
Cascaded ATN Grammars
Will iam A. Woods

Bolt B e r a n e k and N e w m a n , Inc.
50 M o u l t o n S t r e e t

C a m b r i d g e , M a s s a c h u s e t t s 0 2 1 3 8

A generalization of the notion of ATN grammar, called a cascaded ATN (CATN),
is presented. CATN's permit a decomposition of complex language understanding
behavior into a sequence of cooperating ATN's with separate domains of responsibility,
where each stage (called an ATN transducer) takes its input from the output of the
previous stage. The paper includes an extensive discussion of the principle of factoring
- - conceptual factoring reduces the number of places that a given fact needs to be
represented in a grammar, and hypothesis factoring reduces the number of distinct
hypotheses that have to be considered during parsing.

1. Introduction

ATN grammars, as presented in Woods (1970),
are a fo rm of augmented pushdown store automata ,
augmented to carry a set of register contents in ad-
dition to state and stack information and to permit
arbi trary computat ional tests and actions associated
with the state transitions. Conceptually, an A T N
consists of a ne twork of states with connecting arcs
be tween them. Each arc indicates a kind of con-
st i tuent that can cause a t ransi t ion be tween the
states it connects. The states in the ne twork can be
conceptually divided into "levels" corresponding to
the different const i tuents that can be recognized.
Each such level has a start state and one or more
final states. Transit ions are of three basic types, as
indicated by three different types of arc. A W R D
(or CAT) transit ion corresponds to the consumption
of a single word f rom the input string, a JUMP
transit ion corresponds to a transit ion f rom one state
to another without consuming any of the in.put
string, and a PUSH transi t ion cor responds to the
consumpt ion of a phrase parsed by a subordinate
invocation of some level of the network to recognize
a constituent.

A T N ' s have the advantage of being a class of
au tomata into which ordinary contex t - f ree phrase
s tructure and "augmen ted" phrase s t ructure gram-
mars have a s t raightforward embedding, but which
permit various t ransformat ions to be per formed to
produce grammars that can be more efficient than
the original. Such t ransformat ions can reduce the
number of states or arcs in the grammar or can re-

duce the number of alternative hypotheses that need
to be explicitly considered during parsing. (Some
t ransformat ions tend to reduce both, but in general
there is a t radeoff be tween the two). Both kinds of
efficiency result f rom a principle that I have called
" fac to r ing" , which amounts to merging c o m m o n
parts of a l ternat ive paths in order to reduce the
number of al ternat ive combinat ions explicitly enu-
merated. The former ("conceptua l fac tor ing") re-
suits f rom factoring common parts of the grammar
to make the grammar as compact as possible, while
the latter ("hypothes is fac tor ing") results f rom ar-
ranging the g rammar so a s t o factor common parts
of the hypotheses that will be enumera ted at parse
time.

Concep tua l factor ing p romotes ease of human
comprehension of the g rammar and should facilitate
learning of grammars by machine. Hypothes is fac-
toring promotes efficiency of run time execution. In
this paper, I will present a generalization of the no-
tion of A T N grammar, called a cascaded A T N or
CATN, that capitalizes fur ther on the principle of
factoring in a manner similar to serial decomposi t ion
of finite state machines. A C A T N consists of a
sequence of ATN transducers each of which takes its
input f rom the output of the previous. An A T N
transducer is an ATN that includes among its ac-
tions an output opera t ion (" T R A N S M I T ") which
can be executed on arcs to generate elements of an
output sequence. Such an A T N cascade gains a
factoring advantage f rom merging common compu-
tations at early stages of the cascade.

Copyright 1980 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is
granted provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright

• notice are included on the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 0 / 0 1 0 0 0 1 - 1 2 5 0 1 . 0 0

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 1

William A. Woods Cascaded ATN Grammars

Cascaded ATN's are analogous to serial decom-
position of finite state machines and carry many of
the advantages of such decomposit ion into the do-
main of more general recognit ion automata. The
normal decomposi t ion of natural language descrip-
tion into levels of phonology, lexicon, syntax, se-
mantics, and pragmatics can be viewed as a cascade
of ATN transducers - one for each of the individual
levels. Viewing natural language understanding as
parsing with such a cascade has computat ional ad-
vantages and also provides an efficient, systematic
f ramework for character izing the relationships be-
tween different levels of analysis due to conceptual
factoring. The factoring advantages of cascade de-
compositions can thus serve as a partial explanation
of why such a componential description of natural
language understanding has arisen.

2. Factoring in A T N ' s and Phrase St ructure
Grammars

As discussed above, the principle of factoring
involves the merging of common parts of alternative
paths through an ATN or similar structure in order
to minimize the number of combinations. This can
be done either to reduce the size of the grammar or
to reduce the number of alternative hypotheses con-
sidered at parse time. Conceptual factoring attempts
to reduce the size of the grammar by minimizing the
number of places in the grammar where the same or
similar consti tuents are recognized. Frequent ly such
factoring results from "hiding" some of the differ-
ences be tween two paths in registers so that the
paths are otherwise the same and can be merged.
For example, in order to represent number agree-
ment between a subject and a verb, one could have
two distinct paths through the grammar - one to
pick up a singular subject and correspondingly in-
fleeted verb, and one to pick up a plural subject and
its verb. By keeping the number of the subject in a
register, however, one can merge these two paths so
there is only one push to pick up the subject noun
phrase and one push to pick up the main verb.

In other cases, conceptual factoring results f rom
merging common initial, final, a n d / o r medial se-
quences of paths across a consti tuent that are not
the same, but which share subsequences. For exam-
ple, an interrogative sentence can start with an aux-
iliary verb fol lowed by the subject noun phrase,
while a declarative can start with a noun phrase
followed by the auxiliary. In either case, however,
the subsequent const i tuents that can make up the
sentence are the same and the grammar paths to
recognize them can be merged. Moreover , in either
case there can be initial prepositional phrases before
either the subject or the auxiliary and again these
can be merged. When one begins to represent the
details of supporting auxiliaries that are present in

interrogatives but not in declaratives, the commonal-
ities these modalities have with imperatives, and the
interaction of all three with the various possibilities
following the verb (depending on whether it is
transitive or intransitive, takes an indirect object or
complement , etc.), this kind of factoring becomes
increasingly more important.

In ordinary phrase structure grammars (PSG's) ,
the only mechanism for capturing the kinds of merg-
ing discussed above is the mechanism of recursion or
"pushing" for consti tuent phrases. In order to cap-
ture the equivalent of the above merging of com-
monali ty be tween declaratives and interrogatives,
one would have to treat the subject-auxiliary pair as
a consti tuent of some kind (an organization that is
linguistically counter-intuit ive). Alternatively, one
can capture such factoring in a PSG by emulating an
ATN - e.g., by constructing a phrase structure rule
for every arc in the A TN and treating the states at
the ends of the arc as constituents. Specifically, an
arc f rom s l to s2 that picks up a phrase p can be
represented by a phrase structure rule sl - -> p s2,
and a final state s3 can be expressed by an "e rule"
s3 - -> e (where e represents the "empty string").
In either case, one is forced to introduce a "push"
to a lower level of recursion where it is not neces-
sary for an ATN, and to introduce a kind of
"const i tuent" that is motivated solely by principles
of factoring and not necessarily by any linguistic
criteria of const i tuenthood.

A phrase structure grammar emulating an ATN
as in the above construction will contain all of the
factoring that the ATN contains, but will not make a
distinction between the state name and the phrase
name. Failure to make this distinction masks the
intuitions of state transition that lead to some of the
ATN optimization transformations and the concep-
tual understanding of the opera t ion of ATN's as
parsing automata. The difference here is a lot like
the dif ference be tween the way that LISP imple-
ments list structure in terms of an underlying binary
branching "cons" cell and the way that it is appro-
priate to view lists for conceptual reasons. For ex-
actly the same kinds of reasons, it is appropriate to
think of certain sequences of consti tuents that make
up a phrase as sequences of immediate constituents
ra ther than as a r ight-recursive nest of binary
branching phrases.

From the perspective of hypothesis factoring, the
distinction made in an ATN between states that can
be recursively pushed to and states that merely mark
intermediate stages in the recognition of a constitu-
ent sequence permits a distinction between that part
of a grammar that is essentially finite state (and
hence amenable to certain kinds of opt imizat ion)
and that which is inherently recursive. This permits
such operations as mechanically eliminating unneces-

2 American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980

Wil l iam A. Woods Cascaded ATN Grammars

sary recursion and performing finite-state optimiza-
tions procedures on what remains - see Woods
(1969). These transformations can result in signifi-
cant gains in parsing efficiency by trading recursion
for iteration wherever possible and by minimizing
the non-determinism (by hypothesis factoring) in the
resulting networks.

The construction given above for emulating an
ATN with a PSG can, of course, emulate the same
hypothesis factoring optimization that an ATN per-
mits, but its ability to do so depends critically on the
use of e-rules for the final states. Most parsers for
PSG's, on the other hand, do not permit e-rules,
probably because they are highly non-deterministic
when applied bottom-up. Unfortunately, the con-
struction that transforms a PSG with e-rules into an
equivalent PSG with no e-rules would give up some
of the factoring achieved in the ATN emulation
when applied to final states that are not obligatorily
final (a common occurrence in natural language
grammars). Every transition coming into such a
state, would effectively be duplicated - once leading
to an unambiguously final state (sl --> p), and
once forcing subsequent consumption of additional
input (sl --> p s2). It thus appears that as a class
of formal automata, ATN's permit a greater flexibili-
ty in capturing hypothesis factoring advantages than
do conventional PSG's.

As we have discussed them, the principles of
conceptual factoring and hypothesis factoring have
been motivated by different measures of cost. Nev-
ertheless, many of the factoring transformations that
can be applied to ATN's gain a simultaneous effi-
ciency in both dimensions. This is not always the
case however. In particular, the transformations
that optimally minimize nondeterminism for left-to-
right parsing tend to cause an increase in the num-
ber of states and arcs in a grammar (unless fortui-
tous regularity causes a collapsing). Since a major
characteristic of the ATN grammar formalism is that
it permits the expression of mechanical algorithms
for performing hypothesis factoring transformations,
it is probably appropriate for grammar writers to
devote their attention to conceptual factoring as a
grammar writing style, while leaving to various
grammar compilation algorithms the task of trans-
forming the grammar into an efficient parsing en-
gine. However, in absence of such compilers, it is
always possible within the ATN formalism for a
grammar writer to incorporate explicit hypothesis
factoring structure into his grammar and to make
tradeoffs between the two factoring principles.

3. N o t a t i o n

ATN's are characterized as automata by specify-
ing their computations in terms of instantaneous
configurations and a transition function that com-

putes possible successor configurations. As such,
they can admit a variety of superficial syntaxes,
without changing the essential nature of the automa-
ton. In this paper, I will use a notation that is
somewhat more concise and slightly more conven-
ient than the original ATN syntax specified in
Woods (1970). The major change will be a formal
distinction between a phrase type and an initial state
for recognizing a phrase. (The original ATN speci-
fication used the initial state to serve double duty.)
Moreover, I will permit a given phrase type to have
several distinct initial states and several phrase types
to share some initial states. This permits somewhat
greater flexibility in factoring and sharing common
parts of different phrase types. The pop arcs of
these ATN's will indicate the phrase type being pop-
ped, and a given state can be a final state for several
phrase types. A BNF specification of the syntax I
will use is given, in Figure 1 on the next page.

A simple example, using the conventions given in
the figure, is the following grammar:

(m (accepts q)
(sl (initial q)

('a s2 (setr n 1)))
(s2

(q s3 (setr n !(1 + !c)))
(J s3))

(s3
('b s4))

(s4
(pop q !n)))

This grammar is equivalent (minus augmentation) to
the phrase structure grammar: q--> 'a 'b , q-->'aq'b.
It parses a string of n a's followed by n b ' s and
(through its augments) pops the number n.

4. C a s c a d e d A T N ' s

The advantages of having semantic and pragmatic
information available at early stages of parsing natu-
ral language sentences have been demonstrated in a
variety of systems, i Ways of achieving such close
interaction between syntax and semantics have tra-
ditionally involved writing semantic interpretation
rules in 1-1 correspondence with phrase structure
rules (e.g., Thompson, 1963), writing "semantic
grammars" that integrate syntactic and semantic
constraints in a single grammar (e.g., Burton, 1976),
or writing ad hoe programs that combine such infor-
mation in unformalized ways. The first approach
requires as many syntactic rules as semantic rules,
and hence is not really much different from the se-

1 There are some compensating disadvantages if the
semantic domain is more complex than the syntactic one, but
we will assume here that immediate semantic feedback is
desired.

Amer ican Journal of Computat ional Linguistics, Vo lume 6, Number 1, January-March 1980 3

Will iam A. Woods Cascaded ATN Grammars

<ATN> -> (<machinename> (accepts <phrasetype>*) <statespec>*)

;an ATN is a list consisting of a machine name, a

;specification of the phrasetypes which it will

;accept, and a list of sta£e specifications.

<statespec> -> (<statename> {optional <initialspec>} <arc>*)

<initialspec> -> (initial <phrasetype>*) ;indicates that this state

;is an initial state for the indicated phrgsetypes.

<arc> -> (<phrasetype> <nextstate> <act>*) ;a transition that

;consumes a phrase of indicated type.

-> (<pattern> <nextstate> <act>*) ;a transition that consumes

;an input element that matches a pattern.

-> (J <nextstate> <act>*) ;a transition that jumps to a new

;state without consuming any input.

-> (POP <phrasetype> <form>) ;indicates a final state

;for the indicated phrase type and specifies

;a form to be returned as its structure.

<nextstate> -> <statename>

<pattern> -> (<pattern>*)

-> <wordlist>
-> &

-> <form>

-> <<classname>>

;specifies next state for a transition.

;matches a list whose elements match

;the successive specified patterns.

;matches any word in the list.

;matches any element.

;matches any subsequence.

;matches value of <form>.

;matches anything that has or inherits

;the class name as a feature.

<wordlist> -> {'<word> I '<word>, <wordlist>}

<act> -> (transmit <form>) ;transmit value of form as an output.

-> (setr <registername> <form>) ;set register to value of form.

-> (addr <registername> <form>) ;add the value of form to the

;end of the list in the indicated register (assumed

;initially NIL when the register has not been set).

-> (require <proposition>) ;abort path if proposition is false.

-> (dec <flaglist>) ;set indicated flags.

-> (req <flagproposition>) ;abort path if proposition is false.

-> (once <flag>) ;equivalent to (req (not <flag>)) (dec <flag>).

<flagproposition> -> <boolean combination of flag registers>

<proposition> -> <form> ;the proposition is false if the value

;of the form is NIL.

<form> -> !<registername> ;returns contents of the register.

-> '<liststructure> ;returns a copy of a list structure

;except that any expressions preceded by ! are

;replaced by their value and any preceded

;by @ have their value inserted as a sublist.

-> !c ;contents of the current constituent register.

-> !<liststructure> ;returns value of list structure

;interpreted as a functional expression.

Figure 1. BNF specif icat ion of A T N syntax,

mantic grammar approach (this is the convent ional
way of defining semant ics of programming lan-
guages) . The second approach has the tendency to
miss generalities and its results do not automatical ly
extend to n e w domains. It misses syntactic generali-
ties, for example, by having to duplicate the syntac-
tic information necessary to characterize the deter-
miner structures of noun phrases for each of the
different semantic kinds of noun phrase that can be

accepted. Likewise , it tends to miss semantic gener-
a l izat ions by repeating the same semant ic tests in
various places in the grammar w h e n a given seman-
tic const i tuent can occur in various places in a sen-
tence. The third approach, of course, may yield
some level o f operat ional system, but does not usu-
ally shed any light on h o w such interaction should
be organized, and is difficult to extend.

4 American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980

Will iam A. Woods Cascaded ATN Grammars

Rusty Bobrow ' s RUS parser (Bobrow, 1978) is
the first parser to my knowledge to make a clean
separat ion be tween syntactic and semantic specifica-
tion while gaining the benefi t of early and incremen-
tal semantic filtering and maintaining the factoring
advantages of an ATN. I t can be character ized as a
cascade of two ATN' s - one doing syntactic analysis
and one doing semantic interpretat ion. Such a cas-
cade of A T N ' s provides a way to reduce having to
say the same thing multiple t imes or in multiple
places, while providing eff iciency comparab le to a
"semant ic" g rammar and at the same time maintain-
ing a clean separat ion be tween syntactic and seman-
tic levels of description. I t is essentially a mecha-
nism for permitt ing decomposi t ion of an ATN gram-
mar into an assembly of cooperat ing ATN's , each
with its own characteristic domain of responsibility.

As ment ioned previously, a C A T N is a sequence
of ordinary ATN' s that include among the actions
on their arcs an operat ion T R A N S M I T , which trans-
mits an e lement to the next machine in the se-
quence. The first machine in the cascade takes its
input f rom the input sequence, and subsequent ma-
chines take their input f rom the T R A N S M I T com-
mands of the previous ones. The output of the final
machine in the cascade is the output of the machine
as a whole. The only feedback f rom later stages to
earlier ones is a filtering function that causes paths
of the nondeterminist ic computa t ion to die if a later
stage cannot accept the output of an earlier one.

The concept ion of cascaded A T N ' s arose f rom
observing the interaction be tween the lexical retriev-
al componen t and the "pragmat ic" g rammar of the
H W I M speech understanding system (Woods et al.,
1976). The lexical retrieval componen t made use of
a ne twork that consumed successive phonemes f rom
the output of an acoustic phonet ic recognizer and
grouped them into words. Because of phonological
effects across word boundaries, this ne twork could
consume several phonemes that were par t of the
transi t ion into the next word before determining
that a given word was possibly present. At certain
points, it would return a found word together with a
node in the network at which matching should begin
to find the next word (essentially a state remember -
ing how much of the next word has already been
consumed due to the phonological word boundary
effect) . This can be viewed as an A T N that con-
sumes phonemes and transmits words as soon as its
has enough evidence that the word is there.

The lexical retr ieval componen t of H W I M can
thus be viewed as an ATN whose output drives an-
other ATN. This led to the concept ion of a com-
plete speech understanding system as a cascade of
ATN's , one for acoustic phonet ic recognition, one
for lexical retrieval (word recognit ion), one for syn-
tax, one for semantics, and one for subsequent dis-

course tracking. A predecessor of the RUS parser
(Bobrow, 1978) was subsequently perceived to be
an instance of a syn tax / semant ics cascade, since the
semantic structures that it was obtaining f rom the
lexicon to filter the paths through the g rammar
could be viewed as ATN's . Hence , practical solu-
tions to problems of combinator ics in two different
problem areas have independent ly mot ivated compu-
ta t ion s tructures that can be viewed as cascaded
ATN's . It remains to be seen how effectively cas-
cades can be used to model acoustic phonetic recog-
nition or to t rack discourse structure, but the possi-
bilities are intriguing.

4.1 Spec i f ica t ion of a C A T N C o m p u t a t i o n

As with ordinary A T N ' s and other formal auto-
mata , the specif icat ion of the computa t ion of a
C A T N will consist of the specification of an instan-
taneous "conf igurat ion" of the au tomaton and the
specification of a transit ion function that computes
possible successor configurations for any given con-
figuration. Since C A T N ' s are nondeterministic, a
given configurat ion can in general have more than
one successor conf igurat ion and may occasional ly
have no successor. One way to implement a parser
for C A T N ' s would be to explicitly mimic this formal
specification by implementing the configurations as
data structures and writing a program to implement
the transit ion function. Just as for ordinary ATN's ,
however, there are also many other ways to organize
a parser, with various efficiency tradeoffs.

A configurat ion of a C A T N consists of a vector
of state configurat ions of the successive machines,
plus a pointer to the input string where the first
machine is about to take input. The transit ion func-
t ion (nondeterminist ic) operates as follows:

I. A distinguished register C is set (possibly
nondeterministically) to the next input ele-
ment to be consumed and the pointer in the
input string is advanced. Then a stage
counter k is set to 1.

2. The state of the kth machine in the se-
quence is used to determine a set of arcs
tha t may consume the cur rent input
(possibly following a sequence of JUMPs,
PUSHes , and POPs to reach a consuming
transit ion).

3. Whenever a transmission opera t ion TRA N S-
MIT is executed by the stage k machine, the
stage k + 1 configurat ion is act ivated to proc-
ess that input, and the stage k + 1 componen t
of the conf igurat ion vec tor is upda ted ac-
cordingly. If the k + l stage cannot accept
the t ransmi t ted structure, the conf igurat ion
is aborted.

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 5

William A. Woods Cascaded ATN Grammars

As for a conventional ATN, the fo rmat of the
state configurations of the individual machines con-
sist of a state name, a set of registers and contents ,
and a stack pointer (or its equivalent). 2 Each ele-
ment of a stack is a pair consisting of a PUSH arc
and a set of register contents. Transit ions within a
single stage are the same as for ordinary ATN's .

4.2 Uses of C A T N ' s

A good illustrative example of the use of cascad-
ed A T N ' s for natural language understanding would
be a three stage machine consisting of a first stage
that pe r fo rms lexical analysis, a second stage for
syntact ic analysis, and a third stage for semant ic
analysis. The lexical s tage A T N would consume
let ters f rom an input sequence and pe r fo rm word
identif icat ion, including inflectional analysis, tense
ext rac t ion (e.g., B E E N = > P A S T P A R T BE) , de-
compos i t ion of contract ions , and aggregat ion of
compound phrases, producing as its ou tput a se-
quence of words with syntactic categories and fea-
ture values. This machine could also per form cer-
tain s tandard bo t tom-up , locally determined parsings
such as construct ing noun phrase s t ructures for
proper nouns and pronouns. Ambigui ty in syntactic
class, in word grouping, and in homographs within a
syntact ic class can all be taken care of by the non-
determinism of this first stage machine (e.g., " saw"
as a past tense of "see" vs present tense of "saw"
can be t reated by two different al ternative outputs
of the lexical stage).

This lexical stage machine is not likely to involve
any recursion, unlike o ther stages of the cascade,
but does use its registers to pe r fo rm a cer ta in
amount of buffer ing before deciding what to trans-
mit to the next stage. Because stages such as this
one will reach states where they have essential ly
finished with a particular construct ion and are ready
to begin a new one, a convenient act ion to have
available on their arcs is one to reset all or a speci-
fied set of registers to their initial empty values
again. Such register clearing is similar to that which
happens on a push to a lower level, except that here
the previous values need not be saved. The use of a
register clearing action thus has the desired effect
without the expense of a push.

The second stage machine in our example will
pe r fo rm the normal phrase grouping functions of a
syntact ic g r ammar and produce T R A N S M I T com-
mands when it has identified const i tuents that are
serving specific syntactic roles. The third stage ma-
chine will consume such const i tuents and incorpo-

2 For example, Earley's algorithm for context free
grammars (Earley, 1968) replaces the stack pointer with a
pointer to a place where the configuration(s) that caused the
push can be found. A similar technique can be used with
ATN grammars.

rate them into an incremental interpretat ion of the
ut terance (and may also produce differential likeli-
hoods for al ternat ive in terpre ta t ions depending on
the semant ic and pragmat ic consis tency and plausi-
bility of the partial interpretat ion).

The advantage of having a separate stage for the
semant ic in terpre ta t ion , in addi t ion to providing a
clean separa t ion be tween syntact ic and semant ic
levels of descript ion and a more domain- independent
syntactic level, is that during the computat ion, dif-
ferent partial semantic interpretat ions that have the
same initial syntactic structure share the same syn-
tactic processing. In a single "semant ic" ATN, such
different semantic interpretat ion possibilities would
have to make their own separate syn tac t i c / semant ic
predict ions with no sharing of the syntact ic com-
monal i ty be tween those predict ions. Cascaded
A T N ' S avoid this while retaining the benef i t of
strong semantic constraint.

4.3 Benef i ts of C A T N ' s

The decomposi t ion of a natural language analyzer
into a cascade of A T N ' s gains a " fac tor ing" advan-
tage similar to that which A T N ' s themselves provide
with respect to ordinary phrase structure grammars.
Specifically, the cascading allows alternative config-
urations in the later stages of the cascade to share
common processing in the earlier stages that would
otherwise have to be done independently. That is, if
several semantic hypotheses can use a certain kind
of const i tuent at a given place, there need be only
one syntactic process to recognize it. 3

Cascades also provide a simpler overall descrip-
tion of the acceptable input sequences than a single
monoli thic A T N combining all of the informat ion
into a single ne twork would give. That is, if any
semantic level process can use a certain kind of con-
stituent at a given place, then there need be only
one place in the syntactic stage A T N that will recog-
nize it. Conversely, if there are several syntactic
contexts in which a const i tuent filling a given se-
mantic role can be found, there need be only one
place in the semantic A T N to receive that role. (A
single ne twork cover ing the same facts would be
expected to have a number of states on the order of
the product , ra ther than the sum, of the numbers of
states in the individual stages of the cascade.)

3 One might ask at this point whether there are situa-
tions in which one cannot tell what is present locally without
"top-down" guidance from later stages. In fact, any such
later stage guidance can be implemented by semantic filter-
ing of syntactic possibilities. For example, if there is a given
semantic context that permits a constituent construction that
is otherwise not legal, one can still put the recognition trans-
itions for that construction into the syntactic ATN with an
action on the first transition to check compatibility with later
stage expectations (e.g., by transmitting a flag indicating that
it is about to try to recognize this special construction).

6 American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980

Will iam A. Woods Cascaded ATN Grammars

An additional advantage provided by the factor-
ing commonal i ty introduced by the cascade is that
the resulting localization of early stage activities in a
single place provides a single place for a given lin-
guistic fact to be learned, ra ther than independent
versions of essentially the same fact having to be
learned in different semantic contexts. Moreover ,
the separat ion of the stages of the cascade provides
a decomposi t ion of the overall problem into individ-
ually learnable skills. These facts may be significant
not only for theories of human language develop-
ment and use, but also for computer systems that
can be easily debugged and can contr ibute to their
own acquisition of improved language skill.

The above facts suggest that the traditional char-
acter izat ion of natural language in terms of pho-
nemes, syllables, words, phrases, sentences, and
higher level pragmatic constructs may be more deep-
ly significant than just a convenience for scientific
manipulation.

4.4 Parsing w i th C A T N ' s

Conceptually, each A T N in a cascade produces
(nondeterministically) a sequence of inputs for the
next stage, which the next stage then parses. One
could implement a computer parsing algorithm for a
cascade in several ways. For example, the individual
components of a configuration could be incremented
as described above, with the later stages advanced
as soon as the earlier stages t ransmit something.
Alternat ively, the later stages could wait until the
earlier stages have comple ted a pa th through the
input sequence before they begin to process the
output of the earlier stages. The latter approach has
the advantage of not performing second stage analy-
sis on a pa th that will eventually, fail at the first
stage. On the other hand, it will result in the first
stage occasionally continuing to extend partial paths
that could already be rejected at the second stage.

In general, one can envisage an implementat ion
in which the second stage can wait until the first
stage has proceeded some distance past the current
point before commencing its operations. This could
either be done by having a fixed " lookahead" par-
ameter which would always run the first stage some
number of transmissions ahead of the second stage,
or one could have a command that the first stage
could execute when it considered its current pa th
sufficiently likely to make it worthwhile for the sec-
ond stage to opera te on it. In fact, to handle both
of these cases, one could simply have the first stage
buffer its information in registers until it is ready for
the next stage to work on it and only then per form
the transmissions. For the remainder of this paper, I
will assume that this is done and that the next stage
begins to operate as soon as its input is t ransmitted.

As presented above, an instantaneous configura-
tion of a C A T N is essentially a vector of configura-
tions for the individual stages of the cascade. Let us
call the individual configurations IC ' s and the vector
as a whole a configurat ion vector. Since any two
configurat ion vectors having the same IC in some
componen t will per form the same computa t ion for
that c o m p o n e n t and will only differ when they
transmit to a subsequent stage, a parsing implemen-
tat ion should merge such common components and
only pe r fo rm their processing once. This can be
achieved by represent ing the set of ins tantaneous
configurations of the C A T N not simply as a set of
IC vectors, but as a tree structure (TC) that merges
the common initial parts of those vectors. That is,
each vector representing an instantaneous configura-
t ion of the C A T N will be represen ted by a pa th
through the TC f rom root to leaf, with the succes-
sive nodes in the path being the successive IC ' s of
the vector. It is s t ra ightforward to t ransform the
transition function that computes successor configu-
rat ion vectors into a transit ion function that com-
putes successor T C ' s f rom a given TC.

The TC representat ion has the characteristic that
as long as the common left parts of configuration
vectors are merged, the computa t ion of a given IC
at some level k will be done only once. To fully
capitalize on the factoring advantages of this repre-
sentation, one would like to assure that the common
initial parts of alternative configuration vectors re-
main merged. This happens automatical ly for alter-
native stage k + l computa t ions that s tem f rom a
common stage k configuration. However , it is possi-
ble for two distinct k stage configurat ions, which
have gone their separate ways and accumulated their
own trees of higher level configurat ions, to come
again to essentially the same k-stage configuration
via different paths. This can happen especially with
lexical stage computat ions when one word is recog-
nized and the parsing of the next word begins. To
provide maximum factoring, it is thus necessary to
check for such cases and merge subtrees when the
IC ' s at their heads are found to be equivalent.

When the k-stage network happens to be a finite
state machine (i.e., makes no use of registers or
recursion) the detect ion of a duplicate configurat ion
is easy due to the simple equivalence test (i.e.,
sameness of s t a t e) . When it is a general ATN, the
detect ion of the conditions for merging are some-
what more involved (due to the register contents) ,
and the likelihood of such merging being possible
tends to be less. Hence for such stages the cost of
checking for duplication may not be worth the bene-
fit. Interestingly, it appears that the early stages of
phonetic, lexical, and simple phrase recognit ion do
have essential ly finite state t ransi t ion ne tworks ,
while those of the later stages, where such sharing is

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 7

William A. Woods Cascaded ATN Grammars

not as important or as likely, is more apt to require
non-f ini te-s tate register activities.

4.5 Comparison of Cascading wi th Recursion

Some interesting questions arise when consider-
ing the nature of cascaded A T N ' s as au tomata . For
example, since a number of activities that are nor-
mally done with recurs ion in A T N ' s and o ther
phrase structure grammars can be done by separate
stages of a cascade, one is led to wonder about the
relationship be tween cascading and recursion. That
is, instead of arcs of an A T N pushing for a consti tu-
ent of a certain kind, occasionally a cascade can be
set up to find const i tuents of that kind and transmit
them to a later stage of the cascade as units. A
part icular example , which has occasional ly been
p roposed informally, would be for an early stage
processor to group the input words into basic noun
phrases, verb groups, etc. and for a later stage to
take such units as input. Clearly this is a task nor-
mally pe r fo rmed by recursion. One might then won-
der whether cascading was just another form of re-
cursion, or somehow equivalent to it.

It turns out that cascading is in some respects
weaker than recursion, and in other respects it is
more powerful. In the next section, I will give an
example of a context free cascade that can recognize
a language that cannot be recognized by a single
context free ATN. Hence, cascading clearly increas-
es the power of a basic A T N beyond that provided
by recursion alone. On the other hand, one is con-
siderably more constrained in the way he can use
cascading when writing a g rammar than he is in the
use of recursion. For example , indefini tely deep
recursion can be used to recognize noun phrases
inside preposi t ional phrases inside noun phrases, etc.
When setting up a cascade of two A T N ' s to per form
such grouping, the earlier cascade cannot model this
directly, but instead would have to recognize
"e lementa ry" noun phrases consisting of, say, deter-
miner, adjectives, and head noun, and would use
looping transitions to accept subsequent preposi t ion-
al phrases and relative clauses. Moreover , this stage
of the cascade could not content itself solely with
the noun phrases , but would also have to t ransmit
the o ther e lements of the sentence (auxiliaries,
verbs, adverbs, particles, etc.) so that the later
stages of the cascade will have a chance to see them.
That is, a stage of a cascade provides a level of de-
scription of the entire input sequence in terms of a
sequence of units to be t ransmit ted to a later stage
of analysis. Hence it appears that cascading is a
fundamenta l ly different operat ion that interacts with
recursion and overlaps some of its functions in inter-
esting ways.

Ano the r interest ing compar i son arises be tween
cascaded A T N ' s and the kinds of t rans format ions

used in a t ransformat ional grammar. If one a t tempts
to use a t ransformat ional g rammar by successively
applying its t ransformat ions in reverse to the surface
string, one repeatedly performs a parti t ioning of the
input into a sequence of units as described above.
Tha t is, in applying a reverse t r ans fo rmat ion to a
syntax tree in the course of a reverse t ransforma-
tional analysis, the operat ion of matching the pat-
tern description of the t ransformat ion to the syntax
tree amounts to finding a level at which the syntax
tree can be "cu t" yielding a sequence of units
matching the sequence of e lements in the pat tern of
the rule. This is exactly the kind of parti t ioning of
the input into units that is done by a stage of a cas-
caded ATN. Moreover , the result of the t ransfor-
mat ion is expressed by a " r igh t -hand-s ide" of the
t ransformat ional rule, which may reorder the input
sequence into a slightly modif ied sequence, and may
copy an element several times, modify it in certain
restr ic ted ways, or even delete it (under suitable
restrictions). In exactly the same way, a stage of a
cascade can transmit the units that it has picked up
in a different order than it found them, can dupli-
cate a unit, drop a unit, insert a constant , and trans-
mit units that are modif ied f rom the fo rm in which
they were recognized. In short, a stage of an A T N
cascade can mirror the activity of any given t rans-
format ional rule.

However , t r ans format iona l rules arc normal ly
considered to apply in a cycle governed by the num-
ber of levels of embedding of clauses in the sen-
tence, so that the number of successive t ransforma-
tions applied can be unbounded. By contrast , in an
A T N cascade, there are only a finite n u mb er of
stages in the cascade. Moreover: successive trans-
format ions in a t ransformat ional g rammar are free to
discard everything that was learned about the struc-
ture of the input in the matching of the previous
t r ans fo rmat ion and there is no const ra in t that the
manner in which a subsequent t ransformat ion ana-
lyzes the result of the previous t ransformat ion bear
any relationship to the level of descript ion imposed
on the input by that previous t ransformat ion. In an
A T N cascade, there is an assumed sequence of prog-
ressive aggregation and higher level o f description
implied by the t ransduct ion of informat ion to suc-
cessive stages of the cascade, with each stage per-
ceiving the input in the terms that it was described
by the previous. Thus, the A T N cascade seems to
impose additional constraints on the process of lan-
guage recognit ion that are not imposed by an ordi-
nary t ransformat ional grammar.4

4 These constraints tend to promote the efficiency of
the processing. See Woods (1970) for a discussion of some
of the inherent inefficiencies of an ordinary transformational
analysis.

8 American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980

Wil l iam A. Woods Cascaded ATN Grammars

b

I f l 2 :

~ r a n s ~ ~ °~9

b trans b ~ ",,~,r o . ~
~ c trans c

c ©
j J

pop r

Figure 2. ATN cascade for {anbncn: n_> 1 }

Experience with ATN grammars for natural lan-
guage indicates that everything that a t ransforma-
tional grammar of natural language does can be
done with even a single ATN, so there does not
appear to be any need for more than a finite number
of stages of a cascade. On the other hand, the argu-
ments presented here indicate that one may be able
to obtain a simpler description of an overall set of
facts with a cascade than with a single monolithic
ATN. It is possible, therefore, that a cascade of
ATN's corresponds to a more appropriate formaliza-
tion of the underlying facts of language that gave
rise to the original model of transformational gram-
mar than does the conventional conception.

4.6 A S imple Formal Example

As a simple example of what a cascade of ATN's
can do, I will give here a simple ATN cascade that
without the use of registers can recognize the set of
strings of the form n a's followed by n b's followed
by n c's, for arbitrary n. This language is a tradi-
tional example of a language that is not context free
but is context sensitive. However , it does happen to
be specifiable as the intersection of two context free
languages. Capitalizing on this fact, it is possible to
represent it by a cascade of two "contex t f ree"
ATN's (i.e., ATN's which do not use registers to
check constraints be tween different consti tuents) .
This cascade effectively computes the intersection of
two ways of viewing the input. The two ATN's,
whose structure is illustrated in Figure 2 above
(where " t rans" in the figure is short for " t ransmit") ,
can be written as follows:

(ml (accepts q)
(sl (initial p q)

('a s2))
(s2

(p s3)
('b s4 (transmit 'b)))

(s3'
('b s4 (transmit 'b)))

(s4 (pop p)
('c s5 (transmit 'c)))

(s5 (pop q)
('c s5 (transmit ' c))))

(m2 (accepts r)
(sl (initial r)

('b s2))
(s2

(r s3)
('c s4))

(s3
('c s4))

(s4 (pop r)))

These two machines correspond to the grammars:

q - ->pc* , p - ->ab , p - ->apb
and

r - ->bc , r - ->b rc

with augmentation such that the b's and c's accepted
by the first grammar are passed through to be ac-
cepted by the second. The first stage checks that
the number of a's and b's agree and accepts any
number of o's, while the second stage requires that
the b's and c's agree.

4.7 A n o t h e r Example - S y n t a x and S e m a n t i c s

Another, less trivial example is the use of an
ATN cascade to represent syntactic and semantic
knowledge sources of a language understanding sys-
tem. We will give here a brief example illustrating a
kind of cascading of syntactic and semantic knowl-
edge similar to that done by R, Bobrow in his RUS
parser (Bobrow, 1978). A rough characterization of
this parser is that as the syntactic component works
its way through a noun phrase, it accumulates infor-
mation about the determiner structure and initial
premodifiers of the head noun until it encounters the

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 9

Will iam A. Woods Cascaded ATN Grammars

head noun (i.e., takes a path corresponding to a
hypothesis that it has found the head noun). At
that point, it begins to transmit information to the
semantic stage, starting with the head noun, and
followed by the premodifiers of that noun. Then it
continues to pick up post modifiers of the noun
phrase, transmitting them to the semantic stage as it
encounters them, and finally, when it hypothesizes
that the noun phrase is completed, it transmits the
determiner information.

In a similar way, in the parsing of a clause, the
syntactic ATN can wait until it has encountered the
main verb before transmitting that verb followed by
its subject and any fronted adverbial modifiers. Af-
ter that it can transmit subsequent post verbal ele-
ments as they are encountered, and finally transmit
any governing modality information such as tense,
aspect, and any governing negations.

The example presented here, is a constructed one
to illustrate the principle, and does not directly rep-
resent the analyses by the RUS grammar. The ex-
ample implements a subset of the semantic rules of
the airline flight schedules system of Woods (1967),
a predecessor of the LUNAR system (Woods et
a1.,1972). I will give here only a fragment of the
semantic stage ATN that understands designators
(i.e., noun phrases). It assumes that the syntactic
stage operates as outlined above and, in particular,
that it transmits prepositional phrases by transmit-
ting the preposition and then transmitting its ob jec t .
It also assumes that the syntax stage transmits a
signal QUANT when it has hypothesized the end of
a noun phrase and is about to transmit the determin-
er and number information. One could alternatively
transmit prepositional phrases as single units to be
tested for syntactic and semantic features. I will
assume that a pattern such as <flight> on a con-
suming arc is matched by a constituent that receives
the indicated semantic marker (e.g., FLIGHT).

(m2 (accepts designators)

(dl (initial designator)
(J d2 (setr vbl (getnewvar)))

(d2
('flight,'plane d/flight (setr head 'FLIGHT))
('jet d/flight (setr head 'FLIGHT)

(addr mods '(JET !vbl)))
('airline d /head (setr head 'AIRLINE))
('city,'town d/head (setr head 'CITY))
('airport,'place d/head (setr head 'AIRPORT))
('time d/t ime)
('fare d/fare)
('owner,'operator d/owner))

(d/owner
('of d/owner-of))

(d/owner-of
(<flight> d/head (addr quants (getquant lc))

(setr head '(OWNER !c))))

(d/fare
('(rood first-class),'(mod coach),

'(mod stand by) d/fare
(require (not class))
(setr class It))

('(mod one-way), '(mod round-trip) d/fare
(require (not type))
(setr type !c)))

('from d/fare-from (require (not from)))
('to d/fare-to (require (not to)))
(J d /head (require class type from to)

(setr head '(FARE !from lto !type !class)))

(d/fare-from
(<place> d/fare (addr quants (getquant !c))

(setr from !c)))

(d/fare-to
(<place> d/fare (addr quants (getquant lc))

(setr to !c)))

(d/t ime
('(mod departure) d/ t ime (require (not op))

(setr op 'DTIME))
('(mod arrival) d/ t ime (require (not op))

(setr op 'ATIME))
('of d/ t ime-gf (require (not flight)))
('in,'at d/time-prep (require (eq op 'ATIME)))
('from d/time-prep (require (eq op 'DTIME)))
(J d /head (require op flight place)

(setr head '(!op !flight !c))
(* e.g., (setr head

'(ATIME AA-57 CHICAGO)))))

(d/t ime-of
(<flight> d/t ime (addr quants (getquant !c))

(setr flight !c)))

(d/time-prep
(<place> d/t ime (addr quants (getquant lc))

(setr place !c)))

(d/head
('QUANT d/quant (setr mod [(packmods))))

(d/flight
('from d/flight-from (require (not from)))
('to d/flight-to (require (not to)))
('(mod first-class),'(mod coach),

'(mod jet-coach) d/flight (once class)
(addr mods '(SERVCLASS !vbl It)))

('(mod jet) d/flight (addr mods '(JET !vbl)))
('(mod propeller) d/flight (once equip)

(addr mods '(NOT (JET !vbl))))
(J d/flight (once connect) (require from to)

(addr mods ' (CONNECT !vbl
!(sem from) l(sem to))))

('QUANT d/quant (setr mod l(packmods))))

10 American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980

Will iam A. Woods Cascaded ATN Grammars

(d/flight-from
(<place> d/flight

(addr quants (getquant !c))
(setr from !c))

(d/flight-to
(<place> d/flight

(addr quants (getquant !c))
(setr to !c)))

(d/quant
('some,'a, 'any,'NIL d/some)
('each,'every d/each)
('all d/all)
('not d /not)
('the d/ the)
('this,'that d/this)
('which,'what d/what)
(<integer> d/integer))

(d/some
('sg,'pl d /end

(setr quant ' (FOR SOME !vbl /
!head : !mod ; DLT))))

(d/each
('sg d/universal))

(d/all
('pl d/universal))

(d/universal
(J d /end (setr quant ' (FOR EVERY !vbl /

!head : !mod ; DLT))))

(d/not
('some d/not-some)
('every d/not-every)
('all d/not-all))

(d/not-some
('sg,'pl d /end

(setr quant '(NOT (FOR SOME !vbl /
!head : !mod ; DLT)))))

(d/not-every
('sg d/not-universal))

(d/not-aU
('pl d/not-universal))

(d/not-universal
(J d /end

(etr quant ' (NOT (FOR EVERY !vbl /
!head : !mod ; DLT)))))

(d/the
('sg d /end (setr quant ' (FOR THE !vbl /

!head : !mod ; DLT)))
('pl d /end (setr quant ' (FOR EVERY !vbl /

[head : !mod ; DLT))))

(d/this
('sg d /end (setr quant ' (FOR THE !vbl /

!head : !mod ; DLT))))

(d/what
('sg d /end (setr quant

' (FOR THE !vbl / !head :
(AND !mod DLT) ;

(PRINTOUT !vbl))))
('pl d /end (setr quant

' (FOR EVERY !vbl / !head :
(AND !mod DLT) ;

(PRINTOUT !vbl)))))

(d/integer
('sg,'pl d /end (setr quant

' (FOR !integer MANY !vbl /
!head : !mod ; DLT))))

(d/end
(pop <designator> (sem-quant

!quants !quant !vbl))))

In the above fragment grammar, the state dl gets
a variable name to use for the recognized designa-
tor, the state d2 dispatches on the head noun of the
designator phrase to various states that recognize
modifiers that are particular to the head. Eventually
the path for each such head will lead to the state
d/quant, where the determiner and number informa-
tion is picked up to build the quantifier that governs
this designator. This transition is triggered by the
transmission of the flag QUANT from the syntax
stage, signaling that the noun phrase is complete and
the determiner information is coming. Notice how
the quantification information that is common to
most designators is shared.

The transitions that follow d/quant implement
most of the d-rules in Woods (1967), which is itself
a subset of the d-rules of the LUNAR system
(Woods, et al,. 1972; Woods, 1978b). The function
sem-quant is a function that performs the sem-quant
pair manipulations described in Woods (1978b).
These manipulations usually embed the quantifier
just constructed (lquant) into the quantifier nest
accumulated from below (!quants) to form a quanti-
fier nest to be passed up to a higher clause. They
then return the variable name (!vbl) as the "sem" to
be inserted into an argument position in the higher
structure. The function getquant, here, is a function
that extracts the quant from a structure that has
been passed up from below and is used to accumu-
late the quantifier nest (quants) from subordinate
designators that should dominate the quantifier of
the designator being interpreted. The function
packmods examines the contents of the register
mods and returns an AND of the roods if there are
several, a single mod if there is only one, and T if
there are none.

American Journal of Computational Linguistics, Volume 6, Number 1, January-March 1980 11

Wil l iam A. Woods Cascaded ATN Grammars

5. Conc lus ions

In Woods (1977, 1978a; Woods & Brachman,
1978), I discussed the general principle of hypothe-
sis "factoring" - i.e., the coalescing of common parts
of alternative hypotheses in such a way that an in-
cremental hypothesis development and search algor-
ithm does not need to individuate and consider sepa-
rate hypotheses until sufficient information is pres-
ent to make different predictions in the different
cases. The most common example of factoring is
the well-known device called "decision trees" in
which a cascade of questions at nodes of a tree
leads eventually to selection of a particular "leaf" of
the tree without explicit comparison to each of the
individual leaves. If the tree is balanced, then this
leads to the selection of the desired individual leaf in
log(n) tests rather than n tests, where n is the num-
ber of leaves of the tree. Another example of fac-
toring is the mechanism in ATN grammars whereby
common parts of different phrase structure rules are
merged, thereby saving the redundant processing of
common parts of alternative hypotheses.

One can think of an ATN as a generalization of
the notion of decision tree to permit recursion, loop-
ing, register augmentat ion, and recombinat ion of
paths. In this paper, I have discussed a generaliza-
tion of ATN's , called cascaded ATN' s (CATN's) ,
which provides additional factoring capabilities. A
C A T N consists of a sequence of ATN transducers
the later stages of which take input from the output
of the previous stage. ATN cascades permit a de-
.composition of complex language understanding
behavior into a sequence of cooperating ATN's with
separate domains of responsibility.

Of specific interest are two distinct notions of
the concept of factoring that are beginning to
emerge from such considerations. One, which I
have called hypothesis factoring, provides a reduction
through sharing in the number of distinct hypotheses
that have to be explicitly considered during parsing.
The other, which I will call conceptual factoring,
provides a reduction through sharing in the number
of times or places that a given fact or rule needs to
be represented in a long-term conceptual structure
(e.g., the grammar). The former promotes efficien-
cy of "run-t ime" parsing, while the latter promotes
efficiency of grammar maintenance and learning. In
many cases conceptual factoring promotes hypothe-
sis factoring, but this is not necessarily always the
case.

R e f e r e n c e s

Bobrow, R.J. (1978). "The RUS System", in B.L. Webber
and R.J. Bobrow, Research in Natural Language Under-
standing, Quarterly Technical Progress Report No. 3.
BBN Report No. 3878, Bolt Beranek and Newman Inc.,
Cambridge, MA. July.

Burton, R.R. (1976). "Semantic Grammar: An Engineering
Technique for Constructing Natural Language Under-
standing Systems." BBN Report No. 3453, Bolt Beranek
and Newman Inc., Cambridge, MA, December.

Earley, J. (1968). "An Efficient Context-free Parsing Algor-
ithm." Ph.D. thesis, Dept. of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Thompson, F.B. (1963). "The Semantic Interface in Man-
Machine Communication," Report No. RM 63TMP-35,
Tempo, General Electric Co., Santa Barbara, CA, Sep-
tember.

Woods, W.A. (1967). "Semantics for a Question-Answering
System," Ph.D. thesis, Division of Engineering and Ap-
plied Physics, Harvard University. Also Report NSF-19,
Harvard Computation Laboratory, September.
(Available from NTIS as PB-176-548, and from Garland
Publishing, Inc. as a volume in a new series: Outstanding
Dissertations in the Computer Sciences.)

Woods, W.A. (1969). "Augmented Transition Networks for
Natural Language Analysis," Report No. CS-I, Aiken
Computation Laboratory, Harvard University, Decem-
ber. (Available from ERIC as ED-037-733; also from
NTIS as Microfiche PB-203-527.)

Woods, W.A. (1970). "Transition Network Grammars for
Natural Language Analysis," CACM, Vol. 13, No. 10,
October.

Woods, W.A. (1977). "Spinoffs From Speech Understanding
Research," in Panel Session on Speech Understanding
and AI, Proceedings of the 5th Int. Joint Conference on
Artificial Intelligence, August 22-25, p. 972.

Woods, W.A. (1978a). "Taxonomic Lattice Structures for
Situation Recognition," in TINLAP-2, Conference on
Theoretical Issues in Natural Language Processing-2,
University of Illinois at Urbana-Champaign, July 25-27.
(Also in AJCL, Mf. 78, 1978:3).

Woods, W.A. (1978b). "Semantics and Quantification in
Natural Language Question Answering," in Advances in
Computers, Vol. 17. New York: Academic Press. (Also
Report No. 3687, Bolt Beranek and Newman Inc.)

Woods, W.A., R.M. Kaplan, and B.L. Nash-Webber (1972).
"The Lunar Sciences Natural Language Information
System: Final Report," BBN Report No. 2378, Bolt Bera-
nek and Newman Inc., Cambridge, MA, June.
(Available from NTIS as N72-28984.)

Woods, W.A., M. Bates, G. Brown, B. Bruce, C. Cook,
J. Klovstad, J. Makhoul, B. Nash-Webber, R. Schwartz,
J. Wolf, V. Zue (1976). Speech Understanding Systems
- Final Report, 30 October 1974 to 29 October 1976, BBN
Report No. 3438, Vols. I-V, Bolt Beranek and Newman
Inc., Cambridge, MA.

Woods, W.A. and Brachman, R,J. (1978). Research in Natu-
ral Language Understanding, Quarterly Technical Prog-
ress Report No. 1, 1 September 1977 to 30 November
1977, BBN Report No. 3742, Bolt Beranek and Newman
Inc., Cambridge, MA, January. (Now available from
NTIS as AD No. AO53958).

12 Amer ican Journal of Computat ional Linguistics, Vo lume 6, Number 1, January-March 1980

