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In the last decade, various restricted classes of non-projective dependency trees have been pro-
posed with the goal of achieving a good tradeoff between parsing efficiency and coverage of the
syntactic structures found in natural languages. We perform an extensive study measuring the
coverage of a wide range of such classes on corpora of 30 languages under two different syntactic
annotation criteria. The results show that, among the currently known relaxations of projectivity,
the best tradeoff between coverage and computational complexity of exact parsing is achieved by
either 1-endpoint-crossing trees or MHk trees, depending on the level of coverage desired. We
also present some properties of the relation of MHk trees to other relevant classes of trees.

1. Introduction

A syntactic dependency tree is projective if the yield of each node is a substring of
the sentence—or equivalently, if no dependencies cross when drawn above the words.1

Projectivity is advantageous for efficient parsing: Exact inference for parsing models
restricted to projective trees can be achieved in cubic time (Eisner 1996), and shift-reduce
parsers can process them with very simple transitions in linear time (Nivre 2006). For
this reason, and because crossing dependencies have traditionally been rare in corpora
of languages like English, Chinese, or Japanese, many implementations of dependency
parsers assume projectivity (Nivre 2006).

However, crossing dependencies are needed to represent some linguistic phenom-
ena like topicalization, scrambling, wh-movement, or extraposition, so it is necessary
for natural language parsers to support non-projectivity, especially when working with
languages with flexible word order. Unfortunately, exact inference is intractable for
models that support arbitrary non-projective trees, except under strong independence
assumptions (McDonald and Satta 2007). For this reason, researchers have proposed
various classes of mildly non-projective trees: restricted classes of trees that allow a
limited degree of non-projectivity, permitting crossing dependencies only under certain
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conditions. The goal of these classes is to combine a high coverage of the syntactic
phenomena found in real sentences with efficient parsing.2

In this article, we perform a comparison of a wide range of these relaxations of pro-
jectivity, with the goal of evaluating them in terms of the tradeoff between coverage and
efficiency. For this purpose, we measure their coverage on a set of syntactic treebanks of
30 languages, analyzed under two different annotation criteria.

Thus, the main contribution of this work is that we provide homogeneous measure-
ments of the coverage of a wide range of mildly non-projective classes of trees on a large
collection of treebanks, relating them to their computational properties for parsing. To
our knowledge, this is the first study providing an extensive comparison of such classes:
Although Havelka (2007) also measured the coverage of several restrictions on non-
projectivity, little was known at the time about which restrictions could be exploited for
efficient parsing, so only a few of the classes discussed there are relevant for parsing.
Furthermore, existing coverage data in the literature (both in that study and in the
papers describing subsequently discovered classes of trees, cited herein) refer to small
sets of treebanks that vary across reports, when reported at all.

Additionally, we present some results relating MHk trees, one of the sets with the
best coverage–efficiency tradeoff, with other classes of mildly non-projective trees.

2. Classes of Mildly Non-Projective Trees

We now list the classes of trees considered in this study, outlining them very briefly. A
full description of each class, with all the required definitions, is outside the scope of
this article. We refer the reader to the provided references for further information.

Projective. Projective dependency trees can be parsed in O(n3) (see Section 1). We will
denote the set of projective trees by Pr.

Well-nested with Bounded Gap Degree. Well-nested trees (Bodirsky, Kuhlmann, and Möhl
2005) are those that do not contain disjoint subtrees whose yields interleave (those
that do are called ill-nested). Well-nested trees whose gap degree (the number of
discontinuities—or gaps—in a node’s yield) does not exceed a constant k can be parsed
in time O(n5+2k) (Gómez-Rodrı́guez, Weir, and Carroll 2009; Gómez-Rodrı́guez, Carroll,
and Weir 2011); and we will call them WGk trees. WGk trees have connections to
constituent grammar formalisms, as tree-adjoining grammars induce WG1 trees and
coupled context-free grammars induce WGk trees (Kuhlmann 2010).

Mild+1-Inherit and Gap-Minding. Gap inheritance (Pitler, Kannan, and Marcus 2012) is a
restriction on the number of children of a node that can have arcs that cross a gap in
its yield. Imposing gap inheritance bounds as additional restrictions on WG1 trees, two
relevant classes of trees are obtained: Mild+1-Inherit (M1I) trees can be parsed in O(n6),
and Mild+0-Inherit (M0I) trees, or gap-minding trees, in O(n5).

Head-Split. The head-split property is a restriction that forbids trees where a node’s yield
has a gap that includes its head, but not the gap in its head’s yield. This allows dynamic
programming parsers to split subtrees into two at the position of their heads, reducing
the complexity of parsing several subclasses of WG1 trees: Satta and Kuhlmann (2013)

2 Another option is to use models that forgo exact inference, but still achieve competitive results for
non-projective parsing in quadratic (Nivre 2008) or even linear time (Nivre 2009).
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show how WG1 trees with the head-split property (WG1S) can be parsed in O(n6),
whereas for M1I trees with the head-split property (M1IS) the complexity is O(n5).

Mildly Ill-nested. A superset of WGk trees, mildly ill-nested trees of gap degree up to
k (MGk) include all the dependency trees that have at least one binarization of gap
degree k. They can be parsed in time O(n4+3k) (Gómez-Rodrı́guez, Carroll, and Weir
2011). Note that this is the same complexity as for WGk for k = 1, but larger for k > 1.

Attardi Degree 2. The set of trees that can be parsed with the transitions of degree up to
2 in the transition system of Attardi (2006) is also amenable to dynamic programming
parsing, in time O(n7) (Cohen, Gómez-Rodrı́guez, and Satta 2011). This set, which we
will call AD2, includes ill-nested trees and trees with unbounded gap degree.

MHk trees. Gómez-Rodrı́guez, Carroll, and Weir (2011) define a generalization of the
tabular algorithm obtained from the shift-reduce parser of Yamada and Matsumoto
(2003), or from the arc-hybrid transition system (Gómez-Rodrı́guez, Carroll, and Weir
2008; Kuhlmann, Gómez-Rodrı́guez, and Satta 2011). This parser, called MHk, has items
representing a span dominated by several head nodes (hence the acronym, for “multi-
headed”). It has complexity O(nk) and is projective for k = 3, but covers increasingly
large sets of non-projective trees for values of k > 3, which we will call MHk trees.

1-Endpoint-Crossing. Pitler, Kannan, and Marcus (2013) define 1-Endpoint-Crossing trees
(1EC trees) as dependency trees such that all the arcs that cross a given arc have a
common vertex. This set of trees includes trees that are ill-nested and have unbounded
gap degree, and can be parsed in O(n4) (Pitler, Kannan, and Marcus 2013; Pitler 2014).

k-Planar. k-Planar trees (k-P, equivalent to k-page book embeddings in graph theory)
are those whose non-dummy arcs can be partitioned into k sets (called planes), in such
a way that arcs belonging to the same plane do not cross (Yli-Jyrä 2003). No globally
optimal parser is known for these trees, but they can be handled by a linear-time
transition-based parser with k stacks (Gómez-Rodrı́guez and Nivre 2010, 2013).

k-Crossing Interval. k-Crossing Interval trees (k-C) are defined by Pitler and McDonald
(2015) with a restriction on intervals formed by crossing arcs. 2-C trees can be parsed ac-
curately with a linear-time shift-reduce parser with two registers (Pitler and McDonald
2015). 2-C trees are a subset of 1EC trees, which in turn are a subset of 2-P trees.

3. Materials and Methods

Corpora. We evaluate the coverage of each class described in Section 2 on HamleDT
2.0 (Rosa et al. 2014), a collection of harmonized versions of existing treebanks of 30
diverse languages, under two different annotations: Prague and Universal Stanford
dependencies. Both annotation styles are interesting for parsing: The former tends to be
easier to learn for monolingual parsers, but the latter is advantageous in multilingual
settings (see Rosa [2015] and references therein). Thus, apart from spanning a variety
of languages, these data sets allow us to see the influence of annotation criteria on the
coverage of different restrictions on non-projectivity.

Methodology. For the classes of trees that have a known characterization independent
of their parsers (i.e., all except AD2 and MHk), we determine whether each tree in the
treebanks belongs to the class by using scripts that check for the required conditions. In
the case of AD2, we run an implementation of the oracle by Cohen, Gómez-Rodrı́guez,
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and Satta (2012) for the Attardi parser restricted to degree 2, which has been shown
to recognize exactly the trees of AD2 and its implementation checked against the
dynamic programming algorithm of Cohen, Gómez-Rodrı́guez, and Satta (2011).
Finally, in the case of MHk, we run a dynamic programming implementation of the
parser itself.

All programs to measure coverage have been extensively tested with examples
from the literature, custom-built sets of cases, known relations between classes
(MH3 = Pr, 2-C ⊆ 1EPC ⊆ 2-P, WGk ⊆ MGk, etc.), runs on other treebanks to compare
with previously reported coverages, and in some cases, comparison of more than one
implementation.

4. Results

The results of the coverage analysis are shown in Tables 1 and 2. For space reasons,
we omit some of the classes with less direct practical interest: 1-P (a very mild relax-
ation of projectivity, of limited interest for expanding coverage), k-C and k-P for k > 2
(transition systems for them are possible in theory, but likely impractical due to the extra
transitions needed), and those whose best known parser is slower than O(n9), like WGk
for k > 2.

The results provide interesting insights into the coverage of the different classes on
a diverse set of corpora with varying amounts of non-projectivity, ranging from the total
projectivity of the Prague-style Romanian treebank to the very high non-projectivity in
the corpora of classical languages—probably influenced by the presence of poetic texts
in them—or in the Stanford-annotated Arabic data set.

Annotation criteria have a large influence on the adequacy of the different restric-
tions on non-projectivity. The Stanford treebanks not only tend to contain more non-
projectivity than the Prague ones, but also more ill-nested trees and trees with higher
gap degree. For example, the average proportion of trees that are not in WG1 is more
than double on Stanford than on Prague treebanks, with huge differences in some
cases (e.g., 14.84% vs. 0.20% on the Arabic corpora). The same trend appears in the
other classes requiring well-nestedness and bounded gap degree. The finding that WG1
covers almost all phenomena found in treebanks, reported in smaller data sets in the
past (Kuhlmann 2010; Gómez-Rodrı́guez, Carroll, and Weir 2011), is questionable for
Stanford treebanks, as it excludes more than 5% of the trees in nine languages.

However, this does not mean that Stanford dependencies are less amenable to
mildly non-projective parsing in general, as the Attardi parser and the MHk parsers
for k > 4 have better coverage for the Stanford than for the Prague-annotated treebanks.
Thus, the lower coverage of the well-nested parsers on the Stanford treebanks does not
exclusively owe to them having more non-projectivity in a general sense, but rather
different kinds of non-projectivity that are better captured with different restrictions.

Overall, the class with the best coverage among those with known globally optimal
parsers running in time O(n4) is 1EC, which even surpasses WG1 (O(n7)) on average
on the Stanford treebanks. But if we are willing to accept larger complexities, the best
tradeoff is achieved with the MHk parsers. The average coverage is close to 99.5% for
MH5, and practically full for MH7, only excluding 177 trees out of the more than 800, 000
analyzed overall. MH12 (not shown in the tables) has full coverage of the 60 treebanks.

The results for the 2-P and 2-C classes, parsable with transition systems, are less
surprising, with similar coverage to that reported for smaller sets of treebanks in the
respective papers (Gómez-Rodrı́guez and Nivre 2013; Pitler and McDonald 2015). Note
that, although 2-C has notably less coverage than 2-P, its transition system has been
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Table 1
Loss of coverage for each of the classes of restricted non-projective trees that have exact parsing
algorithms running in O(nk) for k <= 7. The value of k is shown below the name of the class.
For each treebank and class, we report the percentage of trees that do not belong to the class
(i.e., lower is better). The best coverage for each complexity bound is highlighted in boldface.
Tree- Trees Pr 1EC MH4 M0I M1IS MH5 M1I WG1S MH6 WG1 MG1 AD2 MH7
bank 3 4 4 5 5 5 6 6 6 7 7 7 7
Stanford annotation
ar 7541 72.19 2.84 4.36 16.25 14.92 0.21 14.84 14.92 0.08 14.84 14.64 0.86 0.040
bg 13221 17.56 0.51 1.28 1.23 1.03 0.05 1.03 1.03 0.01 1.03 1.01 0.25 0.008
bn 1129 7.00 0.18 0.44 0.89 0.27 0.00 0.27 0.27 0.00 0.27 0.09 0.27 0.000
ca 14924 23.69 0.97 2.61 2.37 2.29 0.02 2.28 2.29 0.00 2.28 2.12 0.31 0.000
cs 87913 26.28 2.22 3.00 3.37 2.71 0.17 2.65 2.71 0.01 2.65 2.32 1.00 0.002
da 5512 29.75 2.99 5.59 5.77 3.37 0.65 3.32 3.37 0.11 3.32 2.54 3.18 0.018
de 38020 36.21 5.13 5.77 9.19 6.43 0.61 5.57 6.43 0.08 5.57 4.44 3.42 0.011
el 2902 34.36 3.48 4.20 5.17 3.86 0.10 3.48 3.86 0.00 3.48 3.14 0.90 0.000
en 18791 23.18 1.24 2.80 3.48 3.24 0.27 3.23 3.24 0.02 3.23 2.72 0.94 0.011
es 15984 24.46 1.33 2.24 1.71 1.69 0.01 1.69 1.69 0.00 1.69 1.51 0.30 0.000
et 1315 2.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
eu 11225 25.58 2.69 2.17 7.34 6.25 0.23 6.17 6.25 0.03 6.17 0.87 1.28 0.000
fa 12455 23.85 2.38 2.72 4.34 2.40 0.49 2.18 2.40 0.16 2.18 1.46 1.68 0.048
fi 4307 14.95 1.49 2.02 2.28 1.93 0.21 1.93 1.93 0.12 1.93 1.83 1.28 0.093
grc 21173 67.84 30.64 26.55 31.81 27.42 3.64 26.21 27.40 0.23 26.19 12.44 8.45 0.009
hi 13274 23.11 3.36 3.33 5.58 2.92 0.62 2.76 2.92 0.17 2.76 1.36 2.66 0.045
hu 6424 31.97 5.74 10.13 12.16 7.22 1.90 7.19 7.22 0.30 7.19 6.74 7.38 0.078
it 3359 31.08 3.16 1.67 2.89 3.01 0.18 2.14 3.01 0.00 2.14 1.76 0.83 0.000
ja 17753 29.44 5.04 2.43 5.05 3.68 0.25 3.59 3.66 0.03 3.57 1.04 1.17 0.011
la 3473 50.13 15.98 15.78 17.48 11.49 2.74 10.48 11.46 0.32 10.45 6.82 8.52 0.029
nl 13735 43.25 8.24 9.07 8.85 6.50 1.01 5.03 6.50 0.17 5.03 4.54 5.81 0.058
pt 9359 30.11 2.09 6.03 7.84 6.32 0.42 6.21 6.32 0.04 6.21 6.09 2.29 0.011
ro 4042 3.66 0.00 0.05 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.05 0.03 0.000
ru 34895 18.34 0.86 1.02 0.97 0.55 0.03 0.52 0.54 0.00 0.52 0.34 0.46 0.000
sk 57408 23.17 2.31 2.78 3.44 2.87 0.23 2.71 2.87 0.02 2.70 2.48 1.00 0.005
sl 1936 27.27 3.98 4.18 4.34 3.20 0.57 3.05 3.20 0.05 3.05 2.74 2.22 0.000
sv 11431 21.25 2.07 2.19 3.17 2.09 0.44 2.00 2.07 0.18 1.97 1.11 1.26 0.061
ta 600 3.33 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
te 1450 1.79 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
tr 5935 24.72 3.30 3.17 8.91 6.87 0.73 6.82 6.87 0.24 6.82 5.81 1.90 0.051
Macro avg 26.39 3.81 4.25 5.90 4.49 0.53 4.25 4.48 0.08 4.24 3.07 1.99 0.020
Prague annotation
ar 7541 11.50 0.29 0.62 3.29 0.21 0.08 0.20 0.21 0.01 0.20 0.16 0.54 0.000
bg 13221 11.10 0.17 4.32 4.33 0.16 0.17 0.16 0.16 0.08 0.16 0.16 4.30 0.015
bn 1129 5.93 0.18 0.35 0.97 0.18 0.00 0.18 0.18 0.00 0.18 0.00 0.27 0.000
ca 14924 5.87 0.02 0.47 0.22 0.09 0.03 0.09 0.09 0.01 0.09 0.09 0.45 0.000
cs 87913 23.61 1.33 1.59 2.82 0.74 0.10 0.59 0.74 0.01 0.59 0.49 0.96 0.003
da 5512 15.62 0.71 3.05 3.83 0.35 0.93 0.33 0.35 0.31 0.33 0.22 2.85 0.109
de 38020 37.01 5.48 6.10 10.65 5.74 0.67 4.77 5.74 0.10 4.77 3.96 4.04 0.024
el 2902 21.57 1.34 2.14 5.31 1.00 0.14 0.79 1.00 0.03 0.79 0.79 1.55 0.000
en 18791 6.38 0.71 1.01 1.20 0.63 0.15 0.62 0.63 0.03 0.62 0.08 0.95 0.011
es 15984 7.31 0.02 0.34 0.69 0.16 0.03 0.16 0.16 0.00 0.16 0.16 0.26 0.000
et 1315 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
eu 11225 17.53 1.61 1.97 3.71 0.86 0.29 0.72 0.86 0.05 0.72 0.45 1.39 0.009
fa 12455 20.72 2.39 3.01 6.79 1.46 0.72 1.30 1.46 0.30 1.30 0.68 2.51 0.120
fi 4307 11.82 0.58 0.79 1.16 0.16 0.14 0.12 0.16 0.12 0.12 0.12 0.63 0.070
grc 21173 77.44 30.97 31.61 30.86 17.80 4.42 10.22 17.80 0.28 10.22 8.65 10.67 0.019
hi 13274 29.95 2.52 5.94 7.70 1.82 1.79 1.73 1.81 0.49 1.72 1.21 5.14 0.196
hu 6424 27.41 4.39 9.17 11.40 5.98 1.73 5.95 5.98 0.23 5.95 5.62 7.22 0.125
it 3359 8.16 0.45 1.07 2.50 0.54 0.09 0.54 0.54 0.06 0.54 0.36 0.92 0.060
ja 17753 5.29 1.43 0.45 4.05 0.57 0.04 0.57 0.57 0.00 0.57 0.57 0.19 0.000
la 3473 50.45 15.06 14.77 21.16 11.09 2.45 9.56 11.03 0.32 9.50 5.82 10.28 0.086
nl 13735 35.75 4.27 9.55 9.54 4.40 1.51 3.44 4.40 0.24 3.44 3.36 7.82 0.066
pt 9359 19.95 0.67 4.57 7.01 4.77 0.49 4.73 4.77 0.10 4.73 4.68 2.56 0.032
ro 4042 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ru 34895 9.61 0.29 0.70 1.14 0.21 0.04 0.20 0.21 0.00 0.20 0.10 0.54 0.000
sk 57408 17.84 0.97 1.32 2.92 0.77 0.12 0.68 0.77 0.02 0.68 0.56 0.87 0.007
sl 1936 20.87 1.14 1.96 3.41 0.88 0.26 0.78 0.88 0.00 0.78 0.67 1.65 0.000
sv 11431 11.03 1.44 1.55 3.26 1.02 0.35 0.98 1.01 0.14 0.97 0.50 1.11 0.061
ta 600 2.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
te 1450 0.83 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
tr 5935 31.95 6.86 8.16 16.18 9.08 2.21 9.00 9.00 0.54 8.91 8.69 4.72 0.152
Macro avg 18.18 2.84 3.89 5.57 2.35 0.63 1.95 2.35 0.12 1.94 1.60 2.48 0.039
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Table 2
Loss of coverage for classes of restricted non-projective trees not shown in Table 1. For classes
that have exact parsing algorithms running in O(nk), the value of k is shown below the name of
the class. For each treebank and class, we report the percentage of trees that do not belong to the
class (i.e., lower is better). The best coverage for each complexity bound is shown in boldface.
Treebank MH8 WG2 MH9 2-P 2-C Treebank MH8 WG2 MH9 2-P 2-C

Stanford ann. 8 9 9 n/a n/a Prague ann. 8 9 9 n/a n/a

ar (Arabic) 0.027 3.819 0.027 0.278 31.044 ar 0.000 0.066 0.000 0.013 0.756
bg (Bulgarian) 0.008 0.098 0.000 0.045 1.482 bg 0.008 0.000 0.000 0.015 0.613
bn (Bengali) 0.000 0.177 0.000 0.000 0.266 bn 0.000 0.177 0.000 0.000 0.354
ca (Catalan) 0.000 0.281 0.000 0.067 2.627 ca 0.000 0.013 0.000 0.000 0.181
cs (Czech) 0.001 0.543 0.001 0.415 4.094 cs 0.002 0.131 0.002 0.099 2.894
da (Danish) 0.000 0.998 0.000 0.744 5.443 da 0.036 0.127 0.000 0.018 1.361
de (German) 0.008 2.078 0.003 1.231 8.951 de 0.000 1.228 0.000 1.021 9.771
el (Mod. Greek) 0.000 0.965 0.000 0.379 7.271 el 0.000 0.103 0.000 0.172 2.757
en (English) 0.005 0.841 0.005 0.644 2.522 en 0.011 0.596 0.005 0.553 0.798
es (Spanish) 0.000 0.282 0.000 0.069 2.803 es 0.000 0.025 0.000 0.000 0.119
et (Estonian) 0.000 0.000 0.000 0.000 0.000 et 0.000 0.000 0.000 0.000 0.000
eu (Basque) 0.000 5.826 0.000 0.249 4.686 eu 0.000 0.374 0.000 0.143 2.601
fa (Persian) 0.024 1.124 0.008 0.385 4.906 fa 0.064 0.923 0.032 0.225 3.605
fi (Finnish) 0.023 0.395 0.000 0.859 1.788 fi 0.023 0.023 0.000 0.070 0.882
grc (Anc. Greek) 0.005 20.247 0.000 6.282 36.565 grc 0.000 2.829 0.000 3.495 39.347
hi (Hindi) 0.015 1.944 0.000 0.203 4.821 hi 0.045 0.768 0.023 0.105 5.176
hu (Hungarian) 0.000 2.086 0.000 0.794 8.266 hu 0.016 1.666 0.016 0.607 5.791
it (Italian) 0.000 0.804 0.000 0.298 6.490 it 0.000 0.268 0.000 0.060 0.744
ja (Japanese) 0.000 3.002 0.000 0.107 6.095 ja 0.000 0.101 0.000 0.000 1.594
la (Latin) 0.000 5.845 0.000 3.974 21.250 la 0.000 5.644 0.000 3.858 21.653
nl (Dutch) 0.015 1.172 0.007 0.961 14.503 nl 0.007 0.197 0.000 1.201 9.661
pt (Portuguese) 0.000 1.036 0.000 0.224 5.204 pt 0.032 0.801 0.011 0.107 1.667
ro (Romanian) 0.000 0.000 0.000 0.000 0.049 ro 0.000 0.000 0.000 0.000 0.000
ru (Russian) 0.000 0.201 0.000 0.077 1.656 ru 0.000 0.100 0.000 0.026 0.516
sk (Slovak) 0.002 0.597 0.000 0.493 4.053 sk 0.002 0.172 0.000 0.099 2.045
sl (Slovenian) 0.000 0.723 0.000 1.188 6.095 sl 0.000 0.155 0.000 0.052 2.583
sv (Swedish) 0.026 1.233 0.009 0.744 3.351 sv 0.026 0.656 0.026 0.542 2.021
ta (Tamil) 0.000 0.000 0.000 0.000 0.167 ta 0.000 0.000 0.000 0.000 0.000
te (Telugu) 0.000 0.000 0.000 0.000 0.000 te 0.000 0.000 0.000 0.000 0.000
tr (Turkish) 0.017 4.482 0.017 0.253 5.173 tr 0.034 3.370 0.000 0.084 10.025

Macro average 0.006 2.027 0.003 0.699 6.721 Macro avg. 0.010 0.684 0.004 0.419 4.317

shown to have very good empirical accuracy, probably because it is an easier to learn
model.

5. Discussion

We have measured the coverage of a wide range of classes of mildly non-projective
dependency trees on a large collection of treebanks with two different annotation styles,
providing valuable data to compare said classes in terms of balance between coverage
and efficiency. The relative coverage of the different classes varies across languages
and annotation criteria. Explaining the concrete factors affecting it for each individual
language is outside the scope of this work, and an interesting subject for studies focused
on particular languages and corpora. However, despite this variability, there are very
clear trends in the results. A relevant one is that the best general tradeoff is achieved by
1-Endpoint-Crossing trees (for complexity O(n4)) and MHk trees (for larger polynomial
complexities).

Although we have focused on the coverage-efficiency tradeoff, there are other
aspects of mildly non-projective classes that one may wish to take into account, like their
relation to constituency grammar formalisms (Kuhlmann 2010) or characterizability
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Gómez-Rodrı́guez Restricted Non-Projectivity: Coverage vs. Efficiency

a a ab bb0 0 1 1 g g

...

...

Figure 1
An ill-nested dependency tree with gap degree g that is in MH4. It can be parsed by the MH4
parser starting by building the item [bg−1, ag, bg, bg + 1] and then proceeding from right to left.

(Pitler and McDonald 2015). In this sense, it is worth noting that no characterization
independent of the parsing algorithm itself is known for the MHk classes, for k > 3, just
as happens with Attardi trees. In fact, MHk trees have been very little studied, and their
empirical coverage was unknown prior to this work. Because it is notably high, finding
a simple characterization of MHk trees is an interesting open problem, which may be
solvable as MHk trees have some desirable formal properties that AD2 trees lack, like
left-right symmetry (reversing the order of the words of an MHk tree produces an MHk
tree).

Two novel observations about the relation of MHk trees to other classes of trees are
that: (1) MH4 contains ill-nested trees with unbounded gap degree (and therefore, the
same can be said of MHk for k > 4, as MHk−1 ⊆MHk for all k); and (2) MH4 ⊆ 2-P.

Observation (1) can be shown by example, with the tree in Figure 1, and an outline
of the proof for (2) follows: given the MH4 parser (shown in Figure 2), we build a variant
MH2P

4 that associates each arc with a plane ∈ {P0, P1}, satisfying the 2-P constraint. To
do so, we annotate each index (node) on items with a forbidden plane, such that steps
creating an arc h→ d always do so on a plane not forbidden for h or d. If both planes
are allowed, then if the item has a node x between h and d with a forbidden plane, the
arc is created on that plane (to avoid forbidding both planes on x at the same time),
otherwise an arbitrary plane is chosen. Initial items do not have any restrictions, but
when we create a right arc A = h1 → h3 with a Link step [h1, h2, h3, h4] ` [h1, h2, h4] on
plane Pi, we forbid Pi on node h2 (located between h1 and h3), which prevents arcs that
cross A from being created on the same plane as A, and the symmetric is done for left
arcs. Annotations are propagated across deductions together with their nodes.

Parsing a tree T with MH2P
4 always produces a valid partition of T into planes,

that is, it never reaches a situation where an arc cannot be created without violating
2-planarity because both planes are forbidden by the restrictions. This is shown by
proving that each item has at most one node with a forbidden plane. To see this, note
that the first and last nodes of an item cannot have any forbidden plane: by construction,
restrictions always originate on the central node of a 3-node item, and no steps in the
parser can move a node in the middle to the first or last position. Restrictions can

Item form: [h1, h2, . . . , hm] , 0 ≤ h1 < h2 < . . . < hm ≤ n + 1; 2 ≤ m ≤ 4

Goal: [0, n + 1] Axioms: [i, i + 1] , 0 ≤ i ≤ n

Deduction steps:
[h1, h2, . . . , hm][hm, hm+1, . . . , hp]

[h1, h2, . . . , hp]
(Combine) , p ≤ 4

[h1, h2, . . . , hm]
[h1, h2, . . . , hj−1, hj+1, . . . , hm]

(Link; hi → hj ) , 1 < j < m, 1 ≤ i ≤ m, j 6= i

Figure 2
Deduction system for the MH4 parser for a string of length n.
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propagate to 4-node items, but these always come from applying a Combine step on
a 3- and a 2-node item, so again at most one node (the central one in the 3-node item)
can have a forbidden plane. Thus, we can always associate a plane to an arc without
violating restrictions, as there can be only one restriction per item and therefore at least
one plane is allowed.

Note that this proof implicitly relies on the fact that, when the MH4 parser creates an
arc A, any subsequently built arcs crossing A must share an endpoint: for example, after
the arc A = h→ d is created by a deduction step [h, x, d, y] ` [h, x, y], the only endpoint
located between h and d remaining available is x, so any subsequent arcs crossing A
must be incident to x. This restriction is interestingly similar to the definition of 1EC
trees, although weaker because it only affects arcs created after A.

The relation of MH4 with the 2-P class, as well as its indirect relation with 1EC, may
help obtain a characterization for the set of MHk trees. Their good balance between cov-
erage and parsing efficiency makes this class, together with 1EC trees, very interesting
for modeling the non-projectivity found in natural languages.
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