(POSSESS** A X TH Y)(POSSESS** A X TH Z) 

POST : 

(NOT OF (POSSESS* A X TH W)) 

POSSESS RULE: 

HEAD : 

(POSSESS** A X TH Y) 

PRE : 

(POSSESS* A X TH WEALTH) 

EXP : 

(BUY* A X TH Y) 

One might consider doing without the P U R C H A S E  
rule. Its precondition could have been pushed into the 
precondition for the T R A D I N G V O Y A G E  rule and its 
expansion inserted into T R A D I N G V O Y A G E  at the 
same point where the P U R C H A S E  is now. But this 
rule-splitting is not  just a stylistic choice; there are 
several advantages to this strategy. First, keeping rule 
size small makes the rule easier to read and write. 
Experience with writing rules showed that an average 
rule size of three to five proposit ions proved to be 
most efficient in this respect. Second, smaller rule size 
cuts down on the number of permutations of a rule 
that need to be recognized by the parser, due to miss- 
ing proposit ions or the transposit ion of proposit ions 
that describe more or less contemporaneous  events.  

Finally, smaller rules make for more conciseness  in 
summaries generated from the rules. 

The postcondit ion of the P U R C H A S E  rule is that 
the wealth used to buy the ship and goods is no longer 
in the possession of its original owner. This would 
have been inserted into the postcondit ion  of TRA-  
D I N G V O Y A G E  if the P U R C H A S E  rule had been 
incorporated into it directly. 

The difference between  the POSSESS* and 
POSSESS** proposit ions in the P U R C H A S E  rule is 
illuminating. The POSSESS* in the precondition does 
not  have a rule attached to it, so it cannot be expand- 
ed. If a merchant does not  already possess wealth 
when he reaches this point, he cannot go about obtain- 
ing it through rule expansion (although the generator 
can fudge and assert that he does have wealth at this 
point to move the story generation along).  If the pre- 
condit ion of the P U R C H A S E  rule had contained a 
POSSESS** instead, then the merchant would be able 
to apply the POSSESS rule above to acquire wealth if 
he did not have any. The convention,  as illustrated 
above,  is for the expandable propositions to be suffix- 
ed with two asterisks, and for terminal elements to be 
suffixed with a single asterisk. This feature is only a 
notational  device. 

The T R A D E  rule describes a trading scenario un- 
der conditions of heavy competition: 

TRADE RULE : 

HEAD : 

(TRADE** A X TH Y FOR Z) 

PRE : 

(Z ISA PRICE MOD GOOD) 

EXP : 

(ADVERSE-TRADE** A X TH Y) 

(SELL* A X TH Y FOR Z) 

(NOT OF (POSSESS** A X TH Y)) 

POST : 

(MAKE* A X TH (PROFIT MOD GREAT)) 

ADVERSE-TRADE RULE : 

HEAD : 

(ADVERSE-TRADE** A X TH Y) 

PRE : 

(X ISA MERCHANT) 

EXP : 

(DISCOVER* A X TH 

(SHIP NBR MANY MOD DOCKED POSSBY 

(MERCHANT NBR SOME MOD OTHER))) 

(CARRY* INSTR SHIP TH (GOODS SAMEAS Y)) 

It should be noted that the postcondit ion  of the 
TRADE rule, the MAKE**,  will fail because Rufolo  
does not  SELL* his goods for a profit. Failure in a 
rule is covered in the next section,  and will not  be 
further discussed here. 
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Because of his failure at trading, Rufolo a t tempts  
ano ther  scheme to double his weal th  (which is his 
original goal in the story);  he turns pirate. 

PIRATEVOYAGE RULE : 

HEAD : 

(PIRATEVOYAGE** A X TH Y MEANS Z) 

PRE : 

(Z ISA SHIP TYPE PIRATE MUD LIGHT) 

(POSSESS** A X TH Z) 

(Y ISA WEALTH) 

(W ISA WEALTH VAL (TWICE* RI W R2 Y)) 

(U ISA NATIONALITY) 

EXP : 

(FITOUT* A X TH Z WITH 

(EQUIPMENT MOD BESTSUITED)) 

(SEIZE* A X TH 

(SHIP NBR MANY POSSBY U DURATION YEAR)) 

POST: 

(NOT OF (WANT* A X TH 

(DOUBLE* A X TH Y))) 

DOUBLE* A X TH Y) 

POSSESS* A X TH W) 

The first thing that  Rufolo must do is to come to 
possess a pirate ship, which he does by selling his mer-  
chant  vessel and using the funds to buy a light vessel: 

POSSESS RULE : 

HEAD : 

(POSSESS** A X TH Y) 

PRE : 

(NOT OF (POSSESS* A X TH WEALTH)) 

(POSSESS** A X TH Z) 

EXP : 

(SELL* A X TH Z) (BUY* A X TH Y) 

POST: 

(NOT OF (POSSESS* A X TH Z)) 

Note  that  the two POSSESS** rules above would be 
combined into a single rule in the database.  

Rufolo outfits his newly purchased ship as a pirate 
vessel and then over  the course of a year  uses it to 
seize the ships of many  Turks, until at the end he has 
doubled his wealth. The postcondit ion of this activity 
is that  he no longer wishes to double the amount  of 
his (old) wealth and that  he now possesses twice as 
much wealth as before.  

These rules do not thoroughly map the exact  mean-  
ing of the two paragraphs  above,  but  they do give a 
f lavor  for  the process  of rule-writ ing,  and linguistic 
precision is easy to ensure by use of  additional rules to 
pin down precisely every nuance in the text,  part icu- 
larly with respect  to selling and buying and change of 
ownership.  

Rule-wri t ing using E H C s  follows s tandard  top-  
down programming practice. At  the top level are the 

rules that  describe the narrat ive structure of  the text. 
For  the Rufolo story, we have: 

STORY RULE : 

HEAD : 

(RUFOLO-STORY** A X) 

EXP : 

(SETTING A X) (EPISODE) 

POST : 

(INTEREST* A X TH COMMERCE 

MODAL NOLONGER) 

(LIVE* A X MANNER SPLENDOR DURING 

(REMAINDER OF (DAYS OF X))) 

EPISODE RULE : 

HEAD : 

(EPISODE) 

EXP: 

(OR ((INTERLUDE) (EPISODE)) 

((COMPLICATION) (EPISODE)) 

((COMPLICATION) (RESOLUTION)) ) 

The Rufolo story is basically a S E T T I N G  followed 
by  an E P I S O D E ,  where  E P I S O D E  is def ined recur-  
sively as either an I N T E R L U D E ,  which leads into an 
episode followed by a new EPISODE,  a C O M P L I C A -  
T I O N  followed by a new EPISODE,  or a C O M P L I -  

C A T I O N  and a R E S O L U T I O N  if the C O M P L I C A -  
T I O N  does not  cause any new problems to arise (due 
to rule failure - see next  section). 

The S E T T I N G  rule 

SETTING RULE : 

HEAD : 

(SETTING A X) 

PRE : 

(LIVE* A X LOC Y DURING Z) 

(W ISA WEALTH VAL CERTAINAMOUNT) 

(POSSESS* A X TH W) 

(NOT OF (SATISFY* A X WITH W)) 

POST: 

(WANT* A X TH (DOUBLE* A X TH W)) 

will create  a charac te r  and his env i ronment  - the 
L I V E *  a n d  P O S S E S S *  - and give the character  a goal 
- the WANT*.  

Exper ience with simple narrat ive text  leads to the 
bel ief  that  it is relat ively easy to learn to p rogram 
using E H C  rules, and that  their expressive power  is 
limited only by the ingenuity of  the rule-writer.  Ex-  
per iments  with o ther  text  forms  - encyclopedia  arti-  
cles, magazine  articles, dialogues,  etc. - need to be  
pe r fo rmed  before  a final judgement  can be made con-  
cerning the fitness of the E H C  as a general  fo rm for 
processing. 
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3.2 S u c c e s s  and Failure in EHC Rules 

The idea of rule success or failure in the E H C  rule 
form is tied to the domain the rules a t tempt  to model  - 
real life mot iva ted  behav io r  (act ions)  where  things 
can, and do, go wrong, and actors fail to achieve their 
goals. In real life, Rufolo ' s  decision to go on a T R A -  
D I N G V O Y A G E  does not  guarantee  that  the voyage 
will be successful, or even begun. For  a given rule, 
one of three  condi t ions may  arise. Firs t  the rule 's  
precondit ions may  fail to be true and the rule cannot  
be applied. In the T R A D I N G V O Y A G E  rule, if Rufo-  
1o does not have the money  necessary for  trading in 
Cyprus  or does not  possess the knowledge to success- 
fully compete ,  then the T R A D I N G V O Y A G E  canno t  
be  completed despite Rufolo ' s  best  intentions. A rule 
is not  invoked until one of its precondit ion sets has 
been  successfully processed (i.e. each precondi t ion in 
the set has been  successfully fuzzy-matched) .  

Once this condit ion is satisfied then the rule can be 
invoked and Rufolo  can s tar t  his T R A D I N G V O Y -  
AGE.  At each point of expanding the macrost ructure ,  
i.e as Rufolo per forms  each step in the expansion of 
the rule, he is subject  to success or failure. He  may 
succeed in buying the goods,  or he may fail, and the 
same is true for  buying the ship and the loading of the 
ship with goods, etc. If  he does manage  to pe r fo rm all 
the actions in an expansion,  then the rule is said to 
succeed,  and its pos tcondi t ion  proposi t ions  can be 
asserted as being true. In the T R A D I N G V O Y A G E  
rule, an-asser t ion that  Rufolo  makes  a profi t  would be 
instantiated. 

But if an expansion fails, a different  logic applies. 
If  Rufolo  has loaded the ship with his goods, but  the 
ship burns in the harbor ,  then the last expansion prop-  
osition, sailing to Cyprus,  cannot  be performed.  The 
rule is said to fail, and the postcondi t ion proposi t ions 
are negated.  In the T R A D I N G V O Y A G E  rule, an 
assert ion that  Rufolo  does not make a profi t  would be 
ins tant ia ted because  no o ther  expans ion  opt ions  re-  
main. 

Rule failure is an important  concept  with respect  to 
narratives.  Many  narrat ives consist of a series of  epi- 
sodes in pursuit  of a goal; of ten each episode, except  
the last, represents  an instance of a failed rule. If  a 
rule prior to the last succeeded,  then the goal would 
have been  achieved and no fur ther  episodes would 
have been forthcoming,  (unless a new goal were cho- 
sen). The mechanism of rule failure is a natural  one 
for  analyzing this type of narrat ive pattern.  

4. Generat ion and Parsing 

In this section a procedure  for  using ma'crostruc- 
tures,  embod ied  in the E H C  rule- form,  to genera te  
and parse  stories,  and a p rogram,  B U I L D T A L E /  
T E L L T A L E ,  that  implements  it are discussed. 

4.1 Generat ion 

The paradigm used by  T E L L T A L E  for  s tory gener-  
ation is similar to that  used by  Meehan  (1976)  in his 
T A L E S P I N  program,  which wrote  "metanove l s"  con-  
cerning the interrelationships,  bo th  physical and men-  
tal, of the mot ives  and actions of  an th ropomorph ized  
animals possessing simple behavior  pat terns.  Meehan  
described a s tory as an exposit ion of events  that  occur 
when a mot iva ted  creature  a t tempts  to achieve some 
goal or fulfill some purpose,  such as satisfying a need 
or desire,  solving a p rob lem,  doing a job,  etc. 
T A L E S P I N  was basically a problem-solver  that  oper-  
ated on a da tabase  consisting of living entities, inani- 
mate  objects ,  and a set of  assert ions (rules) typifying 
the relationships among them, and describing opera-  
tions for affect ing those relationships. The rules were 
organized into plans based on conceptual  relatedness,  
which aided in retr ieval  of  specific rules. 

Meehan  emphasized  the use of  plans as a mecha-  
nism for  genera t ing stories.  Plan ac t iva t ion  was a 
process  of  assigning a goal to a charac te r  and then  
calling up any relevant  plans that  were indexed by  this 
goal. 

In the E H C  rule fo rm the precondi t ion governs  the 
ability of  a rule to be  invoked. I f  a rule is considered 
to be  a plan in the Meehan  sense above,  then instead 
of indexing the rule by  its postcondi t ion proposi t ions,  
it can be indexed by  its precondi t ion if the precondi-  
tion contains informat ion relating to motivat ion.  For  
example,  the rule, 

MARRY RULE : 

HEAD : 

(ASK-MARRY** A X TH Y) 

PRE : 

(X ISA MAN) 

(Y ISA WOMAN) 

(WANT* A X TH (MARRY* A Y TH X)) 

EXP : 

(GO* A X TO Y) 

(ASK* A X TH Y IF (MARRY* A Y TH X)) 

(ACCEPT* A Y TH X) 

POST: 

(MARRY* A Y TH X) 

is a rule that  can be act ivated if some X, who must  be 
a man,  W A N T s  Y, who must  be  a woman,  to mar ry  X. 
Each  rule could contain proposi t ions  in its precondi-  
t ions that  restrict the set of  objects  that  can instantiate 
the variables of  the rule. 

The  last  propos i t ion  in the precondi t ion ,  the 
WANT*,  is a goal s ta tement ;  it s tates that  the M A R -  
RY rule can be invoked when  one  pe r son  wants  to 
marry  another.  In the process of  generat ing a story,  if 
a point  is reached where a man develops the goal of  
wanting to mar ry  a woman,  the M A R R Y  rule can be 
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invoked to at tempt to satisfy that want. Of course, if 
the ASK* or ACCEPT*  fails, then the postcondit ion 
becomes (NOT OF (MARRY* ...)) instead. 

The main advantage of inserting the WANT* into 
the preconditions is that the generator need not, as a 
result, contain special logic to examine the postcondi- 
tions of a rule to ascertain which rules to apply at a 
point in the story. The normal rule activation mecha- 
nism (a rule can only be applied if one of its precondi- 
t ion sets succeeds) will automatically weed out  un- 
wanted rules because of the informat ion relating to 
motivation. 

T E L L T A L E  generates stories (sequences of propo- 
sitions) based on such rules contained in its database, 
either under user control  or directed by the program 
itself. The database is a semantic network of nodes 
created by building a network of the case-predicate  
rules supplied by the user. The input to T E L L T A L E  
is the root  of a story tree, which informs T E L L T A L E  
as to the type of story which is to be generated (fairy 
tale, etc.). The output  from T E L L T A L E  is an instan- 
tiated story tree whose terminals are the propositions 
of the text.  The program SUMMARIZE computes  
summaries from the story tree. An annotated example 
rule-base can be found in Appendix A for generating a 
set of fairy tales. A sequence of propositions for  a 
story generated from that rule-base is shown in Ap- 
pendix B. Two summaries of the story are shown in 
Appendix C. 

Starting with the root,  T E L L T A L E  executes until 
no nodes remain to be expanded,  because all have 
been reduced to te rminal  propositions or some depth 
limit has been reached. A traversal of the terminals of 
the resulting story will yield the proposit ion text of the 
story; any higher level traversal will yield a summary 
of the story. 

4 . 2  P a r s i n g  

This section describes a procedure,  BUILDTALE,  
for using macrostructures to parse stories. The goal in 
writing the generator-parser  system has been to create 
a program capable of understanding those texts that it 
can generate from a rule-base. Diagrammatically 

RULEI I ISUMITEXTIPARI ISUMITEXT 

BASEIGENITREEIMARIPROPISERITREEIMARIPROP 

- - - > 1  I - - - > l l Z E I - - - > l  I - - - > I I Z E I  . . . .  > 
I I I IOSITI I I IOSIT 

I A I I B IIONSl C I I D lIONS 

the diagram above should be the same as the output  
from part D. The story trees might or might not be 
identical, depending on whether  the story grammar is 
ambiguous. 

The philosophy of the understander  can be summa- 
rized by recalling a concluding s tatement  by Rumel- 
hart (1975):  

"I t  is my suspicion that  any automatic  ' s tory 
parser '  would require ... ' top-down'  global struc- 
tures .... but  would to a large degree discover 
them, in any given story, by the procedures devel- 
oped by Schank (1975) ."  

The procedures developed by Schank emphasize the 
"bo t tom-up"  approach to story parsing. Starting with 
the raw input data, emphasis is placed on integrating 
each sentence into the developing narrative structure. 
The structures used are scripts (and plans), and pars- 
ing integrates proposit ions into scripts. The scripts 
form an implicit episodic structure, but the higher or- 
der relationships among the scripts are not generally 
made specific (i.e. what structures form episodes, set- 
ting information, complications, resolutions, etc). 

B U I L D T A L E  is a program that combines the top- 
down and bot tom-up approaches. As the parse pro- 
gresses, B U I L D T A L E  attempts to integrate the termi- 
nal propositions into the context  of a story tree. It 
manipulates the terminals bot tom-up,  integrating them 
into macrostructures,  while it is building story struc- 
ture nodes (STORY, SETTING,  EPISODE,  etc.) top- 
down. If B U I L D T A L E  successfully parses the text,  
these two processes will converge to instantiate a com- 
plete story tree. 

Starting with the root  of a story tree and an un- 
marked string of text propositions, B U I L D T A L E  exec- 
utes, by an algorithm described in Section 4.4, until 
one of three conditions occurs: 

1) If the procedure exhausts the proposit ion 
list before  the STORY node has been 
built, then it fails. 

2) If the procedure  builds an instance of 
STORY but  there still remain unmarked 
propositions, then it fails. 

3) If an instance of STORY is built and the 
text  s t ream is empty,  the the procedure  
returns the instantiated root. 

A terminal-level traversal of the resulting tree will 
yield the original input text proposit ion stream; higher 
level traversals will yield summaries of the text. 

The tree that results from the story generator  should 
yield the same bot tom-level  terminal proposit ions as 
the tree that results from the parsing of the terminal 
propositions of the story, i.e. the output  from part B in 

4.3 The Relat ionship Between  Generat ing and Parsing 

There are several differences between the BUILD- 
T A L E  and T E L L T A L E  procedures.  First, whereas 
the parser is restricted to  propositions from the input 
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text  for its terminals,  the genera tor  is free to build a 
terminal any time one can be generated.  Second, the 
genera tor  is free at each step to choose any rule that  
will match  a proposi t ion  it is t rying to expand,  and 
also to use any of a rule 's precondit ions or expansions 
in any order. The parser  must  be careful in its choice 
of  rules and in how it examines the precondit ions and 
expansions in a rule, always examining them in order  
of  decreasing length, to ensure that  it does not  build a 
story tree and find lef t -over  unmarked  text  proposi-  
tions when done. 

The generator  builds a proposi t ion by  first instanti-  
ating its precondi t ion,  expansion,  and postcondi t ion,  
and then at taching them to the instantiated head. The 
genera tor  knows at all t imes the fa ther  of  the proposi-  
t ion it is instantiating; in fact  it knows every ancestor  
of  that  proposi t ion be tween  it and the root ,  since it 
opera tes  strictly top-down.  

The  parser  opera tes  primari ly as a le f t -corner  
b o t t o m - u p  procedure ,  with overal l  direct ion supplied 
by  some top-down processing. When the parser  builds 
a s t ructure,  it cannot  be sure at that  t ime that  the 
s t ructure  is indeed the correc t  one to be  in tegra ted  
into the tree at that  point,  i.e. it does not  yet  know the 
correct  path  to the root.  The parser  must,  therefore,  
save the context  informat ion of its build decisions, so 
that  they can be undone (or at least ignored) if they 
are later found to be in error. In fact ,  the final struc- 
ture of  the tree can only be  assigned af ter  all the tex- 
tual proposi t ions have been analyzed. This is in agree-  
ment  with the s ta tement  of van Dijk (1975, pg. 11): 

"Strictly speaking, a definite hierarchical structure 
may be assigned to a discourse sequence of prop-  
ositions only af ter  processing of the last proposi-  
tions. For  long discourses this would mean  that  
all other  proposi t ions are kept  in some memory  
store."  

Structures are built as the parse progresses,  and some 
might be  discarded or rearranged.  Their  final posit ion 
in the tree cannot  be determined until all the proposi-  
tions have been examined. 

Some previous parsers  solved this problem by re- 
sorting to higher-level languages like C O N N I V E R  and 
P L A N N E R ,  paying the price in higher computa t ional  
costs. A conscious effor t  was made with this project  
to avoid the expense  of resor t ing to a higher- level  
language by having LISP per fo rm the necessary book-  
keeping to handle the backtracking involved in undo- 
ing an incorrect  choice (build). In B U I L D T A L E ,  the 
bookkeeping  is accomplished by  pushing context  infor-  
mat ion onto the LISP control  stack. Usually, when a 
build is pe r formed , instead of returning (popping the 
LISP stack) ,  a fur ther  descent  is made  in order  to 
integrate  the next  proposit ion.  If a build is later found 

to be  in error ,  then a F A I L  funct ion automat ica l ly  
causes LISP to back  up in its s tack to the point  where 
the build was made and undo it, since all the informa-  
tion that  was around when the first decision was made 
to build is still present  on the stack. 

These differences should not  obscure  the very real 
similarities be tween  the two processes.  T E L L T A L E  
and B U I L D T A L E  use the same functions to analyze 
the precondit ions,  expansions and the postcondi t ion of 
a rule. In fact ,  the "bas ic"  control  s tructure of T E L L -  
T A L E  is a special  case of  the control  s t ructure  of 
B U I L D T A L E .  The difference be tween  the two occurs 
at build time. In B U I L D T A L E ,  when a node in the 
t ree is built, a check is made  to see if this node 
matches  the root  of  the der ivat ion t ree being built. 
This may  not be the case since the node may  be many  
levels lower in the tree than the root  in question, and 
these levels will need to be built before  the derivat ion 
tree is complete.  Of  course, if the node should match  
the root,  then it is returned.  

T E L L T A L E ,  on the o ther  hand,  never  descends  
more than a single level in the tree at a time. When a 
build is per formed,  it will always derive f rom the de- 
r ivation tree being processed.  The node and the root  
a lways match ,  and the node  is re turned.  At  build 
time, when B U I L D T A L E  decides whether  to call itself 
recursively (to add the next  higher level in the tree)  or 
to pop the stack (returning the derivat ion tree root) ,  
T E L L T A L E  will always pop the stack. 

Genera t ion  and parsing use the same grammar  with 
different  terminat ing conditions to define the control  
paths through the grammar.  They  resemble  each other  
in comput ing as output  a derivat ion tree whose termi-  
nals are the proposi t ions of  the text. This fact  was 
borne  out  during the implementa t ion  of the system. 
T E L L T A L E  was coded first, and the eventua l  
T E L L T A L E / B U I L D T A L E  control  s tructure for  proc-  
essing precondi t ions ,  expansions ,  and pos tcondi t ions  
was debugged  and tes ted  by  genera t ing  m a n y  s tory  
trees. B U I L D T A L E  grew out of T E L L T A L E  by  add- 
ing the build-t ime r ecu r s ion /backup  mechanism to the 
control  structure. 

The symmetr ic  relat ionship be tween  generat ion and 
parsing with respect  to the computa t ion  of derivat ion 
trees is one significant feature  of  the E H C  rule system. 

4.4 T h e  Basic Contro l  S t ruc ture  

B U I L D T A L E  and T E L L T A L E  are essentially large 
separa te  P R O G - d e f i n e d  LISP funct ions  tha t  ef fec t  
different  initialization conditions, and then execute  the 
same set of  underlying functions. Below is a descrip- 
t ion of the basic control  structure shared by  T E L L -  
T A L E  and B U I L D T A L E :  
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I: For  each proposit ion being examined: 

1) If it exists instantiated in the data base, 
then return the instantiation, 
whether it is found negated or not; 

2) if there are no rules for the node, 
then it can be asserted; 

3) otherwise, for  each rule until one succeeds: 

a) for  each precondit ion in the rule 
until one succeeds, 

do I for each proposit ion in the 
precondition; 

b) if no precondit ion succeeds, 
then fail; 

c) otherwise, for  each expansion 
until one succeeds, 

do I for  each proposit ion in the 
expansion; 

d) if an expansion succeeds, then for 
each proposition in the 
postcondition, 

do I and return the instantiated 
node (rule success); 

e) otherwise, for each proposit ion 
in the postcondition, 

do I for  the negation of the 
proposition and generate 
a (rule) failure. 

"Do I" means "fol low the procedure  labelled ' I ' "  
which is the entire basic control s tructure outl ined above. 
Since postcondit ion propositions do not have rule ex- 
pansions, they never perform step 3 above. Also, rule 
failure is not marked by negation (another  mechanism 
is used) so, if a negated node is encountered,  it will 
never fall through to step 3. Finally, it should be no- 
ticed that, although it is possible for the algorithm to 
generate erroneous propositions in step 2 if exploring 
an incorrect path during parsing (BUILDTALE) ,  these 
propositions will be undone during backup when the 
path has been recognized as incorrect. 

5. Extracting Summaries From Story Trees 

One of the principal reasons for choosing the 
Kintsch and van Dijk macrostructure theory was the 
resulting proper ty  of summarizabili ty;  the ability to 
produce coherent  summaries is one mark of intelli- 
gence in a parser. The summarizer produces various 
strings of propositions from the story tree which form 
summaries of a text. One such string is composed of 
the terminals and represents the complete story. Any 
sequence of propositions output  by the summarizer is 
a well-formed input to the parser. The system is thus 
able to parse all proposit ion sequences it can generate. 

Since the summary feature is inherent in the trees 
as they are given to the summarizer, a simple level- 
traversal algorithm would have been sufficient to gen- 

erate useful output. However ,  this would have result- 
ed in needless redundancy of propositions (since some 
are checked repeatedly  by the precondi t ions of the 
rules and have pointers to them at many places in the 
tree).  Therefore ,  the summarizer remembers what it 
has already output  in the summary,  so as never  to 
repeat  itself. 

Another  area of repeti t ion concerns attributes for  
objects in the story. To avoid repeating an object 's  
attributes, the summarizer keeps a list of objects that 
have already appeared in at least one proposition, and 
whenever  it encounters  in a new proposit ion an object  
not  on this list, it outputs it with all of its properties 
and then places it on the list of expanded objects.  
Since no t ime-markers are put on an object 's  proper-  
ties, they are all printed out at once, even if some of 
those properties are not at tached to the object  until 
much later in the story; this reveals a weakness in the 
procedure that can be corrected by the introduction of 
t ime-markers for  objects (actions already possess time- 
markers).  

One attribute of story trees is that, at their higher 
nodes, one can read off  the syntactic structure of the 
story. For  example suppose a story consists of a set- 
ting fol lowed by three episodes. As a summary, 
"setting plus three episodes" is usually not very inter- 
esting; therefore  the summarizer  has the ability to 
recognize and descend below these story structure 
nodes in the final summary. These nodes are t reated 
like all o ther  nodes to the tree building procedures,  
but the summarizer descends below the nodes to print 
their descendants ,  no mat ter  what  level summary is 
being computed. 

There is also the question of summarizing the ma- 
crostructures (rules). By definition, these nodes are 
expandable,  i.e., they have a rule for  expanding them 
in the rule-base. Maerostructures are not marked with 
a NOT if they fail; only simple propositions - termi- 
nals - are. However ,  whether  a script achieves its goal 
or not is vital information to be included in any rea- 
sonable summary produced from the tree. Therefore ,  
when summarizing a macrostructure ,  the summarizer  
outputs  bo th  the head (the macros t ructure  pat tern)  
and its postcondit ion (if the script fails to achieve its 
goal, the postcondit ion will have been negated).  

Finally, the summarizer outputs only those proposi- 
tions it recognizes as non-stative descriptions; it never 
outputs state descriptions. The reason for this is that 
a stative always describes the at t r ibute(s)  of some 
object,  and can therefore be output  the first time that 
that object  appears in an active proposition. 

The summarizer is an algorithm that,  given a story 
tree and a level indicator, scans the nodes of the tree 
at that level, and applies the following rules to each 
node: 
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1) If the node is a story structure node, then 
summarize its sons. 

2) If the node has already been processed, 
then skip it. 

3) If the node is marked as a script, return 
its head fol lowed by its postcondi t ion 
propositions. 

4) If the node is a stative, then skip it. 

For  each case value in a proposit ion to be output  (for  
example, R UF OLO1,  D O U B L E * l ,  and W E A L T H 1  in 
( W A N T * I  A R U F O L O 1  T H  ( D O U B L E * I  A 
R U F O L O 1  T H  W E A L T H 1 ) ) ) ,  the following rule is 
applied: 

5) If the case value has not appeared in a 
previously accepted proposi t ion,  print it 
and all its attributes; otherwise, just print 
the case value itself. 

For  example, if RUFOLO1 has been mentioned in 
a proposit ion prior to W A N T * I  in a summary, then 
only RUFOLO1 will be present in the W A N T * I  prop- 
osition, and not  the fact  that  R U F O L O 1  is a 
M E R C H A N T 1  from RAVELLO1,  etc. 

An initial version of an English language generator  
was writ ten that applies a set of rules to the output  of 
the summarizer to produce well-formed English texts 
(Hare and Correira, 1978). This generator  uses rule 
forms and the summarizer output  to solve some of the 
problems involved in: reasonable  paragraphing and 
sentence connect ivi ty,  elision of noun groups and 
verbs, and pronominalization of nouns. The decisions 
are based, in part, on the structure of the story tree 
and the positions of individual proposi t ions in that  
tree. 

6. D iscussion and Conc lus ions  

The task of text  processing requires solutions to 
several important  problems. The computat ional  theory 
for macrostructures using Extended Horn  Clauses was 
designed with the following goals in mind. A compu- 
tational model should have some degree of psychologi- 
cal validity, both to provide a humanly useful repre- 
sentation of textual content  and organization and to 
ensure that  the task of rule-writing is as natural  as 
possible for the human grammar producer.  It should 
be conceptually simple, in both design and implemen- 
tation, taking advantage of similarities between gener- 
ation and parsing, and it should offer  a rigorous data 
structure that is uniform and avoids the growth of ad 
hoe large-scale structures. 

The computat ional  macrostructures realized by the 
Extended Horn  Clause notat ion succeed in many ways 
in satisfying these goals. They appear  to resemble the 
structures humans build mentally when reading narra- 
tive texts. The story tree is a logical way to organize 
these macrostructures,  with the terminals of a particu- 
lar story tree comprising the actual textual  proposi-  
tions, and the interior nodes containing the instantiat- 

ed heads of rules (corresponding to macrostructures) .  
The story tree has the summary property:  if the tree is 
t runcated at any level, then a "meaningful"  (coherent)  
summary of the original text can be read off  directly. 
The generality of the macrostructure propositions in- 
creases as one nears the level of the root  (going from 
the level of specific actions to the rules that contain 
them, to the story categories that contain these rules), 
which can be considered as the title for  the text at its 
terminals. 

The concept  of rule failure takes the EHC  out of 
the strictly logical system of the normal  (Kowalski-  
type) Horn  clause logic, since failure in a normal logic 
system means something di f ferent  f rom failure here. 
In narratives, failure needs to be recorded,  since it is 
one source of " interest"  in the resulting story; striving, 
failing, and striving again is a common occurrence in 
simple narratives. These failure points, and their con- 
sequences,  have to be recorded in the story tree 
(whereas, in normal logic systems, failure points are 
invisible to the final result)  and, fur thermore ,  they 
restrict  the choice of paths that  can reasonably  be 
expected to emanate f rom the point  of failure. The 
failure mechanism is tailored for narratives involving 
entities exhibiting mot ivated  behavior.  Other  text  
forms,  such as technical  or encyclopedia  articles, 
would probably not  require the failure mechanism. 

The underlying approach in B U I L D T A L E /  
T E L L T A L E  is that of a problem-solver,  as was also 
true of Meehan 's  story-writer.  A rule-base, organized 
as a hierarchy of s tory trees, is used to generate  a 
particular, instantiated, story tree by an inference pro- 
cedure augmented via the rule failure mechanism de- 
tailed in Section 3.2. Each instantiated tree is t reated 
as a context ,  consisting of the events,  objects ,  and 
their relationships, relating to a particular story. The 
facts and rules in the rule-base serve as a model for  
the possible states in the microworld formed by that 
story tree. These states are categorized using linguis- 
tic entities, such as SETTING,  EPISODE,  COMPLI-  
CATION,  and RESOLUTION.  

The problem-solving approach,  coupled with the 
story grammar concept,  is a natural one for processing 
most forms of narratives. Analogous systems of rules 
could be used for processing other  large text forms, 
although the categories involved would be different.  

Notes  on the  A p p e n d i c e s  

The rules are all written in a case predicate nota- 
tion (Fillmore, 1968). The general form for such a 
predicate is 

(HEAD ARC1 VALUEq . . .  ARC In] VALUE [n] ) 

The H E A D  of a case predicate is ei ther a verb or a 
noun form; because no formal lexicon was maintained 
for  the T E L L T A L E / B U I L D T A L E  program, verb 
forms were marked with an asterisk and objects were 
left unmarked.  The ARCs are standard case relations, 

146 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 



Alfred Correira Computing Story Trees 

such as Agent,  THeme,  LOCation,  INSTance,  etc., 
although no attempt was made to be strictly correct 
linguistically with their every use, and a few relations 
were created for the sake of  convenience.  When a 
good arc name did not suggest itself, then an arbitrary 
arc name - R1,  R2, etc. - was used instead. The 
V A L U E  can be either a verb form, an object, or an- 
other case predicate. 

The case predicates used in the program were writ- 
ten to enhance readability. For example, in the fairy- 
tale story (Appendix B), the case predicate 

(WANT*I TO POSSESSI A GEORGEI TH MARYI) 

can be rendered into English as "George wants to 
possess Mary". The sequence 

(GO*3 A GEORGEI TO IRVINGI) 

(SLAY*I A GEORGEI TH IRVINGI) 

(RESCUE*I A GEORGEI TH MARYI ) 

can be rendered as "George goes to Irving. George 
slays Irving. George rescues Mary.". 

A p p e n d i x  A - Rule-base for Fairytale  

FAIRYTALE RULE: 

HEAD: 

(FAIRYTALE*) 

EXP: 

(FAIRYSTORY** A X TH Y) 

FAIRYSTORY RULE: 

HEAD: 

(FAIRYSTORY** A X TH Y) 

EXP: 

(SETTING A X) 

(EPISODE A X TH Y) 

POST: 

(LIVE* A X TH Y MANNER 

HAPPILY_EVER_AFTER) 

SETTING RULE: 

HEAD: 

(SETTING A X) 

PRE: 

(LIVE* A X LOC Y DURING Z) 

LIVE RULE: 

HEAD: 

(LIVE* A X LOC Y DURING Z) 

PRE: 

(CHAR INST X) (Y ISA PLACE) (Z ISA TIME) 

CHAR RULE: 

HEAD: 

(CHAR INST X) 

PRE: 

(OR (X ISA KNIGHT SEX MALE PERSON T) 

(X ISA PRINCE SEX MALE PERSON T)) 

EXP: 

(OR (X MOD BRAVE) (X MOD HANDSOME)) 

EPISODE RULE: 

HEAD: 

(EPISODE A X TH Y) 

EXP: 

(MOTIVE A X TH Y) (ACTION A X TH Y) 

MOTIVE RULE: 

HEAD: 

(MOTIVE A X TH Y) 

PRE: 

(DESIRE* A X TH Y) 

EXP: 

(WANT* TO POSSESS A X TH Y) 

DESIRE RULE: 

HEAD: 

(DESIRE A X TH Y) 

PRE: 

(CHAR INST X) 

EXP: 

(OR (Y ISA PRINCESS SEX FEMALE 

PERSON T MOD BEAUTIFUL) 

(Y ISA HOLY OBJECT MOD LOST)) 

ACTION RULE: 

HEAD: 

(ACTION A X TH Y) 

EXP: 

(OR (ASK-MARRY** A X TH Y) 

(RESCUE** A X TH Y FROM Z) 

(QUEST** A X TH Y) 

(PRAY** PART FOR A X TH Y)) 

ASK RULE: 

HEAD: 

(ASK-MARRY** A X TH Y) 

PRE: 

(WANT* TO POSSESS A X TH Y) 

(Y ISA PRINCESS) 

EXP: 

(GO* A X TO Y) 

(ASK* A X TH Y IF (MARRY* A Y TH X)) 

(ACCEPT* A Y TH X) 

POST: 

(MARRY* A Y TH X) 

RESCUE RULE: 

HEAD: 

(RESCUE** A X TH Y FROM Z) 

PRE: 

(WANT* TO POSSESS A X TH Y) 

(Y ISA PRINCESS) 

(THREATEN** A Z TH Y) 

EXP: 

(GO* A X TO Z) 

(SLAY* A X TH Z) 

(RESCUE* A X TH Y) 

POST: 

(MARRY* A Y TH X) 
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THREATEN RULE: 

HEAD: 

(THREATENSS A X TH Y) 

PRE: 

(X ISA DRAGON ANIMATE T) 

(X SOD EVIL) 

(Y ISA PRINCESS) 

(WANT • TO POSSESS A X TH Y) 

EXP: 

(CARRY s~ PART OFF A X TH Y TO Z) 

CARRY RULE: 

HEAD: 

(CARRY ss PART OFF A X TH Y TO Z) 

PRE: 

(X ISA DRAGON) 

(Y ISA PRINCESS) 

(Z ISA DEN POBJ T) 

EXP: 

(GO~ A X TO Y) 

(CAPTURE • A X TH Y) 

(FLYS A X TH Y TO Z) 

QUEST RULE: 

HEAD: 

(QUEST s~ A X TH Y) 

PRE: 

(CHAR INST X) 

(Y ISA HOLY OBJECT MOD LOST) 

(WANT • TO POSSESS A X TH Y) 

EXP: 

(GO • A X TO ORACLE) 

(REVEAL • A ORACLE TH PLACE OF Y) 

(GO s A X TO PLACE) 

(FIND s A X TH Y) 

POST: 

(POSSESS s A X TH Y) 

PRAY RULE: 

HEAD: 

(pRAyss PART FOR A X TH Y) 

PRE: 

(CHAR INST X) 

(WANT s TO POSSESS A X TH Y) 

(Z ISA GOD) (W ISA CHURCH POBJ T) 

EXP: 

(OR ((GOS A X TO W) 

(KNEEL s A X PREP (IN TH 

(FRONT PREP (OF TH ALTER)))) 

(pRAys A X PREP (TO TH Z) 

PREP (FOR TH Y)) 

((U ISA PRIEST SEX MALE PERSON T) 

(GO • A X TO U) 

(PAY • A X TH U EXPECT 

(INTERCEDE s A U PREP (WITH TH Z) 

PREP (FOR TH Y))) 

(pRAys A U TO Z FOR Y) 

(GRANT s A Z TH (PRAYER POSSBY U)))) 

POST: 

(POSSESSS A X TH Y) 

JOHN ISA PRINCE SEX MALE PERSON T) 

GEORGE ISA KNIGHT SEX MALE PERSON T) 

LANCELOT ISA KNIGHT SEX MALE PERSON T) 

PARSIFAL ISA KNIGHT SEX MALE PERSON T) 

MARY ISA PRINCESS SEX FEMALE PERSON T) 

GUENEVIERE ISA PRINCESS 

SEX FEMALE PERSON T) 

(HOLY_GRAIL ISA HOLY_OBJECT POBJ T) 

(SACRED_CROSS ISA HOLY_OBJECT POBJ T) 

(CAMELOT ISA PLACE) 

(MONTSALVAT ISA PLACE) 

(ONCE_UPON A TIME ISA TIME) 

(IRVING ISA DRAGON ANIMATE T) 

(CARMEN ISA DRAGON ANIMATE T) 

A p p e n d i x  B - T e x t  of  Fairyta le  

(FAIRYTALE*I) 

( LIVES2 A (GEORGEI ISA KNIGHTI SEX MALE2 

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA 

PLACEI) DURING (ONCE_UPON A TIMEI ISA 

TIMEI)) 

DESIRES2 A GEORGEI TH (MARYI ISA 

PRINCESSI SEX FEMALEI PERSON T 

MOD BEAUTIFULI)) 

(WANT~I TO POSSESSI A GEORGEI TH MARYI) 

(GOal PART TOI A GEORGEI TO MARYI)) 

(ASKSl A GEORGEI TH MARYI IF 

(MARRY~I A MARYI TH GEORGEI)) 

(NOT OF (ACCEPTSl A MARYI TH GEORGEI)) 

(NOT OF (MARRYS2 A MARYI TH GEORGEI)) 

(WANTS2 TO POSSESS2 A 

(IRVINGI ISA DRAGONI ANIMATE T 

MOD EVILI) TH MARYI) 

(GOS2 PART TO2 A IRVINGI TO MARYI) 

(CAPTURESl A IRVINGI TH MARYI) 

(FLYSl A IRVINGI TH MARYI PREP 

(TO TH DENI)) 

(GO~3 PART TO3 A GEORGEI TO IRVINGI) 

(SLAYSl A GEORGEI TH IRVINGI 

(RESCUESl A GEORGEI TH MARYI 

(MARRYS4 A MARYI TH GEORGEI) 

(LIVES3 A GEORGEI TH MARYI 

MANNER HAPPILY EVER AFTERI) 

A p p e n d i x  C - S u m m a r i e s  of  Fa i ryta le  

(FAIRYTALESl) 

((LIVES2 A (GEORGEI ISA KNIGHTI SEX MALE2 

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA 

PLACEI) DURING (ONCE_UPON_TIMEI ISA 

TIMEI)) 

(DESIRES2 A GEORGEI TH (MARYI ISA 

PRINCESSI SEX FEMALEI PERSON T 

MOD BEAUTIFULI)) 
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WANT*] TO POSSESS*I A GEORGEI TH MARYI) 

GO*I PART TO1 A GEORGEI TO MARYI) 

ASK*I A GEORGEI TH MARYJ IF 

MARRY*I A MARYI TH GEORGEI ) ) 

NOT OF (ACCEPT*I A MARYI TH GEORGEI)) 

NOT OF (MARRY*2 A MARYI TH GEORGE1)) 

TO POSSESS2 A 

IRVINGI ISA DRAGONI MOD EVILI) 

TH MARY I ) 

CARRY**2 PART OFFI A IRVINGI 

TH MARYI TO DEN]) 

(GO*3 PART TO3 A GEORGEI TO IRVINGI) 

(SLAY*I A GEORGEI TH IRVINGI 

(RESCUE*I A GEORGEI TH MARYI 

(MARRY*4 A MARYI TH GEORGEI ) 

(LIVE*3 A GEORGEq TH MARYI 

MANNER HAPPILY EVER AFTERI) 

(FAIRYTALE* I ) 

((LIVE*2 A (GEORGEI ISA KNIGHTI SEX MALE2 

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA 

PLACEq) DURING (ONCE_UPON A TIME1 ISA 

TIMEI ) ) 

(DESIRE*2 A GEORGE1 TH (MARYI ISA 

PRINCESSI SEX FEMALEI PERSON T 

MOD BEAUTIFULI ) ) 

(WANT*I TO POSSESSI A GEORGEI TH MARYI) 

(ASK-MARRY**2 A GEORGEI TH MARYI) 

(NOT OF (MARRY*2 A MARYI TH GEORGE])) 

(RESCUE**2 A GEORGE] TH MARYI 

FROM (IRVINGI ISA DRAGONI ANIMATE T 

MOD EVILq ) ) 

MARRY*4 A MARYI TH GEORGEI ) 

LIVE*3 A GEORGEI TH MARYI 

MANNER HAPPILY EVER AFTER] )) 
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