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1. Introduction

Compositional models in distributional semantics combine word vectors to yield new
compositional vectors that represent the meaning of composite expressions. Some com-
positional approaches use syntactically enriched vector models, assuming a structured
vector space in which word contexts are defined on the basis of dependency relations
(Erk and Padó 2008; Thater, Fürstenau, and Pinkal 2010). In those approaches, the
compositional vectors correspond to the meaning of words in context and the syntax-
based combination of vectors enables words to be disambiguated as a process of
contextualization (Weir et al. 2016). Similarly, the compositional process applied to a
bilingual vector space should also enable translating polysemous words in context in
an appropriate way.

Table 1 shows an example. Given the expression catch a ball, the sense of catch
combined with ball is similar to grab, and can be translated into Spanish by coger. By
contrast, this verb has a similar meaning to contract when combined with disease in
the expression catch a disease, and its more appropriate translation into Spanish is now
contraer. On the other hand, the sense of ball when combined with catch designates
a spherical object and its translation into Spanish is pelota. However, the meaning of
ball refers to a dancing event when it is combined with attend in attend a ball, being
translated now into Spanish by baile. Both sense disambiguation and language trans-
lation are sensitive to the compositional construction of new meanings (Brown et al.
1991). In a bilingual distributional framework, we call “contextualized translation” the
construction of compositional vectors for the expressions in the target language that
are similar to the compositional vectors of the expressions in the source language. The
target expression with the most similar compositional vector to the vector of the source
expression will be considered as its most likely (contextualized) translation. This task
was known in machine translation as target word selection, namely, the task of deciding
which target language word is the most appropriate equivalent of a source language
word in context (Dagan 1991).

In a monolingual vector space, we propose a compositional model based on that
described in Erk and Padó (2008) and Erk et al. (2010). When two words, catch and
ball, are related by a syntactic dependency, for instance dobj (direct object), we actually
perform two different combinations: on the one hand, we combine the vector of the
head word, noted catch, with the selectional preferences, noted balld↓, imposed by
the dependent word ball on the head catch, in order to obtain a new compositional
vector: catchdobj↑. This is the contextualized sense of the head catch given ball in relation
dobj, which would be close to the meaning of grab and not to that of contract. On the
other hand, the vector of the dependent word, ball, is combined with the selectional
preferences, noted catchh↑, imposed by the head catch on ball, so as to obtain a new

Table 1
Similar words (second column) and translations into Spanish (third column) of catch and ball in
context.

catch a ball grab coger (spa)
catch a disease contract contraer (spa)
catch a ball spherical object pelota (spa)
attend a ball dancing event baile (spa)
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compositional vector: balldobj↓. This is the contextualized sense of ball given catch in the
same relation dobj, which should denote a spherical object and not a dancing event.
So, when two words are syntactically dependent, the compositional process builds two
new vectors: one for the head expression and another one for the dependent one. In this
approach, the vector space is structured with syntactic dependencies, and word senses
are contextualized as words are combined with each other through their dependencies.
This compositional strategy is useful to identify paraphrases, that is, similar composite
expressions in the same language. The key element of such a syntax-sensitive vector
space, which is high dimensional and sparse, is the concept of selectional preferences
(defined later in Section 3).

Our main contribution is to adapt this syntax-based compositional process to a
bilingual model. The contextualized translation of a given composite expression in the
source language is performed by searching its nearest-neighbor vectors, among a set
of candidates, in the target language, after having been contextualized as described
here. This could be seen as a first step toward the definition of a compositional strategy
for machine translation. Another important contribution of our work is the creation
of an evaluation data set consisting of 1,119 Spanish translations of English sentences
containing phrasal verbs.

The objective of the article is to define a bilingual vector space to perform contex-
tualized translations of phrasal verbs, on the basis of a distributional compositional
model enriched with syntactic information. What we call contextualized translation is
actually a sort of unsupervised compositional-based machine translation. However, we
prefer keeping the term contextualization because the compositional strategy we use
is the same as that required for generating contextualized senses in the same language.
Preliminary ideas underlying this method have been reported in Gamallo (2017c).

This article is organized as follows. Some related work is addressed in the next
section (2). Then, Section 3 describes the compositional distributional model we follow.
Next, Section 4 introduces the bilingual word space, and Section 5 defines our contextu-
alized translation strategy. Experiments on translation of phrasal verbs are performed
in Section 6 and, finally, relevant conclusions are addressed in Section 7.

2. Related Work

Our approach relies on three strategies: a compositional method to build vectors rep-
resenting the contextualized sense of composite expressions (Subsection 2.1); a way
of building a bilingual vector space using monolingual corpora (Subsection 2.2); and
a strategy to propose contextualized translations with bilingual and compositional
vectors (Subsection 2.3).

2.1 Compositional Vectors

In the last decade, different compositional models have been proposed and most of
them use bag-of-words as basic representations of word contexts in the vector space.
The most intuitive approach, reported in Mitchell and Lapata (2008, 2009, 2010), consists
of combining vectors of two related words with arithmetic operations: component-wise
addition and multiplication. Mitchell and Lapata (2009, 2010) describe weighted addi-
tive models giving more weight to some constituents—for instance, to the head word
in a verb-noun expression, as the whole construction is closer to the verb than to the
noun. Other weighted additive models are described in Guevara (2010) and Zanzotto
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et al. (2010). These models only define composition operations for two syntactically
related words. Their main drawback is that they do not propose a more systematic
model covering all types of semantic composition. More precisely, they do not focus on
the function–argument relationship underlying compositionality in categorial grammar
(CG) approaches—that is, they do not provide a linguistic combination with the elegant
mechanism expressed by the principle of compositionality, where words interact with
each other according to their syntactic categories (Montague 1970).

Other approaches develop robust models of meaning composition inspired by
CG approaches. They learn the meaning of functional words (e.g., verbs and adjec-
tives) from corpus-based occurrences by making use of regression predictive modeling
(Baroni and Zamparelli 2010; Baroni 2013; Krishnamurthy and Mitchell 2013; Baroni,
Bernardi, and Zamparelli 2014). In our proposal, by contrast, compositional functions
are associated not with functional words, but with syntactic dependencies. Besides, they
are not learned using regression techniques, but are just modeled as basic arithmetic
operations on vectors as in Mitchell and Lapata (2008) and Weir et al. (2016). Arithmetic
operations are easy to implement and produce high-quality compositional vectors,
which makes them suited to practical applications (Baroni, Bernardi, and Zamparelli
2014).

There are other compositional methods still relying on CG that use tensor products
(Coecke, Sadrzadeh, and Clark 2010; Grefenstette et al. 2011). Two problems can arise
with tensor products. First, they lead to a problem of information scalability, because
tensor representations grow exponentially as the phrases lengthen (Turney 2013). Sec-
ond, tensor products do not seem to perform as well as basic arithmetic operations (e.g.,
multiplication) as was reported in Mitchell and Lapata (2010).

There are also studies making use of neural-based approaches (or deep learning
strategies) to deal with word contextualization. In Peters et al. (2018), unlike traditional
word type embeddings, each token is assigned a representation that is a function of the
entire input sentence. In particular, the authors use vectors derived from a bidirectional
long short-term memory network (LSTM) that is trained with a coupled language model
in order to build contextualized vectors. Melamud, Goldberger, and Dagan (2016) also
make use of bidirectional LSTM for efficiently learning a generic context embedding
function. Devlin et al. (2018) make use of masked language models to enable pre-
trained deep bidirectional representations. In a similar way, McCann et al. (2017) use
a deep LSTM encoder from an attentional sequence-to-sequence model trained for
machine translation to contextualize word vectors. However, in these four studies, word
contextualization is not defined by means of syntax-based compositional functions, as
they do not consider the syntactic functions of the constituent words.

Other pieces of work make use of deep learning strategies to build compositional
vectors, such as recursive neural network models (Socher et al. 2012; Hashimoto and
Tsuruoka 2015), which share with our model the idea that in the composition of two
words both words modify each other’s meaning. Similarly, the deep recursive neural
network reported in Irsoy and Cardie (2014) considers the structural representation
of a phrase (e.g., a parse tree) so as to recursively generate parent representations
in a bottom–up fashion, by combining tokens to produce representations for phrases.
However, the opaque embeddings built by means of neural-based strategies cannot be
easily adapted to our compositional method since it requires a transparent and syntax-
sensitive vector space made of lexico-syntactic contexts.

So far, all the cited works represent vector contexts by means of window-based
techniques. However, there are a few studies using vector spaces structured with syn-
tactic information as in our approach. Thater, Fürstenau, and Pinkal (2010) distinguish
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between first-order and second-order vectors in order to allow two syntactically incom-
patible vectors to be combined. This work is inspired by that described in Erk and
Padó (2008) and Erk et al. (2010), in which second order (or indirect) vectors represent
selectional preferences and each word combination gives rise to two contextualized
word senses. More recently, Weir et al. (2016) describe a similar approach where the
meaning of a sentence is represented by the contextualized senses of its constituent
words. The main difference is the type of context they use to build word vectors. Each
word occurrence is modeled by what they call anchored packed dependency tree, which is a
dependency-based graph that captures the full sentential context of the word. The main
drawback of this context approach is its critical tendency to build very sparse word
representations. In the deep learning paradigm, special attention should be given to a
syntax-sensitive compositional version of CBOW algorithm, which is called C-PHRASE
(Pham et al. 2015).

Our proposal is an attempt to merge the main ideas of these syntax-sensitive models
(i.e., to consider two word senses per combination and to use the concept of selectional
preferences) in order to apply them to contextualized translation.

2.2 Cross-Lingual Word Similarity from Monolingual Corpora

The method proposed in this article also relies on techniques to build bilingual vec-
tors from monolingual corpora. Most approaches to extract translation equivalents
from monolingual corpora define the contextual distribution of a word by considering
bilingual pairs of seed words. In most cases, seed words are provided by external
bilingual dictionaries (Fung and McKeown 1997; Fung and Yee 1998; Rapp 1999; Chiao
and Zweigenbaum 2002; Shao and Ng 2004; Saralegi, Vicente, and Gurrutxaga 2008;
Gamallo 2007; Gamallo and Pichel 2008; Yu and Tsujii 2009a; Ismail and Manandhar
2010; Rubino and Linarés 2011; Tamura, Watanabe, and Sumita 2012; Aker, Paramita,
and Gaizauskas 2013; Ansari et al. 2014). So, a word in the target language is a trans-
lation candidate of a word in the source language if it tends to co-occur with the
pairs of words from the seed words. A slightly different strategy is reported in Wijaya
et al. (2017), where the learning task is modeled as a matrix completion problem with
source words in the columns and target words in the rows. More precisely, starting
from some observed translations (e.g., from existing bilingual dictionaries), the method
infers missing translations in the matrix using matrix factorization with a Bayesian
Personalized Ranking.

A very similar but different task is cross-lingual hypernymy detection, which
determines whether a word in one language (e.g., vehicle) is a hypernym of a word
in another language (e.g., coche [car] in Spanish). Upadhyay et al. (2018) describe an
unsupervised approach for cross-lingual hypernymy detection, which learns sparse,
bilingual word embeddings based on dependency contexts. Neural-based strategies
also have been used to learn translation equivalents from word embeddings (Mikolov,
Le, and Sutskever 2013; Artetxe, Labaka, and Agirre 2016, 2018). They learn a linear
mapping between embeddings in two languages, which minimizes the distances be-
tween equivalences listed in a bilingual dictionary. Artetxe, Labaka, and Agirre (2017)
provide very good results using small lists of seed words. Mapped embeddings are
used to train unsupervised machine translation systems, which leverage automatic
generation of parallel data by back-translating with a backward model operating in the
other direction, and the denoising effect of a language model trained on the target side
(Artetxe et al. 2017; Lample et al. 2018).
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Unlike most approaches to extract word translations from monolingual corpora,
which are based on windowing techniques without syntactic information, we will use
a method that relies on dependency-based contexts. A significant number of papers
report that contexts based on syntactic dependencies outperform window-based strate-
gies in bilingual extraction (Gamallo and Pichel 2008; Yu and Tsujii 2009b; Andrade,
Matsuzaki, and Tsujii 2011; Hazem and Morin 2014).

2.3 Compositional Translation of Composite Expressions

Most approaches to unsupervised compositional translation of phrases, multiwords,
and composite terms consist of decomposing the source term into atomic components,
translating these components into the target language, and recomposing the translated
components into target terms (Tanaka and Baldwin 2003; Grefenstette 1999; Delpech
et al. 2012; Morin and Daille 2012). The simplest strategy assumes that the translation
of a compound may be obtained by translating each component individually thanks to
a general dictionary, by generating all the combinations of word positions, and then
filtering the translated expressions using either the target corpus or the Web, as in
Grefenstette (1999).

This strategy is limited to the subset of compound expressions that share the same
compositional property in both the source and target languages, and it is also limited by
the coverage of the translation dictionary (Morin and Daille 2012). Several problems can
arise, namely, fertile translations in which the target expression has more words than the
source term (e.g., the English word estrogen-sensitive is translated in Spanish by sensible
a los estrógenos), and collocations that can be translated by just one word (for instance,
the English expression go for a walk is translated in Spanish by the word pasear). Our
translation approach also follows the decomposing strategy but, unlike the works cited
earlier, the source expression will be compared against a very large list of candidates,
including single words and composite expressions with different morphological and
syntactic properties. The use of syntax-based transfer rules helps us enlarge the list of
candidates and makes the model fully compositional.

Finally, concerning neural machine translation (NMT), it is worth noting that it
does not decompose the source sentence in a compositional way as in our approach.
Instead, NMT encodes the source sentence using recurrent neural networks (RNN) and
then decodes it to generate the target sentence word-by-word. At each generation step,
the decoder has access not just to a single word from the source sentence, but to the
contextual representations of every word in the source sentence (e.g., Cho et al. 2014).
RNN encoder-decoder architecture captures both semantic and syntactic structures of
phrases and permits a sequence-to-sequence prediction where the length of the input
and output sequences may vary. This makes it possible to deal elegantly with cases
of fertile and non-compositional translations. However, unlike our unsupervised ap-
proach, standard NMT is a supervised strategy, as it relies on parallel corpora.

3. Compositional Distributional Semantics

In this section, we describe first how word senses are contextualized by making use
of selectional preferences (Section 3.1). Then, we describe how compositional vectors
are created by combining head-dependent words (Section 3.2). Finally, this process is
generalized and extended to a dependency tree (Section 3.3).
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3.1 Contextualized Senses and Selectional Preferences

Our model uses vector representations for words (or lemmas) based on syntactic con-
texts. Syntactic contexts are derived from binary dependencies, which can be found
in a corpus analyzed with a dependency-based parser. Let’s suppose the composite
expression “catch a ball” was found in a corpus and is analyzed as follows:

(dobj, catch, ball)

It states that the noun ball (dependent word) is related to the head verb catch by means of
the relation dobj (direct object). A dependency is then a triple consisting of a relation, a
head, and a dependent word. From this dependency, two complementary word contexts
are extracted:

< dobj↑, catch >, < dobj↓, ball >

The oriented relation dobj↑ means that the head word catch is expecting a dependent
word in relation dobj, and dobj↓ means that the dependent noun ball is searching for
the head verb in the same relation. This representation is similar to that used for
distinguishing traditional selectional preferences1 from inverse selectional preferences
(Erk and Padó 2008).

Consider now that we want to build the contextualized senses of catch and ball in
the composite expression, catch a ball. Let us start with the distributional vectors of
the two related words. In a structured space, the vector of a word represents all the
(lexico-)syntactic contexts with regard to which the target word is either a head or a
dependent. Given that the vector of a noun is defined in a different syntactic space
from the vector of a verb, it is not possible to find common contexts shared by the two
vectors. In fact, in a structured (or typed) vector space they are incompatible vectors and
cannot be combined (Kober et al. 2017). Our structured vector space is a distributional
semantic model where words are represented as lemma–part of speech (PoS) pairs and
dimensions are lexico-syntactic positions. For instance, the word ball (represented in our
structured space as the lemma–PoS pair < ball, NOUN > is assigned a corpus-based
frequency in context < dobj↑, catch > (direct object of the verb catch)).2 This lexico-
syntactic context is only used to define noun vectors as neither verbs nor adjectives
can be direct objects of verb catch.

To make the composition of two dependent words compatible, we propose to com-
bine word vectors with their selectional preferences as shown in Figure 1. Selectional
preferences (or indirect vectors) are formally defined in the following paragraphs.

To compose the sense of catch given ball in the dobj syntactic relation, we build both:

• the selectional preferences imposed by the dependent noun on the head
verb in that syntactic position: balld↓,

• the selectional preferences imposed by the head verb on the dependent
noun in the same syntactic position: catchh↑.

1 Selectional preferences or constraints are the tendency for a word to semantically select or constrain
which other words may appear in a direct syntactic relation with it (Resnik 1996).

2 For the sake of simplicity, we will continue to represent words not as lemma-PoS pairs, but as simple
lemmas.
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Figure 1
Diagram representation of the selectional preferences, balld↓ and catchh↑, which are combined
with catch and ball, respectively, to build two contextualized senses in the direct object
dependency.

Here, balld↓ and catchh↑ are indirect vectors resulting from the following vector
component-wise additions:

balld↓ =
∑

v∈BBB
v (1)

catchh↑ =
∑

n∈CCC
n (2)

where B is the vector set of those verbs having ball as direct object in the corpus, for
instance: {throw, give, buy, . . .} (see Figure 1). More precisely, given the linguistic con-
text< dobj↓, ball >, the indirect vector balld↓ is obtained by adding the vectors {v|v∈B}
of all verbs co-occurring with the noun ball in the dobj relation. More intuitively, balld↓

stands for the inverse selectional preferences imposed by ball on any verb at the direct
object position. Given that this new vector is constituted by verbal contexts, it belongs to
the same vector space as verbs, and therefore it can be combined with the word vector
of catch.

On the other hand, C in Equation (2) represents the vector set of those nouns
occurring as direct object of catch in the corpus: {train, bus, disease, . . .} (see Figure 1).
More precisely, given the lexico-syntactic context < dobj↑, catch >, the vector catchh↑ is
obtained by adding the vectors {n|n ∈ C} of those nouns that occur at the direct object
position of the verb catch. Indirect vector catchh↑ stands for the selectional preferences
imposed by the verb on any noun in the dobj relation. Such a new vector is only
constituted by nominal contexts, and, therefore, is compatible and might be combined
with the word vector of ball.
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3.2 Dependencies and Composition

Once the selectional preferences have been elaborated, given two words linked by a
dependency, two new compositional vectors are created by just multiplying word vec-
tors with their corresponding selectional preferences (indirect vectors). In our approach,
composition is driven by binary dependencies. A syntactic dependency consists of
two functions. First, head function, h↑, combines the vector of the head word, catch,
with the selectional preferences of the dependent word, balld↓, by component-wise
multiplication. It yields a new vector, catchdobj↑, which represents the contextualized
sense of catch given ball in the dobj relation:

h↑(dobj, catch, balld↓) = catch� balld↓ = catchdobj↑ (3)

Similarly, dependent function d↓ combines the vector of the dependent word, ball,
with the inverse preferences of the head, catchh↑, by component-wise multiplication, in
order to build a new compositional vector, balldobj↓, which stands for the contextualized
sense of ball given catch in the dobj relation:

d↓(dobj, catchh↑, ball) = ball� catchh↑ = balldobj↓ (4)

Each multiplicative operation results in a compositional vector of a contextualized
word. Component-wise multiplication has an intersective effect. The indirect vector
restricts the direct vector by assigning frequency 0 to those contextual features that are
not shared by both vectors.

3.3 Incremental Composition

Following dependency grammar (Kahane 2003; Hudson 2003), in our approach, seman-
tic composition is driven by syntactic dependencies. They contextualize word senses in
an incremental way. The consecutive application of the syntactic dependencies found
in an expression is, in fact, the process of building the contextualized sense of all the
lexical words constituting the expression. So, the meaning of a complex expression is
represented by a contextualized vector for each constituent word rather than by a single
vector standing for the entire expression. Figure 2 illustrates the incremental process of
building the sense of words by the consecutive application of two dependencies. Given
the expression a girl catches the ball and its dependency analysis shown on the top of the
figure, two compositional processes are carried out by the two dependencies involved in
the analysis: nsubj and dobj. Each dependency is decomposed into two functions: head
h↑ and dependent d↓. As a final result, no single meaning has been constructed for the
entire expression a girl catches the ball, but we have obtained one contextualized sense per
lexical word: girlnsubj↓, catchnsubj↑+dobj↑, and balldobj↓. This strategy may be considered as
an incremental extension of that reported in Erk et al. (2010). The main difference with
their approach is that we use contextualized selectional preferences at different levels of
analysis. By contrast, the work by Erk et al. (2010) is not incremental because selectional
preferences are not contextualized. In the dobj application of Figure 2, the contextualized
selectional preferences imposed by the verb, and noted catchh↑

nsubj↑, were created by
selecting the contexts of the nouns appearing as direct object of catch, which are also
part of girl after having been contextualized by the verb at the subject position. In
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girl catch ball

nsubj dobj

girlnsubj↓ catchnsubj↑ ball

h↑(nsubj,catch,girld↓ ), d↓(nsubj,catchh↑,girl)

girlnsubj↓ catchnsubj↑+dobj↑ balldobj↓

h↑(dobj,catchnsubj↑,balld↓ ), d↓(dobj,catchh↑
nsubj↑,ball)

Figure 2
Syntactic analysis of the expression a girl catches the ball and left-to-right construction of the word
senses.

other terms, the application of the second dependency requires building the selectional
preferences imposed by the verbal expression the girl catches on the nouns appearing in
the direct object position.3

It is worth noting that it would also be possible to incrementally apply dependen-
cies following a different order—for example, right-to-left direction. However, in the
experiments of Section 6, we will use only the incremental left-to-right order. A more
informal and linguistic-based description of the current method is reported in Gamallo
(2017c).

4. Bilingual Vectors Extracted from Monolingual Corpora

In a bilingual vector space, vector dimensions correspond to bilingual contexts. To
build bilingual contexts, we require both a bilingual dictionary and a set of bilingual
transfer rules. For example, take first an English–Spanish dictionary providing us with
the following lexical correspondences: station is translated by estación into Spanish,
and the English noun bus is translated by autobús. Second, take the following English–
Spanish transfer rules:

(nmod, N1, N2)→ ((nmod, N1, N2), R) (5)

(nmod, N1, N2)→ ((nmod/de, N1, N2), R) (6)

where the English constructions (source language) are on the left of the transfer rules (5)
and (6), while the Spanish constructions (target language) are on the right. Dependency
nmod stands for the nominal modifier relation and R represents a strong restriction
on the dependent word that must be situated to the left of the head one in the target
constructions. This restriction will be used in the last translation step to decode
the expressions in the target language from the selected candidates. This way,
((nmod, N1, N2), R) gives rise to “N1 N2” Spanish expressions, for example, estado

3 We do not consider the meaning of determiners, auxiliary verbs, or tense affixes. Quantificational issues
associated with them are beyond the scope of this work.
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miembro (member state), while ((nmod/de, N1, N2), R) gives rise to “N1 de N2” expres-
sions, for example estación de autobuses (bus station or literally station of buses). It means
that English constructions of type “N2 N1” can be translated by “N1 N2” and “N1 de
N2” constructions into Spanish. A transfer rule is thus a bilingual pair of constructions
provided with word order restrictions in the target language, and a construction is a
dependency without lexical information.

On the basis of the bilingual dictionary and the transfer rules (5) and (6), we gener-
ate four bilingual contexts that would be integrated into the syntax-based dimensions
of our English–Spanish vector space:

<< nmod↑, station >;< nmod/de↑, estación >> (7)

<< nmod↓, bus >;< nmod/de↓, autobús >> (8)

<< nmod↑, station >;< nmod↑, estación >> (9)

<< nmod↓, bus >;< nmod↓, autobús >> (10)

A bilingual context, < cs; ct >, consists of two monolingual contexts, where cs is the
context in the source language, and ct represents its translation into the target language.
The triple (wen,< cen; ces >, fr) represents the number of times ( fr ) an English word, wen,
co-occurs with the English corresponding context, cen, within a monolingual English
text. Given the occurrence of bus station in the English corpus, which is an instance of the
construction (nmod, N1, N2) occurring 1,394 times in that corpus, we extract two triples:
triple (11) below representing the frequency of the English word bus in the English
context of (7) shown above, and triple (13) codifying the frequency of station in the
English context of (8). In addition, given the occurrence of estación de autobuses in the
Spanish corpus, which is an instance of the construction (nmod/de, N1, N2) occurring
765 times, we build two more triples: (12) and (14) shown below.

(bus,<< nmod↑, station, N >;< nmod/de↑, estación >>, 1394) (11)

(autobús,<< nmod↑, station >;< nmod/de↑, estación >>, 767) (12)

(station,<< nmod↓, bus >;< nmod/de↓, autobús >>, 1394) (13)

(estación,<< nmod↓, bus >;< nmod/de↓, autobús >>, 767) (14)

Notice that the other candidate translation, estación autobuses, instanciating the
construction (nmod, N1, N2) and derived from contexts (9) and (10), is not found in the
corpus because it is grammatically odd in Spanish.

The vector space is built with the bilingual contexts described above and their word-
context co-occurrences. This is thus a count-based approach characterized by being high
dimensional and sparse. In order to reduce sparseness, we apply a technique to filter
out not very informative contexts by relevance, as described in Gamallo (2017b). The
reducing technique consists of two tasks: First, an association measure (e.g., loglikeli-
hood) is computed between each word and their bilingual contexts and, second, for
each word, only the N contexts with highest loglikelihood scores are selected. In this
bilingual vector space, given a word in the source language, the nearest neighbors in
the target language (in terms of distributional similarity) are, in fact, its most likely
translation candidates. A more detailed description of our count-based bilingual model
can be found in Gamallo and Pichel (2008) and Gamallo and Bordag (2011).
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5. Contextualized Translation in a Bilingual Vector Space

Contextualized translation is the result of combining the method to extract bilingual
vectors defined in Section 4, with the compositional distributional approach introduced
in Section 3.

Figure 3 depicts the general architecture of the strategy, consisting of two main
tasks: extraction from monolingual corpora and contextualized translation in a bilingual
distributional space. In the figure, the source language is English (en) and the target
is Spanish (es). The extraction module, to the left of the figure, requires monolingual
corpora in the source and target languages (English and Spanish). All texts of the
corpora are linguistically processed and syntactically analyzed. A bilingual dictionary
and transfer rules are also required to define a bilingual distributional model, by making
use of the technique described in Section 4. The resulting bilingual model provides
all English and Spanish words with a distributional meaning representation out of
context. This distributional model is the input of the compositional algorithm used by
the translation strategy.

The translation module is illustrated in the right side of Figure 3. It consists of three
sub-tasks: (1) generation of the Spanish candidates, (2) building compositional models
for the English sentence and Spanish candidates, and (3) selection of the most similar
candidate.

(1) Generation of candidates: The input of the system is a sequence in English (en) that
is syntactically analyzed. The generation sub-module takes the analyzed sentence
and expands it into a set of candidate translations in Spanish (es1, es2, . . . , esn), by
making use of the bilingual dictionary and bilingual transfer rules.

(2) Compositional meaning: Once the candidates have been generated, the next step is
to build the distributional meaning representation of the input sentence (meaning
en) and the translation candidates: meaning es1, . . . , meaning esn. For this purpose,
the compositional algorithm described in Section 3 makes use of composition
functions operating on the bilingual vector space. The distributional meaning of
each sentence stands for the contextualized senses of its constituent words.

Figure 3
Architecture of the system: extraction and translation modules.
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(3) Selection by similarity: Finally, the distributional meanings of the generated candi-
dates are compared pairwise by means of cosine similarity with the English sen-
tence. The generated Spanish sentence associated with the most similar meaning
(in bold in the figure) is selected as the best Spanish translation of the English
sentence.

It is worth noting that the figure shows a simplified architecture of the translation
module, since incrementality across dependencies is not represented. In order to better
understand the translation process, the following subsections will help us to explain the
three stages of the process from a concrete example: the English expression coach station.

5.1 Generation of Candidates

The English expression is syntactically analyzed and then a set of Spanish candidates is
generated by using a English–Spanish dictionary and the transfer rules defined above
in Equations (5) and (6). Considering the different translations of these two ambigu-
ous words in the dictionary and the two transfer rules, Table 2 shows all 56 possible
combinations.

Table 2
56 Spanish candidate translations of “coach station.” Only the three in bold are acceptable
translations. The English coach was translated in Spanish by: bus (bus), autobús (bus), autocar (bus),
entrenador (trainer), instructor (instructor), preparador (trainer), and monitor (instructor). And the
English station was translated by: estación (station), canal (channel), emisora (radio) station), and
puesto (position). We added the most common English translation of each Spanish word so that
readers who do not know Spanish will understand the ambiguity issue.

(nmod/de, estación, bus), (nmod/de, estación, autobús),
(nmod/de, estación, autocar), (nmod/de, estación, entrenador),
(nmod/de, estación, preparador), (nmod/de, estación, instructor),
(nmod/de, estación, monitor), (nmod/de, canal, bus),
(nmod/de, canal, autobús), (nmod/de, canal, autocar),
(nmod/de, canal, entrenador), (nmod/de, canal, preparador),
(nmod/de, canal, instructor), (nmod/de, canal, monitor),
(nmod/de, emisora, bus), (nmod/de, emisora, autobús),
(nmod/de, emisora, autocar), (nmod/de, emisora, entrenador),
(nmod/de, emisora, preparador), (nmod/de, emisora, instructor),
(nmod/de, emisora, monitor), (nmod/de, puesto, bus),
(nmod/de, puesto, autobús), (nmod/de, puesto, autocar),
(nmod/de, puesto, entrenador), (nmod/de, puesto, preparador),
(nmod/de, puesto, instructor), (nmod/de, puesto, monitor),
(nmod, estación, bus), (nmod, estación, autobús),
(nmod, estación, autocar), (nmod, estación, entrenador),
(nmod, estación, preparador), (nmod, estación, instructor),
(nmod, estación, monitor), (nmod, canal, bus), (nmod, canal, autobús),
(nmod,canal, autocar), (nmod,canal, entrenador), (nmod,canal, preparador), (nmod,canal, instructor),
(nmod, canal, monitor), (nmod, emisora, bus), (nmod, emisora, autobús),
(nmod, emisora, autocar), (nmod, emisora, entrenador),
(nmod, emisora, preparador), (nmod, emisora, instructor),
(nmod, emisora, monitor), (nmod, puesto, bus), (nmod, puesto, autobús),
(nmod, puesto, autocar), (nmod, puesto, entrenador),
(nmod, puesto, preparador), (nmod, puesto, instructor),
(nmod, puesto, monitor)
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5.2 Compositional Meaning

The compositional meaning of the English expression coach station corresponds to two
compositional vectors, stationnmod↑ and coachnmod↓, resulting from the two functions
(head and dependent, respectively) derived from the nmod relation. Then, the meaning
of the 56 Spanish candidates are built following the same procedure, giving rise to 118
compositional vectors. For instance, the two contextualized vectors corresponding to
estación de autobuses, both derived from the prepositional dependency nmod/de, are:
estacionnmod/de↑ and autobusnmod/de↓.

5.3 Selection by Similarity

For each binary dependency in the source language, a translation candidate is selected
by computing the compositional/contextualized translation measure, CT, which selects
the most similar expression in the target language by comparing the degree of similarity
between heads and dependents in both languages. More precisely, given a composite
expression (r, w1, w2) in the source language, where r is a dependency linking w1 to w2,
its translation into the target language is computed as follows:

CT(r, w1, w2) = arg max
(r′,w′

1,w′
2 )∈φ

Sim(w1r↑, w′1r′↑) + Sim(w2r↓, w′2r′↓) (15)

where (r′, w′1, w′2) is any target expression belonging to the set of translation candidates,
φ. The first Sim computes the similarity between the two compositional vectors derived
from the head functions. The second one computes the similarity between the vectors
derived from the dependent functions. So, the overall similarity between two composite
expressions is the basic addition of the similarity scores obtained by comparing their
head-based and dependent-based compositional vectors. The resulting translation is
thus the expression belonging to φ with the highest overall similarity score.

This is a ranked sample of the three most similar candidates with CT scores derived
from the experiments described in the next section:

Sim(stationnmod↑, estacionnmod/de↑) + Sim(coachnmod↓, autobusnmod/de↓) = 0.0912

Sim(stationnmod↑, estacionnmod/de↑) + Sim(coachnmod↓, busnmod/de↓) = 0.0901

Sim(stationnmod↑, estacionnmod/de↑) + Sim(coachnmod↓, entrenadornmod/de↓) = 0.0833 (16)

Following our example, the 56 Spanish candidates in Table 2 represent the φ set
of translation candidates. Only 3 out of 56 are acceptable translations, the rest are
unsuitable candidates. Using Equation (15) and the ranked sample (16), the target
candidate (nmod/de, estación, autobús) (estación de autobuses) is selected as it reaches the
highest similarity score to the source expression (coach station).

So far, the translation process has been focused on a composite expression consti-
tuted by just one binary syntactic dependency. In order to deal with composite expres-
sions with several dependencies (e.g., the coach station closed), CT measure is computed

408



Gamallo et al. Distributional Compositional Semantics

for each dependency, while compositional operations are applied in an incremental left-
to-right order (as explained in Section 3):

CT1(nmod, station, coach) = (nmod/de, estación, autobús)

CT2(nsubj, close, station) = (nsubj, cerrar, estación) (17)

where the vectors associated with station and estación in CT2 are contextualized,
not only by the verb at the subject position, but also by the first combination in
CT1. This gives rise to the following contextualized vectors: stationnsubj↓+nmod↑ and
estacionnsubj↓+nmod/de↑.

Finally, a very simple decoder takes the CT results, dependency by dependency,
and builds the lemmatized expression in the target language by taking into account
word order information provided by the transfer rules: estación de autobús cerrar. In the
current version, we only deal with lemmas. In the case of incompatibility between two
target words, the decoder adds the CTi scores obtained by all dependencies in which the
incompatible words are involved, and selects the word with the highest global CT score.
For instance, consider Equation (17) and function CT2 returning (nsubj, cerrar, emisora)
instead of (nsubj, cerrar, estación). The new Spanish noun emisora (radio station) is dif-
ferent from estación (bus station), which has been selected by the first dependency. The
two nouns are incompatible as they are assigned to the same syntactic position in the
syntactic graph, namely, head of nmod and dependent of nsubj. In this case, the word
with the highest global CT value will be estación because it reaches high scores in both
dependencies and not just in one of them.

6. Experiments

The proposed method for contextualized translation relies on two strategies: composi-
tional distributional semantics and bilingual extraction from monolingual corpora. The
syntax-based compositional distributional algorithm described in Section 3 was tested
against several monolingual data sets (with intransitive and transitive constructions)
and the results of these experiments were reported in Gamallo (2017c). The method
to extract bilingual lexicons described in Section 4 participated in the SemEval 2017
Task 10, being the best system using monolingual corpora in the English–Spanish cross-
lingual sub-task (Gamallo 2017a).

Concerning contextualized translation, which is the objective of the current work,
the most similar task that has been evaluated is cross-lingual semantic textual similarity,
which was defined as a shared task at SemEval-2016 Task 1 (Agirre et al. 2016). However,
the objective of textual similarity is not to generate a candidate translation but just to
provide a degree of similarity between the source and target sentences. The best system
in the cross-lingual subtask at SemEval-2016 Task 1 (Brychcı́n and Svoboda 2016) is
very different from the syntax-based strategy we propose in the present work. They
translated Spanish sentences to English via Google Translate and, next, made use of the
same semantic textual similarity strategy as for the monolingual task. The monolingual
task for semantic textual similarity represents the meaning of a sentence using simple
linear combination of word vectors, as in the compositional distributional strategy
reported in Mikolov, Yih, and Zweig (2013), which is not syntax-based.

Moreover, Task 1 at SemEval-2016 consists of data sets with quite complex and
heterogeneous sentences belonging to a large variety of syntactic constructions, which
makes it not trivial to treat them through syntax-based compositional approaches. In
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Table 3
Sample of English sentences with the act out phrasal verb (first column) selected from the data
set PhrasalVerbsToSpanish. The second column contains the best Spanish translations for each
English sentence, and the third one shows the Spanish verbs (lemmas) representing the
disambiguated translations of the English phrasal verb.

English sentence Spanish translations Spanish verbal phrases

the actors acted out the
characters

los actores representaron a los
personajes representar a

the actors act out their
performances

los actores interpretan sus
representaciones interpretar

the tired child acted out el niño cansado se comportó mal, el
niño cansado se portó mal

comportar se mal, portar
se mal

order to evaluate a syntax-based, contextualized translation system, we require bilin-
gual data sets with simple syntactic constructions, for example, adjective-noun or in-
transitive and transitive constructions, such as those defined and used for monolingual
tasks (Mitchell and Lapata 2008; Grefenstette and Sadrzadeh 2011).

As there is no such bilingual data set with the required characteristics, we created
a new resource to evaluate systems aimed at generating contextualized translations in
restricted syntactic domains.

6.1 The Data Set

The focus is to create a large number of examples with short and simple constructions,
but very ambiguous sentences that require being contextualized in order to be disam-
biguated. For this purpose, we focused on English sequences containing phrasal verbs,
which give rise to very ambiguous expressions. Whereas linguistic ambiguity can be
dealt with by means of contextualization, the domain of application is syntactically
restricted and, thereby, experiments can be evaluated in an enclosed and controlled
setting.

First, an English native translator built a bilingual verbal lexicon with 2,411 different
phrasal verbs and 5,761 English–Spanish translations by making use of a great variety
of lexicographic resources. Then, she built a list of English (transitive and intransitive)
expressions using the most polysemous phrasal verbs of the lexicon. The final data
set, called PhrasalVerbsToSpanish,4 consists of 1,119 English sentences with 665 different
phrasal verbs, and 1,837 Spanish translations with 1,241 different Spanish verbs (includ-
ing single and multiword verbs). The 665 English phrasal verbs are highly ambiguous
and then have multiple Spanish translations: Their average Spanish translations per
verb in the bilingual lexicon is 5.25.

Table 3 is a sample of the data set showing three English sentences with the act out
phrasal verb. These sentences are in the first column. The Spanish translations for each
English sentence are in the second column, and the third column provides lemmatized

4 https://github.com/gamallo/compMT/tree/master/compmtAPI/lib/resources.
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Spanish verbs corresponding to the correct translations of the English phrasal verb
in context. All examples contain simple constructions: intransitive or transitive con-
structions merely including noun phrases, verb phrases, adjectives, and prepositional
phrases. By contrast, coordination or embedding structures such as relative clauses or
completives are not allowed. As distributional-based translation is focused on the mean-
ing of lexical units, grammatical and encyclopedic units such as pronouns, conjunctions,
and proper nouns are also not allowed.

The PhrasalVerbsToSpanish data set is actually focused on the task of translating the
phrasal verb of an English sentence by disambiguating its sense using the meaning
of the context words. Thus, contextualization is a key concept in this task. It is worth
noting that the bilingual dictionary is used in two different tasks: for constructing this
data set and to generate the translation candidates before the contextualized model
selects the best one. For constructing the data set, the human translator composed
sentences containing the English phrasal verbs included in the dictionary. Concerning
the contextualized translation model, both the dictionary and the transfer rules are used
to generate candidates that may include phrasal verbs.

6.2 Monolingual Corpora and Linguistic Resources

The extraction module built the bilingual vector space from English and Spanish mono-
lingual corpora. The English corpus consists of 2007–2009 posts of Reddit Comment
Corpus, containing about 875 M words.5 The Spanish corpus corresponds to a 2014
dump file of the Spanish Wikipedia,6 along with a sample of posts extracted from
MenÉame.7 The whole Spanish corpus contains about 480 M word tokens. We decided to
use Reddit instead of Wikipedia for English because phrasal verbs are more frequent in
informal language such as that used in social forum comments. Notice that the English
and Spanish corpora are not comparable.

All texts were linguistically analyzed with LinguaKit (Gamallo et al. 2018), a multi-
lingual suite that also includes the dependency-based parser, DepPattern (Gamallo and
Garcia 2018), used to syntactically analyze the two corpora and the input phrases of the
translation module. Vectors were built for lexical units occurring more than 100 times
in each monolingual corpus.

Concerning the lexical resources, the English–Spanish Collins dictionary,8 contain-
ing 52,463 entries, was merged with our lexicon of phrasal verbs so as to create a
new bilingual resource with 57,975 entries. This bilingual dictionary is used for several
tasks: to identify English and Spanish phrasal verbs (not only single words) in the
monolingual corpora before extraction, to define bilingual distributional contexts in the
extraction module, and to generate Spanish candidates in the translation module.

Finally, a set of bilingual transfer rules were manually defined by a linguist. The
type of rules chosen to be implemented was determined by the examples of sentences
found in the PhrasalVerbsToSpanish data set. As they are just transitive and intransitive
clauses with no recursive structures and basic nominal modification, most transfer rules
required are just duplicated dependencies, as shown in Table 4. The α symbol stands
for any English preposition and β represents a Spanish preposition. For the current

5 http://files.pushshift.io/reddit/comments/.
6 http://dumps.wikimedia.org/eswiktionary.
7 https://www.meneame.net/.
8 http://www.collinslanguage.com/.
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Table 4
Transfer rules from English to Spanish. V, N, and A stands for verbs, nouns, and adjectives,
respectively. Dependency names are inspired by Universal Dependencies (Nivre et al. 2016).

(nsubj, V, N) → ((Lnsubj, V, N), LR)
(dobj, V, N) → ((dobj, V, N), RL)
(iobj/α, V, N) → ((iobj/β, V, N), RL)
(cop, V, A) → ((cop, V, A), RL)
(amod, N, A) → ((amod, N, A), RL)
(nmod, N1, N2) → ((nmod, N1, N2), R)
(nmod, N1, N2) → ((nmod/de, N1, N2), R)
(nmod/α, N1, N2) → ((nmod/β, N1, N2), R)

experiments, 13 English prepositions were identified and each one was paired with its
three most similar Spanish prepositions, according to distributional similarity. So, each
nmod/α→ nmod/β transfer rule was expanded with 13 × 3 specific rules. In total, 74
specific transfer rules were defined with just verbs, nouns, adjectives, and prepositions.
Adverbs and other syntactic categories were not considered for the current experiment.

Transfer rules are provided with four types of word order restrictions: R (the de-
pendent word is on the right), L (the dependent word is on the left), RL (the canonical
position of the dependent word is on the right), and LR (the cannonical position is on the
left). In the last two cases, both positions are allowed but one of them (the non-canonical
one) requires more restrictions to be activated.

6.3 Evaluation

Our Contextualized Translation (CT) system was evaluated using the PhrasalVerbsToSpanish
data set as the gold standard. The system selected the most likely translation for each
English sentence and then we computed its accuracy. Accuracy is just the result of
dividing positive cases by the total size of the data set (1,119 examples). A positive case
is defined as follows: The phrasal verb is correctly translated (positive) by checking
whether the Spanish verb or phrasal verb in the third column of the data set is also
returned by the system. Otherwise, it is considered a negative case.

We also measured four state-of-the-art commercial machine translators, namely
DeepL,9 Google Translator,10 Bing,11 and Yandex (all consulted in December 2017).12 The
final evaluation of these systems was done manually because they return inflected verbs
that might not match with the verbal lemmas in the third column of the gold standard.
So, a manual revision comparing forms with lemmas was required to find positive
cases. Additionally, we also implemented some baseline methods. Table 5 shows the
accuracy of all evaluated systems as well as a statistical test of significance (last column).
The symbols “�” and “�” respectively indicate a strong rise and drop with regard to
the accuracy of the previous system in the table, being the rise or drop significant for
a p-value ≤ 0.005 (paired sample t-test). The symbols “>” and “<” mean that there is

9 https://www.deepl.com/translator.
10 https://translate.google.com/.
11 https://www.bing.com/translator.
12 https://translate.yandex.com/.
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a lighter rise and drop with respect to the previous system, being significant for a p-
value ≤ 0.05 and > 0.005. Finally, ”∼” indicates that the difference is not statistically
significant (p-value > 0.05). Baseline strategies are ordered starting with the lowest
accuracy, and commercial translators are ordered from highest to lowest accuracy. The
CT system is situated after the best baseline and before the best commercial translator.

Four baseline strategies are on the top of the table. Dict-first is based on looking up
our bilingual lexicon of phrasal verbs. This method identifies the phrasal verb within
the English sentence, looks up the lexicon, and selects the first Spanish translation. The
result of this baseline, 0.312 accuracy, is in accordance with the fact that the phrasal
verbs occurring in the English sentences of the data set have 5.5 translations/meanings
on average, and there are some examples where more than one translation is allowed.

We also tested two more baselines based on non-compositional similarity. Dict-
Nocomp compares each phrasal verb with just their translation candidates generated
with the bilingual lexicon, and the most similar one is selected. The similarity is com-
puted on the same transparent bilingual vector space as the one used by our CT system.
Dict-Nocomp-VecMap computes the same non-compositional similarity by using word
embeddings for each language and a linear mapping between the two vector spaces
(Mikolov, Le, and Sutskever 2013). The mapping between embeddings was learned us-
ing VecMap (Artetxe, Labaka, and Agirre 2018). These two non-compositional methods
returned scores (0.383 and 0.390), significantly improving the accuracy of random dic-
tionary consultation (Dict-first) for a p-value≤ 0.005. However, such an improvement is
not too pronounced (less than 8 points over 100). The reason is that non-compositional
similarity tends to select the most popular sense/translation, but many examples of
the phrasal verbs in the gold standard were created with infrequent meanings. Rare
senses are just those that a compositional strategy should try to select in context. It is
worth noting that there is no significant difference between the two non-compositional
strategies, even though the use of VecMap slightly improves our way of computing
vector similarity.

The other baseline is Dict-Corpus-Based, which implements the corpus-based strat-
egy described in Grefenstette (1999) by making use of our bilingual dictionary. More
precisely, we translated each individual word (including phrasal verbs) of the input
English sentence by using the dictionary, and then we generated all the possible well-
formed combinations in Spanish. Finally, for each input sentence, we selected the
phrasal verb occurring in the most frequent combinations in the Spanish corpus. For
instance, let us take the input sentence the man acts as a manager, and the following
Spanish translations of the constituent words found in our dictionary: man is translated
by hombre, acts as by both servir de and hacer de, and manager by both director and
gerente. Then, all the possible syntactic combinations are generated and their frequency
is extracted from the syntactically analyzed Spanish corpus:

(nsubj, servir de, hombre), 1 (dobj, servir de, director), 0

(nsubj, hacer de, hombre), 1 (dobj, hacer de, director), 4

(dobj, servir de, gerente), 0 (dobj, hacer de, gerente), 0 (18)

Finally, the phrasal verb with the highest frequency is selected: hacer de, with 5
(4+1) occurrences in total. Notice that this is the correct answer because in the gold
reference the human translator also selected hacer de as the best choice for the input sen-
tence. The accuracy of this strategy (0.335) is higher than that obtained by the Dict-First
baseline, even though there is just a slight improvement with a p-value = 0.03. On the
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other hand, the Dict-Corpus-Based strategy is outperformed by the non-compositional
baselines in a significant way (p-value = 0.006).

As Table 5 shows, CT outperforms both the best baseline (Dict-Nocomp-VecMap) and
the best commercial translator (DeepL) in a significant way (p-value ≤ 0.005). Con-
cerning the differences between the four commecial systems, all are strongly sig-
nificant (p-value ≤ 0.005), except that separating Bing from Yandex, which is just
significant for a p-value ≤ 0.05. It is worth noting that all accuracy scores are low
because the task at stake has a high degree of complexity. All sentences contain very
ambiguous phrasal verbs, some of them with very infrequent senses, even though all of
them can be disambiguated by considering the meaning of the context words: nominal
subjects and/or objects. The improvement of our system with regard to the base-
line (from 349 to 571 positives) is perhaps not conclusive, but it shows that the com-
positional vectors built by the CT system help contextualize in an important number of
cases.

The difficulty of the task is demonstrated by the low values obtained by the un-
supervised machine translation system, UNdreaMT (Artetxe et al. 2017) (last row in
Table 5). This is a state-of-the-art, unsupervised translation strategy, based on denoising
and back-translation, whose embeddings are learned from monolingual corpora. We
have trained UNdreaMT using the embeddings mapped with VecMap, and the embed-
dings were built by applying word2vec (CBOW algorithm, window 5, and 300 dimen-
sions) (Mikolov, Yih, and Zweig 2013) on the same English and Spanish corpora as the
ones we used to train our CT method. However, it should be noted that UndreaMT is
at a clear disadvantage with respect to all the systems it is compared with: On the one
hand, it is a completely unsupervised system that has been trained with very small

Table 5
Accuracy of our system, Contextualized Translation (CT), using the data set PhrasalVerbsToSpanish,
together with the scores obtained with state-of-the-art machine translators: DeepL, Google
Translator, Bing, and Yandex (all consulted in December 2017). Four baseline methods, based on
looking up our bilingual lexicon of phrasal verbs, are also evaluated along with an unsupervised
machine translation system, UNdreaMT (Artetxe et al. 2017). The last column shows the
statistical significance test comparing each system with the previous one in the table.

systems positive negative accuracy s-test

Dict-first 349 770 0.312
Dict-Corpus-Based 375 744 0.335 >
Dict-Nocomp 430 689 0.383 �
Dict-Nocomp-VecMap 437 682 0.390 ∼

CT 571 548 0.510 �

DeepL 501 618 0.447 �
Google Trans. 410 709 0.366 �
Bing 326 793 0.291 �
Yandex 281 838 0.251 <

UNdreaMT 12 1,107 0.010 �
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corpora in relation to the commercial translators that use huge amounts of parallel
corpora. On the other hand, the generation of word sequences in the target language
is not controlled by a bilingual dictionary and syntax-based transfer rules as in the case
of CT. We must point out that the commercial translators also do not have access to the
bilingual dictionary and the generated candidates, which places them at a disadvantage
with respect to CT.

6.4 Error Analysis

In order to analyze the type of errors produced by the evaluated systems, 50 negative
examples were randomly selected and manually classified to error categories. Table 6
shows the distribution of the four error types found in the sample. The only negative
cases that can be considered as being clearly wrong choices directly derived from the
translation system are called “semantically odd,” and reach 34% of the total sample.
For instance, the CT system wrongly chose the Spanish verb matar (to kill) to translate
blow away in the singer blew away the audience, instead of deslumbrar a. In these cases,
the translation module did not select a semantically acceptable translation. By contrast,
32% (called “similar sense”) are acceptable cases in CT even if the most acceptable
translation, which fits better the collocation requirements, has not been chosen. For
example, in the state acted on the evidence, the system returned responder a, but the human
translator preferred another, more appropriate option (reaccionar ante), which is seman-
tically similar but seems to be more used in that specific context. It is therefore a stylistic
error, less serious than the previous one. We also found a significant number of errors
(22%) in CT inherited from the linguistic analyzers, either PoS tagger or dependency
parser, which intervene before the construction of the compositional meanings in the
semantic step. Finally, the fourth type of error (preposition) stands for those cases where
the Spanish verb is correct but the preposition is missing, as when the preposition “a”
introduces direct objects. In such cases, the presence of the preposition is recommended
but not mandatory, for instance: the worker decided to ask around his colleagues is translated
as trabajador tantear colega, instead of trabajador tantear a colega. So, it is a stylistic error,
like the second one. For CT, this analysis shows that serious errors (“semantically odd”)
are only one-third of the total, and that there is room for improvement by solving
morpho-syntactic problems.

With respect to the other systems evaluated, the number of semantically odd cases ex-
ceed 50%, except for DeepL, which always tries to find an interpretable solution and, in
many cases, semantically approaches the most appropriate target expression. It is worth

Table 6
Error analysis on 50 randomly selected negative examples classified in four types of errors.

systems semantically odd similar sense wrong analysis preposition

CT 34% 32% 22% 12%
Dict-Corpus-Based 52% 40% − 8%
Dict-Nocomp 66% 28% − 6%
DeepL 32% 68% − −
Google Trans. 58% 42% − −
Bing 78% 22% − −
Yandex 50% 50% − −
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noting that the error type called wrong analysis only applies to CT because it is the only
strategy based on PoS tagging and syntactic parsing. Besides, it is interesting to note
that commercial translators do not make mistakes with the preposition a. Dict-Nocomp-
VecMap has not been analyzed, as it is not significantly different from Dict-Nocomp-Vec.
The two systems with lowest accuracy values, namely, Dict-First and UMdreaMT, have
not been analyzed either.

Our CT system, along with the gold data set, are freely available.13 A Web demon-
strator using our technology to translate short sentences is also provided.14

7. Conclusions

One of the main benefits of distributional compositionality is that the systems based on
it (try to) solve word-sense disambiguation by modeling the mutual contextualization of
words in a compositional way, guided by the syntactic structure. In this article, we claim
that it is possible to apply the same procedure on a bilingual vector space to propose
contextualized translations.

We have worked with count-based vector spaces because their dimensions are
more transparent, more interpretable, and easier to combine in a compositional way
than neural network-based models (word embeddings). However, as deep-learning
compositional models are emerging in recent years (Cheng, Kartsaklis, and Grefenstette
2014; Cheng and Kartsaklis 2015), they should be studied in order to discover how they
might be used for modeling compositional distributional translation.

It is important to point out three important drawbacks of the proposed contextual-
ization method that need to be addressed in the future. First, in the case of collocations
such as save time, go mad, heavy rain, the borderline between compositional and non-
compositional interpretation is blurred. For these cases, it is not clear whether it is
more appropriate to apply either a compositional method of contextualization or simply
identify them previously as non-compositional expressions along with their frequency
in a corpus. Second, in the case of complex expressions giving rise to deep dependency
trees, we may have frequency scarcity problems due to the iterative application of
several contextualizations to the same word vector. And third, as transfer rules are
manually defined, it makes it complicated to extend the model to more language pairs.
These are challenges that we will have to take into account in the future when we extend
the approach to all types of linguistic expressions and other language pairs.

In future work, we will address and go into detail about the idea of incremental
translation, guided dependency-by-dependency. With the help of incremental trans-
lation, we think that unsupervised machine translation, based on monolingual cor-
pora, can be improved. For this purpose, it will be necessary to better define how to
generate translation candidates (our φ set) at whatever level of composition. Translat-
ing dependency-by-dependency with a narrow set of translation candidates and few
transfer rules would yield too literal and poor quality translations. To expand the
set of candidates, we should consider pseudo-compositional compounds that may be
better translated by a single word, as well as fertile translations, that is, translations
in which the target term has more words than the source one. Moreover, in order to
avoid the limitations of generating candidates through a bilingual dictionary, we will

13 https://github.com/gamallo/compMT.
14 http://fegalaz.usc.es/compmt/.
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also generate candidates from the context-free bilingual word embeddings learned from
monolingual corpora, such as VecMap or similar cross-lingual techniques.

However, if the set of candidates is expanded too much, other problems may arise
concerning both precision and computational efficiency. In order to expand candidates
in a controlled manner, it would be required to define transfer rules by taking into
account complex syntactic alternations at the level of the sentence construction: pas-
sive/active, transitive/unaccusative, and so forth. In fact, the translation system should
be provided with a rich set of cross-lingual constructions (Boas 2010) to define deep syn-
tactic transfer rules and thereby expand the set of candidates in a much more accurate
way. By doing this, the translation system would be actually based on a hybrid strategy,
relying on deep linguistic knowledge and corpora-based data collected by distributional
methods.
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