
Computing Story Trees
A l f r e d C o r r e i r a

D e p a r t m e n t of C o m p u t e r Sc ience
The Univers i ty of Texas at Aust in

Aust in , Texas 78712

A theory of understanding (parsing) texts as a process of collecting simple textual
propositions into thematically and causally related units is described, based on the concept
of macrostructures as proposed by Kintsch and van Dijk. These macrostructures are
organized into tree hierarchies, and their interrelationships are described in rule-based
story grammars related to the Kowalski logic based on Horn clauses. A procedure for
constructing and synthesizing such trees from semantic network forms is detailed. The
implementation of this procedure is capable of understanding and summarizing any story it
can generate using the same basic control structure.

1. Introduction

One of the most difficult tasks in the field of com-
putational linguistics is that of processing (parsing or
understanding) bodies of connected textual material,
from simple narratives like fairy tales and children's
stories, to complex technical articles like textbooks
and encyclopedia articles. When effective parsers
were created capable of processing single sentences
(Woods, 1970), (Schank, 1975b), (Norman and Ru-
melhart, 1975), (Winograd, 1972), it was quickly real-
ized that these same techniques were not in themselves
adequate for the larger task of processing sequences of
sentences. The understanding of paragraphs involves
more knowledge than and different knowledge from
that necessary for sentences, and the structures prod-
uced by a text parser need not look like the structures
of the sentences parsed individually.

However, the original impetus for current trends in
text processing was the effort to solve problems of
reference at the sentential level, in particular anaphora
and ellipsis (Charniak, 19722). For example, in the
paragraph

John wanted to marry Mary. He asked
her if she would marry him, but she refused.
John threatened to foreclose the mortgage on
the house where Mary's old sick father lived.
They were married in June.

Simple-minded syntactic techniques are generally in-
sufficient to resolve referents of the form of the
"they" in the last sentence above. The human under-
stander - and potentially the computer understander as

well - requires real-world knowledge about threats,
familial ties and marriage to realize that "they" refers
to John and Mary.

Experiments with text processing led to such proce-
dural constructs as frames (Minsky, 1975; Charniak
and Wilks, 1976; Bobrow and Winograd, 1977),
scripts and plans (Schank and Abelson, 1977), focus
spaces (Grosz, 1977), and partitioned networks
(Hendrix, 1976), among others. These efforts in-
volved conceptual structures consisting of large, cogni-
tively unified sets of propositions. They modelled
understanding as a process of filling in or matching the
slots in a particular structure with appropriate entities
derived from input text.

There have also been rule-based approaches to the
text processing problem, most notably the
template/paraplate notion of Wilks (1975), and the
story grammars of Rumelhart (1975). Although both
approaches (procedures and rules) have their merits, it
is a rule-based approach which will be presented here.

This paper describes a rule-based computational
model for text comprehension, patterned after the
theory of macrostructures proposed by Kintsch and
van Dijk (1978). The rules are notationally and con-
ceptually derived from the Horn clause, especially as
described by Kowalski (1979). Each rule consists of
sets of thematically, causally, or temporally related
propositions. The rules are organized into a network
with the macrostructures becoming more generalized
approaching the root. The resulting structure, called
the Story Tree, represents a set of textual structures.

Copyright 1980 by the Associa t ion for Computa t iona l Linguistics. Permiss ion to copy wi thout fee all or par t of this mater ia l is granted
provided that the copies are not made for direct commercia l advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0362-613X/80/030135-15501.00

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 135

Alfred Correira Computing Story Trees

The process of generating f rom this ne twork con-
sists of choosing one of the rules to serve as the root
of a particular s tory tree and recursively instantiating
its descendants until terminal proposi t ions are prod-
uced (Simmons and Correira, 1979). These proposi-
tions form the text of the generated story, requiring
only a final phase to produce English sentences f rom
the proposit ions. Conversely, a text is unders tood if
its input sentences , parsed into proposi t ions , can be
mapped onto rules and these rules recursively mapped
onto more abst ract rules until a single node (the root)
is achieved. Parsing and generating use the same rules
in a similar manner for pe r fo rming their respect ive
tasks, and the rules lend themselves to a uniform tree
structure possessing an inherent summarizing property .

2. M a c r o s t r u c t u r e s and Story G r a m m a r Rules

In this section the fundamenta l notion of macro-
structure, as p roposed and used by Kintsch and van
Dijk, is presented and then analyzed f rom a computa -
tional, ra ther than a psychological , s tandpoint . An
effect ive represen ta t ion for macros t ruc tures , der ived
f rom Horn clauses and organized into s tory trees, is
described, as well as a data base for the representa-
tion.

2.1 M a c r o s t r u c t u r e s

Kintsch and van Dijk (1975) present a system for
organizing an entire discourse into a hierarchy of ma-
crostructures , which are essential ly metapropos i t ions .
The lowest level of a discourse textual representa t ion
is the set of input proposi t ions that corresponds se-
mantically to the text sentences, clauses a n d / o r phras-
es. Proposit ions are conjoined by links of implication:
if proposi t ion A implies proposi t ion B, then A and B
are connec ted , and the link is marked with the
s trength of the connection, ranging f rom (barely) pos-
sible to (absolutely) necessary. The proposi t ions and
their connect ions reside in a text base. A text base
can be ei ther explicit, if all the implied in format ion
necessary for coherence is made explicit, or implicit, if
proposi t ions that can be assumed to be known or im-
plied are omitted, m text is an explicit data base by
itself, and all summaries of that text are implicit data
bases. A college physics text would have a much more
explicit text base than af ter-dinner conversat ion. The
simple narrat ive texts examined in this paper have a
text base be tween these two "ext remes ."

The sense in which "coherence" is used above is
not defined precisely. Kintsch and van Dijk argue that
coherence , or " semant ic we l l - fo rmedness" , in a text
requires, for each proposi t ion in the text, that it be
linked with one or more preceding proposit ions. This
connect ion must exist for some reader in some context
constrained by convent ions for knowledge-shar ing and

assumption-shar ing valid for that person in that con-
text.

The result of this linking is a linear text base which
is then mapped into a hierarchical structure in which
proposi t ions high in the structure are more likely to be
recalled (via summaries) than those low in the struc-
ture. At the top of the hierarchy can be found propo-
sitions corresponding to rhetorical categories, such as
" p r o b l e m " and "solu t ion ," or nar ra t ive categories ,
such as " in t roduc t ion , " " compl i ca t i on , " and
"re solution."

Kintsch and van Dijk introduce a number of rules
for relating these macrost ructures to sets of input tex-
tual proposi t ions: in format ion reduct ion (genera l iza-
t ion), deletion (of less impor tant proposi t ions) , inte-
grat ion (combining events with their pre- and post-
condit ions), and construct ion (which relates complex
proposi t ions to their componen t sub-proposi t ions) .

There are two conditions that are always true re-
garding these macrostructures: a macros t ructure must
be implied by its subordina te propos i t ions (i.e. en-
counter ing the subordina te propos i t ions implies the
existence of the macros t ructure) , and ordered sets of
macrost ructures collected together fo rm a meaningful
summary of the text. Kintsch and van Dijk believe
that it is pr imari ly macros t ruc tures that are re ta ined
when a text is unders tood by a human reader and that
the macros t ruc tures are c rea ted as the text is being
processed.

2.2 M a c r o s t r u c t u r e s as C o m p u t a t i o n a l Const ruc ts

As evidence in support of their theory, Kintsch and
van Dijk present a number of psychological experi-
ments in recall and summary with human subjects
using as a text a 1600-word nar ra t ive t aken f rom
Boccaccio 's Decameron (the Rufolo story). As a com-
putat ional entity, a macros t ructure is a node in a s tory
tree whose immediate descendants consist of the sub-
ordinate proposi t ions by which the node is implied,
and is itself a descendan t of the macros t ruc tu re it
(partially) implies. Every macros t ructure in this tree is
the root of a derivat ion tree whose terminals are sim-
ple proposit ions.

Each level of the tree shares the at t r ibute of sum-
marizabi l i ty , i.e. a summary of the text may be ex-
t racted f rom any level of the tree, becoming less spe-
cific as the summary level approaches the root. The
lowest level summary is the original text itself; the
highest level (the root) is a title for the text.

The ability to give meaningful (coherent) summar-
ies for a text is one a t t r ibute of comprehens ion for
that text, and any procedure yielding trees possessing
the summary proper ty can be said to partially under-
stand the text. Considera t ion must also be given to
classification schemas and rules for paraphrase , ana-

136 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

phora, and question-answering. Fur thermore , given an
appropr ia te data base internalizing the relat ionships
be tween a macrost ructure and its subordinate macros-
tructures or simple proposit ions (microstructures) and
a summary derived f rom a story tree, it is possible for
a procedure to reconstruct to a certain degree of detail
the original text f rom which the tree was derived. The
degree of detail recovered is directly dependent on the
relative distance f rom the nodes forming the summary
to the original input proposit ions (the leaves) of the
text tree.

H o w is this subordinate relationship among propo-
sitions to be described formal ly to a computa t iona l
process? One simple formulat ion is in the form of a
rule

A < = B,C,D

meaning "you may assert the truth (presence) of ma-
crostructure A if you can find the (nearly) contiguous
proposit ions B, C, and D present in the input text ."
"Near ly" means that an al lowable level of "noise ,"
perhaps in the form of irrelevant side information, may
be present be tween the specified proposi t ions (a prob-
lem not addressed here).

This rule form closely resembles in structure and
meaning the Horn clause notation. The general clause
has the format

C[1] C[m] < = A[1] A[n]

where C[1] C[m] are e lementary proposit ions form-
ing the consequent , and A[1] A[n] are e lementary
proposit ions forming the antecedent. If the proposi-
tions in a clause contain the variables x[1] x[i], then
the clause has the interpretat ion

for all x[1] x[i],
A[1] and ... A[n] implies
C [1] o r ... C [m]

If the subscript m for a clause is zero or one, then that
clause is referred to as a Horn clause. If m = l and
n = 0 , the Horn clause is called an assertion.

There are several differences be tween the Kowalski
logic and the logic adopted here. One of these has to
do with the ordering of the antecedent proposit ions.
In a true Horn clause, the ordering is irrelevant and
A < = B,C,D is as good a rule as A < = C,D,B, etc.,
i.e. the antecedents can be proved in any order. The
ordering in the system described here is governed by
rules of coherence. For example, the rule:

(TRADINGVOYAGE A RUFOLO WITH GOODS

IN SHIP TO CYPRUS)

<= (BUY A RUFOLO TH SHIP)

(BUY A RUFOLO TH GOODS)

(LOAD A RUFOLO TH SHIP WITH GOODS)

(SAIL A RUFOLO TO CYPRUS MEANS SHIP)

is a meaningful rule. (Here case notat ion is used: A
for Agent , T H for THeme , etc.) On the other hand,

(TRADINGVOYAGE A RUFOLO WITH GOODS

IN SHIP TO CYPRUS)

<: (SAIL A RUFOLO TO CYPRUS MEANS SHIP)

(LOAD A RUFOLO TH SHIP WITH GOODS)

(BUY A RUFOLO TH GOODS)

(BUY A RUFOLO TH SHIP)

is nonsensical. The rules of coherence that order the
an teceden t proposi t ions may involve several criteria:
causal connec tedness (B causes / i s the result of C,
which causes / i s the result of D), or temporal ordering
(B happens b e f o r e / a f t e r C, which happens b e f o r e /
af ter D), etc. Note that the ordering of antecedent
proposi t ions can be tied to textual order within the
f ramework of ordinary Horn clauses by adding extra
arguments to the proposit ions. This has been done in
the theory of definite clause grammars (Colmerauer ,
1978; Pereira and Warren, 1980).

The above T R A D I N G V O Y A G E rule can be inter-
pre ted in ei ther of two ways. If we are given the
proposi t ion

(TRADINGVOYAGE A RUFOLO WITH GOODS

IN SHIP TO CYPRUS)

in a text, or a summary of a text, we may infer the
chain of events

(BUY A RUFOLO TH SHIP)

(BUY A RUFOLO TH GOODS)

(LOAD A RUFOLO TH SHIP WITH GOODS)

(SAIL A RUFOLO TO CYPRUS MEANS SHIP)

and, if given these events in order in a text, we may
infer that Rufolo was performing a T R A D I N G V O Y -
AGE.

Because of this capabil i ty for use in two directions,
this rule form can be used both in parsing and generat-
ing tasks. A parser can avail itself of these rules to
group sets of proposi t ions in a text into units headed
by macrostructures (which are the consequents of the
rules). These can be fur ther grouped into more gener-
alized macrostructures recursively to yield a story tree.
A generator can proceed in the other direction, start-
ing with the top node of a tree and expanding it and
its const i tuents downward recursively (by using the
rules that operate on the precondi t ion proposit ions) to
arrive at a tree whose terminals form a coherent text.

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 137

Alfred Correira Computing Story Trees

2.3 Extended Horn Clauses

After several early experiments with this rule form
on a simple text (the Margie story - Rumelhar t , 1975)
it was discovered that this simple rule form, al though
capable of handling the computat ions necessary for the
text at hand, did not bring out several inherent at tr ib-
utes that macrost ructures generally have in common.
For example, in a T R A D I N G V O Y A G E rule, several
divisions can be recognized. In order to go on a
T R A D I N G V O Y A G E , Rufolo must have the money
for a ship and goods and the necessary knowledge
about compet i t ion to make a profit. Given these, Ru-
folo will follow a certain sequence of actions; he will
obta in a ship and goods, load the goods onto the ship
and then sail to Cyprus. The result of this effor t will
be that Rufolo is in a posi t ion to sell or t rade his
goods (and perhaps make a profit) . Therefore , we can
break the T R A D I N G V O Y A G E rule into several natu-
ral groupings:

TRADINGVOYAGE RULE :

HEAD :

(TRADINGVOYAGE A RUFOLO WITH GOODS

IN SHIP TO CYPRUS)

PRE :

(POSSESS A RUFOLO TH WEALTH)

EXP :

(MAKE A RUFOLO TH

(CALCULATIONS MOD MERCHANTS

TYPE USUAL))

(BUY A RUFOLO A SHIP)

(BUY A RUFOLO TH GOODS)

(LOAD A RUFOLO TH SHIP WITH GOODS)

(SAIL A RUFOLO TH SHIP TO CYPRUS)

POST :

(MAKE A RUFOLO TH PROFIT)

Structurally, this rule form will be referred to as an
"ex tended" Horn clause (EHC) . The first par t of the
rule is the H E A D of the rule, and represents the ma-
crostructure pattern. The second part is the PREcon-
dition for the rule. The proposi t ions in the precondi-
tion are the conditions which must be true, or can be
made true, before Rufolo can embark on an episode of
T R A D I N G V O Y A G E . The third par t is the EXPan-
sion of the rule. If Rufo lo goes on a T R A D I N G -
V O Y A G E , then these are the (p robab le) act ions he
will take in doing so. The final par t of the rule is the
POSTconditic~n of the rule, which consists of the prop-
osit ions t h a t ' w i l l b ecom e true upon the successful
complet ion (instantiation) of the T R A D I N G V O Y A G E
rule.

The resulting rule form is related conceptual ly and
historically to the not ion of a script as developed by
Schank and Abelson (1977) (el. No rm an and Rumel-
hart, 1975). The precondi t ion sets the stage for the
invocat ion of a rule. I t describes the setting and the

roles of the characters involved in the rule. The ex-
pansion consists of the actions normally taken during
the invocat ion of the rule. The postcondi t ion is the
result of these actions. When used in a script- l ike
role, a rule is act ivated when its precondi t ion has been
satisfied, and its expans ion can then be sequent ia l ly
instantiated.

A rule can also be used as a plan. A plan is a data
structure that suggests actions to be taken in pursuit of
some goal. This corresponds to activating a rule ac-
cording to its postcondit ion, i.e. employing a rule be-
cause its postcondi t ion contains the desired effect. If
one has the goal " m a k e m o n e y " one might wish to
employ the T R A D I N G V O Y A G E rule to achieve it.

This extension of the Horn clause structure serves
two purposes. First, by separat ing the proposi t ions
subsumed under a macros t ructure into three parts , the
E H C rule fo rm renders it unnecessa ry to label the
roles that the individual proposi t ions play in the ma-
crostructure. A macros t ructure will usually have pre-
condit ions, expans ion(s) , and a pos tcondi t ion set,
which would have to be labeled (probably funct ional-
ly) in a simple Horn clause system. Secondly, it serves
as a means of separa t ing those propos i t ions which
must be true before a rule can be invoked
(precondi t ions) f rom those whose success or failure
follows the invocat ion of the rule.

A rule may have multiple precondi t ions if there are
several sets of c i rcumstances under which the rule can
be invoked. Thus a rule for watching a drive-in movie
could have the fo rm

WATCH DRIVE-IN MOVIE RULE:

HEAD :

(WATCH A PERSON TH DRIVE-IN MOVIE)

PRE :

(OR ((PERSON IN CAR) (CAR IN DRIVE-IN))

((SEE A PERSON TH SCREEN)

(CAN A PERSON TH

(READ A PERSON TH LIPS))))

A rule may also have several expansions a t tached
to it, one for each potent ial instantiat ion of the rule.
Thus if a couple want a child they could employ a
rule:

POSSESS RULE :

HEAD :

(POSSESS A COUPLE TH CHILD)

EXP :

(OR (CONCEIVE A COUPLE TH CHILD)

(ADOPT A COUPLE TH CHILD)

(STEAL A COUPLE TH CHILD)

(BUY A COUPLE TH CHILD))

where each of the propositions, CONCEIVE, ADOPT,
STEAL, BUY expands by a complex rule of the same
fo rm as the POSSESS rule.

138 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

A rule can have but a single postcondition, com-
posed of simple propositions, since by definition the
postcondit ion is the set of propositions that are true if
the rule succeeds. If a postcondit ion could contain an
expandable proposit ion, then that proposi t ion could
fail independently of the rule for which it is part of the
postcondition - since it could have its own precondi-
tions - thus contradicting the definition of the post-
condition.

2.4 Indexed Rule Network of Extended Horn Clauses

The rules are stored in memory in a semantic net-
work. However , unlike the usual semantic networks
for case predicates, where the individual nodes
(tokens) are connec ted by case relations (Simmons
and Chester , 1977), the semantic links in the E H C
rule network are based on the story tree structure.

Each rule node (or instantiat ion of one) in the
network may have an arc for each part of an E H C
rule: precondition, expansion, and postcondition. All
the case relations in the head of the proposit ion are
kept in a single list at tached to the node as arc-value
pairs. Negation is marked by embedding the node in a
(NOT OF ...) proposition form. For example, if a
point is reached in a narrative where John is expected
to kiss Mary but he does not, then the story tree
would contain at that point a node that would print as
(NOT OF (KISS A JOHN T H MARY)) .

Each node in the database represents either a class
object or an instance of a class object. Every class
object points to all of the tokens subsumed by it in the
network. For example, the class object representing
D O G would have pointers to each of its tokens,
DOG1, DOG2, DOG3, etc., which represent individual
objects of the class DOG.

The database retrieval functions utilize a kind of
" fuzzy" partial matching to retrieve potential rules to
be applied to a proposition. Partial matching allows
the rule-writer to combine rules that only differ in one
or two minor arc names, but which all share the same
major arc names; only one rule need be written, speci-
fying the major case relations and ignoring the minor
ones (which can be checked for in the preconditions of
the rules). Partial matching allows the generator to
bring more operators to bear at a given point in the
story construction. However , the parser pays the price
for this flexibility by having to examine more alterna-
tives at each point in its parsing where rules apply.

The funct ion which queries the database for the
existence of facts (instantiatcd proposi t ions) , uses a
"comple te" pa t te rn-matching algorithm, since "John
ate cake last night" is not deemed a sufficient answer
to the quest ion "Who ate all the cake last night at
Mary 's place?".

3. Story Analysis Using Extended Horn Clauses

This section describes the use of the Extended
Horn Clause rule form and illustrates the process of
rule-writing using several paragraphs from the Rufolo
story as an example. The notion of rule failure is also
presented as an integral feature of parsing and gener-
ating narrative texts.

3.1 Writ ing Rules Using Extended Horn Clauses

The E H C rule form divides the propositions sub-
sumed by a macrostructure into three categories: the
preconditions, the expansions, and the postconditions.
The preconditions define the applicability of a particu-
lar r u l e . When a precondit ion has been satisfied, then
a rule's expansions and postcondi t ion correspond
roughly to the traditional add /de le te sets of problem-
solving systems. The add set consists of the ordered
list of actions to be taken as a result of the rule's invo-
cat ion plus the postcondi t ion states of the actions.
Members of the delete set are propositions of the form
(NOT OF N O D E) appearing in the expansion and
postcondit ion of a rule.

The question then becomes one of mapping a text
into rules of this structure. To illustrate this process
consider the following streamlined version of two par-
agraphs from the Rufolo story:

Rufolo made the usual calculations that mer-
chants make. He purchased a ship and loaded it
with a cargo of goods that he paid for out of his
own pocket. He sailed to Cyprus. When he got
there he discovered other ships docked carrying
the same goods as he had. Therefore he had to
sell his goods at bargain prices. He was thus
brought to the verge of ruin.

He found a buyer for his ship. He bought a
light pirate vessel. He fi t ted it out with the
equipment best suited for his purpose. He then
applied himself to the systematic looting of other
people 's proper ty , especially that of the Turks.
After a year he seized and raided many Turkish
ships and he had doubled his fortune.

At the top level of the story we have two complex
actions taking place: a trading voyage and a pirate
voyage. A T R A D I N G V O Y A G E requires a merchant,
a ship, some trade goods and a destination on a sea-
coast (for example, an island). So we embody this in
the rule

TRADINGVOYAGE RULE :

HEAD :

(TRADINGVOYAGE** A X TH Y TO Z)

PRE :

(X ISA MERCHANT)

(Z ISA ISLAND)

(Y ISA GOODS)

(W ISA SHIP)

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 139

Alfred Correira Computing Story Trees

Given that these conditions are true, then Rufolo plans
his strategy, obtains both ship and goods and sails to
Cyprus with them (the funct ion of the asterisks is
notational only and is used to distinguish those predi-
cates that have rule expansions from those that do
not):

TRADINGVOYAGE RULE :

HEAD :

(TRADINGVOYAGE** A X TH Y TO Z)

PRE :

(POSSESS* A X TH U)

EXP :

(MAKE* A X TH

(CALCULATIONS MOD MERCHANT

NBR PL TYPE USUAL))

(PURCHASE** A X RI W R2 Y)

(LOAD* A X TH W WITH Y)

(SAIL* A X TH W TO Z)

(TRADE** A X TH Y FOR

(PROFIT MODAL EXPEC))

POST:

(NOT OF (WANT* A X TH

(DOUBLE* A X TH U)))

PURCHASE RULE :

HEAD :

(PURCHASE** A X RI Y R2 Z)

PRE :

(POSSESS* A X TH (W ISA WEALTH))

EXP :

(POSSESS** A X TH Y)(POSSESS** A X TH Z)

POST :

(NOT OF (POSSESS* A X TH W))

POSSESS RULE:

HEAD :

(POSSESS** A X TH Y)

PRE :

(POSSESS* A X TH WEALTH)

EXP :

(BUY* A X TH Y)

One might consider doing without the P U R C H A S E
rule. Its precondition could have been pushed into the
precondition for the T R A D I N G V O Y A G E rule and its
expansion inserted into T R A D I N G V O Y A G E at the
same point where the P U R C H A S E is now. But this
rule-splitting is not just a stylistic choice; there are
several advantages to this strategy. First, keeping rule
size small makes the rule easier to read and write.
Experience with writing rules showed that an average
rule size of three to five proposit ions proved to be
most efficient in this respect. Second, smaller rule size
cuts down on the number of permutations of a rule
that need to be recognized by the parser, due to miss-
ing proposit ions or the transposit ion of proposit ions
that describe more or less contemporaneous events.

Finally, smaller rules make for more conciseness in
summaries generated from the rules.

The postcondit ion of the P U R C H A S E rule is that
the wealth used to buy the ship and goods is no longer
in the possession of its original owner. This would
have been inserted into the postcondit ion of TRA-
D I N G V O Y A G E if the P U R C H A S E rule had been
incorporated into it directly.

The difference between the POSSESS* and
POSSESS** proposit ions in the P U R C H A S E rule is
illuminating. The POSSESS* in the precondition does
not have a rule attached to it, so it cannot be expand-
ed. If a merchant does not already possess wealth
when he reaches this point, he cannot go about obtain-
ing it through rule expansion (although the generator
can fudge and assert that he does have wealth at this
point to move the story generation along). If the pre-
condit ion of the P U R C H A S E rule had contained a
POSSESS** instead, then the merchant would be able
to apply the POSSESS rule above to acquire wealth if
he did not have any. The convention, as illustrated
above, is for the expandable propositions to be suffix-
ed with two asterisks, and for terminal elements to be
suffixed with a single asterisk. This feature is only a
notational device.

The T R A D E rule describes a trading scenario un-
der conditions of heavy competition:

TRADE RULE :

HEAD :

(TRADE** A X TH Y FOR Z)

PRE :

(Z ISA PRICE MOD GOOD)

EXP :

(ADVERSE-TRADE** A X TH Y)

(SELL* A X TH Y FOR Z)

(NOT OF (POSSESS** A X TH Y))

POST :

(MAKE* A X TH (PROFIT MOD GREAT))

ADVERSE-TRADE RULE :

HEAD :

(ADVERSE-TRADE** A X TH Y)

PRE :

(X ISA MERCHANT)

EXP :

(DISCOVER* A X TH

(SHIP NBR MANY MOD DOCKED POSSBY

(MERCHANT NBR SOME MOD OTHER)))

(CARRY* INSTR SHIP TH (GOODS SAMEAS Y))

It should be noted that the postcondit ion of the
TRADE rule, the MAKE**, will fail because Rufolo
does not SELL* his goods for a profit. Failure in a
rule is covered in the next section, and will not be
further discussed here.

140 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

Because of his failure at trading, Rufolo a t tempts
ano ther scheme to double his weal th (which is his
original goal in the story); he turns pirate.

PIRATEVOYAGE RULE :

HEAD :

(PIRATEVOYAGE** A X TH Y MEANS Z)

PRE :

(Z ISA SHIP TYPE PIRATE MUD LIGHT)

(POSSESS** A X TH Z)

(Y ISA WEALTH)

(W ISA WEALTH VAL (TWICE* RI W R2 Y))

(U ISA NATIONALITY)

EXP :

(FITOUT* A X TH Z WITH

(EQUIPMENT MOD BESTSUITED))

(SEIZE* A X TH

(SHIP NBR MANY POSSBY U DURATION YEAR))

POST:

(NOT OF (WANT* A X TH

(DOUBLE* A X TH Y)))

DOUBLE* A X TH Y)

POSSESS* A X TH W)

The first thing that Rufolo must do is to come to
possess a pirate ship, which he does by selling his mer-
chant vessel and using the funds to buy a light vessel:

POSSESS RULE :

HEAD :

(POSSESS** A X TH Y)

PRE :

(NOT OF (POSSESS* A X TH WEALTH))

(POSSESS** A X TH Z)

EXP :

(SELL* A X TH Z) (BUY* A X TH Y)

POST:

(NOT OF (POSSESS* A X TH Z))

Note that the two POSSESS** rules above would be
combined into a single rule in the database.

Rufolo outfits his newly purchased ship as a pirate
vessel and then over the course of a year uses it to
seize the ships of many Turks, until at the end he has
doubled his wealth. The postcondit ion of this activity
is that he no longer wishes to double the amount of
his (old) wealth and that he now possesses twice as
much wealth as before.

These rules do not thoroughly map the exact mean-
ing of the two paragraphs above, but they do give a
f lavor for the process of rule-writ ing, and linguistic
precision is easy to ensure by use of additional rules to
pin down precisely every nuance in the text, part icu-
larly with respect to selling and buying and change of
ownership.

Rule-wri t ing using E H C s follows s tandard top-
down programming practice. At the top level are the

rules that describe the narrat ive structure of the text.
For the Rufolo story, we have:

STORY RULE :

HEAD :

(RUFOLO-STORY** A X)

EXP :

(SETTING A X) (EPISODE)

POST :

(INTEREST* A X TH COMMERCE

MODAL NOLONGER)

(LIVE* A X MANNER SPLENDOR DURING

(REMAINDER OF (DAYS OF X)))

EPISODE RULE :

HEAD :

(EPISODE)

EXP:

(OR ((INTERLUDE) (EPISODE))

((COMPLICATION) (EPISODE))

((COMPLICATION) (RESOLUTION)))

The Rufolo story is basically a S E T T I N G followed
by an E P I S O D E , where E P I S O D E is def ined recur-
sively as either an I N T E R L U D E , which leads into an
episode followed by a new EPISODE, a C O M P L I C A -
T I O N followed by a new EPISODE, or a C O M P L I -

C A T I O N and a R E S O L U T I O N if the C O M P L I C A -
T I O N does not cause any new problems to arise (due
to rule failure - see next section).

The S E T T I N G rule

SETTING RULE :

HEAD :

(SETTING A X)

PRE :

(LIVE* A X LOC Y DURING Z)

(W ISA WEALTH VAL CERTAINAMOUNT)

(POSSESS* A X TH W)

(NOT OF (SATISFY* A X WITH W))

POST:

(WANT* A X TH (DOUBLE* A X TH W))

will create a charac te r and his env i ronment - the
L I V E * a n d P O S S E S S * - and give the character a goal
- the WANT*.

Exper ience with simple narrat ive text leads to the
bel ief that it is relat ively easy to learn to p rogram
using E H C rules, and that their expressive power is
limited only by the ingenuity of the rule-writer. Ex-
per iments with o ther text forms - encyclopedia arti-
cles, magazine articles, dialogues, etc. - need to be
pe r fo rmed before a final judgement can be made con-
cerning the fitness of the E H C as a general fo rm for
processing.

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 141

Alfred Correira Computing Story Trees

3.2 S u c c e s s and Failure in EHC Rules

The idea of rule success or failure in the E H C rule
form is tied to the domain the rules a t tempt to model -
real life mot iva ted behav io r (act ions) where things
can, and do, go wrong, and actors fail to achieve their
goals. In real life, Rufolo ' s decision to go on a T R A -
D I N G V O Y A G E does not guarantee that the voyage
will be successful, or even begun. For a given rule,
one of three condi t ions may arise. Firs t the rule 's
precondit ions may fail to be true and the rule cannot
be applied. In the T R A D I N G V O Y A G E rule, if Rufo-
1o does not have the money necessary for trading in
Cyprus or does not possess the knowledge to success-
fully compete , then the T R A D I N G V O Y A G E canno t
be completed despite Rufolo ' s best intentions. A rule
is not invoked until one of its precondit ion sets has
been successfully processed (i.e. each precondi t ion in
the set has been successfully fuzzy-matched) .

Once this condit ion is satisfied then the rule can be
invoked and Rufolo can s tar t his T R A D I N G V O Y -
AGE. At each point of expanding the macrost ructure ,
i.e as Rufolo per forms each step in the expansion of
the rule, he is subject to success or failure. He may
succeed in buying the goods, or he may fail, and the
same is true for buying the ship and the loading of the
ship with goods, etc. If he does manage to pe r fo rm all
the actions in an expansion, then the rule is said to
succeed, and its pos tcondi t ion proposi t ions can be
asserted as being true. In the T R A D I N G V O Y A G E
rule, an-asser t ion that Rufolo makes a profi t would be
instantiated.

But if an expansion fails, a different logic applies.
If Rufolo has loaded the ship with his goods, but the
ship burns in the harbor , then the last expansion prop-
osition, sailing to Cyprus, cannot be performed. The
rule is said to fail, and the postcondi t ion proposi t ions
are negated. In the T R A D I N G V O Y A G E rule, an
assert ion that Rufolo does not make a profi t would be
ins tant ia ted because no o ther expans ion opt ions re-
main.

Rule failure is an important concept with respect to
narratives. Many narrat ives consist of a series of epi-
sodes in pursuit of a goal; of ten each episode, except
the last, represents an instance of a failed rule. If a
rule prior to the last succeeded, then the goal would
have been achieved and no fur ther episodes would
have been forthcoming, (unless a new goal were cho-
sen). The mechanism of rule failure is a natural one
for analyzing this type of narrat ive pattern.

4. Generat ion and Parsing

In this section a procedure for using ma'crostruc-
tures, embod ied in the E H C rule- form, to genera te
and parse stories, and a p rogram, B U I L D T A L E /
T E L L T A L E , that implements it are discussed.

4.1 Generat ion

The paradigm used by T E L L T A L E for s tory gener-
ation is similar to that used by Meehan (1976) in his
T A L E S P I N program, which wrote "metanove l s" con-
cerning the interrelationships, bo th physical and men-
tal, of the mot ives and actions of an th ropomorph ized
animals possessing simple behavior pat terns. Meehan
described a s tory as an exposit ion of events that occur
when a mot iva ted creature a t tempts to achieve some
goal or fulfill some purpose, such as satisfying a need
or desire, solving a p rob lem, doing a job, etc.
T A L E S P I N was basically a problem-solver that oper-
ated on a da tabase consisting of living entities, inani-
mate objects , and a set of assert ions (rules) typifying
the relationships among them, and describing opera-
tions for affect ing those relationships. The rules were
organized into plans based on conceptual relatedness,
which aided in retr ieval of specific rules.

Meehan emphasized the use of plans as a mecha-
nism for genera t ing stories. Plan ac t iva t ion was a
process of assigning a goal to a charac te r and then
calling up any relevant plans that were indexed by this
goal.

In the E H C rule fo rm the precondi t ion governs the
ability of a rule to be invoked. I f a rule is considered
to be a plan in the Meehan sense above, then instead
of indexing the rule by its postcondi t ion proposi t ions,
it can be indexed by its precondi t ion if the precondi-
tion contains informat ion relating to motivat ion. For
example, the rule,

MARRY RULE :

HEAD :

(ASK-MARRY** A X TH Y)

PRE :

(X ISA MAN)

(Y ISA WOMAN)

(WANT* A X TH (MARRY* A Y TH X))

EXP :

(GO* A X TO Y)

(ASK* A X TH Y IF (MARRY* A Y TH X))

(ACCEPT* A Y TH X)

POST:

(MARRY* A Y TH X)

is a rule that can be act ivated if some X, who must be
a man, W A N T s Y, who must be a woman, to mar ry X.
Each rule could contain proposi t ions in its precondi-
t ions that restrict the set of objects that can instantiate
the variables of the rule.

The last propos i t ion in the precondi t ion , the
WANT*, is a goal s ta tement ; it s tates that the M A R -
RY rule can be invoked when one pe r son wants to
marry another. In the process of generat ing a story, if
a point is reached where a man develops the goal of
wanting to mar ry a woman, the M A R R Y rule can be

142 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

invoked to at tempt to satisfy that want. Of course, if
the ASK* or ACCEPT* fails, then the postcondit ion
becomes (NOT OF (MARRY* ...)) instead.

The main advantage of inserting the WANT* into
the preconditions is that the generator need not, as a
result, contain special logic to examine the postcondi-
tions of a rule to ascertain which rules to apply at a
point in the story. The normal rule activation mecha-
nism (a rule can only be applied if one of its precondi-
t ion sets succeeds) will automatically weed out un-
wanted rules because of the informat ion relating to
motivation.

T E L L T A L E generates stories (sequences of propo-
sitions) based on such rules contained in its database,
either under user control or directed by the program
itself. The database is a semantic network of nodes
created by building a network of the case-predicate
rules supplied by the user. The input to T E L L T A L E
is the root of a story tree, which informs T E L L T A L E
as to the type of story which is to be generated (fairy
tale, etc.). The output from T E L L T A L E is an instan-
tiated story tree whose terminals are the propositions
of the text. The program SUMMARIZE computes
summaries from the story tree. An annotated example
rule-base can be found in Appendix A for generating a
set of fairy tales. A sequence of propositions for a
story generated from that rule-base is shown in Ap-
pendix B. Two summaries of the story are shown in
Appendix C.

Starting with the root, T E L L T A L E executes until
no nodes remain to be expanded, because all have
been reduced to te rminal propositions or some depth
limit has been reached. A traversal of the terminals of
the resulting story will yield the proposit ion text of the
story; any higher level traversal will yield a summary
of the story.

4 . 2 P a r s i n g

This section describes a procedure, BUILDTALE,
for using macrostructures to parse stories. The goal in
writing the generator-parser system has been to create
a program capable of understanding those texts that it
can generate from a rule-base. Diagrammatically

RULEI I ISUMITEXTIPARI ISUMITEXT

BASEIGENITREEIMARIPROPISERITREEIMARIPROP

- - - > 1 I - - - > l l Z E I - - - > l I - - - > I I Z E I >
I I I IOSITI I I IOSIT

I A I I B IIONSl C I I D lIONS

the diagram above should be the same as the output
from part D. The story trees might or might not be
identical, depending on whether the story grammar is
ambiguous.

The philosophy of the understander can be summa-
rized by recalling a concluding s tatement by Rumel-
hart (1975):

"I t is my suspicion that any automatic ' s tory
parser ' would require ... ' top-down' global struc-
tures but would to a large degree discover
them, in any given story, by the procedures devel-
oped by Schank (1975) ."

The procedures developed by Schank emphasize the
"bo t tom-up" approach to story parsing. Starting with
the raw input data, emphasis is placed on integrating
each sentence into the developing narrative structure.
The structures used are scripts (and plans), and pars-
ing integrates proposit ions into scripts. The scripts
form an implicit episodic structure, but the higher or-
der relationships among the scripts are not generally
made specific (i.e. what structures form episodes, set-
ting information, complications, resolutions, etc).

B U I L D T A L E is a program that combines the top-
down and bot tom-up approaches. As the parse pro-
gresses, B U I L D T A L E attempts to integrate the termi-
nal propositions into the context of a story tree. It
manipulates the terminals bot tom-up, integrating them
into macrostructures, while it is building story struc-
ture nodes (STORY, SETTING, EPISODE, etc.) top-
down. If B U I L D T A L E successfully parses the text,
these two processes will converge to instantiate a com-
plete story tree.

Starting with the root of a story tree and an un-
marked string of text propositions, B U I L D T A L E exec-
utes, by an algorithm described in Section 4.4, until
one of three conditions occurs:

1) If the procedure exhausts the proposit ion
list before the STORY node has been
built, then it fails.

2) If the procedure builds an instance of
STORY but there still remain unmarked
propositions, then it fails.

3) If an instance of STORY is built and the
text s t ream is empty, the the procedure
returns the instantiated root.

A terminal-level traversal of the resulting tree will
yield the original input text proposit ion stream; higher
level traversals will yield summaries of the text.

The tree that results from the story generator should
yield the same bot tom-level terminal proposit ions as
the tree that results from the parsing of the terminal
propositions of the story, i.e. the output from part B in

4.3 The Relat ionship Between Generat ing and Parsing

There are several differences between the BUILD-
T A L E and T E L L T A L E procedures. First, whereas
the parser is restricted to propositions from the input

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 143

Alfred Correira Computing Story Trees

text for its terminals, the genera tor is free to build a
terminal any time one can be generated. Second, the
genera tor is free at each step to choose any rule that
will match a proposi t ion it is t rying to expand, and
also to use any of a rule 's precondit ions or expansions
in any order. The parser must be careful in its choice
of rules and in how it examines the precondit ions and
expansions in a rule, always examining them in order
of decreasing length, to ensure that it does not build a
story tree and find lef t -over unmarked text proposi-
tions when done.

The generator builds a proposi t ion by first instanti-
ating its precondi t ion, expansion, and postcondi t ion,
and then at taching them to the instantiated head. The
genera tor knows at all t imes the fa ther of the proposi-
t ion it is instantiating; in fact it knows every ancestor
of that proposi t ion be tween it and the root , since it
opera tes strictly top-down.

The parser opera tes primari ly as a le f t -corner
b o t t o m - u p procedure , with overal l direct ion supplied
by some top-down processing. When the parser builds
a s t ructure, it cannot be sure at that t ime that the
s t ructure is indeed the correc t one to be in tegra ted
into the tree at that point, i.e. it does not yet know the
correct path to the root. The parser must, therefore,
save the context informat ion of its build decisions, so
that they can be undone (or at least ignored) if they
are later found to be in error. In fact , the final struc-
ture of the tree can only be assigned af ter all the tex-
tual proposi t ions have been analyzed. This is in agree-
ment with the s ta tement of van Dijk (1975, pg. 11):

"Strictly speaking, a definite hierarchical structure
may be assigned to a discourse sequence of prop-
ositions only af ter processing of the last proposi-
tions. For long discourses this would mean that
all other proposi t ions are kept in some memory
store."

Structures are built as the parse progresses, and some
might be discarded or rearranged. Their final posit ion
in the tree cannot be determined until all the proposi-
tions have been examined.

Some previous parsers solved this problem by re-
sorting to higher-level languages like C O N N I V E R and
P L A N N E R , paying the price in higher computa t ional
costs. A conscious effor t was made with this project
to avoid the expense of resor t ing to a higher- level
language by having LISP per fo rm the necessary book-
keeping to handle the backtracking involved in undo-
ing an incorrect choice (build). In B U I L D T A L E , the
bookkeeping is accomplished by pushing context infor-
mat ion onto the LISP control stack. Usually, when a
build is pe r formed , instead of returning (popping the
LISP stack) , a fur ther descent is made in order to
integrate the next proposit ion. If a build is later found

to be in error , then a F A I L funct ion automat ica l ly
causes LISP to back up in its s tack to the point where
the build was made and undo it, since all the informa-
tion that was around when the first decision was made
to build is still present on the stack.

These differences should not obscure the very real
similarities be tween the two processes. T E L L T A L E
and B U I L D T A L E use the same functions to analyze
the precondit ions, expansions and the postcondi t ion of
a rule. In fact , the "bas ic" control s tructure of T E L L -
T A L E is a special case of the control s t ructure of
B U I L D T A L E . The difference be tween the two occurs
at build time. In B U I L D T A L E , when a node in the
t ree is built, a check is made to see if this node
matches the root of the der ivat ion t ree being built.
This may not be the case since the node may be many
levels lower in the tree than the root in question, and
these levels will need to be built before the derivat ion
tree is complete. Of course, if the node should match
the root, then it is returned.

T E L L T A L E , on the o ther hand, never descends
more than a single level in the tree at a time. When a
build is per formed, it will always derive f rom the de-
r ivation tree being processed. The node and the root
a lways match , and the node is re turned. At build
time, when B U I L D T A L E decides whether to call itself
recursively (to add the next higher level in the tree) or
to pop the stack (returning the derivat ion tree root) ,
T E L L T A L E will always pop the stack.

Genera t ion and parsing use the same grammar with
different terminat ing conditions to define the control
paths through the grammar. They resemble each other
in comput ing as output a derivat ion tree whose termi-
nals are the proposi t ions of the text. This fact was
borne out during the implementa t ion of the system.
T E L L T A L E was coded first, and the eventua l
T E L L T A L E / B U I L D T A L E control s tructure for proc-
essing precondi t ions , expansions , and pos tcondi t ions
was debugged and tes ted by genera t ing m a n y s tory
trees. B U I L D T A L E grew out of T E L L T A L E by add-
ing the build-t ime r ecu r s ion /backup mechanism to the
control structure.

The symmetr ic relat ionship be tween generat ion and
parsing with respect to the computa t ion of derivat ion
trees is one significant feature of the E H C rule system.

4.4 T h e Basic Contro l S t ruc ture

B U I L D T A L E and T E L L T A L E are essentially large
separa te P R O G - d e f i n e d LISP funct ions tha t ef fec t
different initialization conditions, and then execute the
same set of underlying functions. Below is a descrip-
t ion of the basic control structure shared by T E L L -
T A L E and B U I L D T A L E :

144 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

I: For each proposit ion being examined:

1) If it exists instantiated in the data base,
then return the instantiation,
whether it is found negated or not;

2) if there are no rules for the node,
then it can be asserted;

3) otherwise, for each rule until one succeeds:

a) for each precondit ion in the rule
until one succeeds,

do I for each proposit ion in the
precondition;

b) if no precondit ion succeeds,
then fail;

c) otherwise, for each expansion
until one succeeds,

do I for each proposit ion in the
expansion;

d) if an expansion succeeds, then for
each proposition in the
postcondition,

do I and return the instantiated
node (rule success);

e) otherwise, for each proposit ion
in the postcondition,

do I for the negation of the
proposition and generate
a (rule) failure.

"Do I" means "fol low the procedure labelled ' I ' "
which is the entire basic control s tructure outl ined above.
Since postcondit ion propositions do not have rule ex-
pansions, they never perform step 3 above. Also, rule
failure is not marked by negation (another mechanism
is used) so, if a negated node is encountered, it will
never fall through to step 3. Finally, it should be no-
ticed that, although it is possible for the algorithm to
generate erroneous propositions in step 2 if exploring
an incorrect path during parsing (BUILDTALE) , these
propositions will be undone during backup when the
path has been recognized as incorrect.

5. Extracting Summaries From Story Trees

One of the principal reasons for choosing the
Kintsch and van Dijk macrostructure theory was the
resulting proper ty of summarizabili ty; the ability to
produce coherent summaries is one mark of intelli-
gence in a parser. The summarizer produces various
strings of propositions from the story tree which form
summaries of a text. One such string is composed of
the terminals and represents the complete story. Any
sequence of propositions output by the summarizer is
a well-formed input to the parser. The system is thus
able to parse all proposit ion sequences it can generate.

Since the summary feature is inherent in the trees
as they are given to the summarizer, a simple level-
traversal algorithm would have been sufficient to gen-

erate useful output. However , this would have result-
ed in needless redundancy of propositions (since some
are checked repeatedly by the precondi t ions of the
rules and have pointers to them at many places in the
tree). Therefore , the summarizer remembers what it
has already output in the summary, so as never to
repeat itself.

Another area of repeti t ion concerns attributes for
objects in the story. To avoid repeating an object 's
attributes, the summarizer keeps a list of objects that
have already appeared in at least one proposition, and
whenever it encounters in a new proposit ion an object
not on this list, it outputs it with all of its properties
and then places it on the list of expanded objects.
Since no t ime-markers are put on an object 's proper-
ties, they are all printed out at once, even if some of
those properties are not at tached to the object until
much later in the story; this reveals a weakness in the
procedure that can be corrected by the introduction of
t ime-markers for objects (actions already possess time-
markers).

One attribute of story trees is that, at their higher
nodes, one can read off the syntactic structure of the
story. For example suppose a story consists of a set-
ting fol lowed by three episodes. As a summary,
"setting plus three episodes" is usually not very inter-
esting; therefore the summarizer has the ability to
recognize and descend below these story structure
nodes in the final summary. These nodes are t reated
like all o ther nodes to the tree building procedures,
but the summarizer descends below the nodes to print
their descendants , no mat ter what level summary is
being computed.

There is also the question of summarizing the ma-
crostructures (rules). By definition, these nodes are
expandable, i.e., they have a rule for expanding them
in the rule-base. Maerostructures are not marked with
a NOT if they fail; only simple propositions - termi-
nals - are. However , whether a script achieves its goal
or not is vital information to be included in any rea-
sonable summary produced from the tree. Therefore ,
when summarizing a macrostructure , the summarizer
outputs bo th the head (the macros t ructure pat tern)
and its postcondit ion (if the script fails to achieve its
goal, the postcondit ion will have been negated).

Finally, the summarizer outputs only those proposi-
tions it recognizes as non-stative descriptions; it never
outputs state descriptions. The reason for this is that
a stative always describes the at t r ibute(s) of some
object, and can therefore be output the first time that
that object appears in an active proposition.

The summarizer is an algorithm that, given a story
tree and a level indicator, scans the nodes of the tree
at that level, and applies the following rules to each
node:

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 145

Alfred Correira Computing Story Trees

1) If the node is a story structure node, then
summarize its sons.

2) If the node has already been processed,
then skip it.

3) If the node is marked as a script, return
its head fol lowed by its postcondi t ion
propositions.

4) If the node is a stative, then skip it.

For each case value in a proposit ion to be output (for
example, R UF OLO1, D O U B L E * l , and W E A L T H 1 in
(W A N T * I A R U F O L O 1 T H (D O U B L E * I A
R U F O L O 1 T H W E A L T H 1))) , the following rule is
applied:

5) If the case value has not appeared in a
previously accepted proposi t ion, print it
and all its attributes; otherwise, just print
the case value itself.

For example, if RUFOLO1 has been mentioned in
a proposit ion prior to W A N T * I in a summary, then
only RUFOLO1 will be present in the W A N T * I prop-
osition, and not the fact that R U F O L O 1 is a
M E R C H A N T 1 from RAVELLO1, etc.

An initial version of an English language generator
was writ ten that applies a set of rules to the output of
the summarizer to produce well-formed English texts
(Hare and Correira, 1978). This generator uses rule
forms and the summarizer output to solve some of the
problems involved in: reasonable paragraphing and
sentence connect ivi ty, elision of noun groups and
verbs, and pronominalization of nouns. The decisions
are based, in part, on the structure of the story tree
and the positions of individual proposi t ions in that
tree.

6. D iscussion and Conc lus ions

The task of text processing requires solutions to
several important problems. The computat ional theory
for macrostructures using Extended Horn Clauses was
designed with the following goals in mind. A compu-
tational model should have some degree of psychologi-
cal validity, both to provide a humanly useful repre-
sentation of textual content and organization and to
ensure that the task of rule-writing is as natural as
possible for the human grammar producer. It should
be conceptually simple, in both design and implemen-
tation, taking advantage of similarities between gener-
ation and parsing, and it should offer a rigorous data
structure that is uniform and avoids the growth of ad
hoe large-scale structures.

The computat ional macrostructures realized by the
Extended Horn Clause notat ion succeed in many ways
in satisfying these goals. They appear to resemble the
structures humans build mentally when reading narra-
tive texts. The story tree is a logical way to organize
these macrostructures, with the terminals of a particu-
lar story tree comprising the actual textual proposi-
tions, and the interior nodes containing the instantiat-

ed heads of rules (corresponding to macrostructures) .
The story tree has the summary property: if the tree is
t runcated at any level, then a "meaningful" (coherent)
summary of the original text can be read off directly.
The generality of the macrostructure propositions in-
creases as one nears the level of the root (going from
the level of specific actions to the rules that contain
them, to the story categories that contain these rules),
which can be considered as the title for the text at its
terminals.

The concept of rule failure takes the EHC out of
the strictly logical system of the normal (Kowalski-
type) Horn clause logic, since failure in a normal logic
system means something di f ferent f rom failure here.
In narratives, failure needs to be recorded, since it is
one source of " interest" in the resulting story; striving,
failing, and striving again is a common occurrence in
simple narratives. These failure points, and their con-
sequences, have to be recorded in the story tree
(whereas, in normal logic systems, failure points are
invisible to the final result) and, fur thermore , they
restrict the choice of paths that can reasonably be
expected to emanate f rom the point of failure. The
failure mechanism is tailored for narratives involving
entities exhibiting mot ivated behavior. Other text
forms, such as technical or encyclopedia articles,
would probably not require the failure mechanism.

The underlying approach in B U I L D T A L E /
T E L L T A L E is that of a problem-solver, as was also
true of Meehan 's story-writer. A rule-base, organized
as a hierarchy of s tory trees, is used to generate a
particular, instantiated, story tree by an inference pro-
cedure augmented via the rule failure mechanism de-
tailed in Section 3.2. Each instantiated tree is t reated
as a context , consisting of the events, objects , and
their relationships, relating to a particular story. The
facts and rules in the rule-base serve as a model for
the possible states in the microworld formed by that
story tree. These states are categorized using linguis-
tic entities, such as SETTING, EPISODE, COMPLI-
CATION, and RESOLUTION.

The problem-solving approach, coupled with the
story grammar concept, is a natural one for processing
most forms of narratives. Analogous systems of rules
could be used for processing other large text forms,
although the categories involved would be different.

Notes on the A p p e n d i c e s

The rules are all written in a case predicate nota-
tion (Fillmore, 1968). The general form for such a
predicate is

(HEAD ARC1 VALUEq . . . ARC In] VALUE [n])

The H E A D of a case predicate is ei ther a verb or a
noun form; because no formal lexicon was maintained
for the T E L L T A L E / B U I L D T A L E program, verb
forms were marked with an asterisk and objects were
left unmarked. The ARCs are standard case relations,

146 American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

such as Agent, THeme, LOCation, INSTance, etc.,
although no attempt was made to be strictly correct
linguistically with their every use, and a few relations
were created for the sake of convenience. When a
good arc name did not suggest itself, then an arbitrary
arc name - R1, R2, etc. - was used instead. The
V A L U E can be either a verb form, an object, or an-
other case predicate.

The case predicates used in the program were writ-
ten to enhance readability. For example, in the fairy-
tale story (Appendix B), the case predicate

(WANT*I TO POSSESSI A GEORGEI TH MARYI)

can be rendered into English as "George wants to
possess Mary". The sequence

(GO*3 A GEORGEI TO IRVINGI)

(SLAY*I A GEORGEI TH IRVINGI)

(RESCUE*I A GEORGEI TH MARYI)

can be rendered as "George goes to Irving. George
slays Irving. George rescues Mary.".

A p p e n d i x A - Rule-base for Fairytale

FAIRYTALE RULE:

HEAD:

(FAIRYTALE*)

EXP:

(FAIRYSTORY** A X TH Y)

FAIRYSTORY RULE:

HEAD:

(FAIRYSTORY** A X TH Y)

EXP:

(SETTING A X)

(EPISODE A X TH Y)

POST:

(LIVE* A X TH Y MANNER

HAPPILY_EVER_AFTER)

SETTING RULE:

HEAD:

(SETTING A X)

PRE:

(LIVE* A X LOC Y DURING Z)

LIVE RULE:

HEAD:

(LIVE* A X LOC Y DURING Z)

PRE:

(CHAR INST X) (Y ISA PLACE) (Z ISA TIME)

CHAR RULE:

HEAD:

(CHAR INST X)

PRE:

(OR (X ISA KNIGHT SEX MALE PERSON T)

(X ISA PRINCE SEX MALE PERSON T))

EXP:

(OR (X MOD BRAVE) (X MOD HANDSOME))

EPISODE RULE:

HEAD:

(EPISODE A X TH Y)

EXP:

(MOTIVE A X TH Y) (ACTION A X TH Y)

MOTIVE RULE:

HEAD:

(MOTIVE A X TH Y)

PRE:

(DESIRE* A X TH Y)

EXP:

(WANT* TO POSSESS A X TH Y)

DESIRE RULE:

HEAD:

(DESIRE A X TH Y)

PRE:

(CHAR INST X)

EXP:

(OR (Y ISA PRINCESS SEX FEMALE

PERSON T MOD BEAUTIFUL)

(Y ISA HOLY OBJECT MOD LOST))

ACTION RULE:

HEAD:

(ACTION A X TH Y)

EXP:

(OR (ASK-MARRY** A X TH Y)

(RESCUE** A X TH Y FROM Z)

(QUEST** A X TH Y)

(PRAY** PART FOR A X TH Y))

ASK RULE:

HEAD:

(ASK-MARRY** A X TH Y)

PRE:

(WANT* TO POSSESS A X TH Y)

(Y ISA PRINCESS)

EXP:

(GO* A X TO Y)

(ASK* A X TH Y IF (MARRY* A Y TH X))

(ACCEPT* A Y TH X)

POST:

(MARRY* A Y TH X)

RESCUE RULE:

HEAD:

(RESCUE** A X TH Y FROM Z)

PRE:

(WANT* TO POSSESS A X TH Y)

(Y ISA PRINCESS)

(THREATEN** A Z TH Y)

EXP:

(GO* A X TO Z)

(SLAY* A X TH Z)

(RESCUE* A X TH Y)

POST:

(MARRY* A Y TH X)

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 147

Alfred Correira Computing Story Trees

THREATEN RULE:

HEAD:

(THREATENSS A X TH Y)

PRE:

(X ISA DRAGON ANIMATE T)

(X SOD EVIL)

(Y ISA PRINCESS)

(WANT • TO POSSESS A X TH Y)

EXP:

(CARRY s~ PART OFF A X TH Y TO Z)

CARRY RULE:

HEAD:

(CARRY ss PART OFF A X TH Y TO Z)

PRE:

(X ISA DRAGON)

(Y ISA PRINCESS)

(Z ISA DEN POBJ T)

EXP:

(GO~ A X TO Y)

(CAPTURE • A X TH Y)

(FLYS A X TH Y TO Z)

QUEST RULE:

HEAD:

(QUEST s~ A X TH Y)

PRE:

(CHAR INST X)

(Y ISA HOLY OBJECT MOD LOST)

(WANT • TO POSSESS A X TH Y)

EXP:

(GO • A X TO ORACLE)

(REVEAL • A ORACLE TH PLACE OF Y)

(GO s A X TO PLACE)

(FIND s A X TH Y)

POST:

(POSSESS s A X TH Y)

PRAY RULE:

HEAD:

(pRAyss PART FOR A X TH Y)

PRE:

(CHAR INST X)

(WANT s TO POSSESS A X TH Y)

(Z ISA GOD) (W ISA CHURCH POBJ T)

EXP:

(OR ((GOS A X TO W)

(KNEEL s A X PREP (IN TH

(FRONT PREP (OF TH ALTER))))

(pRAys A X PREP (TO TH Z)

PREP (FOR TH Y))

((U ISA PRIEST SEX MALE PERSON T)

(GO • A X TO U)

(PAY • A X TH U EXPECT

(INTERCEDE s A U PREP (WITH TH Z)

PREP (FOR TH Y)))

(pRAys A U TO Z FOR Y)

(GRANT s A Z TH (PRAYER POSSBY U))))

POST:

(POSSESSS A X TH Y)

JOHN ISA PRINCE SEX MALE PERSON T)

GEORGE ISA KNIGHT SEX MALE PERSON T)

LANCELOT ISA KNIGHT SEX MALE PERSON T)

PARSIFAL ISA KNIGHT SEX MALE PERSON T)

MARY ISA PRINCESS SEX FEMALE PERSON T)

GUENEVIERE ISA PRINCESS

SEX FEMALE PERSON T)

(HOLY_GRAIL ISA HOLY_OBJECT POBJ T)

(SACRED_CROSS ISA HOLY_OBJECT POBJ T)

(CAMELOT ISA PLACE)

(MONTSALVAT ISA PLACE)

(ONCE_UPON A TIME ISA TIME)

(IRVING ISA DRAGON ANIMATE T)

(CARMEN ISA DRAGON ANIMATE T)

A p p e n d i x B - T e x t of Fairyta le

(FAIRYTALE*I)

(LIVES2 A (GEORGEI ISA KNIGHTI SEX MALE2

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA

PLACEI) DURING (ONCE_UPON A TIMEI ISA

TIMEI))

DESIRES2 A GEORGEI TH (MARYI ISA

PRINCESSI SEX FEMALEI PERSON T

MOD BEAUTIFULI))

(WANT~I TO POSSESSI A GEORGEI TH MARYI)

(GOal PART TOI A GEORGEI TO MARYI))

(ASKSl A GEORGEI TH MARYI IF

(MARRY~I A MARYI TH GEORGEI))

(NOT OF (ACCEPTSl A MARYI TH GEORGEI))

(NOT OF (MARRYS2 A MARYI TH GEORGEI))

(WANTS2 TO POSSESS2 A

(IRVINGI ISA DRAGONI ANIMATE T

MOD EVILI) TH MARYI)

(GOS2 PART TO2 A IRVINGI TO MARYI)

(CAPTURESl A IRVINGI TH MARYI)

(FLYSl A IRVINGI TH MARYI PREP

(TO TH DENI))

(GO~3 PART TO3 A GEORGEI TO IRVINGI)

(SLAYSl A GEORGEI TH IRVINGI

(RESCUESl A GEORGEI TH MARYI

(MARRYS4 A MARYI TH GEORGEI)

(LIVES3 A GEORGEI TH MARYI

MANNER HAPPILY EVER AFTERI)

A p p e n d i x C - S u m m a r i e s of Fa i ryta le

(FAIRYTALESl)

((LIVES2 A (GEORGEI ISA KNIGHTI SEX MALE2

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA

PLACEI) DURING (ONCE_UPON_TIMEI ISA

TIMEI))

(DESIRES2 A GEORGEI TH (MARYI ISA

PRINCESSI SEX FEMALEI PERSON T

MOD BEAUTIFULI))

148 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1980

Alfred Correira Computing Story Trees

WANT*] TO POSSESS*I A GEORGEI TH MARYI)

GO*I PART TO1 A GEORGEI TO MARYI)

ASK*I A GEORGEI TH MARYJ IF

MARRY*I A MARYI TH GEORGEI))

NOT OF (ACCEPT*I A MARYI TH GEORGEI))

NOT OF (MARRY*2 A MARYI TH GEORGE1))

TO POSSESS2 A

IRVINGI ISA DRAGONI MOD EVILI)

TH MARY I)

CARRY**2 PART OFFI A IRVINGI

TH MARYI TO DEN])

(GO*3 PART TO3 A GEORGEI TO IRVINGI)

(SLAY*I A GEORGEI TH IRVINGI

(RESCUE*I A GEORGEI TH MARYI

(MARRY*4 A MARYI TH GEORGEI)

(LIVE*3 A GEORGEq TH MARYI

MANNER HAPPILY EVER AFTERI)

(FAIRYTALE* I)

((LIVE*2 A (GEORGEI ISA KNIGHTI SEX MALE2

PERSON T MOD BRAVEI) LOC (CAMELOTI ISA

PLACEq) DURING (ONCE_UPON A TIME1 ISA

TIMEI))

(DESIRE*2 A GEORGE1 TH (MARYI ISA

PRINCESSI SEX FEMALEI PERSON T

MOD BEAUTIFULI))

(WANT*I TO POSSESSI A GEORGEI TH MARYI)

(ASK-MARRY**2 A GEORGEI TH MARYI)

(NOT OF (MARRY*2 A MARYI TH GEORGE]))

(RESCUE**2 A GEORGE] TH MARYI

FROM (IRVINGI ISA DRAGONI ANIMATE T

MOD EVILq))

MARRY*4 A MARYI TH GEORGEI)

LIVE*3 A GEORGEI TH MARYI

MANNER HAPPILY EVER AFTER]))

References

Bobrow, D. G. and Collins, A. 1975. Representation and
Understanding. New York: Academic Press.

Bobrow, D. G. and Raphael, B. 1974. "New programming lan-
guages for AI research". Computing Surveys, Vol. 6, No. 3, pp.
155-174.

Bobrow, D. and Winograd, T. 1977. "An overview of KRL, a
knowledge representation language." Cognitive Science, Vol. 1,
No. 1, pp. 3-46.

Charniak, E. 1972. "Toward a model of children's story compre-
hension." AI-TR-266. Cambridge, Mass.: M.I.T.A.I. Lab.

Charniak, E. and Wilks, Y. 1976. Computational Semantics. New
York: North-Holland.

Colmerauer, A. 1978. "Metamorphosis grammars" in Natural
Language Communication with Computers, ed. L. Bole, New
York: Springer Verlag.

Fillmore, C. 1968. "The case for case" in Universals in Linguistic
Theory, eds. E. Bach and R. Harms, New York: Holt, Rhinehart
and Winston.

Grosz, B. 1977. "The representation and use of focus in dialogue
understanding." Technical Note No. 151. Menlo Park, Califor-
nia: Stanford Research Institute.

Hare, D. and Correira, A. 1978. "Generating connected natural
language from case predicate story trees." unpublished manu-
script.

Hendrix, G. G. 1976. "Partitioned networks for modelling natural
language semantics." Dissertation. Austin, Texas: Department
of Computer Sciences, The University of Texas.

Kintsch, W. and van Dijk, T. 1978. "Recalling and summarizing
stories." in Current Trends in Textlinguistics, ed. Wolfgang Dres-
sier, de Gruyter.

Kowalski, R. 1979. Logic for Problem Solving, New York: Elsevier
North-Holland.

Lehnert, W. 1977. "Question answering in a story understanding
system." Cognitive Science, Vol. 1, pp. 47-73.

Meehan, J. 1976. "The metanovel: writing stories by computer."
Dissertation. New Haven, Connecticut: Department of Comput-
er Sciences, Yale University.

Meyer, B. 1975. The Organization of Prose and its Effects on Recall.
Amsterdam: North-Holland.

Minsky, M. 1975. "A framework for representing knowledge." In
The Psychology of Computer Vision. P. Winston ed. New York:
McGraw-Hill.

Norman, D. A. and Rumelhart, D. E. 1975. Explorations in
Cognition. San Francisco: W. H. Freeman and Company.

Pereira, F. and Warren, D. 1980. "Definite clause grammars for
language analysis - a survey of the formalism and a comparison
with augmented transition networks". Artificial Intelligence 13,
pp. 231-278.

Rumelhart, D. E. 1975. "Notes on a schema for stories." in Repre-
sentation and Understanding, eds. D. Bobrow and A. Collins,
New York: Academic Press.

Schank, R. C. 1975. "The structure of episodes in memory." in
Representation and Understanding, eds. D. Bobrow and A. Col-
lins, New York: Academic Press.

Sehank, R. C. 1975b. Conceptual Information Processing. New York:
North-Holland.

Schank, R. and Abelson, R. 1977. Scripts, Plans, Goals and
Understanding. New York: Wiley.

Simmons, R. F. 1978. "Rule-based computations on English." in
Pattern-Directed Inference Systems. Hayes-Roth, R. and Water-
man, D. eds. New York: Academic Press.

Simmons, R. F. and Correira, A. 1979. "Rule forms for verse,
sentences and story trees." in Associative Networks - Representa-
tion and Use of Knowledge by Computers, ed. N. Findler, New
York: Academic Press.

Simmons, R. F. and Chester, D. 1977. "Inferences in quantified
semantic networks". Proceedings of Fifth IJCAI, pp. 267-274.

van Dijk, T. A. 1975. "Recalling and summarizing complex dis-
course." unpublished manuscript. Amsterdam: Department of
General Literary Studies, University of Amsterdam.

Wilks, Y. 1975. "A preferential, pattern-matching semantics for
natural language understanding". Artificial Intelligence 6, pp.
53-74.

Winograd, T. 1972. Understanding Natural Language. New York:
Academic Press.

Woods, W. A. 1970. "Transition networks grammars for natural
language analysis". Comm. ACM, Vol. 13, pp. 591-602.

Young, R. 1977. "Text Understanding: a survey." American Journal
of Computational Linguistics, Vol. 4, No. 4, Microfiche 70.

A l f r e d Correira is a Sys t ems Analys t f o r the Compu-
tation Center o f the University o f Texas at Aust in . H e
received the M . A . degree in computer science f r o m the
University o f Texas in 1979.

American Journal of Computational Linguistics, Volume 6, Number 3-4, July-December 1980 149

