
Aligning Packed Dependency Trees: A Theory of
Composition for Distributional Semantics

David Weir∗
University of Sussex

Julie Weeds∗
University of Sussex

Jeremy Reffin∗
University of Sussex

Thomas Kober∗
University of Sussex

We present a new framework for compositional distributional semantics in which the distribu-
tional contexts of lexemes are expressed in terms of anchored packed dependency trees. We show
that these structures have the potential to capture the full sentential contexts of a lexeme and
provide a uniform basis for the composition of distributional knowledge in a way that captures
both mutual disambiguation and generalization.

1. Introduction

This article addresses a central unresolved issue in distributional semantics: how to
model semantic composition. Although there has recently been considerable interest in
this problem, it remains unclear what distributional composition actually means. Our
view is that distributional composition is a matter of contextualizing the lexemes being
composed. This goes well beyond traditional word sense disambiguation, where each
lexeme is assigned one of a fixed number of senses. Our proposal is that composition
involves deriving a fine-grained characterization of the distributional meaning of each
lexeme in the phrase, where the meaning that is associated with each lexeme is bespoke
to that particular context.

Distributional composition is, therefore, a matter of integrating the meaning of each
of the lexemes in the phrase. To achieve this we need a structure within which all of the
lexemes’ semantics can be overlaid. Once this is done, the lexemes can collectively agree
on the semantics of the phrase, and in so doing, determine the semantics that they have

∗ Department of Informatics, University of Sussex. Falmer, Brighton BN1 9QH, UK. E-mail: {d.j.weir,
j.e.weeds, j.p.reffin, t.kober}@sussex.ac.uk.

Submission received: 10 April 2015; revised version received: 17 April 2016; accepted for publication:
20 April 2016.

doi:10.1162/COLI a 00265

© 2017 Association for Computational Linguistics

Computational Linguistics Volume 42, Number 4

in the context of that phrase. Our process of composition thus creates a single structure
that encodes contextualized representations of every lexeme in the phrase.

The (uncontextualized) distributional knowledge of a lexeme is typically formed
by aggregating distributional features across all uses of the lexeme found within the
corpus, where distributional features arise from co-occurrences found in the corpus. The
distributional features of a lexeme are associated with weights that encode the strength
of that feature. Contextualization involves inferring adjustments to these weights to
reflect the context in which the lexeme is being used. The weights of distributional
features that don’t fit the context are reduced, while the weight of those features that
are compatible with the context can be boosted.

As an example, consider how we contextualize the distributional features of the
word wooden in the context of the phrase wooden floor. The uncontextualized represen-
tation of wooden presumably includes distributional features associated with different
uses, for example, The director fired the wooden actor and I sat on the wooden chair. So,
although we may have observed in a corpus that it is plausible for the adjective wooden
to modify floor, table, toy, actor, and voice, in the specific context of the phrase wooden floor,
we need to find a way to down-weight the distributional features of being something
that can modify actor and voice, while up-weighting the distributional features of being
something that can modify table and toy.

In this example we considered so-called first-order distributional features; these
involve a single dependency relation (e.g., an adjective modifying a noun). Similar
inferences can also be made with respect to distributional features that involve higher-
order grammatical dependencies.1 For example, suppose that we have observed that a
noun that wooden modifies (e.g., actor) can be the direct object of the verb fired, as in The
director fired the wooden actor. We want this distributional feature of wooden to be down-
weighted in the distributional representation of wooden in the context of wooden table,
since things made of wood do not typically lose their job.

In addition to specializing the distributional representation of wood to reflect the
context wooden floor, the distributional representation of floor should also be refined,
down-weighting distributional features arising in contexts such as Prices fell through the
floor, while up-weighting distributional features arising in contexts such as I polished the
concrete floor.

In our example, some of the distributional features of wooden—in particular, those
to do with the noun that this sense of wooden could modify—are internal to the phrase
wooden floor in the sense that they are alternatives to one of the words in the phrase.
Although it is specifically a floor that is wooden, our proposal is that the contextualized
representation of wooden should recognize that it is plausible that nouns such as chair
and toy could be modified by the particular sense of wooden that is being used. The
remaining distributional features are external to the phrase. For example, the verb mop
could be an external feature, because things that can be modified by wooden can be the
direct object of mop. The external features of wooden and floor with respect to the phrase
wooden floor provide something akin to the traditional interpretation of the distributional
semantics of the phrase, namely, a representation of those (external) contexts in which
this phrase can occur.

Although internal features are, in a sense, inconsistent with the specific semantics
of the phrase, they provide a way to embellish the characterization of the distributional

1 Given some dependency tree, a k-th order dependency holds between two lexemes (nodes) in the tree
when the path between the two lexemes has length k.

728

Weir et al. Aligning Packed Dependency Trees

meaning of the lexemes in the phrase. Recall that our goal is to infer a rich and fine-
grained representation of the contextualized distributional meaning of each of the
lexemes in the phrase.

Having introduced the proposal that distributional composition should be viewed
as a matter of contextualization, the question arises as to how to realize this conception.
Because each lexeme in the phrase needs to be able to contribute to the contextualization
of the other lexemes in the phrase, we need to be able to align what we know about each
of the lexeme’s distributional features so that this can be achieved. The problem is that
the uncontextualized distributional knowledge associated with the different lexemes in
the phrase take a different perspective on the feature space. To overcome this we need to:
(a) provide a way of structuring the distributional feature space, which we do by typing
distributional features with dependency paths; and (b) find a way to systematically
modify the perspective that each lexeme has on this structured feature space in such
a way that they are all aligned with one another.

Following Baroni and Lenci (2010), we use typed dependency relations as the
bases for our distributional features, and following Padó and Lapata (2007), we in-
clude higher-order dependency relations in this space. However, in contrast to previ-
ous proposals, the higher-order dependency relations provides structure to the space
that is crucial to our definition of composition. Each co-occurrence associated with
a lexeme such as wooden is typed by the path in the dependency tree that connects
the lexeme wooden with the co-occurring lexeme (e.g., fired). This allows us to en-
code a lexeme’s distributional knowledge with a hierarchical structure that we call an
Anchored Packed Dependency Tree (APT). As we show, this data structure provides
a way for us to align the distributional knowledge of the lexemes that are being com-
posed in such a way that the inferences needed to achieve contextualization can be
implemented.

2. The Distributional Lexicon

In this section, we begin the formalization of our proposal by describing the distribu-
tional lexicon: a collection of entries that characterize the distributional semantics of
lexemes. Table 1 provides a summary of the notation that we are using.

Let V be a finite alphabet of lexemes,2 where each lexeme is assumed to incorporate
a part-of-speech tag; let R be a finite alphabet of grammatical dependency relations;
and let TV,R be the set of dependency trees where every node is labeled with a member
of V, and every directed edge is labeled with an element of R. Figure 1 shows eight
examples of dependency trees.

2.1 Typed Co-occurrences

When two lexemes w and w′ co-occur in a dependency tree3 in t ∈ TV,R, we represent
this co-occurrence as a triple 〈w, τ, w′〉where τ is a string that encodes the co-occurrence
type of this co-occurrence, capturing the syntactic relationship that holds between these

2 There is no reason why lexemes could not include multi-word phrases tagged with an appropriate part of
speech.

3 In order to avoid over-complicating our presentation, when possible, we do not distinguish between a
node in a dependency tree and the lexeme that appears at that node.

729

Computational Linguistics Volume 42, Number 4

Table 1
Summary of notation.

Notation Description

V a finite set of lexemes
w a lexeme
R a finite set of dependency tree edge labels
r an element of R
R a finite set of inverse dependency tree edge labels
r an element of R
x an element of R ∪ R
TV,R the dependency trees over lexemes V and dependencies R
t a dependency tree
τ a co-occurrence type (path)
τ−1 the inverse (reverse) of path τ
〈w, τ, w′〉 the co-occurrence of w with w′ with co-occurrence type τ
C a corpus of (observed) dependency trees
↓ (τ) the co-occurrence type produced by reducing τ
#(〈w, τ, w′〉, t) number of occurrences of 〈w, τ, w′〉 in t
#〈w, τ, w′〉 number of occurrences of 〈w, τ, w′〉 in the corpus
‖w‖ the (uncontextualized) APT for w
A an APT
‖w‖(τ, w′) the weight for w′ in ‖w‖ at node for co-occurrence type τ
‖w‖(τ) the node (weighted lexeme multiset) in ‖w‖ for co-occurrence type τ
FEATS the set of all distributional features arising in C
〈 τ, w 〉 a distributional feature in vector space
W(w, 〈 τ, w′ 〉) the weight of the distributional feature 〈 τ, w′ 〉 of lexeme w
−−→
‖w‖ the vector representation of the APT ‖w‖
SIM(‖w1‖, ‖w2‖) the distributional similarity of ‖w1‖ and ‖w2‖
‖w‖δ the APT ‖w‖ that has been offset by δ
‖t‖ the composed APT for the tree t
‖w; t‖ the APT for w when contextualized by t⊔
{A1, . . . , An } the result of merging aligned APTs in {A1, . . . , An }

occurrences of the two lexemes. In particular, τ encodes the sequence of dependencies
that lie along the path in t between the occurrences of w and w′ in t. In general, a path
from w to w′ in t initially travels up towards the root of t (against the directionality of
the dependency edges) until an ancestor of w′ is reached. It then travels down the tree
to w′ (following the directionality of the dependencies). The string τmust, therefore, not
only encode the sequence of dependency relations appearing along the path, but also
whether each edge is traversed in a forward or backward direction. In particular, given
the path 〈v0, . . . , vk〉 in t, where k > 0, w labels v0, and w′ labels vk, the string τ = x1 . . . xk
encodes the co-occurrence type associated with this path as follows:

r If the edge connecting vi−1 and vi runs from vi−1 to vi and is labeled by r,
then xi = r.r If the edge connecting vi−1 and vi runs from vi to vi−1 and is labeled by r,
then xi = r.

730

Weir et al. Aligning Packed Dependency Trees

Hence, co-occurrence types are strings in R∗R∗, where R = { r | r ∈ R }.
It is useful to be able to refer to the order of a co-occurrence type, where this simply

refers to the length of the dependency path. It is also convenient to be able to refer to the
inverse of a co-occurrence type. This can be thought of as the same path, but traversed in
the reverse direction. To be precise, given the co-occurrence type τ = x1 · . . . · xn where
each xi ∈ R ∪ R for 1 ≤ i ≤ n, the inverse of τ, denoted τ−1, is the path xn

−1 · . . . · x1
−1

where r−1 = r and r−1 = r for r ∈ R. For example, the inverse of AMOD·DOBJ·NSUBJ is
NSUBJ· DOBJ·AMOD.

The following typed co-occurrences for the lexeme white/JJ arise in the tree shown
in Figure 1(a).

〈white/JJ, AMOD·DOBJ·NSUBJ, we/PRP〉 〈white/JJ, AMOD·AMOD, fizzy/JJ〉

〈white/JJ, AMOD·DOBJ, bought/VBD〉 〈white/JJ, AMOD·AMOD, dry/JJ〉

〈white/JJ, AMOD·DET, the/DT〉 〈white/JJ, ε, white/JJ〉

〈white/JJ, AMOD·AMOD·ADVMOD, slightly/RB〉 〈white/JJ, AMOD, wine/NN〉

Notice that we have included the co-occurrence 〈white/JJ, ε, white/JJ〉. This gives a
uniformity to our typing system that simplifies the formulation of distributional com-
position in Section 4, and leads to the need for a refinement to our co-occurrence type en-
codings. Because we permit paths that traverse both forwards and backwards along the
same dependency—for example, in the co-occurrence 〈white/JJ, AMOD·AMOD, dry/JJ〉—
it is logical to consider 〈white/JJ, AMOD · DOBJ·DOBJ·AMOD, dry/JJ〉 a valid co-occurrence.
However, in line with our decision to include 〈white/JJ, ε, white/JJ〉 rather than
〈white/JJ, AMOD·AMOD, white/JJ〉, all co-occurrence types are canonicalized through a
dependency cancellation process in which adjacent, complementary dependencies are
cancelled out. In particular, all occurrences within the string of either rr or rr for
r ∈ R are replaced with ε, and this process is repeated until no further reductions are
possible.

The reduced co-occurrence type produced from τ is denoted ↓ (τ), and defined as
follows:

↓ (τ) =
{
↓ (τ1τ2) if τ = τ1 r r τ2 or τ = τ1 r r τ2 for some r ∈ R
τ otherwise

(1)

For the remainder of this article, we only consider reduced co-occurrence types when
associating a type with a co-occurrence.

Given a tree t ∈ TV,R, lexemes w and w′, and reduced co-occurrence type τ, the
number of times that the co-occurrence 〈w, τ, w′〉 occurs in t is denoted #(〈w, τ, w′〉, t),
and, given some corpus C of dependency trees, the sum of all #(〈w, τ, w′〉, t) across all
t ∈ C is denoted #〈w, τ, w′〉. Note that in order to simplify our notation, the dependence
on the corpus C is not expressed in our notation.

It is common to use alternatives to raw counts in order to capture the strength
of each distributional feature. A variety of alternatives are considered during the ex-
perimental work presented in Section 5. Among the options we have considered are
probabilities and various versions of positive pointwise mutual information. Although,
in practice, the precise method for weighting features is of practical importance, it is not
an intrinsic part of the theory that this article is introducing. In the following exposition

731

Computational Linguistics Volume 42, Number 4

we/PRP bought/VBD the/DT slightly/RB fizzy/JJ dry/JJ white/JJ wine/NN

NSUBJ

DOBJ
DET

ADVMOD

AMOD

AMOD

AMOD
(a)

your/PRP$ dry/JJ joke/NN caused/VBD laughter/NN

POSS

AMOD NSUBJ DOBJ(b)

he/PRP folded/VBD the/DT clean/JJ dry/JJ clothes/NNS

nsubj

DOBJ

DET

AMOD

AMOD
(c)

your/PRP$ clothes/NNS look/VBP great/JJ

POSS NSUBJ XCOMP
(d)

the/DT man/PRP hung/VBD up/RP the/DT wet/JJ clothes/NNS

DET NSUBJ PRT

DOBJ

DET

AMOD
(e)

a/DT boy/PRP bought/VBD some/DT very/RB expensive/JJ clothes/NNS yesterday/NN

DET NSUBJ

DET

ADVMOD AMOD

DOBJ

TMOD

(f)

she/PRP folded/VBD up/RP all/DT of/IN the/DT laundry/NNS

NSUBJ PRT

DOBJ CASE

DET

NMOD

(g)

he/PRP folded/VBD under/IN pressure/NN

NSUBJ CASE

NMOD(h)

Figure 1
A small corpus of dependency trees.

we denote the weight of the distributional feature 〈 τ, w′ 〉 of the lexeme w with the
expression W(w, 〈 τ, w′ 〉).

2.2 Anchored Packed Trees

Given a dependency tree corpus C ⊂ TV,R and a lexeme w ∈ V, we are interested in cap-
turing the aggregation of all distributional contexts of w in C within a single structure.
We achieve this with what we call an Anchored Packed Dependency Tree (APT). APTs

732

Weir et al. Aligning Packed Dependency Trees

are central to the proposals in this article: Not only can they be used to encode the
aggregate of all distributional features of a lexeme over a corpus of dependency trees,
but they can also be used to express the distributional features of a lexeme that has been
contextualized within some dependency tree (see Section 4).

The APT for w given C is denoted ‖w‖, and referred to as the elementary APT for
w. In the following discussion, we describe a tree-based interpretation of ‖w‖, but in the
first instance we define it as a mapping from pairs (τ, w′) where τ ∈ R∗R∗ and w′ ∈ V,
such that ‖w‖(τ, w′) gives the weight of the typed co-occurrence 〈w, τ, w′〉 in the corpus
C. It is nothing more than those components of the weight function that specify the
weights of distributional features of w. In other words, for each τ ∈ R∗R∗ and w′ ∈ V:

‖w‖(τ, w′) = W(w, 〈 τ, w′ 〉) (2)

The restriction of ‖w‖ to co-occurrence types that are at most order k is referred to as
a k-th order APT. The distributional lexicon derived from a corpus C is a collection of
lexical entries where the entry for the lexeme w is the elementary APT ‖w‖.

Formulating APTs as functions simplifies the definitions that appear herein. How-
ever, because an APT encodes co-occurrences that are aggregated over a set of depen-
dency trees, they can also be interpreted as having a tree structure. In our tree-based
interpretation of APTs, nodes are associated with weighted multisets of lexemes. In
particular, ‖w‖(τ) is thought of as a node that is associated with the weighted lexeme
multiset in which the weight of w′ in the multiset is ‖w‖(τ, w′). We refer to the node
‖w‖(ε) as the anchor of the APT ‖w‖.

Figure 2 shows three elementary APTs that can be produced from the corpus shown
in Figure 1. On the far left we give the letter corresponding to the sentence in Figure 1
that generated the typed co-occurrences. Each column corresponds to one node in the
APT, giving the multiset of lexemes at that node. Weights are not shown, and only
non-empty nodes are displayed.

It is worth dwelling on the contents of the anchor node of the top APT in
Figure 2, which is the elementaryAPT for dry/JJ. The weighted multiset at the anchor
node is denoted ‖w‖(ε). The lexeme dry/JJ occurs three times, and the weight
‖w‖(ε, dry/JJ) reflects this count. Three other lexemes also occur at this same node:
fizzy/JJ, white/JJ, and clean/JJ. These lexemes arose from the following co-occurrences
in trees in Figure 1: 〈dry/JJ, AMOD ·AMOD, fizzy/JJ〉, 〈dry/JJ, AMOD ·AMOD, white/JJ〉, and
〈dry/JJ, AMOD ·AMOD, clean/JJ〉, all of which involve the co-occurrence type AMOD ·AMOD.
These lexemes appear in the multiset ‖w‖(ε) because ↓ (AMOD ·AMOD) = ε.

3. APT Similarity

One of the most fundamental aspects of any treatment of distributional semantics is that
it supports a way of measuring distributional similarity. In this section, we describe a
straightforward way in which the similarity of two APTs can be measured through a
mapping from APTs to vectors.

First, define the set of distributional features

FEATS =
{
〈 τ, w′ 〉

∣∣ w′ ∈ V, τ ∈ R∗R∗ and W(w, 〈 τ, w′ 〉) > 0 for some w ∈ V
}

(3)

The vector space that we use to encode APTs includes one dimension for each element
of FEATS, and we use the pair 〈 τ, w 〉 to refer to its corresponding dimension.

733

Computational Linguistics Volume 42, Number 4

(a) we bought
... the slightly fizzy wine

...
......

...
...

...
... dry

...
...

......
...

...
...

... white
...

...
...

(b)
...

... your
...

... dry joke caused laughter
(c) he folded

... the
... clean clothes

...
......

...
...

...
... dry

...
...

...

anchor

NSUBJ

DOBJ

POSS

DET

ADVMOD AMOD NSUBJ DOBJ

(c)
... he folded

...
... the

... clean clothes
...

...
......

...
...

...
...

...
... dry

...
...

...
...

(d)
...

...
...

... your
...

...
... clothes look great

...
(e) the man hung up

... the
... wet clothes

...
...

...
(f) a boy bought

...
... some very expensive clothes

...
... yesterday

anchor

DET NSUBJ PRP

POSS

DET

ADVMOD AMOD NSUBJ

DOBJ

XCOMP

TMOD

(c) he folded
...

...
... the clean clothes

...
...

......
...

...
...

...
... dry

...
...

...
...

(g) she folded up
...

...
...

... all of the laundry
(h) he folded

... under pressure
...

...
...

...
...

...

anchor

NSUBJ PRP

NMOD

CASE

DOBJ

DET

AMOD

NMOD

DET

CASE

Figure 2
The distributional lexicon produced from the trees in Figure 1 with the elementary APT for
dry/JJ at the top, the elementary APT for clothes/NNS in the middle, and the elementary APT for
folded/VBD at the bottom. Part of speech tags and weights have been omitted.

Given an APT A, we denote the vectorized representation of A with
−→
A , and the

value that the vector
−→
A has on dimension 〈 τ, w′ 〉 is denoted

−→
A
[
〈 τ, w′ 〉

]
. For each

〈 τ, w′ 〉 ∈ FEATS:

−−→
‖w‖

[
〈 τ, w′ 〉

]
= φ(τ, w) W(w, 〈 τ, w′ 〉) (4)

734

Weir et al. Aligning Packed Dependency Trees

where φ(τ, w) is a path-weighting function that is intended to reflect the fact that not
all of the distributional features are equally important in determining the distributional
similarity of two APTs. Generally speaking, syntactically distant co-occurrences pro-
vide a weaker characterization of the semantics of a lexeme than co-occurrences that
are syntactically closer. By multiplying each W(w, 〈 τ, w′ 〉) by φ(τ, w), we are able to
capture this, given a suitable instantiation of φ(τ, w).

One option forφ(τ, w) is to use p(τ |w)—that is, the probability that when randomly
selecting one of the co-occurrences 〈w, τ′, w′〉, where w′ can be any lexeme in V, τ′ is the
co-occurrence type τ. We can estimate these path probabilities from the co-occurrence
counts in C as follows:

p(τ |w) =
#〈w, τ, ∗〉
#〈w, ∗, ∗〉 (5)

where

#〈w, τ, ∗〉 =
∑

w′∈V #〈w, τ, w′〉
#〈w, ∗, ∗〉 =

∑
w′∈V

∑
τ∈R̄∗R∗ #〈w, τ, w′〉

p(τ |w) typically falls off rapidly as a function of the length of τ as desired.
The similarity of two APTs, A1 and A2, which we denote SIM(A1, A2), can be

measured in terms of the similarity of vectors
−→
A1 and

−→
A2. The similarity of vectors can

be measured in a variety of ways (Lin 1998; Lee 1999; Weeds and Weir 2005; Curran
2004). One popular option involves the use of the cosine measure:

SIM(A1, A2) = cos(
−→
A1,
−→
A2) (6)

It is common to apply cosine to vectors containing positive pointwise mutual informa-
tion (PPMI) values. If the weights used in the APTs are counts or probabilities, then they
can be transformed into PPMI values at this point.

As a consequence of the fact that the different co-occurrence types of the co-
occurrences associated with a lexeme are being differentiated, vectorized APTs are
much sparser than traditional vector representations used to model distributional
semantics. This can be mitigated in various ways, including:

r reducing the granularity of the dependency relations and/or the
part-of-speech tag setr applying various normalizations of lexemes such as case normalization,
lemmatization, or stemmingr disregarding all distributional features involving co-occurrence types over
a certain lengthr applying some form of distributional smoothing, where distributional
features of a lexeme are inferred based on the features of distributionally
similar lexemes

735

Computational Linguistics Volume 42, Number 4

4. Distributional Composition

In this section we turn to the central topic of the article, namely, distributional composi-
tion. We begin with an informal explanation of our approach, and then present a more
precise formalization.

4.1 Discussion of Approach

Our starting point is the observation that although we have shown that all of the
elementary APTs in the distributional lexicon can be placed in the same vector space
(see Section 3), there is an important sense in which APTs for different parts of speech
are not comparable. For example, many of the dimensions that make sense for verbs,
such as those involving a co-occurrence type that begins with DOBJ or NSUBJ, do not make
sense for a noun. However, as we now explain, the co-occurrence type structure present
in an APT allows us to address this, making way for our definition of distributional
composition.

Consider the APT for the lexeme dry/JJ shown at the top of Figure 2. The anchor
of this APT is the node at which the lexeme dry/JJ appears. We can, however, take a
different perspective on this APT—for example, one in which the anchor is the node at
which the lexemes bought/VBD and folded/VBD appear. This APT is shown at the top of
Figure 3. Adjusting the position of the anchor is significant because the starting point
of the paths given by the co-occurrence types change. For example, when the APT
shown at the top of Figure 3 is applied to the co-occurrence type NSUBJ, we reach the
node at which the lexemes we/PRP and he/PRP appear. Thus, this APT can be seen as
a characterization of the distributional properties of the verbs that nouns that dry/JJ

modifies can take as their direct object. In fact, it looks rather like the elementary APT
for some verb. The lower tree in Figure 3 shows the elementary APT for clothes/NNS

(the center APT shown in Figure 2), where the anchor has been moved to the node at
which the lexemes folded/VBD, hung/VBD, and bought/VBD appear.

Notice that in both of the APTs shown in Figure 3, parts of the tree are shown in
faded text. These are nodes and edges that are removed from the APT as a result of the
change in anchor placement. The elementary tree for dry/JJ shown in Figure 2 reflects
the fact that at least some of the nouns that dry/JJ modifies can be the direct object of a
verb, or the subject of a verb. When we move the anchor, as shown at the top of Figure 3,
we resolve this ambiguity to the case where the noun being modified is a direct object.
The incompatible parts of the APT are removed. This corresponds to restricting the co-
occurrence types of composed APTs to those that belong to the set R∗R∗, just as was
the case for elementary APTs. For example, note that in the upper APT of Figure 3,
neither the path DOBJ· NSUBJ from the node labeled with bought/VBD and folded/VBD to
the node labeled caused/VBD, nor the path DOBJ · SUBJ · DOBJ from the node labeled with
bought/VBD and folded/VBD to the node labeled laughter/NN, are in R∗R∗.

Given a sufficiently rich elementary APT for dry/JJ, those verbs that have nouns
that dry/JJ can plausibly modify as direct objects have elementaryAPTs that are in some
sense “compatible” with the APT produced by shifting the anchor node as illustrated
at the top of Figure 3. An example is the APT for folded/VBD shown at the bottom of
Figure 2. Loosely speaking, this means that, when applied to the same co-occurrence
type, the APT in Figure 3 and the APT at the bottom of Figure 2 are generally expected
to give sets of lexemes with related elements.

By moving the anchors of the APT for dry/JJ and clothes/NNS as in Figure 3, we
have, in effect, aligned all of the nodes of the APTs for dry/JJ and clothes/NN with the

736

Weir et al. Aligning Packed Dependency Trees

(a) we bought
... the slightly fizzy wine

...
......

...
...

...
... dry

...
...

......
...

...
...

... white
...

...
...

(b)
...

... your
...

... dry joke caused laughter
(c) he folded

... the
... clean clothes

...
......

...
...

...
... dry

...
...

...

anchor

NSUBJ

DOBJ

POSS

DET

ADVMOD AMOD NSUBJ DOBJ

(c)
... he folded

...
... the

... clean clothes
...

...
......

...
...

...
...

...
... dry

...
...

...
...

(d)
...

...
...

... your
...

...
... clothes look great

...
(e) the man hung up

... the
... wet clothes

...
...

...
(f) a boy bought

...
... some very expensive clothes

...
... yesterday

anchor

DET NSUBJ PRP

POSS

DET

ADVMOD AMOD NSUBJ

DOBJ

XCOMP

TMOD

Figure 3
The elementary APTs for dry/JJ and clothes/NNS with anchors offset.

nodes they correspond to in the APT for folded/VBD. Not only does this make it possible,
in principle at least, to establish whether or not the composition of dry/JJ, clothes/NNS,
and folded/VBD is plausible, but it provides the basis for the contextualization of APTs, as
we now explain.

Recall that elementary APTs are produced by aggregating contexts taken from
all of the occurrences of the lexeme in a corpus. As described in the Introduction,
we need a way to contextualize aggregated APTs in order to produce a fine-grained
characterization of the distributional semantics of the lexeme in context. There are two
distinct aspects to the contextualization of APTs, both of which can be captured through
APT composition: co-occurrence filtering—the down-weighting of co-occurrences that
are not compatible with the way the lexeme is being used in its current context; and
co-occurrence embellishment—the up-weighting of compatible co-occurrences that
appear in the APTs for the lexemes with which it is being composed.

Both co-occurrence filtering and co-occurrence embellishment can be achieved
through APT composition. The process of composing the elementary APTs for the
lexemes that appear in a phrase involves two distinct steps. First, the elementary APTs
for each of the lexemes being composed are aligned in a way that is determined by the
dependency tree for the phrase. The result of this alignment of the elementaryAPTs is
that each node in one of the APTs is matched up with (at most) one of the nodes in

737

Computational Linguistics Volume 42, Number 4

each of the other APTs. The second step of this process involves merging nodes that
have been matched up with one another in order to produce the resulting composed
APT that represents the distributional semantics of the dependency tree. It is during
this second step that we are in a position to determine those co-occurrences that are
compatible across the nodes that have been matched up.

Figure 4 illustrates the composition of APTs on the basis of a dependency tree
shown in the upper center of the figure. In the lower right, the figure shows the full
APT that results from merging the six aligned APTs, one for each of the lexemes
in the dependency tree. Each node in the dependency tree is labeled with a lexeme,
and around the dependency tree we show the elementary APTs for each lexeme. The
six elementary APTs are aligned on the basis of the position of their lexeme in the
dependency tree. Note that the tree shown in gray within the APT is structurally
identical to the dependency tree in the upper center of the figure. The nodes of the
dependency tree are labeled with single lexemes, whereas each node of the APT is
labeled by a weighted lexeme multiset. The lexeme labeling a node in the dependency
tree is one of the lexemes found in the weighted lexeme multiset associated with the
corresponding node within the APT. We refer to the nodes in the composed APT that
come from nodes in the dependency tree (the gray nodes) as the internal context, and
the remaining nodes as the external context.

As we have seen, the alignment of APTs can be achieved by adjusting the location
of the anchor. The specific adjustments to the anchor locations are determined by the
dependency tree for the phrase. For example, Figure 5 shows a dependency analysis of

dependency
tree

composed
APT

aligned
elementary

APTs

elementary
APTs

elementary
APTs

Figure 4
Composition of APTs.

738

Weir et al. Aligning Packed Dependency Trees

folded/VBD dry/JJ clothes/NNS

DOBJ

AMOD

Figure 5
A dependency tree that generates the alignment shown in Figure 6.

the phrase folded dry clothes. To align the elementary APTs for the lexemes in this tree,
we do the following:

r The anchor of the elementary APT for dry/JJ is moved to the node on which
the bought/VBD and folded/VBD lie. This is the APT shown at the top of
Figure 6. This change of anchor location is determined by the path from
the dry/JJ to folded/VBD in the tree in Figure 5 (i.e., AMOD · DOBJ).r The anchor of the elementary APT for clothes/NNS is moved to the node on
which folded/VBD, hung/VBD, and bought/VBD lie. This is the APT shown
at the bottom of Figure 3. This change of anchor location is determined
by the path from the clothes/NNS to folded/VBD in the tree in Figure 5
(i.e., DOBJ).r The anchor of the elementary APT for folded/VBD has been left unchanged
because there is an empty path from folded/VBD to folded/VBD in the tree in
Figure 5.

Figure 6 shows the three elementary APTs for the lexemes dry/JJ, clothes/NNS, and
folded/VPD, which have been aligned as determined by the dependency tree shown in
Figure 5. Each column of lexemes appears at nodes that have been aligned with one
another. For example, in the third column from the left, we see that the following
three nodes have been aligned: (i) the node in the elementary APT for dry/JJ at which
bought/VBD and folded/VBD appear; (ii) the node in the elementary APT for clothes/NNS

at which folded/VBD, hung/VBD, and bought/VBD appear; and (iii) the anchor node of
the elementary APT for folded/VBD, that is, the node at which folded/VBD appears. In
the second phase of composition, these three nodes are merged together to produce a
single node in the composed APT.

Before we discuss how the nodes in aligned APTs are merged, we formalize the
notion of APT alignment. We do this by first defining so-called offset APTs, which
formalizes the idea of adjusting the location of an anchor. We then define how to align
all of the APTs for the lexemes in a phrase based on a dependency tree.

4.2 Offset APTs

Given some offset, δ, a string in R∗R∗, the APT A when offset by δ is denoted Aδ. Off-
setting an APT by δ involves moving the anchor to the position reached by following
the path δ from the original anchor position. In order to define Aδ, we must define
Aδ(τ, w′) for each τ ∈ R∗R∗ and w′ ∈ V—or, in terms of our alternative tree-based
representation, we need to specify the τ′ such that Aδ(τ) and A(τ′) yield the same node
(weighted lexeme multiset).

739

Computational Linguistics Volume 42, Number 4

(a
)

. . .
w

e
bo

ug
ht

. . .
. . .

. . .
. . .

th
e

sl
ig

ht
ly

fiz
zy

w
in

e
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
dr

y
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

w
hi

te
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
(b

)
. . .

. . .
. . .

. . .
. . .

. . .
yo

ur
. . .

. . .
dr

y
jo

ke
ca

us
ed

la
ug

ht
er

. . .
. . .

. . .
. . .

. . .
(c

)
. . .

he
fo

ld
ed

. . .
. . .

. . .
. . .

th
e

. . .
cl

ea
n

cl
ot

he
s

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

dr
y

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(c
)

. . .
he

fo
ld

ed
. . .

. . .
. . .

. . .
th

e
. . .

cl
ea

n
cl

ot
he

s
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
dr

y
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
(d

)
. . .

. . .
. . .

. . .
. . .

. . .
yo

ur
. . .

. . .
. . .

cl
ot

he
s

lo
ok

. . .
gr

ea
t

. . .
. . .

. . .
. . .

(e
)

th
e

m
an

hu
ng

up
. . .

. . .
. . .

th
e

. . .
w

et
cl

ot
he

s
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(f
)

a
bo

y
bo

ug
ht

. . .
. . .

. . .
. . .

so
m

e
ve

ry
ex

pe
ns

iv
e

cl
ot

he
s

. . .
. . .

. . .
. . .

. . .
. . .

ye
st

er
da

y

(c
)

. . .
he

fo
ld

ed
. . .

. . .
. . .

. . .
th

e
. . .

cl
ea

n
cl

ot
he

s
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
dr

y
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
(g

)
. . .

sh
e

fo
ld

ed
up

. . .
. . .

. . .
. . .

. . .
. . .

al
l

. . .
. . .

. . .
of

th
e

la
un

dr
y

. . .
(h

)
. . .

he
fo

ld
ed

. . .
un

de
r

pr
es

su
re

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

D
E

T
N

SU
B

J
P

R
P

D
O

B
J

D
E

T

P
O

SS

A
D

V
M

O
D

A
M

O
D

N
SU

B
J

D
O

B
JX

C
O

M
P

T
M

O
D

N
M

O
D

D
E

T

C
A

SE

N
M

O
D

C
A

SE

Fi
gu

re
6

Ve
rt

ic
al

ly
al

ig
ne

d
A

P
T

s
fo

rd
ry

/J
J,

cl
ot

he
s/

N
N

S,
an

d
fo

ld
ed

/V
BD

as
de

te
rm

in
ed

by
th

e
tr

ee
in

Fi
gu

re
5.

Th
e

le
tt

er
s

in
br

ac
ke

ts
on

th
e

le
ft

re
fe

r
to

th
e

de
pe

nd
en

cy
tr

ee
s

sh
ow

n
in

Fi
gu

re
1

fr
om

w
hi

ch
th

es
e

A
P

T
s

ar
e

co
ns

tr
uc

te
d.

Fo
r

sp
ac

e
re

as
on

s,
pa

rt
-o

f-
sp

ee
ch

ta
gs

ha
ve

be
en

om
it

te
d.

740

Weir et al. Aligning Packed Dependency Trees

As shown in Equation (7), path offset can be specified by making use of the co-
occurrence type reduction operator that was introduced in Section 2.2. Given a string
δ in R∗R∗ and an APT A, the offset APT Aδ is defined as follows. For each τ ∈ R∗R∗

and w ∈ V:

Aδ(τ, w) = A(↓ (δτ), w) (7)

or equivalently, for each τ ∈ R∗R∗:

Aδ(τ) = A(↓ (δτ)) (8)

As required, Equation (7) defines Aδ by specifying the weighted lexeme multiset
we obtain when Aδ is applied to co-occurrence type τ as being the lexeme multiset
that A produces when applied to the co-occurrence type ↓ (δτ).

As an illustrative example, consider the APT shown at the top of Figure 2. Let us
call this APT A. Note that A is anchored at the node where the lexeme dry/JJ appears.
Consider the APT produced when we apply the offset AMOD · DOBJ. This is shown
at the top of Figure 3. Let us refer to this APT as A′. The anchor of A′ is the node
at which the lexemes bought/VDB and folded/VBD appear. Now we show how the two
nodes A′(NSUBJ) and A′(DOBJ·AMOD·ADVMOD) are defined in terms of A on the basis of
Equation (8). In both cases the offset δ = AMOD · DOBJ.

r For the case where τ = NSUBJ we have

A′(NSUBJ) = A(↓ (AMOD · DOBJ·NSUBJ))

= A(AMOD · DOBJ·NSUBJ)

With respect to the anchor of A, this correctly addresses the node at which
the lexemes we/PRP and he/PRP appear.r Where τ = DOBJ·AMOD·ADVMOD we have

A′(DOBJ·AMOD·ADVMOD) = A(↓ (AMOD · DOBJ · DOBJ · AMOD · ADVMOD))

= A(↓ (AMOD ·AMOD·ADVMOD))

= A(↓ (ADVMOD))

= A(ADVMOD)

With respect to the anchor of A, this correctly addresses the node at which
the lexeme slightly/RB appears.

In practice, the offset APT Aδ can be obtained by prepending the inverse of the
path offset, δ−1, to all of the co-occurrence types in A and then repeatedly applying
the reduction operator until no further reductions are possible. In other words, if τ
addresses a node in A, then τ′ addresses a node in Aδ iff τ′ =↓ (δ−1τ) and τ′ ∈ R∗R∗.

741

Computational Linguistics Volume 42, Number 4

4.3 Syntax-Driven APT Alignment

We now make use of offset APTs, as defined in Equation (7), as a way to align all of the
APTs associated with a dependency tree. Consider the following scenario:r w1 . . .wn is a the phrase (or sentence) where each wi ∈ V for 1 ≤ i ≤ nr t ∈ TV,R is a dependency analysis of the string w1 . . .wnr wh is the lexeme at the root of t. In other words, h is the position (index) in

the phrase at which the head appearsr ‖wi‖ is the elementary APT for wi for each i, 1 ≤ i ≤ nr δi, the offset of wi in t with respect to the root, is the path in t from wi to wh.
In other words, 〈wi, δi, wh〉 is a co-occurrence in t for each i, 1 ≤ i ≤ n
(Note that δh = ε)

We define the distributional semantics for the tree t, denoted ‖t‖, as follows:

‖t‖ =
⊔{

‖w1‖δ1 , . . . , ‖wn‖δn
}

(9)

The definition of
⊔

is considered in Section 4.4. In general,
⊔

operates on a set of
n aligned APTs, merging them into a single APT. The multiset at each node in the
resulting APT is formed by merging n multisets, one from each of the elements of{
‖w1‖δ1 , . . . , ‖wn‖δn

}
. It is this multiset merging operation that we focus on in Sec-

tion 4.4.
Although ‖t‖ can be taken to be the distributional semantics of the tree as a

whole, the same APT, when associated with different anchors (i.e., when offset in some
appropriate way) provides a representation of each of the contextualized lexemes
that appear in the tree.

For each i, for 1 ≤ i ≤ n, the APT for wi when contextualized by its role in the
dependency tree t, denoted ‖wi; t‖, is the APT that satisfies the equality:

‖wi; t‖δi = ‖t‖ (10)

Alternatively, this can also be expressed with the equality:

‖wi; t‖ = ‖t‖δi
−1

(11)

Note that ‖wh; t‖ and ‖t‖ are identical. In other words, we take the representation of the
distributional semantics of a dependency tree to be the APT for the lexeme at the root
of that tree that has been contextualized by the other lexemes appearing below it in the
tree.

Equation (9) defined APT composition as a “one-step” process in the sense that
all of the n elementary APTs that are associated with nodes in the dependency tree
are composed at once to produce the resulting (composed) APT. There are, however,
alternative strategies that could be formulated. One possibility is fully incremental left-
to-right composition, where, working left-to-right through the string of lexemes, the
elementary APTs for the first two lexemes are composed, with the resulting APT then
being composed with the elementary APT for the third lexeme, and so on. It is always

742

Weir et al. Aligning Packed Dependency Trees

possible to compose APTs in this fully incremental way, whatever the structure in the
dependency tree. The tree structure, however, is critical in determining how the adjacent
APTs need to be aligned.

4.4 Merging Aligned APTs

We now turn to the question of how to implement the function
⊔

that appears in
Equation (9).

⊔
takes a set of n aligned APTs, {A1, . . .An }, one for each node in the

dependency tree t. It merges the APTs together node by node to produce a single APT,⊔
{A1, . . .An }, that represents the semantics of the dependency tree. Our discussion,

therefore, addresses the question of how to merge the multisets that appear at nodes
that are aligned with each other and form the nodes of the APT being produced.

The elementary APT for a lexeme expresses those co-occurrences that are dis-
tributionally compatible with the lexeme given the corpus. When lexemes in some
phrase are composed, our objective is to capture the extent to which the co-occurrences
arising in the elementary APTs are mutually compatible with the phrase as a whole.
Once the elementary APTs that are being composed have been aligned, we are in a
position to determine the extent to which co-occurrences are mutually compatible: Co-
occurrences that need to be compatible with one another are brought together through
the alignment. We consider two alternative ways in which this can be achieved.

We begin with
⊔

INT, which provides a tight implementation of the mutual compat-
ibility of co-occurrences. In particular, a co-occurrence is only deemed to be compatible
with the composed lexemes to the extent that is distributionally compatible with the
lexeme that it is least compatible with. This corresponds to the multiset version of
intersection. In particular, for all τ ∈ R∗R∗ and w′ ∈ V:⊔

INT

{A1, . . . , An }(τ, w′) = min
1≤i≤n

Ai(τ, w′) (12)

It is clear that the effectiveness of
⊔

INT increases as the size of C grows, and that
it would particularly benefit from distributional smoothing (Dagan, Pereira, and Lee
1994), which can be used to improve plausible co-occurrence coverage by inferring
co-occurrences in the APT for a lexeme w based on the co-occurrences in the APTs of
distributionally similar lexemes.

An alternative to
⊔

INT is
⊔

UNI, where we determine distributional compatibility
of a co-occurrence by aggregating across the distributional compatibility of the co-
occurrence for each of the lexemes being composed. In particular, for all τ ∈ (R ∪ R)∗

and w′ ∈ V: ⊔
UNI

{A1, . . . , An }(τ, w′) =
∑

1≤i≤n

Ai(τ, w′) (13)

Although this clearly achieves co-occurrence embellishment, whether co-occurrence
filtering is achieved depends on the weighting scheme being used. For example, if
negative weights are allowed, then co-occurrence filtering can be achieved.

There is one very important feature of APT composition that is a distinctive aspect
of our proposal, and therefore worth dwelling on. In Section 4.1, when discussing
Figure 4, we made reference to the notions of internal and external context. The internal
context of a composed APT is that part of the APT that corresponds to the nodes in
the dependency tree that generated the composed APT. One might have expected that

743

Computational Linguistics Volume 42, Number 4

the only lexeme appearing at an internal node is the lexeme that appears at the corre-
sponding node in the dependency tree. However, this is absolutely not the objective:
At each node in the internal context, we expect to find a set of alternative lexemes that
are, to varying degrees, distributionally compatible with that position in the APT. We
expect that a lexeme that is distributionally compatible with a substantial number of
the lexemes being composed will result in a distributional feature with non-zero weight
in the vectorized APT. There is, therefore, no distinction being made between internal
and external nodes. This enriches the distributional representation of the contextualized
lexemes, and overcomes the potential problem arising from the fact that as larger and
larger units are composed, there is less and less external context around to characterize
distributional meaning.

5. Experiments

In this section we consider some empirical evidence in support of APTs. First, we
consider some of the different ways in which APTs can be instantiated. Second, we
present a number of case studies showing the disambiguating effect of APT composition
in adjective–noun composition. Finally, we evaluate the model using the phrase-based
compositionality benchmarks of Mitchell and Lapata (2008, 2010).

5.1 Instantiating APTs

We have constructed APT lexicons from three different corpora.r clean wiki is a corpus used for the case studies in Section 5.2. This corpus
is a cleaned 2013 Wikipedia dump (Wilson 2015) that we have tokenized,
part-of-speech-tagged, lemmatized, and dependency-parsed using the
Malt Parser (Nivre 2004). This corpus contains approximately 0.6 billion
tokens.r BNC is the British National Corpus. It has been tokenized, POS-tagged,
lemmatized, and dependency-parsed as described in Grefenstette et al.
(2013) and contains approximately 0.1 billion tokens.r concat is a concatenation of the ukWaC corpus (Ferraresi et al. 2008), a
mid-2009 dump of the English Wikipedia and the British National Corpus.
This corpus has been tokenized, POS-tagged, lemmatized, and
dependency-parsed as described in Grefenstette et al. (2013) and contains
about 2.8 billion tokens.

Having constructed lexicons, there are a number of hyperparameters to be explored
during composition. First there is the composition operation itself. We have explored
variants that take a union of the features such as add and max and variants that take
an intersection of the features such as mult, min, and intersective add, where
intersective add(a, b) = a + b iff a > 0 and b > 0; 0 otherwise.

Second, the APT theory is agnostic to the type or derivation of the weights that are
being composed. The weights in the elementary APTs can be counts, probabilities, or
some variant of PPMI or other association function. Although it is generally accepted
that the use of some association function such as PPMI is normally beneficial in the
determination of lexical similarity, there is a choice over whether these weights should
be seen as part of the representation of the lexeme, or as part of the similarity calculation.

744

Weir et al. Aligning Packed Dependency Trees

In the instantiation that we refer to as as compose first, APT weights are probabilities.
These are composed and transformed to PPMI scores before computing cosine similar-
ities. In the instantiation that we refer to as compose second, APT weights are PPMI
scores.

There are a number of modifications that can be made to the standard PPMI calcu-
lation. First, it is common (Levy, Goldberg, and Dagan 2015) to delete rare words when
building co-occurrence vectors. Low-frequency features contribute little to similarity
calculations because they co-occur with very few of the targets. Their inclusion will tend
to reduce similarity scores across the board, but have little effect on ranking. Filtering, on
the other hand, improves efficiency. In other experiments, we have found that a feature
frequency threshold of 1,000 works well. On a corpus the size of Wikipedia (1.5 billion
tokens), this leads to a feature space for nouns of approximately 80,000 dimensions
(when including only first-order paths) and approximately 230,000 dimensions (when
including paths up to order 2).

Levy, Goldberg, and Dagan (2015) also showed that the use of context distribution
smoothing (cds), α = 0.75, can lead to performance comparable with state-of-the-art
word embeddings on word similarity tasks.

PMIα
(
w′, w; τ

)
= log

#〈w, τ, w′〉 #〈∗, τ, ∗〉α

#〈w, τ, ∗〉 #〈∗, τ, w′〉α

Levy, Goldberg, and Dagan (2015) further showed that using shifted PMI, which
is analogous to the use of negative sampling in word embeddings, can be advanta-
geous. When shifting PMI, all values are shifted down by log k before the threshold is
applied.

SPPMI
(
w′, w; τ

)
= max (PMI

(
w′, w; τ

)
− log k, 0)

Finally, there are many possible options for the path weighting function φ(τ, w).
These include the path probability p(τ |w) as discussed in Section 3, constant path
weighting, and inverse path length or harmonic function (which is equivalent to
the dynamic context window used in many neural implementations such as GloVe
[Pennington, Socher, and Manning 2014]).

5.2 Disambiguation

Here we consider the differences between using aligned and unaligned APT rep-
resentations as well as the differences between using

⊔
UNI and

⊔
INT when carry-

ing out adjective–noun (AN) composition. From the clean wiki corpus described in
Section 5.1, a small number of high-frequency nouns were chosen that are ambigu-
ous or broad in meaning together with potentially disambiguating adjectives. We
use the compose first option where composition is carried out on APTs containing
probabilities.

W(w, 〈 τ, w′ 〉) = #〈w, τ, w′〉
#〈w, ∗, ∗〉

The closest distributional neighbors of the individual lexemes before and after
composition with the disambiguating adjective are then examined. In order to calcu-
late similarities, contexts are weighted using the variant of PPMI advocated by Levy,

745

Computational Linguistics Volume 42, Number 4

Goldberg, and Dagan (2015), where cds is applied with α = 0.75. However, no shift is
applied to the PPMI values because we have found shifting to have little or negative
effect when working with relatively small corpora. Similarity is then computed using
the standard cosine measure. For illustrative purposes the top ten neighbors of each
word or phrase are shown, concentrating on ranks rather than absolute similarity
scores.

Table 2 illustrates what happens when
⊔

UNI is used to merge aligned and unaligned
APT representations when the noun shoot is placed in the contexts of green and six-week.
Boldface is used in the entries of compounds where a neighbor appears to be highly
suggestive of the intended sense and where it has a rank higher or equal to its rank in
the entry for the uncontextualized noun. In this example, it is clear that merging the
unaligned APT representations provides very little disambiguation of the target noun.
This is because typed co-occurrences for an adjective mostly belong in a different space
to typed co-occurrences for a noun. Addition of these spaces leads to significantly lower
absolute similarity scores, but little change in the ranking of neighbors. Although we
only show one example here, this observation appears to hold true whenever words
with different part of speech tags are composed. Intersection of these spaces via

⊔
INT

generally leads to substantially degraded neighbors, often little better than random,
as illustrated by Table 3.

On the other hand, when APTs are correctly aligned and merged using
⊔

UNI, we
see the disambiguating effect of the adjective. A green shoot is more similar to leaf, flower,
fruit, and tree. A six-week shoot is more similar to tour, session, show, and concert. This
disambiguating effect is even more apparent when

⊔
INT is used to merge the APT

representations (see Table 3).
Table 4 further illustrates the difference between using

⊔
UNI and

⊔
INT when compos-

ing aligned APT representations. Again, boldface is used in the entries of compounds
where a neighbor appears to be highly suggestive of the intended sense and where it
has a rank higher or equal to its rank in the entry for the uncontextualized noun. In these
examples, we can see that both

⊔
UNI and

⊔
INT appear to be effective in carrying out some

disambiguation. Looking at the example of musical group, both
⊔

UNI and
⊔

INT increase
the relative similarity of band and music to group when it is contextualized by musical.
However,

⊔
INT also leads to a number of other words being selected as neighbors that

Table 2
Neighbors of uncontextualized shoot/N compared with shoot/N in the contexts of green/J and
six-week/J, using

⊔
UNI with aligned and unaligned representations.

Aligned
⊔

UNI Unaligned
⊔

UNI

shoot green shoot six-week shoot green shoot six-week shoot

shot shoot shoot shoot shoot
leaf leaf tour shot shot
shooting flower shot leaf shooting
fight fruit break shooting leaf
scene orange session fight scene
video tree show scene video
tour color shooting video fight
footage shot concert tour footage
interview color interview flower photo
flower cover leaf footage interview

746

Weir et al. Aligning Packed Dependency Trees

Table 3
Neighbors of uncontextualized shoot/N compared with shoot/N in the contexts of green/J and
six-week/J, using

⊔
INT with aligned and unaligned representations.

Aligned
⊔

INT Unaligned
⊔

INT

shoot green shoot six-week shoot green shoot six-week shoot

shot shoot shoot shoot e/f
leaf leaf photoshoot pyrite uemtsu
shooting fruit taping plosive confederations
fight stalk tour handlebars shortlist
scene flower airing annual all-ireland
video twig rehearsal roundel dern
tour sprout broadcast affricate gerwen
flower bud session phosphor tactics
footage shrub q&a connections backstroke
interview inflorescence post-production reduplication gabler

are closely related to the musical sense of group (e.g., troupe, ensemble, and trio). This is
not the case when

⊔
UNI is used—the other neighbors still appear related to the general

meaning of group. This trend is also seen in some of the other examples such as ethnic
group, human body, and magnetic field. Further, even when

⊔
UNI leads to the successful

selection of a large number of sense specific neighbors (e.g., see literary work), the
neighbors selected appear to be higher frequency, more general words than when

⊔
INT

is used.
The reason for this is likely to be the effect that each of these composition operations

has on the number of non-zero dimensions in the composed representations. Ignoring
the relatively small effect the feature association function may have on this, it is obvious
that

⊔
UNI should increase the number of non-zero dimensions, whereas

⊔
INT should

decrease the number of non-zero dimensions. In general, the number of non-zero di-
mensions is highly correlated with frequency, which makes composed representations
based on

⊔
UNI behave like high-frequency words and composed representations based

on
⊔

INT behave like low-frequency words. Further, when using similarity measures
based on PPMI, as demonstrated by Weeds (2003), it is not unusual to find that the
neighbors of high-frequency entities (with a large number of non-zero dimensions) are
other high-frequency entities (also with a large number of non-zero dimensions). Nor
is it unusual to find that the neighbors of low-frequency entities (with a small number
of non-zero dimensions) are other low-frequency entities (with a small number of non-
zero dimensions). Weeds, Weir, and McCarthy (2004) showed that frequency is also a
surprisingly good indicator of the generality of the word. Hence

⊔
UNI leads to more

general neighbors and
⊔

INT leads to more specific neighbors.
Finally, note that whereas

⊔
INT has produced high quality neighbors in these ex-

amples where only two words are composed, using
⊔

INT in the context of the com-
position of an entire sentence would tend to lead to very sparse representations. The
majority of the internal nodes of the APT composed using an intersective operation
such as

⊔
INT must necessarily only include the lexemes actually used in the sentence.⊔

UNI, on the other hand, will have added to these internal representations, suggesting
similar words that might have been used in those contexts and giving rise to a rich
representation that might be used to calculate sentence similarity. Further, the use
of PPMI, or some other similar form of feature weighting and selection, will mean

747

Computational Linguistics Volume 42, Number 4

Table 4
Distributional neighbors using

⊔
UNI vs

⊔
INT (e-magnetism = electro-magnetism).

Aligned
⊔

UNI Unaligned Aligned
⊔

INT

group musical group ethnic group musical group ethnic group

group group group group group
organization company organization band community
organisation band organisation troupe organization
company music community ensemble grouping
community movement company artist sub-group
corporation community movement trio faction
unit society society genre ethnicity
movement corporation minority music minority
association category unit duo organisation
society association entity supergroup tribe

body human body legislative body human body legislative body

body body body body body
board organization council organism council
organization structure committee organization committee
entity entity board entity board
skin organisation authority embryo legislature
head skin assembly brain secretariat
organisation brain organisation community authority
structure eye agency organelle assembly
council object commission institution power
eye organ entity cranium office

work social work literary work social work literary work

study work work work work
project activity book research writings
book study study study treatise
activity project novel writings essay
effort program project endeavour poem
publication practice publication project book
job development text discourse novel
program aspect literature topic monograph
writing book story development poetry
piece effort writing teaching writing

field athletic field magnetic field athletic field magnetic field

facility field field field field
stadium facility component gymnasium wavefunction
area stadium stadium fieldhouse spacetime
complex gymnasium facility stadium flux
ground basketball track gym subfield
pool sport ground arena perturbation
base center system rink vector
space softball complex softball e-magnetism
centre gym parameter cafeteria formula 8
park arena pool ballpark scalar

748

Weir et al. Aligning Packed Dependency Trees

that those internal (and external) contexts that are not supported by a majority of the
lexemes in the sentence will tend to be considered insignificant and therefore will be
ignored in similarity calculations. By using shifted PPMI, it should be possible to further
reduce the number of non-zero dimensions in a representation constructed using

⊔
UNI,

and this should also allow us to control the specificity/generality of the neighbors
observed.

5.3 Phrase-Based Composition Tasks

Here we look at the performance of one instantiation of the APT framework on two
benchmark tasks for phrase-based composition.

5.3.1 Experiment 1: The M&L2010 Data Set. The first experiment uses the M&L2010
data set, introduced by Mitchell and Lapata (2010), which contains human similarity
judgments for adjective–noun (AN), noun–noun (NN), and verb–object (VO) combina-
tions on a seven-point rating scale. It contains 108 combinations in each category such
as 〈social activity, economic condition〉, 〈tv set, bedroom window〉, and 〈fight war, win battle〉.
This data set has been used in a number of evaluations of compositional meth-
ods including Mitchell and Lapata (2010), Blacoe and Lapata (2012), Turney (2012),
Hermann and Blunsom (2013), and Kiela and Clark (2014). For example, Blacoe and
Lapata (2012) show that multiplication in a simple distributional space (referred to here
as an untyped VSM) outperforms the distributional memory (DM) method of Baroni and
Lenci (2010) and the neural language model (NLM) method of Collobert and Weston
(2008).

Although often not explicit, the experimental procedure in most of this work would
appear to be the calculation of Spearman’s rank correlation coefficient ρ between model
scores and individual, non-aggregated, human ratings. For example, if there are 108
phrase pairs being judged by 6 humans, this would lead to a data set containing 648
data points. The procedure is discussed at length in Turney (2012), who argues that this
method tends to underestimate model performance. Accordingly, Turney explicitly uses
a different procedure where a separate Spearman’s ρ is calculated between the model
scores and the scores of each participant. These coefficients are then averaged to give
the performance indicator for each model. Here, we report results using the original
M&L method (see Table 5). We found that using the Turney method, scores were typically
higher by 0.01 to 0.04. If model scores are evaluated against aggregated human scores,
then the values of Spearman’s ρ tend to be still higher, typically 0.1 to 0.12 higher than
the values reported here.

For this experiment, we have constructed an order 2 APT lexicon for the BNC corpus.
This is the same corpus used by Mitchell and Lapata (2010) and for the best performing
algorithms in Blacoe and Lapata (2012). We note that the larger concat corpus was
used by Blacoe and Lapata (2012) in the evaluation of the DM algorithm (Baroni and
Lenci 2010). We use the compose second option, where the elementary APT weights are
PPMI. With regard to the different parameter settings in the PPMI calculation (Levy,
Goldberg, and Dagan 2015), we tuned on a number of popular word similarity tasks:
MEN (Bruni, Tran, and Baroni 2014); WordSim-353 (Finkelstein et al. 2001); and SimLex-
999 (Hill, Reichart, and Korhonen 2015). In these tuning experiments, we found that
context distribution smoothing gave mixed results. However, shifting PPMI (k = 10)
gave optimal results across all of the word similarity tasks. Therefore we report results
here for vanilla PPMI (shift k = 1) and shifted PPMI (shift k = 10). For composition,
we report results for both

⊔
UNI and

⊔
INT. Results are shown in Table 5.

749

Computational Linguistics Volume 42, Number 4

Table 5
Results on the M&L2010 data set using the M&L method of evaluation. Values shown are
Spearman’s ρ.

AN NN VO Average⊔
INT, k = 1 −0.09 0.43 0.35 0.23⊔
INT, k = 10 NaN 0.23 0.26 0.16⊔
UNI, k = 1 0.47 0.37 0.40 0.41⊔
UNI, k = 10 0.45 0.42 0.42 0.43

untyped VSM, multiply 0.46 0.49 0.37 0.44
(Mitchell and Lapata 2010)
untyped VSM, multiply 0.48 0.50 0.35 0.44
(Blacoe and Lapata 2012)
distributional memory (DM), add 0.37 0.30 0.29 0.32
(Blacoe and Lapata 2012)
neural language model (NLM), add 0.28 0.26 0.24 0.26
(Blacoe and Lapata 2012)

humans 0.52 0.49 0.55 0.52
(Mitchell and Lapata 2010)

For this task and with this corpus,
⊔

UNI consistently outperforms
⊔

INT. Shifting
PPMI by log 10 consistently improves results for

⊔
UNI, but has a large negative effect

on the results for
⊔

INT. We believe that this is due to the relatively small size of the
corpus. Shifting PPMI reduces the number of non-zero dimensions in each vector, which
increases the likelihood of a zero intersection. In the case of AN composition, all of the
intersections were zero for this setting, making it impossible to compute a correlation.

Comparing these results with the state of the art, we can see that
⊔

UNI clearly
outperforms DM and NLM as tested by Blacoe and Lapata (2012). This method of com-
position also achieves close to the best results in Mitchell and Lapata (2010) and Blacoe
and Lapata (2012). It is interesting to note that our model does substantially better than
the state of the art on verb–object composition, but is considerably worse at noun–
noun composition. Exploring why this is so is a matter for future research. We have
undertaken experiments with a larger corpus and a larger range of hyper-parameter
settings, which indicate that the performance of the APT models can be increased signif-
icantly. However, these results are not presented here, because an equitable comparison
with existing models would require a similar exploration of the hyper-parameter space
across all models being compared.

5.3.2 Experiment 2: The M&L2008 Data Set. The second experiment uses the M&L2008
data set, introduced by Mitchell and Lapata (2008), which contains pairs of intransitive
sensitives together with human judgments of similarity. The data set contains 120
unique subject, verb, landmark triples with a varying number of human judgments
per item. On average each triple is rated by 30 participants. The task is to rate the
similarity of the verb and the landmark given the potentially disambiguating context
of the subject. For example, in the context of the subject fire one might expect glowed to
be close to burned but not close to beamed. Conversely, in the context of the subject face
one might expect glowed to be close to beamed and not close to burned.

750

Weir et al. Aligning Packed Dependency Trees

This data set was used in the evaluations carried out by Grefenstette et al. (2013)
and Dinu, Pham, and Baroni (2013). These evaluations clearly follow the experimental
procedure of Mitchell and Lapata and do not evaluate against mean scores. Instead,
separate points are created for each human annotator, as discussed in Section 5.3.1.

The multi-step regression algorithm of Grefenstette et al. (2013) achieved ρ = 0.23
on this data set. In the evaluation of Dinu, Pham, and Baroni (2013), the lexical function
algorithm, which learns a matrix representation for each functor and defines composi-
tion as matrix-vector multiplication, was the best-performing compositional algorithm
at this task. With optimal parameter settings, it achieved around ρ = 0.26. In this eval-
uation, the full additive model of Guevara (2010) achieved ρ < 0.05.

In order to make our results directly comparable with these previous evaluations,
we used the same corpus to construct our APT lexicons, namely, the concat corpus
described in Section 5.1. Otherwise, the APT lexicon was constructed as described in
Section 5.3.1. As before, note that k = 1 in shifted PPMI is equivalent to not shifting
PPMI. Results are shown in Table 6.

We see that
⊔

UNI is highly competitive with the optimized lexical function model
that was the best performing model in the evaluation of Dinu, Pham, and Baroni
(2013). In that evaluation, the lexical function model achieved between 0.23 and 0.26,
depending on the parameters used in dimensionality reduction. Using vanilla PPMI,
without any context distribution smoothing or shifting,

⊔
UNI achieves ρ = 0.20, which

is less than
⊔

INT. However, when using shifted PPMI as weights, the best result is
0.26. The shifting of PPMI means that contexts need to be more surprising in order
to be considered as features. This makes sense when using an additive model such as⊔

UNI.
We also see that at this task and using this corpus,

⊔
INT performs relatively

well. Using vanilla PPMI, without any context distribution smoothing or shifting, it
achieves ρ = 0.23, which equals the performance of the multi-step regression algorithm
of Grefenstette et al. (2013). Here, however, shifting PPMI has a negative impact on
performance. This is largely because of the intersective nature of the composition

Table 6
Results on the M&L2008 data set. Values shown are Spearman’s ρ.⊔

INT, k = 1 0.23⊔
INT, k = 10 0.13⊔
UNI, k = 1 0.20⊔
UNI, k = 10 0.26

multi-step regression 0.23
Grefenstette et al. (2013)
lexical function 0.23–0.26
Dinu, Pham, and Baroni (2013)
untyped VSM, mult 0.20–0.22
Dinu, Pham, and Baroni (2013)
full additive 0–0.05
Dinu, Pham, and Baroni (2013)

humans 0.40
Mitchell and Lapata (2008)

751

Computational Linguistics Volume 42, Number 4

operation—if shifting PPMI removes a feature from one of the unigram representations,
it cannot be recovered during composition.

6. Related Work

Our work brings together two strands usually treated as separate though related prob-
lems: representing phrasal meaning by creating distributional representations through
composition; and representing word meaning in context by modifying the distributional
representation of a word. In common with some other work on lexical distributional
similarity, we use a typed co-occurrence space. However, we propose the use of higher-
order grammatical dependency relations to enable the representation of phrasal mean-
ing and the representation of word meaning in context.

6.1 Representing Phrasal Meaning

The problem of representing phrasal meaning has traditionally been tackled by tak-
ing vector representations for words (Turney and Pantel 2010) and combining them
using some function to produce a data structure that represents the phrase or sen-
tence. Mitchell and Lapata (2008, 2010) found that simple additive and multiplicative
functions applied to proximity-based vector representations were no less effective than
more complex functions when performance was assessed against human similarity
judgments of simple paired phrases.

The word embeddings learned by the continuous bag-of-words model (CBOW) and
the continuous skip-gram model proposed by Mikolov et al. (2013a, 2013b) are currently
among the most popular forms of distributional word representations. Although using
a neural network architecture, the intuitions behind such distributed representations
of words are the same as in traditional distributional representations. As argued by
Pennington et al. (2014), both count-based and prediction-based models probe the
underlying corpus co-occurrences statistics. For example, the CBOW architecture pre-
dicts the current word based on context (which is viewed as a bag-of-words) and the
skip-gram architecture predicts surrounding words given the current word. Mikolov
et al. (2013c) showed that it is possible to use these models to efficiently learn low-
dimensional representations for words that appear to capture both syntactic and seman-
tic regularities. Mikolov et al. (2013b) also demonstrated the possibility of composing
skip-gram representations using addition. For example, they found that adding the
vectors for Russian and river results in a very similar vector to the result of adding the
vectors for Volga and river. This is similar to the multiplicative model of Mitchell and
Lapata (2008) since the sum of two skip-gram word vectors is related to the product of
two word context distributions.

Although our model shares with these the use of vector addition as a composition
operation, the underlying framework is very different. Specifically, the actual vectors
added depend not just on the form of the words but also their grammatical relationship
within the phrase or sentence. This means that the representation for, say, glass window
is not equal to the representation of window glass. The direction of the NN relationship
between the words leads to a different alignment of the APTs and consequently a
different representation for the phrases.

There are other approaches that incorporate theoretical ideas from formal semantics
and machine learning, use syntactic information, and specialize the data structures to
the task in hand. For adjective–noun phrase composition, Baroni and Zamparelli (2010)

752

Weir et al. Aligning Packed Dependency Trees

and Guevara (2010) borrowed from formal semantics the notion that an adjective acts
as a modifying function on the noun. They represented a noun as a vector, an adjective
as a matrix, which could be induced from pairs of nouns and adjective noun phrases,
and composed the two using matrix-by-vector multiplication to produce a vector for
the noun phrase. Separately, Coecke, Sadrzadeh, and Clark (2011) proposed a broader
compositional framework that incorporated from formal semantics the notion of func-
tion application derived from syntactic structure (Montague 1970; Lambek 1999). These
two approaches were subsequently combined and extended to incorporate simple tran-
sitive and intransitive sentences, with functions represented by tensors, and arguments
represented by vectors (Grefenstette et al. 2013).

The MV-RNN model of Socher et al. (2012) broadened the Baroni and Zamparelli
(2010) approach; all words, regardless of part of speech, were modeled with both a
vector and a matrix. This approach also shared features with Coecke, Sadrzadeh, and
Clark (2011) in using syntax to guide the order of phrasal composition. This model,
however, was made much more flexible by requiring and using task-specific labeled
training data to create task-specific distributional data structures, and by allowing non-
linear relationships between component data structures and the composed result. The
payoff for this increased flexibility has come with impressive performance in sentiment
analysis (Socher et al. 2012, 2013).

However, although these approaches all pay attention to syntax, they all require
large amounts of training data. For example, running regression models to accurately
predict the matrix or tensor for each individual adjective or verb requires a large
number of exemplar compositions containing that adjective or verb. Socher’s MV-RNN
model further requires task-specific labeled training data. Our approach, on the other
hand, is purely count-based and directly aggregates information about each word from
the corpus.

Other approaches have been proposed. Clarke (2007, 2012) suggested a context-
theoretic semantic framework, incorporating a generative model that assigned proba-
bilities to arbitrary word sequences. This approach shared with Coecke, Sadrzadeh,
and Clark (2011) an ambition to provide a bridge between compositional distribu-
tional semantics and formal logic-based semantics. In a similar vein, Garrette, Erk, and
Mooney (2011) combined word-level distributional vector representations with logic-
based representation using a probabilistic reasoning framework. Lewis and Steedman
(2013) also attempted to combine distributional and logical semantics by learning a
lexicon for Combinatory Categorial Grammar (CCG; Steedman 2000), which first maps
natural language to a deterministic logical form and then performs a distributional clus-
tering over logical predicates based on arguments. The CCG formalism was also used
by Hermann and Blunsom (2013) as a means for incorporating syntax-sensitivity into
vector space representations of sentential semantics based on recursive auto-encoders
(Socher et al. 2011a, 2011b). They achieved this by representing each combinatory step
in a CCG parse tree with an auto-encoder function, where it is possible to parameterize
both the weight matrix and bias on the combinatory rule and the CCG category.

Turney (2012) offered a model that incorporated assessments of word-level semantic
relations in order to determine phrasal-level similarity. This work uses two different
word-level distributional representations to encapsulate two types of similarity, and
captures instances where the components of a composed noun phrase bore similarity
to another word through a mix of those similarity types. Crucially, it views similarity
of phrases as a function of the similarities of the components and does not attempt to
derive modified vectors for phrases or words in context. Dinu and Thater (2012) also
compared computing sentence similarity via additive compositional models with an

753

Computational Linguistics Volume 42, Number 4

alignment-based approach, where sentence similarity is a function of the similarities of
component words, and simple word overlap. Their results showed that a model based
on a mixture of these approaches outperformed all of the individual approaches on a
number of textual entailment data sets.

6.2 Typed Co-occurrence Models

In untyped co-occurrence models, such as those considered by Mitchell and Lapata
(2008, 2010), co-occurrences are simple, untyped pairs of words that co-occur together
(usually within some window of proximity but possibly within some grammatical
relation). The lack of typing makes it possible to compose vectors through addition and
multiplication. However, in the computation of lexical distributional similarity using
grammatical dependency relations, it has been typical (Lin 1998; Lee 1999; Weeds and
Weir 2005) to consider the type of a co-occurrence (for example, does dog occur with eat
as its direct object or its subject?) as part of the feature space. The distinction between
vector spaces based on untyped and typed co-occurrences was formalized by Padó
and Lapata (2007) and Baroni and Lenci (2010). In particular, Baroni and Lenci showed
that typed co-occurrences based on grammatical relations were better than untyped co-
occurrences for distinguishing certain semantic relations. However, as shown by Weeds,
Weir, and Reffin (2014), it does not make sense to compose typed features based on first-
order dependency relations through multiplication and addition, because the vector
spaces for different parts of speech are largely non-overlapping.

Padó and Lapata (2007) constructed features using higher-order grammatical de-
pendency relations. They defined a path through a dependency tree in terms of the
node words. This allowed words that are only indirectly related within a sentence to
be considered as co-occurring. For example, in a lorry carries apples, there is a path of
length 2 between the nouns lorry and apples via the node carry. However, they also used
a word-based basis mapping, which essentially reduces all of the salient grammatical
paths to untyped co-occurrences. Given the paths 〈lorry, carry〉 and 〈lorry, carry, apples〉
for lorry, these would be mapped to the basis elements carry and apples, respectively.

6.3 Representing Word Meaning in Context

A long-standing topic in distributional semantics has been the modification of a canon-
ical representation of a lexeme’s meaning to reflect the context in which it is found.
Typically, a canonical vector for a lexeme is estimated from all corpus occurrences and
the vector then modified to reflect the instance context (Lund and Burgess 1996; Erk and
Padó 2008; Mitchell and Lapata 2008; Thater, Dinu, and Pinkal 2009; Thater, Fürstenau,
and Pinkal 2010, 2011; Van de Cruys, Poibeau, and Korhonen 2011; Erk 2012).

As described in Mitchell and Lapata (2008, 2010), lexeme vectors have typically
been modified using simple additive and multiplicative compositional functions. Other
approaches, however, share with our proposal the use of syntax to drive modification
of the distributional representation (Erk and Padó 2008; Thater, Dinu, and Pinkal 2009;
Thater, Fürstenau, and Pinkal 2010, 2011).

Erk and Padó (2008) introduced a structured vector space model of word meaning
that computes the meaning of a word in the context of another word via selectional
preferences. This approach was shown to work well at ranking paraphrases taken from
the SemEval-2007 lexical substitution task (McCarthy and Navigli 2007). In the Erk and
Padó approach, the meaning of ball in the context of the phrase catch ball is computed by

754

Weir et al. Aligning Packed Dependency Trees

combining the lexical vector for ball with the object preference vector of catch (i.e., things
that can be caught). Although this approach is based on very similar intuitions to ours,
it is in fact quite different. The lexical vector that is modified is not the co-occurrence
vector, as in our model, but a vector of neighbors computed from co-occurrences. For
example, the lexical vector for catch in the Erk and Padó approach might contain throw,
catch, and organize. These neighbors of catch are then combined with verbs that have
been seen with ball in the direct object relation using vector addition or component-
wise multiplication. Thus, it is possible to carry out this approach with reference only to
observed first-order grammatical dependency relationship. In their experiments, they
used the “dependency-based” vector space of Padó and Lapata (2007) where target and
context words are linked by a valid dependency path (i.e., not necessarily a single first-
order grammatical relation). However, higher-order dependency paths were purely
used to provide extra contexts for target words, than would be seen in a traditional first-
order dependency model, during the computation of neighbor sets. Further, the Erk and
Padó approach does not construct a representation of the phrase because this model is
focused on lexical disambiguation rather than composition and it is not obvious how
one would carry out further disambiguations within the context of a whole sentence.

More recently, Thater, Fürstenau, and Pinkal (2011) used a similar approach but
considered a broader range of operations for combining two vectors where individual
vector components are reweighted. Specifically, they found that reweighting vector
components based on the distributional similarity score between words defining vector
components and the observed context words led to improved performance at ranking
paraphrases.

Thater, Fürstenau, and Pinkal (2010) noted that vectors of two syntactically related
words typically have different syntactic environments, making it difficult to combine
information in the respective vectors. They build on Thater, Dinu, and Pinkal (2009),
where the meaning of argument nouns was modeled in terms of the predicates they
co-occur with (referred to as a first-order vector) and the meaning of predicates in terms
of second-order co-occurrence frequencies with other predicates. These predicate vectors
can be obtained by adding argument vectors. For example, the verb catch will contain
counts on the dimension for kick introduced by the direct-object ball and counts on
the dimension for contract introduced by the direct-object cold. In other words, as in
the Erk and Padó approach, the vector for a verb can be seen as a vector of similar
verbs, thus making this notion of second-order dependency compatible with that used
in work on word sense discrimination (Schütze 1998) rather than referring to second-
order (or higher-order) grammatical dependencies as in this work. Contextualization
can then be achieved by multiplication of a second-order predicate vector with a first-
order argument vector because this selects the dimensions that are common to both.
Thater, Fürstenau, and Pinkal (2010) presented a more general model where every word
is modeled in terms of first-order and second-order co-occurrences and demonstrate
high performance at ranking paraphrases.

7. Directions for Future Work

7.1 Representations

There are a number of apparent limitations of our approach that are simply a reflection
of our decision to adopt dependency-based syntactic analysis.

755

Computational Linguistics Volume 42, Number 4

First, surface disparities in syntactic structure (e.g., active versus passive tense
formations, compound sentence structures) will disrupt sentence-level comparisons
using a simple APT structure based on surface dependency relations, but this can be
addressed, for example, by syntax-based pre-processing. The APT approach is agnostic
in this regard.

Second, traditional dependency parsing does not distinguish between the order of
modifiers. Hence the phrases happiest blonde person and blonde happiest person receive the
same dependency representation and therefore also the same semantic representation.
However, we believe that our approach is flexible enough to be able to accommodate
a more sensitive grammar formalism that does allow for distinctions in modifier scope
to be made if an application demands it. In future work we intend to look at other
grammar formalisms, including CCG (Steedman 2000).

By proposing a count-based method for composition we are bucking the growing
trend of working with prediction-based word embeddings. Although there has been
initial evidence (Baroni, Dinu, and Kruszewski 2014) that prediction-based methods
are superior to count-based methods at the lexeme level (e.g., for synonym detection
and concept categorization), it has also been shown (Levy and Goldberg 2014) that
the skip-gram model with negative sampling as introduced in Mikolov et al. (2013a)
is equivalent to implicit factorization of the PPMI matrix. Levy, Goldberg, and Dagan
(2015) also demonstrated how traditional count-based methods could be improved by
transferring hyperparameters used by the prediction-based methods (such as context
distribution smoothing and negative sampling). This led to the count-based methods
outperforming the prediction-based methods on a number of word similarity tasks. A
next step for us is to take the lessons learned from work on word embeddings and
find a way to produce lower dimensionality APT representations without destroying
the necessary structure that drives composition. The advantages of this from a com-
putational point of view are obvious. It remains to be seen what effect the improved
generalization also promised by dimensionality reduction will have on composition via
APTs.

By considering examples, we have seen that composition of APTs using both
union and intersection can lead to nearest neighbors that are clearly disambiguating.
On benchmark phrase-based composition tasks, the performance of union in APT
composition is close to or equal to the state of the art on those tasks. However, we
believe that the performance of intersection in APT composition is currently limited by
the impoverished nature of word representations based directly on corpus statistics.
Even given a very large corpus, there are always many plausible co-occurrences that
have not been observed. One possible solution, which we explore elsewhere, is to
smooth the word representations using their distributional neighbors before applying
an intersective composition operation.

7.2 Applications

In Section 5.2, we demonstrated the potential for using APTs to carry out word sense
disambiguation / induction. Uncontextualized, elementary APTs typically contain a
corpus-determined mixture of co-occurrences referencing different usages. The APT
generated by a dependency tree, however, provides contextualized lexeme representa-
tions where the weights have been adjusted by the influence of the contextual lexemes
so that the co-occurrences relating to the correct usage have been appropriately up-
weighted, and the co-occurrences found in other circumstances down-weighted. In

756

Weir et al. Aligning Packed Dependency Trees

other words, APT structures automatically perform word sense induction on lexeme-
level representations and this is demonstrable through the lexeme similarity measure.
For example, we observed that the contextualized lexeme representation of body in
the APT constructed by embedding it in the phrase human body had a relatively high
similarity to the uncontextualized representation of brain and a relatively low similarity
to council, whereas the equivalent lexeme representation for body embedded in the
APT constructed for the phrase legislative body showed the reverse pattern.

One common criticism of distributional thesauruses is that they conflate different
semantic relations into a single notion of similarity. For example, when comparing
representations based on grammatical dependency relations, the most similar word to
an adjective such as hot will usually be found to be its antonym cold. This is because hot
and cold are both used to modify many of the same nouns. However, if, as in the APT
framework, the representation of cold includes not only the direct dependents of cold, but
also the indirect dependents (e.g., verbs that co-occur with cold things), it is possible that
more differences between its representation and that of hot might be found. One would
imagine that the things that are done to hot things are more different to the things that are
done to cold things than they are to the things that are done to very warm things. Further,
the examples in Section 5.2 raise the possibility that different composition operations
might be used to distinguish different semantic relations including hypernyms, hy-
ponyms, and co-hyponyms. For example,

⊔
UNI tends to lead to more general neighbors

(e.g., hypernyms) and
⊔

INT tends to lead to more specific neighbors (e.g., hyponyms).
Phrase-level or sentence-level plausibility measures offer the prospect of a continu-

ous measure of the appropriateness / plausibility of a complete phrase or sentence, based
on a combination of semantic and syntactic dependency relations. APTs offer a way to
measure the plausibility of a lexeme when embedded in a dependency tree, suggest-
ing that APTs may be successfully used in tackling sentence completion tasks, such
as the Microsoft Research Sentence Completion Challenge (Zweig and Burges 2012).
Here, the objective is to identify the word that will fill out a partially completed sentence
in the best possible way. For example, is flurried or profitable the best completion of the
sentence below:

“Presently he emerged looking even more [flurried / profitable] than before.”

We can compose the APTs for the partially completed sentence. Comparing the result
with the elementary APTs for each of the candidates should provide a good, direct
measurement of which candidate is more plausible. An improved language model has
implications for parsing, speech recognition, and machine translation.

A central goal of compositional distributional semantics is to create a data structure
that represents an entire phrase or sentence. The composed APT for a dependency tree
provides such a structure, but leaves open the question as to how this structure might
be exploited for phrase-level or sentence-level semantic comparison.

The first point to be made is that, unusually, we have available not only a represen-
tation of the whole dependency tree but also contextualized (vector) representations for
the lexemes in the dependency tree. This makes available to us any analytical technique
that requires separate analysis of lexical components of the phrase or sentence. How-
ever, this leads to the problem of how to read the structure at the global phrase/sentence-
level.

For similarity measures, one straightforward option would be to create a vector
from the APT anchored at the head of the phrase or sentence being considered. Thus,
the phrasal vector for a red rose would be created taking the node containing rose as the

757

Computational Linguistics Volume 42, Number 4

anchor. In other words, the vector representation of the phrase a red rose will be the same
as the contextualized representation of rose. Similarly, the vector representation for the
sentence he took the dog for a walk will be the same as the contextualized representation
of the verb took.

Such a representation provides a continuous model of similarity (and meaning)
at the phrasal-level and/or sentence-level. We anticipate that vector comparisons of
phrase- or sentence-level vectors produced in this manner will provide some coher-
ent numerical measure of distributional similarity. This approach should be useful
for paraphrase recognition tasks. For example, in order to identify good candidate
paraphrases for questions in a question-answering task, Berant and Liang (2014) use
a paraphrase model based on adding word embeddings constructed using the CBOW
model of Mikolov et al. (2013). Although the authors achieve state of the art using a
mixture of methods, a paraphrase model based on the addition of vectors of untyped
co-occurrences alone cannot distinguish meanings where syntax is important. For exam-
ple, the sentences Oswald shot Kennedy and Kennedy shot Oswald would have the same
representations. On the other hand, APT composition is syntax-driven and will provide
a representation of each sentence that is sensitive to lexical meaning and syntax.

Another advantage of using APT composition in paraphrase recognition, over some
other syntax-driven proposals, is that the same structure is used to represent words,
phrases, and sentences. Provided that the head node is of the same type of speech,
words and phrases of different lengths can easily be compared within our model. An
adjective–noun compound such as male sibling is directly comparable with the single
noun brother. Further, there is no need for there to be high similarity between aligned
components of phrases or sentences. For example, the phrase female scholar can be
expected to have a high similarity with the phrase educated woman, in terms at least
of their external contexts.

8. Conclusions

This article presents a new theory of compositional distributional semantics. It uses a
single structure, the APT, which can represent the distributional semantics of lexemes,
phrases, and even sentences. By retaining higher-order grammatical structure in the
representations of lexemes, composition captures mutual disambiguation and mutual
generalization of constituents. APTs allow lexemes and phrases to be compared in
isolation or in context. Further, we have demonstrated how one instantiation of this
theory can achieve results that are very competitive with state-of-the-art results on
benchmark phrase-based composition tasks.

As we have discussed, APTs have a wide range of potential applications including
word sense induction, word sense disambiguation, parse reranking, dependency pars-
ing and language modeling more generally, and also paraphrase recognition. Further
work is required to gain an understanding of which instantiations of the theory are
suited to each of these applications.

Acknowledgments
This work was funded by the UK EPSRC
project EP/IO37458/1 “A Unified Model of
Compositional and Distributional Compositional
Semantics: Theory and Applications.” We
would like to thank all members of the
DISCO project team. Particular thanks

to Miroslav Batchkarov, Stephen Clark,
Daoud Clarke, Roland Davis, Bill Keller,
Tamara Polajnar, Laura Rimell, Mehrnoosh
Sadrzadeh, David Sheldrick, and Andreas
Vlachos. We would also like to thank the
anonymous reviewers for their helpful
comments.

758

Weir et al. Aligning Packed Dependency Trees

References
Baroni, Marco, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting
vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 238–247,
Baltimore, MD.

Baroni, Marco and Alessandro Lenci.
2010. Distributional memory: A general
framework for corpus-based semantics.
Computational Linguistics, 36(4):
673–721.

Baroni, Marco and Roberto Zamparelli. 2010.
Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions
in semantic space. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 1183–1193,
Cambridge, MA.

Berant, Jonathan and Percy Liang. 2014.
Semantic parsing via paraphrasing. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1415–1425,
Baltimore, MD.

Blacoe, William and Mirella Lapata.
2012. A comparison of vector-based
representations for semantic composition.
In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language
Processing and Computational Natural
Language Learning, pages 546–556,
Jeju Island.

Bruni, Elia, Nam Khanh Tran, and Marco
Baroni. 2014. Multimodal distributional
semantics. Journal of Artificial Intelligence
Research, 49:1–47.

Clarke, Daoud. 2007. Context-Theoretic
Semantics for Natural Language: an
Algebraic Framework. Ph.D. thesis,
Department of Informatics, University of
Sussex.

Clarke, Daoud. 2012. A context-theoretic
framework for compositionality in
distributional semantics. Computational
Linguistics, 38(1):41–71.

Coecke, Bob, Mehrnoosh Sadrzadeh, and
Stephen Clark. 2011. Mathematical
foundations for a compositional
distributed model of meaning. Linguistic
Analysis, 36(1-4):345–384.

Collobert, Ronan and Jason Weston. 2008. A
unified architecture for natural language
processing: Deep neural networks with
multitask learning. In Proceedings of the
25th International Conference on Machine
Learning, pages 160–167, New York,
NY.

Curran, James. 2004. From Distributional to
Semantic Similarity. Ph.D. thesis, University
of Edinburgh.

Dagan, Ido, Fernando Pereira, and Lillian
Lee. 1994. Similarity-based estimation of
word cooccurrence probabilities. In
Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics,
pages 272–278, Las Cruces, NM.

Dinu, Georgiana, Nghia The Pham, and
Marco Baroni. 2013. General estimation
and evaluation of compositional
distributional semantic models. In
Proceedings of the Workshop on Continuous
Vector Space Models and their
Compositionality, pages 50–58, Sofia.

Dinu, Georgiana and Stefan Thater. 2012.
Saarland: Vector-based models of semantic
textual similarity. In *SEM 2012: The First
Joint Conference on Lexical and Computational
Semantics, pages 603–607, Montreal.

Erk, Katrin. 2012. Vector space models of
word meaning and phrase meaning: A
survey. Language and Linguistics Compass,
6(10):635–653.

Erk, Katrin and Sebastian Padó. 2008. A
structured vector space model for word
meaning in context. In Proceedings of
the 2008 Conference on Empirical Methods
in Natural Language Processing,
pages 897–906, Honolulu, HI.

Ferraresi, Adriano, Eros Zanchetta, Marco
Baroni, and Silvia Bernardini. 2008.
Introducing and evaluating UKWAC, a
very large Web-derived corpus of English.
In Proceedings of the WAC4 Workshop at
LREC, pages 47–54, Marrakech.

Finkelstein, Lev, Evgeniy Gabrilovich,
Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin.
2001. Placing search in context: The
concept revisited. In Proceedings of
the 10th International Conference on
World Wide Web, pages 406–414,
New York, NY.

Garrette, Dan, Katrin Erk, and Raymond
Mooney. 2011. Integrating logical
representations with probabilistic
information using Markov logic. In
Proceedings of the Ninth International
Conference on Computational Semantics,
pages 105–114, Stroudsburg, PA.

Grefenstette, Edward, Georgiana Dinu,
Yao-Zhong Zhang, Mehrnoosh Sadrzadeh,
and Marco Baroni. 2013. Multi-step
regression learning for compositional
distributional semantics. In Proceedings of
the Tenth International Conference on
Computational Semantics, pages 131–142,
East Stroudsberg, PA.

759

http://www.mitpressjournals.org/action/showLinks?crossref=10.1002%2Flnco.362
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00084
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00084
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli_a_00016

Computational Linguistics Volume 42, Number 4

Guevara, Emiliano. 2010. A regression model
of adjective-noun compositionality in
distributional semantics. In Proceedings of
the ACL Geometrical Models of Natural
Language Semantics Workshop, pages 33–37,
Uppsala.

Hermann, Karl Moritz and Phil Blunsom.
2013. The role of syntax in vector space
models of compositional semantics. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics,
pages 894–904, Sofia.

Hill, Felix, Roi Reichart, and Anna
Korhonen. 2015. Simlex-999: Evaluating
semantic models with (genuine) similarity
estimation. Computational Linguistics,
41(4):665–695.

Kiela, Douwe and Stephen Clark. 2014. A
systematic study of semantic vector space
model parameters. In Proceedings of the
2nd Workshop on Continuous Vector Space
Models and their Compositionality (CVSC),
pages 21–30, Gothenburg.

Lambek, J. 1999. Type grammar revisited. In
Alain Lecomte, François Lamarche, and
Guy Perrier, editors, Logical Aspects of
Computational Linguistics, volume 1582 of
Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pages 1–27.

Lee, Lillian. 1999. Measures of distributional
similarity. In Proceedings of the 37th Annual
Meeting of the Association for Computational
Linguistics, pages 25–32, College Park,
MD.

Levy, Omer and Yoav Goldberg. 2014.
Neural word embedding as implicit
matrix factorization. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances
in Neural Information Processing
Systems 27. Curran Associates, Inc.,
pages 2177–2185.

Levy, Omer, Yoav Goldberg, and Ido Dagan.
2015. Improving distributional similarity
with lessons learned from word
embeddings. Transactions of the
Association for Computational Linguistics,
3:211–225.

Lewis, Mike and Mark Steedman.
2013. Combined distributional and
logical semantics. In Transactions of the
Association for Computational Linguistics,
1:179–192.

Lin, Dekang. 1998. Automatic retrieval
and clustering of similar words. In
Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics
and 17th International Conference on
Computational Linguistics, pages 768–774,
Montreal.

Lund, Kevin and Curt Burgess. 1996.
Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior
Research Methods, Instruments, & Computers,
28(2):203–208.

McCarthy, Diana and Robert Navigli. 2007.
Semeval-2007 task 10: English lexical
substitution task. In Proceedings of the 4th
International Workshop on Semantic
Evaluations (SemEval-2007), pages 48–53,
Prague.

Mikolov, Tomas, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013a. Efficient
estimation of word representations in
vector space. arXiv preprint
arXiv:1301.3781.

Mikolov, Tomas, Ilya Sutskever, Kai Chen,
Greg S. Corrado, and Jeff Dean. 2013b.
Distributed representations of words and
phrases and their compositionality. In
C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information
Processing Systems 26. Curran Associates,
Inc., pages 3111–3119.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey
Zweig. 2013. Linguistic regularities in
continuous space word representations. In
Proceedings of the 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 746–751, Atlanta,
GA.

Mitchell, Jeff and Mirella Lapata. 2008.
Vector-based models of semantic
composition. In Proceedings of the 46th
Annual Meeting of the Association for
Computational Linguistics: Human Language
Technology Conference, pages 236–244,
Columbus, OH.

Mitchell, Jeff and Mirella Lapata. 2010.
Composition in distributional models of
semantics. Cognitive Science,
34(8):1388–1429.

Montague, Richard. 1970. English as a
formal language. In Bruno Visentini,
editor, Linguaggi nella società e nella tecnica,
pages 189–223.

Nivre, Joakim. 2004. Incrementality in
deterministic dependency parsing. In
Proceedings of the ACL Workshop on
Incremental Parsing, pages 50–57,
Boston, MA.

Padó, Sebastian and Mirella Lapata. 2007.
Dependency-based construction of
semantic space models. Computational
Linguistics, 33(2):161–199.

Pennington, Jeffrey, Richard Socher, and
Christopher Manning. 2014. GloVe: Global
vectors for word representation. In

760

http://www.mitpressjournals.org/action/showLinks?crossref=10.3758%2FBF03204766
http://www.mitpressjournals.org/action/showLinks?crossref=10.3758%2FBF03204766
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.161
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.161
http://www.mitpressjournals.org/action/showLinks?crossref=10.1111%2Fj.1551-6709.2010.01106.x
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00237

Weir et al. Aligning Packed Dependency Trees

Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing, pages 1532–1543,
Doha.

Schütze, Hinrich. 1998. Automatic word
sense discrimination. Computational
Linguistics, 24(1):97–123.

Socher, Richard, Eric H. Huang, Jeffrey
Pennington, Christopher D. Manning, and
Andrew Y. Ng. 2011. Dynamic pooling and
unfolding recursive autoencoders for
paraphrase detection. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems,
24:801–809.

Socher, Richard, Brody Huval, Christopher
D. Manning, and Andrew Y. Ng. 2012.
Semantic compositionality through
recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language
Processing and Computational Natural
Language Learning, pages 1201–1211,
Jeju Island.

Socher, Richard, Jeffrey Pennington, Eric H.
Huang, Andrew Y. Ng, and Christopher D.
Manning. 2011. Semi-supervised recursive
autoencoders for predicting sentiment
distributions. In Proceedings of the 2011
Conference on Empirical Methods in Natural
Language Processing, pages 151–161,
Edinburgh.

Socher, Richard, Alex Perelygin, Jean Wu,
Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013.
Recursive deep models for semantic
compositionality over a sentiment
treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642,
Seattle, WA.

Steedman, Mark. 2000. The Syntactic Process.
MIT Press.

Thater, Stefan, Georgiana Dinu, and Manfred
Pinkal. 2009. Ranking paraphrases in
context. In Proceedings of the 2009 ACL
Workshop on Applied Textual Inference,
pages 44–47, Suntec.

Thater, Stefan, Hagen Fürstenau, and
Manfred Pinkal. 2010. Contextualizing
semantic representations using
syntactically enriched vector models.
In Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics,
pages 948–957, Uppsala.

Thater, Stefan, Hagen Fürstenau, and
Manfred Pinkal. 2011. Word meaning in
context: A simple and effective vector
model. In Proceedings of the 5th International
Joint Conference on Natural Language
Processing, pages 1134–1143, Chiang Mai.

Turney, Peter D. 2012. Domain and function:
A dual-space model of semantic relations
and compositions. Journal of Artificial
Intelligence Research, 44(1):533–585.

Turney, Peter D. and Patrick Pantel. 2010.
From frequency to meaning: Vector space
models of semantics. Journal of Artificial
Intelligence Research, 37(1):141–188.

Van de Cruys, Tim, Thierry Poibeau, and
Anna Korhonen. 2011. Latent vector
weighting for word meaning in context.
In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language
Processing, pages 1012–1022, Edinburgh.

Weeds, Julie. 2003. Measures and Applications
of Lexical Distributional Similarity. Ph.D.
thesis, Department of Informatics,
University of Sussex.

Weeds, Julie and David Weir. 2005.
Co-occurrence retrieval: A flexible
framework for distributional similarity.
Computational Linguistics, 31(4):439–476.

Weeds, Julie, David Weir, and Diana
McCarthy. 2004. Characterising measures
of lexical distributional similarity. In
Proceedings of the 20th International
Conference on Computational Linguistics,
pages 1015–1021, Geneva.

Weeds, Julie, David Weir, and Jeremy Reffin.
2014. Distributional composition using
higher-order dependency vectors. In
Proceedings of the 2nd Workshop on
Continuous Vector Space Models and their
Compositionality (CVSC), pages 11–20,
Gothenburg.

Wilson, Benjamin. 2015. The unknown perils
of mining wikipedia. https://blog.
lateral.io/2015/06/the-unknown-
perils-of-mining-wikipedia/.

Zweig, Geoffrey and Chris J. C. Burges. 2012.
A challenge set for advancing language
modeling. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Replace the
N-gram Model? On the Future of Language
Modeling for HLT, pages 29–36, Montreal,
CA.

761

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089120105775299122

