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System design and evaluation methodologies receive significant attention in natural language
processing (NLP), with the systems typically being evaluated on a common task and against
shared data sets. This enables direct system comparison and facilitates progress in the field.
However, computational work on metaphor is considerably more fragmented than similar re-
search efforts in other areas of NLP and semantics. Recent years have seen a growing interest
in computational modeling of metaphor, with many new statistical techniques opening routes
for improving system accuracy and robustness. However, the lack of a common task definition,
shared data set, and evaluation strategy makes the methods hard to compare, and thus hampers
our progress as a community in this area. The goal of this article is to review the system
features and evaluation strategies that have been proposed for the metaphor processing task,
and to analyze their benefits and downsides, with the aim of identifying the desired properties of
metaphor processing systems and a set of requirements for their evaluation.

1. Introduction

Metaphor enriches our communication with a more diverse imagery and provides an
important mechanism for reasoning about concepts. At the same time, it is also a very
common linguistic device that has long become a part of our everyday language. Meta-
phors arise through systematic associations between distinct, and seemingly unrelated,
concepts. For example, when we say “The wheels of Stalin’s regime were well-oiled and
already turning,” we view a political system in terms of a mechanism, it can function,
break, have wheels, and so forth. The existence of this association allows us to transfer
knowledge and inferences from the domain of mechanisms to that of political systems. As
a result, we reason about political systems in terms of mechanisms and discuss them using
the mechanism terminology, giving rise to a variety of metaphorical expressions.

This view of metaphor is widely known as Conceptual Metaphor Theory (CMT). It
was proposed by Lakoff and Johnson (1980), who claimed that metaphor is not merely a
property of language, but rather a cognitive mechanism that structures our conceptual
system in a certain way. Lakoff and Johnson explained metaphor through a presence of
a mapping between two domains of experience: the target (e.g., politics) and the source
(e.g., mechanism). Metaphor is thus not limited to meaning extensions of individual

∗ International Computer Science Institute, 1947 Center St. Ste. 600, Berkeley, CA 94704, USA.
E-mail: katia@icsi.berkeley.edu.

Submission received: 9 October 2013; revised version received: 4 March 2015; accepted for publication:
10 June 2015.

doi:10.1162/COLI a 00233

© 2015 Association for Computational Linguistics



Computational Linguistics Volume 41, Number 4

words, but rather involves a complex cross-domain knowledge projection process. Let
us consider a few more examples.

(1) “President Obama is rebuilding the campaign machinery that vaulted
him into office” (New York Times 2011)

(2) 20 steps towards a modern, working democracy

(3) Time to mend our foreign policy.

(4) “She knows the nuts and bolts, and it’s not the nuts and bolts inside
legislation, it’s the nuts and bolts of raising money, preparing the party
for elections, a political consultant kind of politics.” (Bzdek 2008)

These examples demonstrate how multiple properties and inferences from the domain
of mechanisms are systematically projected onto our knowledge about politics. Lakoff
and Johnson coined the term conceptual metaphor to describe such mappings from
the source domain to the target. The view of an inter-conceptual mapping as a ba-
sis of metaphor was echoed by other prominent theories in the field. These include,
most notably, the comparison view, formulated in the Structure–Mapping Theory of
Gentner (1983), and the interaction view (Black 1962; Hesse 1966). However, the prin-
ciples of CMT have inspired and influenced much of the computational work on
metaphor, thus becoming more central to this paper. Conceptual metaphor manifests
itself in language in the form of linguistic metaphor, or metaphorical expressions.
These in turn include lexical metaphor, that is, single-word meaning extensions (as
in Examples (2) and (3)); multi-word metaphorical expressions (e.g., “the government
turned a blind eye to corruption”); or extended metaphor, that spans longer discourse
fragments.

Manifestations of metaphor are frequent in language, appearing on average in
every third sentence of general-domain text, according to corpus studies (Cameron
2003; Martin 2006; Shutova and Teufel 2010; Steen et al. 2010). This makes metaphor
an important subject of linguistic research and makes its accurate processing essential
for a range of practical NLP applications. These include, for example, (1) machine trans-
lation (MT): Because a large number of metaphorical expressions are culture-specific,
they represent a considerable challenge for MT (e.g., the English metaphor “to shoot
down someone’s arguments” cannot be literally translated into German as “Argumente
abschießen” and metaphor interpretation is required); (2) opinion mining: Metaphorical
expressions tend to contain a strong emotional component—for example, compare
the metaphorical expression “Government loosened stranglehold on business” and its
literal counterpart Government deregulated business (Narayanan 1999); (3) information
retrieval (IR): Non-literal language without appropriate disambiguation may lead to
false positives in information retrieval (e.g., documents describing “old school gentle-
men” should not be returned for the query school [Korkontzelos et al. 2013]); and many
others.

Because metaphor interpretation requires complex analogical comparisons and
the projection of inference structures across domains, the task of automatic metaphor
processing is challenging. For many years, computational work on metaphor evolved
around the use of hand-coded knowledge and rules to model metaphorical associa-
tions, making the systems hard to scale. Recent years have seen a growing interest
in statistical modeling of metaphor (Mason 2004; Gedigian et al. 2006; Shutova 2010;
Shutova, Sun, and Korhonen 2010; Turney et al. 2011; Dunn 2013a; Heintz et al. 2013;
Hovy et al. 2013; Li, Zhu, and Wang 2013; Mohler et al. 2013; Shutova and Sun 2013;
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Strzalkowski et al. 2013; Tsvetkov, Mukomel, and Gershman 2013), with many new
techniques opening routes for improving system accuracy and robustness. A wide
range of methods have been proposed and investigated by the community, including
supervised (Gedigian et al. 2006; Dunn 2013a; Hovy et al. 2013; Mohler et al. 2013;
Tsvetkov, Mukomel, and Gershman 2013) and unsupervised (Heintz et al. 2013; Shutova
and Sun 2013) learning, distributional approaches (Shutova 2010, 2013; Shutova, Van de
Cruys, and Korhonen 2012), lexical resource-based methods (Krishnakumaran and Zhu
2007; Wilks et al. 2013), psycholinguistic features (Turney et al. 2011; Gandy et al. 2013;
Neuman et al. 2013; Strzalkowski et al. 2013), and Web search (Veale and Hao 2008;
Bollegala and Shutova 2013; Li, Zhu, and Wang 2013). Although individual approaches
tackling individual aspects of metaphor have met with success, the insights gained from
these experiments are still difficult to integrate into a single computational metaphor
modeling landscape, because of the lack of a unified task definition, a shared data set,
and well-defined evaluation standards. This hampers our progress as a community
in this area. In this paper we take a step towards closing this gap: We review the
recent work on computational modeling of metaphor, the tasks addressed, the system
features proposed, and the evaluations conducted, and analyze the relevance of differ-
ent linguistic aspects of metaphor for system performance and applicability, with the
aim of identifying the desired properties of metaphor processing systems and a set of
requirements for their evaluation.

2. Considerations in the Design of a Metaphor Processing System

When designing a metaphor processing system, one faces a number of choices. Some
stem from the linguistic and cognitive properties of metaphor, others concern the ap-
plicability and usefulness of the system in the wider NLP context. In this section, we
analyze individual aspects of metaphor and their relevance to computational modeling,
as well as their interplay in the design of a real-world system.

2.1 Linguistic Considerations and Levels of Analysis

Linguistic considerations that inform the design of metaphor processing systems con-
cern primarily the choice of the level (or levels) of analysis. The levels of metaphor
analysis include (1) linguistic metaphor (or metaphorical expressions), (2) conceptual
metaphor, (3) extended metaphor, and (4) metaphorical inference. Let us consider an
example of manifestations of the conceptual metaphor EUROPEAN INTEGRATION as a
TRAIN JOURNEY, popular in the early 1990s, at various levels.r Conceptual: EUROPEAN INTEGRATION as a TRAIN JOURNEYr Linguistic: The coupling of the carriages may not be reliably secure, but the

pan-European express is in motion.r Extended metaphor: “There is a fear that the European train will thunder
forward, laden with its customary cargo of gravy, towards a destination
neither wished for nor understood by electorates. But the train can be
stopped.” (Margaret Thatcher, Sunday Times, 20 Sept 1992)r Metaphorical inference: The fact that expensive tracks have to be laid for
the train to move forward means that someone has to fund the process of
European integration.
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2.1.1 Linguistic metaphor. Linguistic metaphor, or metaphorical expressions, concern the
surface realization of metaphorical mechanisms, and have been unsurprisingly cen-
tral to metaphor processing research to date (Birke and Sarkar 2006; Gedigian et al.
2006; Krishnakumaran and Zhu 2007; Shutova, Sun, and Korhonen 2010; Turney et al.
2011; Dunn 2013a; Gandy et al. 2013; Heintz et al. 2013; Hovy et al. 2013; Neuman
et al. 2013; Shutova 2013; Strzalkowski et al. 2013; Tsvetkov, Mukomel, and Gershman
2013). Metaphorical expressions represent the way in which text-processing systems
encounter metaphor, and there is little doubt that any real-world metaphor processing
system, whatever the approach or the application, ultimately needs to be able to identify
and interpret them.

When focusing on linguistic metaphor, one needs to further take into account the
level of conventionality of the expressions; how different syntactic constructions are
used to convey metaphorical meanings and at what level metaphor annotation needs to
be done (word, relation, or sentence level). Thus the following considerations become
important for the task and system design:r Level of conventionality of the metaphors accepted: Metaphor is a

productive phenomenon, that is, its novel examples continue to emerge in
language. However, a large number of metaphorical expressions become
conventionalized over time (e.g., “I cannot grasp his way of thinking”).
Although metaphorical in nature, their meanings are deeply entrenched
in everyday use, and their comprehension is likened to that of literally
used terms (Nunberg 1987). According to Gibbs (1984), metaphorical
expressions are spread along a continuum from highly conventional,
lexicalized metaphors to entirely novel and creative ones. Gibbs thus
suggests that there is no clear demarcation line between literal and
metaphorical language, and the distinction between them is rather
governed by the level of conventionality of metaphorical expressions.
From the usage perspective, metaphoricity may be viewed as a gradient
phenomenon rather than a binary one (Dunn 2011), and conventionality
becomes an important factor in the design and evaluation of metaphor
processing systems. It is not yet clear where on the metaphorical–literal
continuum the system should draw the line between what it considers
metaphorical and what it considers literal. The answer to this question
most likely depends on the NLP application in mind. However, generally
speaking, real-world NLP applications are unlikely to be concerned with
historical aspects of metaphor, but rather with the identification of
figurative language that needs to be interpreted differently from the literal
language. We therefore suggest that NLP applications do not necessarily
need to address highly conventional and lexicalized metaphors that can be
interpreted using standard word sense disambiguation techniques, but
rather would benefit from the identification of less conventional and more
creative language. Much of the metaphor processing work has focused on
conventional metaphor, though in principle capable of identifying novel
metaphor as well (Shutova, Sun, and Korhonen 2010; Turney et al. 2011;
Dunn 2013a; Gandy et al. 2013; Heintz et al. 2013; Neuman et al. 2013;
Shutova 2013; Strzalkowski et al. 2013; Tsvetkov, Mukomel, and Gershman
2013), with few approaches modeling only novel metaphor (Desalle,
Gaume, and Duvignau 2009) or discriminating between conventional and
novel metaphors (Krishnakumaran and Zhu 2007). Other approaches have
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looked at literal versus non-literal distinction defined more broadly (Birke
and Sarkar 2006; Li and Sporleder 2009, 2010).r Syntactic constructions covered: Metaphors vary with respect to how they
are expressed in language grammatically. The grammatical structure of
metaphorical expressions is tightly coupled with the inference processes
that produce them and are guided by the semantic frames they evoke
(Sullivan 2007, 2013). According to Sullivan, conceptual metaphors are
realized in language via mapping semantic roles in the source frame onto
roles in the target frame. This suggests that both the source and the target
domain impose a set of constraints on the roles that can be mapped, and
thus on the syntactic options for expressing the metaphorical meaning.
There has not yet been a computational approach investigating the
interplay of frame semantics and surface structure of metaphorical
language. However, the community has addressed modeling linguistic
metaphor in a range of syntactic constructions. Verbal or adjectival
metaphors are particularly widely embraced by NLP researchers
(most approaches), with a few works focusing on copula constructions
(Krishnakumaran and Zhu 2007; Gandy et al. 2013; Li, Zhu, and Wang
2013; Neuman et al. 2013) or other nominal metaphors (Heintz et al. 2013;
Hovy et al. 2013; Li, Zhu, and Wang 2013; Mohler et al. 2013; Strzalkowski
et al. 2013). A number of approaches to metaphor identification have also
addressed multiword metaphors (Li and Sporleder 2010; Heintz et al.
2013; Hovy et al. 2013; Mohler et al. 2013). Corpus-linguistic research has
shown that verbs and adjectives account for a large proportion of
metaphorical expressions observed in the data (Cameron 2003; Shutova
and Teufel 2010). However, a recent study (Jamrozik et al. 2013) has also
shown that relational words tend to have a higher metaphorical potential.
This corresponds to the data on verbal metaphor frequency, and it also
suggests that relational nouns are important (e.g., “words are friends of
translators”).r Lexical, relation, or sentence level: Finally, one needs to decide if
metaphor should be annotated at the word level (i.e., tagging the source
domain words alone), relation level (i.e., tagging both source and target
words in a particular grammatical relation), or sentence level (i.e., tagging
sentences that contain metaphorical language, without explicit annotation
of source and target domain words). The word or relation levels provide
the most information and have been the focus of the majority of
approaches (Gedigian et al. 2006; Shutova, Sun, and Korhonen 2010;
Turney et al. 2011; Gandy et al. 2013; Heintz et al. 2013; Hovy et al. 2013;
Neuman et al. 2013; Shutova 2013; Shutova and Sun 2013; Wilks et al.
2013). However, some works annotated metaphor at the sentence level
(Krishnakumaran and Zhu 2007; Dunn 2013a; Li, Zhu, and Wang 2013;
Mohler et al. 2013; Strzalkowski et al. 2013; Tsvetkov, Mukomel, and
Gershman 2013).

2.1.2 Conceptual metaphor. Conceptual metaphor represents a cognitive and conceptual
mechanism by which humans produce and comprehend metaphorical expressions.
Manifestations of conceptual metaphor are ubiquitous in language, communication,
and even decision-making (Thibodeau and Boroditsky 2011). Here are a few examples of
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common metaphorical mappings: TIME is MONEY (e.g., “That flat tire cost me an hour”),
IDEAS are PHYSICAL OBJECTS (e.g., “I cannot grasp his way of thinking”), EMOTIONS ARE
VEHICLES (e.g., “she was transported with pleasure”), FEELINGS ARE LIQUIDS (e.g., “all
of this stirred an unfathomable excitement in her”), LIFE IS A JOURNEY (e.g., “He arrived
at the end of his life with very little emotional baggage”); ARGUMENT IS A WAR (e.g.,
“He shot down all of my arguments,” “He attacked every weak point in my argument”).

On one hand, few would disagree that the metaphor processing systems capable
of understanding and applying conceptual metaphor should be in a better position
to accurately handle linguistic metaphors as well. However, a series of questions arise
when designing a model of conceptual metaphor. For example, how does one represent
conceptual metaphors in the system? What labels does one assign to source and target
domains? Is it even possible to name all the conceptual metaphors that humans use
and is it necessary to do so? A computational model needs a clear definition of what
constitutes the source and target domains (whether they are manually listed or automat-
ically learned) and the consistency and coverage of source and target domain categories
would play a crucial role in how well the model can account for real-world data.
Previous research on annotation of conceptual metaphor (Shutova and Teufel 2010)
has shown that the annotators tend to disagree on the assignment of source and target
domain categories. The most variation stems from the level of generality of the selected
categories, indicating that while cross-domain mappings are intuitive to humans (i.e.,
they can be annotated in arbitrary text in principle), labeling source and target domains
consistently appears to be a challenging task. What this suggests is that, although the
mechanism of conceptual metaphor may be helpful to the system, the question of how to
best represent source and target domains within the system remains open. A predefined
set of categories, such as those widely discussed in the linguistic literature on CMT,
may not be sufficient or even suitable for a computational model. And despite the
validity of the main principles of CMT as a linguistic theory, it is not straightforward to
port it to computational modeling of metaphor. A more flexible, and potentially data-
driven, representation of source and target domain categories is needed for the latter
purpose. A data-driven representation would also be better suited to account for the
freedom of interpretation that some metaphors allow, since more flexible structures can
be dynamically learned from the data. So far, the community has attempted assigning
manually created labels to metaphorical mappings (Mason 2004; Baumer, Tomlinson,
and Richland 2009), harvesting fine-grained mappings between individual nouns (Li,
Zhu, and Wang 2013), using lexical resources to define or expand source and target
domain categories (Gandy et al. 2013; Mohler et al. 2013), representing source and
target concepts as word clusters (Shutova and Sun 2013) or automatically learned topics
(Heintz et al. 2013), and learning metaphorical mappings implicitly within the model
without explicit labeling (Shutova, Sun, and Korhonen 2010).

2.1.3 Extended metaphor. Extended metaphor refers to the use of metaphor at the dis-
course level. It manifests itself in discourse via a sequence of metaphorically used lan-
guage, yielded by the same conceptual metaphor, whereby a continuous scenario from
the source domain is metaphorically projected onto the target. For instance, viewing
European integration as a train journey led to numerous metaphorical expressions in
political discourse. Each of them mapped certain properties of train journeys to political
processes—with countries as loosely connected carriages, peoples of different countries
as passengers of their respective carriages, expensive tracks that have to be laid for the train
to move forward, and the final destination not very well understood. This metaphor
has been dominating the debate, with the European leaders arguing over its details
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(Beigman Klebanov and Beigman 2010). One can see this metaphor frequently reappear
and evolve over time, helping politicians defend their agendas and, not least, shedding
some clarity on an otherwise uncertain future.

Research in linguistics and political science (Musolff 2000; Lakoff 2008; Lakoff and
Wehling 2012) suggests that the use of a particular metaphor often guides the speak-
ers’ argumentation strategy throughout a piece of discourse, as well as participants’
behavior in a dialogue. Beigman Klebanov and Beigman (2010) investigated extended
metaphor within a game-theoretic framework, demonstrating that maintaining the
metaphorical frame in a debate is rationalizable in terms of the gains the participants
may get from doing so and their potential losses from swerving away from the meta-
phor. Their approach reverse-engineers the motivations behind the use of extended
metaphor within a formal framework. Beigman Klebanov and Beigman’s work was an
important advance, enhancing our understanding of the inner workings of extended
metaphor, motivation behind its use, and its effects on social dynamics. However, a
computational method for identification and interpretation of extended metaphor in
real-world discourse is yet to be proposed. A discourse-level metaphor processing
system would need to identify a chain of metaphorical expressions in a text, which in-
dicates a systematic association of the text topic with a particular domain. These chains
would then demonstrate how continuous scenarios can be transferred across domains.
Recovering this information from the data would allow us to better understand the
structure behind metaphorical associations, as well as the inferential process by which
knowledge is projected across domains. This system would also find application in
social science, where metaphorical framing is widely studied as an indicator of the
underlying cultural and moral models (Lakoff and Wehling 2012).

2.1.4 Metaphorical inference. When projecting knowledge from one domain to another,
a set of complex inferences take place. Metaphorical inferences are grounded in the
source domain and result in the production of surface structures we observe in language
as metaphorical expressions. Metaphorical mappings are thus realized via project-
ing inference structures from the source domain onto the target. For example, when
European integration is metaphorically viewed as a train journey, our knowledge of
typical events and their consequences from the domain of train journey are projected
onto our reasoning about the process of European integration. For instance, if we know
that expensive tracks need to be laid before a train can move forward, we can infer
that someone also needs to fund the process of European integration. Interestingly, in
the presence of a conceptual metaphor such inference can take place even without any
linguistic metaphor referring to the tracks being present, but rather on the basis of our
common sense knowledge about the functioning of trains.

Besides allowing us to derive new information about the target domain, projecting
the inferential structures from the source domain also invokes an emotional response
coming from the source domain—for example, an unknown destination or a great
expense make one feel uneasy when referred to both literally and metaphorically. Such
a transfer of inferential processes and emotional content is believed by some to be
one of the central purposes of metaphor (Kovecses 2005; Feldman 2006; Thibodeau
and Boroditsky 2011). Psychologists Thibodeau and Boroditsky (2011) investigated
how metaphor and metaphorical inference affect decision-making. Their hypothesis
was that metaphors in language “instantiate frame-consistent knowledge structures
[from the source domain] and invite structurally consistent inferences [about the target
domain].” They used two groups of subjects, who were presented with two different
texts about crime. In the first text crime was metaphorically portrayed as a VIRUS and
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in the second as a BEAST. The two groups were then asked a set of questions on how
to tackle crime in the city. It turned out that, whereas the first group tended to opt for
preventive measures in tackling crime (e.g., stronger social policies), the second group
converged on punishment- or restraint-oriented measures. According to Thibodeau and
Boroditsky, their results demonstrate that metaphors have profound influence on how
we conceptualize and act with respect to societal issues. Interestingly, the participants
would explain their decisions via arguments unrelated to the metaphor, showing that
the effect of metaphorical inference in guiding human reasoning is rather covert.

Being able to reproduce these inferences is likely to make automatic metaphor un-
derstanding better informed and hence more accurate. It may also provide a mechanism
of representing source–target domain mappings, that themselves are generalizations
over a set of inferences transferred from one domain to another. And finally, these
inferences provide a platform for metaphor interpretation, namely, deriving the mean-
ing of a metaphorical expression and the additional connotations it introduces (that
are likely to originate from the source domain). There is a consensus among cognitive
linguists that it is metaphorical inference that provides for the very texture behind the
use of metaphor (Hobbs 1981; Carbonell 1982; Rohrer 1997; Turner and Fauconnier 2003;
Feldman 2006). Although uncovering this texture is certainly one of the main objectives
of computational metaphor understanding, it is at the same time a very challenging
undertaking. Reproducing metaphorical inferences would require the ability to learn
vast amounts of world knowledge from the data, as well as performing complex cross-
domain comparisons. And despite being a very promising route, it has not yet been
attempted in NLP.

2.2 Applicability

Another set of considerations in the design of metaphor processing systems stems from
the needs of real-world NLP. The high frequency of metaphorical language in textual
data makes accurate metaphor processing desired for a number of NLP applications.
Thus, the format of metaphor understanding that metaphor processing systems provide
should ideally be informed by the requirements of external NLP and a number of
considerations arise in that respect:r Metaphor processing typically involves two tasks: metaphor

identification (distinguishing between literal and metaphorical language
in text) and metaphor interpretation (identifying the intended meaning of
the metaphor). Both of these provide useful information for language
understanding and need to be addressed, either independently or as a
single process.r A metaphor processing system should provide a representation of
metaphor interpretation that can be easily integrated with other NLP
systems. This criterion places constraints on how the metaphor processing
task should be defined. The most universally applicable metaphor
interpretation would be in the text-to-text form. This means that a
metaphor processing system would take raw text as input and provide
textual output, in which metaphors are interpreted.r In order to be useful for real-world NLP, the system needs to be capable of
processing real-world data, and thus operate on unrestricted, continuous
text. Rather than only dealing with individual carefully selected clear-cut
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examples, the system should be fully implemented and tested on free,
naturally occurring text.r To enable wide applicability, the system needs to be open-domain—that
is, operate in all domains, genres, and topics. Therefore, ideally it should
not rely on any domain-specific information or focus on individual types
of instances (e.g., a limited set of hand-chosen source-target domain
mappings).r To be easily adaptable to new domains, the system should not rely on
task-specific hand-coded knowledge. This means it needs to be either
data-driven and be able to automatically acquire the knowledge it needs
from text corpora, or rely only on large-scale, general-domain lexical
resources (that are already in existence and do not need to be created in a
costly manner). However, it would be an advantage if no such resource is
required and the system can dynamically induce meanings in context.r To be robust, the system needs to be able to deal with metaphors
represented by all word classes and syntactic constructions. Many
existing models are designed with specific kinds of metaphorical
expressions in mind, for instance nominal metaphors in copula
constructions or verbal metaphors in verb–object relations. To be
applicable to support real-world NLP applications, these models
need to be extended beyond those specific word classes and syntactic
constructions, and be able to process any kind of metaphorical language.

When designing a metaphor processing task, methodology, and evaluation strategy, one
thus needs to keep these criteria in mind. Although modeling all of the phenomena de-
scribed in this section within a single system is by no means a requirement, it is critically
important to be aware of all the guises that metaphor may take, both conceptually and
empirically.

3. Metaphor Annotation and Resources

3.1 Corpora

Metaphor annotation studies have typically focused on one (or both) of the following
tasks: (1) identification of metaphorical senses in text (i.e., distinguishing between
literal and non-literal meanings), and (2) assignment of the corresponding source–
target domain mappings. The majority of corpus-linguistic studies were concerned
with metaphorical expressions and mappings within a limited domain—for example,
WAR, BUSINESS, FOOD, or PLANT metaphors (Santa Ana 1999; Izwaini 2003; Koller 2004;
Skorczynska Sznajder and Pique-Angordans 2004; Chung, Ahrens, and Huang 2005;
Hardie et al. 2007; Gong, Ahrens, and Huang 2008; Lu and Ahrens 2008; Low et al.
2010), in a particular genre or type of discourse (Charteris-Black 2000; Cameron 2003;
Izwaini 2003; Koller 2004; Skorczynska Sznajder and Pique-Angordans 2004; Martin
2006; Hardie et al. 2007; Lu and Ahrens 2008; Beigman Klebanov and Flor 2013),
or in individual examples in isolation from wider context (Wikberg 2006; Lönneker-
Rodman 2008). In addition, these approaches often focused on a small predefined set
of source and target domains. Another vein of corpus-based research concerned cross-
linguistic differences in the use of metaphor, also in a specific domain—for example,
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financial discourse (Charteris-Black and Ennis 2001), metaphors describing FEELINGS
(Stefanowitsch 2004; Diaz-Vera and Caballero 2013), or metaphorical expressions refer-
ring to body parts (Deignan and Potter 2004). Three recent studies are notable in that
they moved away from investigating particular domains to a more general study of how
metaphor behaves in unrestricted continuous text. Wallington et al. (2003), Shutova and
Teufel (2010), and Steen et al. (2010) conducted consecutive metaphor annotation in
open-domain texts.

Wallington et al. (2003) used two teams of annotators and compared externally
prescribed definitions of metaphor with intuitive internal ones. Team A was asked to
annotate “interesting stretches,” whereby a phrase was considered interesting if (1) its
significance in the document was non-physical, (2) it could have a physical significance
in another context with a similar syntactic frame, and (3) this physical significance was
related to the abstract one. Team B had to annotate phrases according to their own
intuitive definition of metaphor. Apart from metaphorical expressions, the respective
source–target domain mappings were also to be annotated. For this latter task, the
annotators were given a set of mappings from the Master Metaphor List and were
asked to assign the most suitable ones. However, the authors do not report the level
of interannotator agreement, nor the coverage of the mappings in the Master Metaphor
List on their data. The fact that the method is limited to a set of mappings exemplified in
the Master Metaphor List suggests that it may not scale well to real-world data, because
the predefined inventory of mappings is unlikely to be sufficient to cover the majority
of metaphorical expressions in arbitrary text.

Steen and his colleagues (Pragglejaz Group 2007; Steen et al. 2010) proposed a
metaphor identification procedure (MIP). In the framework of this procedure, the sense
of every word in the text is considered as a potential metaphor. Every word is then
tagged as literal or metaphorical, based on whether is has a “more basic, contemporary
meaning” in other contexts than the current one. The summary of their annotation
procedure is presented is Figure 1. In a sense, such annotation can be viewed as a
form of word sense disambiguation with an emphasis on metaphoricity. Steen and
colleagues ran a reliability study involving near-native speaker annotators (strongly
relying on dictionary definitions) and report an interannotator agreement of 0.85 in
terms of Fleiss’ kappa. MIP laid the basis for the creation of the VU Amsterdam Meta-
phor Corpus1 (Steen et al. 2010). This corpus is a subset of BNC Baby2 annotated for
linguistic metaphor. Its size is 200,000 words and it comprises four genres: news text,
academic text, fiction, and conversations. The corpus has already found application in
computational metaphor processing research (Dunn 2013b; Niculae and Yaneva 2013),
as well as inspiring metaphor annotation efforts in other languages (Badryzlova et al.
2013).

The study of Shutova and Teufel (2010) was concerned with annotation of both
metaphorical expressions and metaphorical mappings in continuous text. Their anno-
tation procedure is based on MIP, modifying and extending it to the identification of
conceptual metaphors along with the linguistic ones. Following MIP, the annotators
were asked to identify the more basic sense of the word, and then label the context
in which the word occurs in the basic sense as the source domain, and the current
context as the target. They were provided with a list of suggested common source

1 http://www.ota.ox.ac.uk/headers/2541.xml.

2 BNC Baby is a 4-million-word subset of the British National Corpus (BNC) (Burnard 2007), comprising
four different genres: academic, fiction, newspaper, and conversation. For more information, see
http://www.natcorp.ox.ac.uk/corpus/babyinfo.html.
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1. Read the entire text-discourse to establish a general understanding
of the meaning.

2. Determine the lexical units in the text-discourse.

3. r For each lexical unit in the text, establish its meaning in
context, that is, how it applies to an entity, relation, or
attribute in the situation evoked by the text (contextual
meaning). Take into account what comes before and after
the lexical unit.r For each lexical unit, determine if it has a more basic
contemporary meaning in other contexts than the one in the
given context. For our purposes, basic meanings tend to be

– More concrete [what they evoke is easier to imagine,
see, hear, feel, smell, and taste];

– Related to bodily action;
– More precise (as opposed to vague);
– Historically older;

Basic meanings are not necessarily the most frequent
meanings of the lexical unit.r If the lexical unit has a more basic current contemporary
meaning in other contexts than the given context, decide
whether the contextual meaning contrasts with the basic
meaning but can be understood in comparison with it.

4. If yes, mark the lexical unit as metaphorical.

Figure 1
Metaphor identification procedure of the Pragglejaz Group (2007).

and target domains, but were also allowed to introduce domains of their own to match
their intuitions. Shutova and Teufel’s corpus is a subset of the BNC sampling various
genres: fiction, newspaper/journal articles, essays on politics, international relations
and sociology, and radio broadcast (transcribed speech). The size of the corpus is 13,642
words, containing 241 metaphorical expressions in total. Table 1 shows the breakdown
of metaphors by type, as well as their variation across genres. Shutova and colleagues
used the corpus data as a testbed in a number of computational experiments (Shutova
2010; Shutova, Van de Cruys, and Korhonen 2012; Shutova 2013; Shutova, Teufel, and
Korhonen 2013).

Table 1
Corpus statistics from Shutova and Teufel (2010).

Text ID Genre Sent. Words Met–rs Met./Sent. Verb m.

Hand in Glove, Goddard G0N Fiction 335 3,927 41 0.12 30
After Gorbachev, White FYT Politics 45 1,384 23 0.51 17
Today newspaper CEK News 116 2,086 48 0.41 30
Tortoise by Candlelight, Bawden HH9 Fiction 79 1,366 12 0.15 10
The Masks of Death, Cecil ACA Sociology 60 1,566 70 1.17 42
Radio broadcast (current affairs) HM5 Speech 58 1,828 10 0.17 7
Language and Literature journal J85 Article 68 1,485 37 0.54 28

Total 761 13,642 241 0.32 164
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3.2 Metaphor Lists and Databases

Lakoff and colleagues organized their ideas in a resource called the Master Metaphor
List (MML) (Lakoff, Espenson, and Schwartz 1991). The list is a collection of source–
target domain mappings (mainly those related to mind, feelings, and emotions) with
corresponding examples of language use. The mappings in the list are organized in an
ontology—for example, the metaphor PURPOSES ARE DESTINATIONS is a special case
of a more general metaphor STATES ARE LOCATIONS. The resource has been criticized
for the lack of clear structuring principles of the mapping ontology (Lönneker-Rodman
2008). However, to date MML is the most comprehensive resource for conceptual
metaphor in the linguistic literature, and the examples from the list have been used by
computational approaches (Mason 2004; Krishnakumaran and Zhu 2007; Li, Zhu, and
Wang 2013), both for development and evaluation purposes. The MML also inspired
the creation of other resources, including resources in multiple languages that could
facilitate cross-linguistic research on metaphor. One such example is the Hamburg
Metaphor Database (Lönneker 2004; Reining and Lönneker-Rodman 2007), which con-
tains examples of metaphorical expressions in German and French. The expressions
are mapped to senses from EuroWordNet3 and annotated with source–target domain
mappings taken from the MML.

4. Metaphor Identification Systems

Early approaches to metaphor relied on information in handcrafted knowledge bases,
followed by metaphor identification in and with the help of lexical resources. Recent
years have witnessed a growing interest in statistical and machine learning approaches
to metaphor identification. As the field of computational semantics—in particular, ro-
bust parsing and lexical acquisition techniques—have progressed to the point where
it is possible to accurately acquire lexical, domain, and relational information from
corpora, this opened many new avenues for large-scale statistical metaphor identifi-
cation. The vast majority of systems identify metaphor at the linguistic level (Birke
and Sarkar 2006; Gedigian et al. 2006; Krishnakumaran and Zhu 2007; Shutova, Sun,
and Korhonen 2010; Turney et al. 2011; Dunn 2013a; Heintz et al. 2013; Hovy et al.
2013; Neuman et al. 2013; Shutova 2013; Strzalkowski et al. 2013; Tsvetkov, Mukomel,
and Gershman 2013), with very few focusing on the conceptual level (Mason 2004;
Baumer, Tomlinson, and Richland 2009) or identifying both (Gandy et al. 2013; Li,
Zhu, and Wang 2013; Shutova and Sun 2013). This section will first present compu-
tational approaches to linguistic metaphor identification, then move on to conceptual
metaphor.

4.1 Identification of Linguistic Metaphors
4.1.1 Approaches Using Hand-Coded Knowledge and Lexical Resources. One of the first
approaches to identify and interpret metaphorical expressions in text was proposed by
Fass (1991) in his met* system. This system relies on the hypothesis that metaphors
often represent a violation of selectional preferences in a given context (Wilks 1975,

3 EuroWordNet is a multilingual database with wordnets for several European languages (Dutch, Italian,
Spanish, German, French, Czech, and Estonian). The wordnets are structured in the same way as the
Princeton WordNet for English. http://www.illc.uva.nl/EuroWordNet/.
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1978). Selectional preferences are the semantic constraints that a predicate places onto
its arguments. Consider the following metaphorical expression.

(5) My car drinks gasoline. (Wilks 1978)

The verb drink normally requires a grammatical subject of type ANIMATE and a gram-
matical object of type LIQUID. Therefore, drink taking a car as a subject in Example (5)
is an anomaly, which, according to Wilks, indicates a metaphorical use of drink. met* de-
tects non-literalness via selectional preference violation, utilizing handcrafted descrip-
tions of selectional preferences. In case of a violation, the respective phrase is first tested
for being metonymic, using hand-coded patterns (e.g., CONTAINER-FOR-CONTENT). If
this fails, the system searches the knowledge base for a relevant analogy in order to dis-
criminate metaphorical relations from the anomalous ones. For example, the sentence
“My car drinks gasoline” would be represented in this framework as (car,drink,gasoline),
which does not satisfy the preference (animal,drink,liquid), as car is not a hyponym of
animal. met* then searches its knowledge base for a triple containing a hypernym of
both the actual argument and the desired argument and finds (thing,use,energy source),
which represents the metaphorical interpretation. Fass (1991) presented the approach
itself, but reported no evaluation results.

More recently, Wilks et al. (2013) revisited this idea, acquiring selectional prefer-
ences from lexical resources, namely VerbNet and WordNet. They focused on con-
ventionalized metaphors included in lexical resources and proposed a technique for
their automatic identification. They see this work as complementary to the approaches
that perform data-driven learning of selectional preferences. The latter, according to
the authors, is likely to miss conventional metaphors because of their widespread
presence in the data. Wilks and colleagues expect that selectional preferences acquired
from term definitions in lexical resources would circumvent this issue and enable them
to efficiently detect highly conventionalized metaphors. The main hypothesis behind
their approach is that if the first (main) WordNet sense of a word does not satisfy the
preferences of its context in a given sentence, but has a lower (less frequent) sense in
WordNet that satisfies the preference, then that use of the word and that WordNet sense
are likely to be metaphorical. For instance, in the example “Mary married a brick”, the
first sense of brick is ‘a physical object,’ thus violating the preference of marry that selects
for people, but the second sense of brick as ‘a reliable person’ satisfies this preference. To
implement this approach, Wilks and colleagues acquire typical preferences of concepts
(i.e., word senses) from WordNet glosses. They use a semantic parser (Allen, Swift, and
de Beaumont 2008) to identify the nominal arguments of the verbs in glosses and their
semantic roles and then abstract to their higher-level hypernyms in WordNet, which
define the preferences. They compared the performance of their system to a baseline
using hand-coded verb preferences in VerbNet. The evaluation was carried out on a set
of 122 sentences from the domain of Governance, manually annotated for metaphoricity
and selected so that the data set contains 50% metaphorical instances and 50% literal
ones. They report an F-score of 0.49 for the VerbNet-based system and 0.67 for the
WordNet-based one, the latter showing higher recall and the former higher precision.
The approach of Wilks et al. rests on the assumption that WordNet sense ranking
corresponds somewhat to the literal-to-metaphorical scale, as well as the assumption
that there is only one literal sense for the given word. Although this may be true for the
majority of senses, it is relatively easy to find counter-examples. For instance, the first
WordNet sense of the verb erase is metaphorical, defined as “remove from memory or
existence, e.g., The Turks erased the Armenians in 1915,” with the literal sense ranked
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second. The reliance on WordNet sense numbering is thus a limitation of the presented
approach. Another issue (that the authors point out themselves) is that this approach
is likely to detect metonymic uses along with metaphor, and a method to discriminate
between the two is still needed.

The method of Krishnakumaran and Zhu (2007) uses hyponymy relation in Word-
Net and word bigram counts to annotate metaphor at the sentence level. Given an IS-A
metaphor (e.g., The world is a stage4) they first verify if the two nouns involved are in
hyponymy relation in WordNet, and if this is not the case then the sentence is tagged as
containing a metaphor. Along with this they consider expressions containing a verb or
an adjective used metaphorically (e.g., “He planted good ideas in their minds” or “He
has a fertile imagination”). In such cases, they calculate bigram probabilities of verb–
noun and adjective–noun pairs (including the hyponyms/hypernyms of the noun in
question). If the combination is not observed in the data with sufficient frequency, the
system tags the sentence containing it as metaphorical. This idea follows the intuition
of Wilks. However, by using bigram counts over verb–noun pairs Krishnakumaran
and Zhu (2007) lose a great deal of information compared with a system extracting
selectional preferences for specific grammatical relations from parsed text. The authors
evaluated their system on a set of example sentences compiled from the MML, whereby
highly conventionalized metaphors (or dead metaphors) are taken to be negative exam-
ples, reporting an accuracy of 0.58. Thus Krishnakumaran and Zhu do not deal with
literal examples as such: Essentially, the distinction they are making is between the
senses included in WordNet, even if they are conventional metaphors, and those not
included in WordNet.

4.1.2 Statistical Learning for Metaphor Identification. The first statistical approach to meta-
phor is the TroFi system (Trope Finder) of Birke and Sarkar (2006). Their method is based
on sentence clustering, originating from a similarity-based word sense disambiguation
method developed by Karov and Edelman (1998). The method uses a set of seed
sentences, where the senses are annotated, computes similarity between the sentence
containing the word to be disambiguated and all of the seed sentences, and selects the
sense corresponding to the annotation in the most similar seed sentences. Birke and
Sarkar adapt this algorithm to perform two-way classification: literal versus non-literal,
and they do not clearly define the kinds of tropes they aim to discover. They evaluated
their system on a set of 25 verbs (such as absorb, die, touch, knock, strike, pour, etc.), for
each of which they extracted a set of sentences containing its literal and figurative uses,
1,298 in total, from the Wall Street Journal corpus. An example for the verb pour in their
data set is shown in Figure 2. Two annotators annotated the sentences for literalness,
achieving an agreement of κ = 0.77. The authors report a system performance of 53.8%
in terms of F-score on this data set.

The metaphor identification system of Shutova, Sun, and Korhonen (2010) also uses
clustering techniques, but performs word clustering to discover verb–subject and verb–
object metaphors in unrestricted text. It starts from a small seed set of metaphorical
expressions, learns the analogies involved in their production, and extends the set of
analogies by means of verb and noun clustering. The method is based on the hypoth-
esis of “clustering by association”—namely, that in the course of distributional noun
clustering, abstract concepts tend to cluster together if they are associated with the
same source domain, whereas concrete concepts cluster by meaning similarity. For

4 William Shakespeare.
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pour
*nonliteral cluster*
wsj04:7878 N As manufacturers get bigger, they are likely to pour more money into the
battle for shelf space, raising the ante for new players.
wsj25:3283 N Salsa and rap music pour out of the windows.
wsj06:300 U Investors hungering for safety and high yields are pouring record sums into
single-premium, interest-earning annuities.
*literal cluster*
wsj59:3286 L Custom demands that cognac be poured from a freshly opened bottle.

Figure 2
An example of the data of Birke and Sarkar (2006).

instance, democracy and marriage get clustered together, because both are associated
with mechanisms, and as such appear with the mechanism terminology in the corpus.
This allows the system to discover new, previously unseen conceptual and linguistic
metaphors—for example, having seen the seed metaphor “mend marriage” it infers
that “the functioning of democracy” is also used metaphorically. This is how the system
expands from the seed set to new concepts. Shutova, Sun and Korhonen used a spectral
clustering algorithm with lexico-syntactic features to cluster verbs and nouns. They
applied their system to continuous text (the whole BNC) and evaluated its performance
on a random sample of the extracted metaphors against human judgments. They report
a precision of 0.79 with an inter-judge agreement of k = 0.63 among five annotators.
Their data-driven system favorably compares to a WordNet-based baseline, where
synsets are used in place of automatically derived clusters. Shutova and colleagues have
shown that the clustering-based solution has a significantly wider coverage, capturing
new metaphors rather than the synonymous ones, as well as yielding a 35% increase
in precision. However, Shutova, Sun and Korhonen did not evaluate the recall of their
system, which is likely to be dependent on the size of the seed set and a relatively large
and representative seed set is needed to achieve full coverage.

Turney et al. (2011) classify verbs and adjectives as literal or metaphorical based on
their level of concreteness or abstractness in relation to the noun they appear with. They
learn concreteness rankings for words automatically (starting from a set of examples)
and then search for expressions where a concrete adjective or verb is used with an
abstract noun (e.g., “dark humor” is tagged as a metaphor and “dark hair” is not). They
used the data set of Birke and Sarkar (2006) for evaluation of verb metaphors and attain
an F-score of 0.68, which favorably compares to that of Birke and Sarkar. For adjectives,
they have created their own data set of selected individual adjective–noun pairs for
five adjectives: dark, deep, hard, sweet, and warm; 100 phrases in total. These were then
manually annotated for metaphoricity. As compared to these annotations, the accuracy
of adjective classification is 0.79. However, the adjective data set was constructed with
the concreteness feature in mind, and therefore the results reported for verb metaphors
are likely to be more objective.

Neuman et al. (2013) proposed an extension to the method of Turney et al. (2011)
by incorporating the concept of selectional preferences into the concreteness-based
model of metaphor. Their goal was to improve the performance of Turney’s algo-
rithm by covering metaphors formed of concrete concepts only (e.g., “broken heart”)
by detecting selectional preference violations. The authors address three types of met-
aphor introduced by Krishnakumaran and Zhu (2007) and they claim to have ex-
panded on Turney’s work by carrying out a more comprehensive evaluation of the
abstractness–concreteness algorithm. However, the evaluation was done on only five
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target concepts: governance, government, God, mother, and father. Sentences describing
these concepts have been extracted from the Reuters (Lewis et al. 2004) and New York
Times (Sandhaus 2008) corpora and annotated for metaphoricity. The authors measured
the average precision of their system on this data set at 0.72 and the average recall at
0.80. The improvement over Turney’s evaluation set-up was the annotation of complete
sentences rather than isolated phrases. However, it should be noted that the system was
evaluated on selected examples rather than continuous text.

Heintz et al. (2013) applied Latent Dirichlet Allocation (LDA) topic modeling (Blei,
Ng, and Jordan 2003) to the problem of metaphor identification in experiments with En-
glish and Spanish. Their goal was to create a minimally supervised metaphor processing
system that can be applied to low-resource languages. The hypothesis behind their sys-
tem is that a sentence that contains both source and target domain vocabulary contains
a metaphor. The authors focused on the target domain of governance and have manually
compiled a set of source concepts with which governance can be associated. They use
LDA topics as proxies for source and target concepts, and if vocabulary from both
source and target topics is present in a sentence, this sentence is tagged as containing a
metaphor. The topics are learned from Wikipedia and then aligned to source and target
concepts using sets of human-created seed words. When the metaphorical sentences
are retrieved, the source topics that are common in the document are excluded, thus
ensuring that the source vocabulary is transferred from a new domain. Although this
allows the authors to filter out some literal uses, this may also lead to discarding cases
of extended metaphor. The authors collected the data for their experiments from news
Web sites and governance-related blogs in English and Spanish. They ran their system
on this data, and output a ranked set of metaphorical examples. They carried out two
types of evaluation: (1) top five examples for each conceptual metaphor judged by two
annotators, reporting an F-score of 0.59 for English (κ = 0.48); and (2) 250 top-ranked
examples in system output annotated for metaphoricity using Amazon Mechanical
Turk, yielding a mean metaphoricity of 0.41 (standard deviation = 0.33) in English and
0.33 (standard deviation = 0.23) in Spanish. One of the assumptions behind Heintz
et al.’s method is that the same source–target domain mappings manifest themselves
across languages. Although this is likely to be true for primary metaphors (Grady
1997), as the authors point out themselves, this assumption may not extend to a broader
spectrum of metaphors, and thus may lead to limited coverage in some languages, as
well as false positives. Another issue that comes to mind concerns the learning of the
topics themselves: Because a large number of metaphors are used conventionally within
a particular topic (e.g. “cut taxes”), in principle such an approach would learn them as
part of the target domain topics and may thus fail to recognize them as source domain
terms. However, the authors do not comment on how often this was observed in their
data.

The method of Strzalkowski et al. (2013) also relies on modeling the topical struc-
ture of text, although using different techniques from Heintz et al. (2013). If Heintz et al.
used LDA-acquired topics as approximations of concepts, Strzalkowski and colleagues
identify topical chains (Broadwell et al. 2013) by looking for sequences of concepts in
text. They also experiment within a limited domain, the target domain of governance.
Their method first identifies sentences containing target domain vocabulary and ex-
tracts the surrounding five-sentence passage. They then identify topical chains in that
passage, by linking the occurrences of nouns and verbs, including repetition, lexical
variants, pronominal references, and WordNet synonyms and hyponyms. By virtue
of this linking, the authors claim to “uncover the topical structure [of the text] that
holds the narrative together.” Their main hypothesis is that metaphorically used terms
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typically occur outside the core topical structure of the text, because they represent vo-
cabulary imported from a different domain. For all the words that are found outside the
topical chains, Strzalkowski et al. compute imageability scores and retain the highest-
scoring ones as candidate metaphors, if they are in a syntactic relation with any of the
target domain terms. The authors then extract common contexts in which the candi-
dates are used in text corpora and cluster these contexts in order to identify potential
source domains, the so-called “proto-sources.” Strzalkowski et al. (2013) evaluated the
performance of their method on four languages: English, Spanish, Russian, and Farsi.
The evaluation was carried out against human judgments of system output that were
obtained using Amazon Mechanical Turk. The authors report a metaphor identification
accuracy of 71% in English, 80% in Spanish, 69% in Russian, and 78% in Farsi. According
to the paper, “hundreds” of instances were annotated in each language, although the
exact number of instances is not reported. While the system performance is high, it
should be noted that the experiments were carried out within a limited domain, and it
is possible that the approach is not equally applicable to all domains. Because of its high
reliance on imageability scores, it is likely to be able to delineate metaphorical language
reasonably well for the abstract target domains, but less so for the concrete target
domains. In the latter case, the target domain words may also exhibit high imageability,
and the system would then rely solely on topic chain extraction to differentiate between
literal and metaphorical language. The performance of the generalized system is thus
dependent on the accuracy of topic chain extraction, which has not been evaluated inde-
pendently. In addition, the current method ignores low-imageability metaphors, which
abound even within the studied domain (e.g., “invent a new form of governance”).
Despite the lack of generality, Strzalkowski et al.’s work, however, makes important
contributions in that it addresses (though indirectly) the behavior of metaphor in
discourse, and their framework can be viewed as a step towards modeling extended
metaphor.

Many other statistical methods treated metaphor identification as a classification
problem. Such methods are described in the following section.

4.1.3 Metaphor Identification as a Classification Problem. Gedigian et al. (2006) presented
a method that discriminates between literal and metaphorical language, using a max-
imum entropy classifier. They obtained their training and test data by extracting the
lexical items whose frames are related to MOTION and CURE from FrameNet (Fillmore,
Johnson, and Petruck 2003). They then searched the PropBank Wall Street Journal corpus
(Kingsbury and Palmer 2002) for sentences containing such lexical items and annotated
them with respect to metaphoricity. They used PropBank annotation (arguments and
their semantic types) as features to train the classifier and report an accuracy of 95.12%.
This result is, however, only a little higher than the performance of the naive baseline
assigning majority class to all instances (92.90%). These numbers can be explained
by the fact that 92.00% of the verbs of MOTION and CURE in the Wall Street Journal
corpus are used metaphorically, thus making the data set unbalanced with respect to
the target categories and the task easier.

The system of Li and Sporleder (2009, 2010) detects idioms by measuring semantic
similarity within and between the literal and non-literal parts of an utterance. The non-
literal language considered by their model includes metaphors, as well as other types
of figurative language. Their main assumption is that figurative uses break cohesion
in the sentence, which is defined by a similarity measure. This idea also goes back to
Wilk’s selectional preference violation approach to metaphor; however, combinations
of word usages with larger sentential context are considered to determine the mismatch
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(or violation). Li and Sporleder used Normalized Google Distance (Cilibrasi and Vitanyi
2007) as a similarity measure and a combination of classifiers (support vector machines
[SVM] and Gaussian mixture models [GMM]) using similarity (or cohesion) information
as features to learn idiomaticity scores. They evaluated their system on a data set of
17 idioms and their literal and non-literal contexts. For each expression, its occurrences
were extracted from the Gigaword corpus along with five paragraphs of context. These
examples were then annotated for literalness with an inter-annotator agreement of
κ = 0.7. There were 3,964 examples in total, with approximately 80% of them being
non-literal. They evaluated the method using 10-fold cross-validation and report an
F-score of 0.75. However, they did not evaluate their system on metaphorical language
independently.

Dunn (2013a, 2013b) presented an ontology-based domain interaction system MIMIL
(Measuring and Identifying Metaphor in Language), which identifies metaphorical
expressions at the utterance level. Dunn’s system first maps the lexical items in the given
utterance to concepts from SUMO ontology (Niles and Pease 2001, 2003), assuming that
each lexical item is used in its default sense (i.e., no sense disambiguation is performed).
The system then extracts the properties of concepts from the ontology, such as their
domain type (ABSTRACT, PHYSICAL, SOCIAL, MENTAL) and event status (PROCESS,
STATE, OBJECT). Those properties are then combined into feature-vector representations
of the utterances. Dunn then applied a logistic regression classifier implemented in
Weka (Witten and Frank 2005), using these features to perform metaphor identification.
The work of Dunn (2013a, 2013b) is notable as he conducted evaluation of four types
of approaches and compared their performance on the same task (identification of
metaphorical expressions in continuous text) and on the same data (Corpus of Contem-
porary American English [CoCA] [Davies 2009] and VU Amsterdam Metaphor Corpus
[Steen et al. 2010]). The evaluated approaches included the semantic similarity mea-
surement method of Li and Sporleder (2009, 2010); the concreteness-based method of
Turney et al. (2011); the clustering-based method of Shutova, Sun, and Korhonen (2010)
modeling source–target domain mappings; and his own domain interaction method.
Dunn re-implemented the four approaches as closely as possible to the original systems,
although with some adjustments. A number of Dunn’s adjustments were operational
(e.g., using logistic regression instead of SVM for the implementation of the similarity-
based method of Li and Sporleder (2009); using a k-means clustering approach instead
of spectral clustering for the method of Shutova, Sun, and Korhonen (2010); and using
a different semantic relatedness measure for the method of Li and Sporleder (2009)).
However, some adjustments were conceptual, for instance, using bag-of-words based
semantic relatedness instead of dependency-based distributional similarity in the re-
implementation of the clustering system. Admitting that these adjustments may have
impacted the results and, as such, may not be an accurate reflection of the performance
of the original algorithms in full, Dunn’s comparison of individual system features that
were re-implemented nonetheless sheds light on the importance of particular properties
of concepts for metaphor identification. In his first study (Dunn 2013a), he evaluated the
systems on the CoCA data, where the sentences were annotated as metaphorical, literal,
or humorous (however, neither the size of the data set nor the annotation procedure
are described in Dunn’s article). On this data set, the clustering-based system and the
domain-interaction method significantly outperformed the other two systems, as shown
in Figure 3. Dunn explains such discrepancy by the fact that the former systems are
both theory-based and aim to model the underlying mechanisms of metaphor, while
the similarity-based and abstractness-based systems model its surface realizations. In
his second study, conducted on the VU Amsterdam Metaphor corpus, Dunn (2013b)
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testing; the evaluations were performed using cross-validation (100 folds). The F-measures 

reported here are for metaphor classification only (i.e., precision for non-metaphor is not directly 

considered because this inflates the performance of the systems). This is done because some of 

the systems greatly over-identify literal utterances; however, because literal utterances dominate 

the evaluation data set, the over-identification of literal utterances would disproportionately raise 

the average F-measure for all classes in these systems. The feature vectors and other material 

used in the evaluation can be found at http://www.jdunn.name. 

Table 1: Three-way distinction between metaphor, humor, and literal in all domains. 

System True Pos. False Pos. True Neg. False Neg. F-Meas. 
Similarity 1 0 2,482 504 0.004 

Abstractness 1 2 2,482 505 0.004 
Joint 67 44 2,446 444 0.215 

MIMIL 133 382 2,437 63 0.374 
Source-Tar. 113 461 2,038 300 0.229 

 As shown in Table 1, when tested on the three-way distinction between metaphor, 

humor, and literal utterances, the similarity and abstractness systems performed very poorly, 

essentially identifying no metaphors. The joint system performed worse than the domain 

interaction system, showing that the abstractness and similarity features reduce performance. As 

shown in later tests, the measurements of abstractness and semantic similarity, both at the word-

level, simply do not distinguish between metaphor and non-metaphor in a realistic data set. The 

domain interaction and source-target mapping systems performed much better. Both systems 

identified a similar number of metaphors (133 and 113), but the domain interaction system had 

somewhat fewer false positives (382 vs. 461). More importantly, the source-target mapping 

system had a significantly higher number of false negatives (300 vs. 63). Using a higher number 

of seed metaphors would have lowered the source-target  mapping  system’s  false  negative  rate,  

but at the same time that would likely have raised the already high false positive rate.  

 

 

 

 

 

Figure 3
Results of Dunn (2013a). The “Joint” system integrated similarity, abstractness, and
domain-interaction features in the feature vectors.

Table 2
Dunn’s (2013b) results on the VU Amsterdam Metaphor Corpus with named-entity recognition.

System True Positive False Pos. True Negative False Neg. F-Measure

Similarity 5,936 4,214 86 62 0.444
Abstractness 4,627 3,049 3,752 2,954 0.582
Source-Target 1,063 785 5,470 5,496 0.440
Domain Interaction 5,446 3,664 3,106 2,286 0.583

reports different results, however. He evaluated the systems on two versions of the data
set, one where named entities have been recognized during pre-processing and one
without named-entity recognition. The results are shown in Tables 2 and 3, respectively.
Here, the domain-interaction and abstractness-based methods are leading, with the
clustering-based method coming third. The difference in the results may be explained
by the properties of the VU Amsterdam corpus. The corpus was compiled with an
interest in historic aspects of metaphor, and, therefore, highly conventional and lexi-
calized metaphors account for a large proportion of the data. What this suggests is that
the domain-interaction and abstractness-based approaches are perhaps better-suited for
processing lexicalized metaphors, whereas the clustering and similarity-based systems
may fail to identify those due to their high frequency and the near-literal behavior in
the data. In contrast, the domain-interaction system, which is knowledge-based, and
the abstractness system, which relies on a non-changing property of concepts (i.e.,
concreteness), thus appear to be well-suited for handling lexicalized metaphors.

Tsvetkov, Mukomel, and Gershman (2013) presented a supervised learning ap-
proach that makes use of coarse semantic features. They experimented with metaphor

Table 3
Dunn’s (2013b) results on the VU Amsterdam Metaphor Corpus without named-entity
recognition.

System True Positive False Pos. True Negative False Neg. F-Measure

Similarity 5,658 3,973 63 56 0.444
Abstractness 5,882 4,205 441 354 0.482
Source-Target 1,725 1,342 2,171 2,677 0.487
Domain Interaction 6,561 4,205 1,462 676 0.573
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identification in English and Russian, first training a classifier on English data only, and
then projecting the trained model to Russian using a dictionary. They abstracted from
the words in the English data to their higher level features, such as concreteness, ani-
mateness, named entity labels, and coarse-grained WordNet categories (corresponding
to WN lexicographer files,5 e.g., noun.artifact, noun.body, verb.motion, verb.cognition). They
focused on subject–verb–object constructions and annotated metaphor at the sentence
level. The authors used a logistic regression classifier and the combination of coarse se-
mantic features for this purpose. They evaluated their model on the TroFi data set (Birke
and Sarkar 2006) for English and a self-constructed data set of 140 sentences for Russian,
attaining the F-scores of 0.78 and 0.76, respectively. Tsvetkov et al. (2014) extended this
experiment to identify adjective–noun metaphors using similar features, as well as port-
ing the model to two further languages (Spanish and Farsi), achieving F-scores in the
range of 0.72 to 0.85. The results are encouraging and show that porting coarse-grained
semantic knowledge across languages is feasible. However, it should be noted that the
generalization to coarse semantic features inevitably only captures shallow behavior of
metaphorical expressions in the data and bypasses conceptual information. In reality, as
confirmed by corpus-linguistic studies (Charteris-Black and Ennis 2001; Kovecses 2005;
Diaz-Vera and Caballero 2013), there is considerable variation in metaphorical language
across cultures, which makes training only on one language and simply translating the
model less suitable for modeling conceptual structure behind metaphor, which is one of
the limitations of this approach. However, the experiments of Tsvetkov and colleagues
suggest that coarse semantic features could be a useful component of a more complex
system.

The approach of Mohler et al. (2013) relied on the concept of semantic signature of a
text. The authors defined semantic signatures as a set of highly related and interlinked
WordNet senses. They induced domain-sensitive semantic signatures of texts and then
trained a set of classifiers to detect metaphoricity within a text by comparing its se-
mantic signature to a set of known metaphors. The main intuition behind this approach
is that the texts whose semantic signature closely matches the signature of a known
metaphor is likely to represent an instance of the same conceptual metaphor. Mohler
and colleagues conducted their experiments within a limited domain (the target domain
of governance) and manually constructed an index of known metaphors for this domain.
They then automatically created the target domain signature and a signature for each
source domain among the known metaphors in the index. This was done by means of
semantic expansion of domain terms using WordNet, Wikipedia links, and corpus co-
occurrence statistics. Given an input text their method first identified all target domain
terms using the target domain signature, then disambiguated the remaining terms using
sense clustering and classified them according to their proximity to the source domains
listed in the index. For the latter purpose, the authors experimented with a set of
classifiers, including a maximum entropy classifier, an unpruned decision tree classifier,
support vector machines, a random forest classifier, as well as the combination thereof.
They evaluated their system on a balanced data set containing 241 metaphorical and
241 literal examples, and obtained the highest result of F-score of 0.70 using the decision
tree classifier.

Hovy et al. (2013) used the idea of selectional preference violation as the indicator of
metaphor, taking it to the next level. They trained an SVM classifier (Cortes and Vapnik
1995) with tree kernels (Moschitti, Pighin, and Basili 2006) to capture compositional

5 http://wordnet.princeton.edu/man/lexnames.5WN.html.
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A bright idea.

“ Peter is the bright , sympathetic guy when you ’re doing a deal , ” says one agent . yes
Below he could see the bright torches lighting the riverbank . no
Her bright eyes were twinkling . yes
Washed , they came out surprisingly clear and bright . no

Figure 1: Examples of a metaphor seed, the matching Brown sentences, and their annotations

thus probably not very helpful. However, we would
like to capture semantic aspects of the word and
represent it in an expressive way. We use the exist-
ing vector representation SENNA (Collobert et al.,
2011) which is derived from contextual similarity.
In it, semantically similar words are represented
by similar vectors, without us having to define
similarity or looking at the word itself. In initial
tests, these vectors performed better than binary
vectors straightforwardly derived from features of
the word in context.

2.3 Constructing Trees

a) b) c)like

I people

the sweet in

Boston

NNS

DT JJ IN

n.group

O adj.all O

NNP n.location

VB

PRP

v.emotion

O

Figure 3: Graphic demonstration of our approach. a) de-
pendency tree over words, with node of interest labeled.
b) as POS representation. c) as supersense representation

The intuition behind our approach is that
metaphorical use differs from literal use in certain
syntactic relations. For example, the only difference
between the two sentences “I like the sweet people
in Boston” and “I like the sweet pies in Boston” is
the head of “sweet”. Our assumption is that—given
enough examples—certain patterns emerge (e.g.,
that “sweet” in combination with food nouns is
literal, but is metaphorical if governed by a noun
denoting people).

We assume that these patterns occur on different
levels, and mainly between syntactically related
words. We thus need a data representation to
capture these patterns. We borrow its structure from

dependency trees, and the different levels from
various annotations. We parse the input sentence
with the FANSE parser (Tratz and Hovy, 2011)6. It
provides the dependency structure, POS tags, and
other information.

To construct the different tree representations,
we replace each node in the tree with its word,
lemma, POS tag, dependency label, or supersense
(the WordNet lexicographer name of the word’s
first sense (Fellbaum, 1998)), and mark the word
in question with a special node. See Figure 3 for
a graphical representation. These trees are used in
addition to the vectors.

This approach is similar to the ones described in
(Moschitti et al., 2006; Qian et al., 2008; Hovy et
al., 2012).

2.4 Classification Models
A tree kernel is simply a similarity matrix over tree
instances. It computes the similarity between two
trees T1, T2 based on the number of shared subtrees.

We want to make use of the information en-
coded in the different tree representations during
classification, i.e., a forest of tree kernels. We thus
combine the contributions of the individual tree
representation kernels via addition. We use kernels
over the lemma, POS tag, and supersense tree
representations, the combination which performed
best on the dev set in terms of accuracy.

We use the SVMlight TK implementation by
Moschitti (2006).7 We left most parameters set
to default values, but tuned the weight of the
contribution of the trees and the cost factor on the
dev set. We set the multiplicative constant for the
trees to 2.0, and the cost factor for errors on positive
examples to 1.7.

6http://www.isi.edu/publications/
licensed-sw/fanseparser/index.html

7http://disi.unitn.it/moschitti/
Tree-Kernel.htm

54

Figure 4
Data annotation example from Hovy et al. (2013).

properties of metaphorical language. Their hypothesis is that unusual semantic compo-
sitions in the data may be indicative of the use of metaphor. They trained the model
on labeled examples of literal and metaphorical uses of 329 words (3,872 sentences in
total), with an expectation to learn the differences in their compositional behavior in the
given lexico-syntactic contexts. The choice of dependency-tree kernels helped to capture
such compositional properties, according to the authors. The authors constructed their
data set by extracting sentences from the Brown corpus (Francis and Kucera 1979) that
contained the words of interest, and annotating them for metaphoricity using Amazon
Mechanical Turk. Example entries for the adjective bright is shown in Figure 4. Eighty
percent of the data were used for training purposes, 10% for parameter tuning, and 10%
for the evaluation. The learning was carried out using word vectors, as well as lexical,
part-of-speech tags, and WordNet supersense representations of sentence trees as fea-
tures, as shown in Figure 5. The authors reported encouraging results (F-score = 0.75),
which is an indication of the importance of syntactic information and compositionality
in metaphor identification.

4.2 Identification of Conceptual Metaphors

The first method for automatic identification of conceptual metaphor was the CorMet
system of Mason (2004). CorMet induced metaphorical mappings by identifying sys-
tematic variations in domain-specific selectional preferences, which were learned in
a data-driven way. For example, the verb pour has a strong selectional preference for
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“ Peter is the bright , sympathetic guy when you ’re doing a deal , ” says one agent . yes
Below he could see the bright torches lighting the riverbank . no
Her bright eyes were twinkling . yes
Washed , they came out surprisingly clear and bright . no

Figure 1: Examples of a metaphor seed, the matching Brown sentences, and their annotations
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in Boston” and “I like the sweet pies in Boston” is
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enough examples—certain patterns emerge (e.g.,
that “sweet” in combination with food nouns is
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with the FANSE parser (Tratz and Hovy, 2011)6. It
provides the dependency structure, POS tags, and
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To construct the different tree representations,
we replace each node in the tree with its word,
lemma, POS tag, dependency label, or supersense
(the WordNet lexicographer name of the word’s
first sense (Fellbaum, 1998)), and mark the word
in question with a special node. See Figure 3 for
a graphical representation. These trees are used in
addition to the vectors.

This approach is similar to the ones described in
(Moschitti et al., 2006; Qian et al., 2008; Hovy et
al., 2012).

2.4 Classification Models
A tree kernel is simply a similarity matrix over tree
instances. It computes the similarity between two
trees T1, T2 based on the number of shared subtrees.

We want to make use of the information en-
coded in the different tree representations during
classification, i.e., a forest of tree kernels. We thus
combine the contributions of the individual tree
representation kernels via addition. We use kernels
over the lemma, POS tag, and supersense tree
representations, the combination which performed
best on the dev set in terms of accuracy.

We use the SVMlight TK implementation by
Moschitti (2006).7 We left most parameters set
to default values, but tuned the weight of the
contribution of the trees and the cost factor on the
dev set. We set the multiplicative constant for the
trees to 2.0, and the cost factor for errors on positive
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6http://www.isi.edu/publications/
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Tree-Kernel.htm
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Figure 5
Dependency trees with lexical, part-of-speech, and WordNet supersense features from Hovy
et al. (2013).
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objects of type liquid in the LAB domain, and for money in the FINANCE domain. From
this Mason’s system inferred the domain mapping FINANCE—LAB and the concept
mapping money–liquid. Mason used WordNet for acquisition of selectional preference
classes and, therefore, the source and target domain categories were represented as
clusters of WordNet synsets. The domain-specific corpora were obtained by searching
the Web for specific terms of interest. Mason conducted two types of evaluation: (1)
against the MML, where he manually mapped his output (WordNet synsets) to concrete
concepts described in the MML (13 mappings in total) and then measured the accuracy
at 77% (a mapping discovered by CorMet was considered correct if submappings spec-
ified in the MML were mostly present with high salience and incorrect submappings
were present with relatively low salience); and (2) by compiling a list of mappings at
random (assumed to be incorrect) and showing that the system assigned low scores to
those. Baumer, Tomlinson, and Richland (2009) reimplemented the method of Mason
(2004) in the framework of computational metaphor identification (CMI) procedure,
and applied it to two types of corpora: student essays and political blogs. The authors
presented some interesting examples of conceptual metaphors the system extracted,
which they claim may foster critical thinking in social science. However, they did not
carry out any quantitative evaluation.

Li, Zhu, and Wang (2013) proposed a method that performs metaphor identification
using an “is-a” knowledge base. The authors automatically created two probabilistic
knowledge bases by querying the Web using lexico-syntactic patterns. The first knowl-
edge base contained hypernym–hyponym relations and was acquired using Hearst
patterns (Hearst 1992). The second knowledge base contained metaphors in the form
〈target is a source〉 learned using a “*BE/VB like*” pattern. The second database was then
filtered by removing the hypernym–hyponym relations present in the first database,
as well as symmetric relations, to form a metaphor knowledge base. The authors
applied the resulting metaphor knowledge base to perform metaphor recognition and
explanation. They experimented with nominal metaphors (e.g., “Juliet is the sun”) and
verbal metaphors (e.g., “My car drinks gasoline”). In the case of nominal metaphors, the
database was queried directly and the corresponding metaphor was either retrieved or
not. In the case of verbal metaphors, where the noun denoting the source concept was
not explicitly present in the sentence, it was derived based on the selectional preferences
of the verbs. The authors computed selectional preferences of the given verb for the
nouns present in the knowledge base, and “explained” the given metaphor by the noun
exhibiting the highest selectional association with the metaphorical verb. For example,
it outputs an explanation “car is a horse” for the metaphor in “my car drinks gasoline,”
since the conceptual metaphor CAR IS A HORSE is present in the knowledge base and
horse satisfies the subject preference of drink. The authors evaluated their approach
on a manually constructed data set of 200 randomly sampled sentences containing
“is-a” constructions and 1,000 sentences containing metaphorical and literal uses of
verbs. The annotation was carried out at the sentence level (i.e., complete sentences
were annotated as metaphorical or not). The authors report an F-score of 69% on the
recognition of “is-a” metaphors and that of 58% on the recognition of the verbal ones.
Metaphor explanation performance (i.e., the source–target domain mappings generated
for each recognized metaphor) was evaluated separately on 214 sentences extracted
from linguistic literature (Lakoff and Johnson 1980) and the top-rank precision of 43%
is reported. Intuitively, a purely simile-based approach to metaphor is likely to both
undergenerate (a large number of metaphors would never be manifested in simile-
like constructions) and overgenerate (“A is like B” pattern may describe other relations
than metaphor). The key contribution of Li, Zhu, and Wang appears to be the filtering
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method they introduce, as well as the selectional preference extension of the knowledge
base to identify verbal metaphors.

The method of Shutova and Sun (2013) learns metaphorical associations between
concepts from the data in an unsupervised way. They created a network (or a graph)
of concepts, using hierarchical graph factorization clustering of nouns, and quantified
the strength of association between concepts in this graph. Concrete concepts exhibited
well-defined association patterns mainly based on subsumption within one domain,
whereas abstract concepts tended to have both within-domain and cross-domain asso-
ciations: the literal ones and the metaphorical ones. For example, the abstract concept of
democracy was literally associated with a more general concept of political system, as well
as metaphorically associated with the concept of mechanism. Because we often discuss
political systems using the mechanism terminology, a corpus-based distributional learning
approach learns that they share features with political systems (from their literal uses),
as well as with mechanisms (from their metaphorical uses). The system of Shutova and
Sun (2013) automatically discovered such association patterns within the graph and
used them to identify metaphorical mappings. The mappings were represented in their
system as cross-level, one-directional connections between clusters in the hierarchical
graph (e.g., the feeling cluster was strongly associated with fire). Example output for
the source concepts of fire and disease is shown in Figure 6. To identify metaphorical
expressions representing a given mapping, Shutova and Sun used the features that
resulted in strong metaphorical associations between the clusters in question (e.g.,
“passion flared” for FEELING IS FIRE), as shown in Figure 7. The authors evaluated
the quality of metaphorical mappings and metaphorical expressions identified by the
system against human judgments, as follows: (1) the human judges were presented with
a random sample of system-produced metaphorical mappings between the clusters
of nouns, as well as the corresponding metaphorical expressions, and asked to mark
the ones they considered valid as correct; (2) the human annotators were presented
with a set of source domain concepts and asked to write down all target concepts
they associated with a given source, thus creating a gold standard. Shutova and Sun
report the precision of 0.69 for metaphorical associations and 0.65 for metaphorical
expressions, as evaluated against human judgments, and the recall of 0.61 for metaphor-
ical associations, as evaluated against a human-created gold standard. These results
are encouraging in that they show that it is possible to induce information about
metaphorical mechanisms from distributional properties of concepts alone, without

SOURCE: fire
TARGET 1: sense hatred emotion passion enthusiasm sentiment hope interest feeling resent-
ment optimism hostility excitement anger
TARGET 2: coup violence fight resistance clash rebellion battle drive fighting riot revolt war
confrontation volcano row revolution struggle
TARGET 3: alien immigrant
TARGET 4: prisoner hostage inmate

SOURCE: disease
TARGET 1: fraud outbreak offense connection leak count crime violation abuse conspiracy
corruption terrorism suicide
TARGET 2: opponent critic rival
TARGET 3: execution destruction signing
TARGET 4: refusal absence fact failure lack delay

Figure 6
Metaphorical associations discovered by the system of Shutova and Sun (2013).
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FEELING IS FIRE
hope lit (Subj), anger blazed (Subj), optimism raged (Subj), enthusiasm engulfed them (Subj),
hatred flared (Subj), passion flared (Subj), interest lit (Subj), fuel resentment (Dobj), anger
crackled (Subj), feelings roared (Subj), hostility blazed (Subj), light with hope (Iobj)

CRIME IS A DISEASE
cure crime (Dobj), abuse transmitted (Subj), eradicate terrorism (Dobj), suffer from corruption
(Iobj), diagnose abuse (Dobj), combat fraud (Dobj), cope with crime (Iobj), cure abuse (Dobj),
eradicate corruption

Figure 7
Shutova and Sun (2013): Metaphorical expressions identified for the mappings FEELING IS FIRE
and CRIME IS A DISEASE.

the use of hand-coded knowledge. Nevertheless, the fact that clustering techniques
are typically applied to a limited set of concepts (i.e., cluster a limited set of nouns)
somewhat constrains this approach. For instance, whereas common concepts (that are
well represented in the data) can be clustered with a high accuracy, this is not always
the case for rare concepts for which feature vectors are sparse. Thus an additional
technique is needed to map new, unseen concepts to the concepts present in the
graph.

Gandy et al. (2013) presented a system that first discovers metaphorical expressions
using concreteness algorithm of Turney et al. (2011) and then assigns the corresponding
metaphorical mappings using lexical resources and context clustering. They focused
on the three types of metaphor defined by Krishnakumaran and Zhu (2007). Once the
metaphorical expressions had been identified, Gandy et al. extracted the nouns that the
metaphorical words, or facets, tend to co-occur within a large corpus (e.g., the nominal
arguments of open in “open government”). The goal of this process was to form candidate
nominal analogies between the target noun in the metaphor and the extracted nouns. For
example, the expression “open government” suggests an analogy “government∼ door,”
according to the authors. Figure 8 shows how nominal analogies are formed based on

metaphorical usage cannot exist for one sense only. Then,
the algorithm verifies that the noun N belongs to at least
one high-level semantic category (using the WordStat dic-
tionary of semantic categories based on Wordnet1). If not,
the algorithm cannot make a decision and stops. Otherwise,
it identifies the n nouns most frequently collocated with A,
and chooses the k most concrete nouns (using the abstract-
ness scale of (Turney et al. 2011)). The high-level semantic
categories represented in this list by at least i nouns each
are selected; if N does not belong to the any of them, the
phrase is labeled as metaphorical, otherwise it is labeled as
non-metaphorical.

Based on exploratory analysis of a development dataset,
separate from our test set, we set n = 1000; k = 100; and
i = 16.

Nominal Analogies
Once a set of metaphorical expressions SM = {hf, nti}
(each a pair of a facet and a target noun) is identified, we
seek nominal analogies which relate two specific nouns, a
source and a target. For example, if the system finds many
different linguistic metaphors which can be interpreted as
viewing governments as doors, we may have the nominal
analogy “government ⇠ door.”

The basic idea behind the nominal analogy finding al-
gorithm is that, since the metaphorical facets of a target
noun are to be understood in reference to the source noun,
we must find source/target pairs such that many of the
metaphorical facets of the target are associated in literal
senses with the source (see Figure 3). The stronger and more
numerous these associations, the more likely the nominal
analogy is to be real.

It should be noted that the system will not only find fre-
quent associations. Since the association strength of each
facet-noun pairing is measured by PMI, not its raw fre-
quency, infrequent pairings can (and do) pop up as signif-
icant.

Candidate generation. We first find a set SC of nouns as
candidate source terms for nominal analogies. This set is the
set of all nouns (in a given corpus) which have strong non-
metaphoric associations with facets (adjectives or verbs) that
are used in the linguistic metaphors in SM . We start with
the set of all facets used in the linguistic metaphors in SM

which have a positive point-wise mutual information (PMI;
cf. (Pantel and Lin 2002)) with some target term in the set.
We then define the set SC to consist of all other (non-target)
nouns (in a given large corpus) associated with each of those
facets (in the appropriate syntactic relationships) with a pos-
itive PMI. A higher threshold than 0 can also be set, though
we haven’t seen that increase precision, and it may reduce
recall.

For example, consider finding candidate source terms for
the target term “government.” We first find all facets in lin-
guistic metaphors identified by the system that are associ-
ated with “government” with a positive PMI. These include
such terms as “better”, “big”, “small”, “divided”, “open”,

1See http://provalisresearch.com/.

Figure 3: A schematic partial view of the nominal analogy
“government ⇠ door.” Facets in the middle are associated
with the target noun on the left metaphorically, and with the
source noun on the right literally.

“closed”, and “limited.” Each of these facets also are asso-
ciated with other nouns in non-metaphorical senses. For in-
stance, the terms “open” and “closed” are associated with
the words “door”, “table”, “sky”, “arms”, and “house”.

Identification. To identify which pairs of candidate source
terms in SC and target terms are likely nominal analo-
gies, we seek a measurement of the similarity of the non-
metaphorical facets of each candidate with the metaphorical
facets of each target.

To begin, we define for each facet fi and noun (source or
target) ni the pair’s association score aij as its PMI, and the
pair’s metaphoricity score, mij where mij = 1 if the pair
is judged by the system to be metaphorical and mij = 0 if
it is judged to be non-metaphorical. In our current system,
all metaphoricity scores are either 1 or 0, but (as described
below) we plan to generalize the scheme to allow different
levels of confidence in linguistic metaphor classification.

We then define the a metaphoric facet distribution (MFT)
for facets given target terms by normalizing the product of
association and metaphoricity scores:

PM (fi|nj) =
aijmijP
ij aijmij

as well as a literal facet distribution (LFT), similarly, as:

PL(fi|nj) =
aij(1 � mij)P
ij aij(1 � mij)

As noted above, we seek source term / target term pairs
such that the metaphorical facets of the target term are likely
to be literal facets of the source term and vice versa. A natu-
ral measure of this tendency for a candidate source noun ns

and candidate target noun nt is the Jensen-Shannon diver-
gence between the LFT of ns and the MFT of nt,

DJS (PL(·|ns) k PM (·|nt))

The larger the J-S divergence, the less likely the pair is to be
a good nominal analogy.

Figure 8
Nominal analogy induction from Gandy et al. (2013).

602

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00233&iName=master.img-000.jpg&w=272&h=183


Shutova Design and Evaluation of Metaphor Processing Systems

Figure 9
Gandy et al. (2013): Three levels of analysis.

a collection of metaphorical expressions. The individual (related) nominal analogies
were then clustered together to identify conceptual metaphors, as shown in Figure 9.
The authors evaluated their system by annotating metaphorical expressions for five
target concepts (government, governance, god, father, and mother) in selected sentences
from the Reuters corpus (Lewis et al. 2004). They report very encouraging results: Pre-
cision (P) = 0.76, Recall (R) = 0.82 for verb metaphors; P = 0.54, R = 0.43 for adjectival
metaphors; and P = 0.84, R = 0.97 for copula constructions. The authors also evaluated
the quality of conceptual metaphors produced by the system against human judgments
and attained a precision of 0.65. However, the scope of the experiment is only limited
to the given five concepts and it is not clear how well the method would generalize
beyond these. Although the approach of Gandy et al. (2013) seems very promising, a
comprehensive evaluation on open-domain corpus data is still necessary to prove its
viability.

5. Metaphor Interpretation Systems

In one of the first approaches to metaphor interpretation, Martin (1990) presented
a Metaphor Interpretation, Denotation, and Acquisition System (MIDAS), which ex-
plained linguistic metaphors through finding the corresponding conceptual metaphor.
The method is based on the idea of hierarchical organization of conventional metaphors,
namely, that more specific conventional metaphors descend from the general ones.
Given an example of a metaphorical expression, MIDAS searched its database for a
corresponding metaphor that would explain the anomaly. If it did not find any, it
abstracted from the example to more general concepts and repeated the search. If it
found a suitable general metaphor, it created a mapping for its descendant, a more
specific metaphor, based on the given example. This was also how novel metaphors
were acquired. MIDAS was integrated with the Unix Consultant (UC), the system that
answers users’ questions about Unix. The UC first tried to find a literal answer to the
question. Failing to do so, it called MIDAS, which detected metaphorical expressions
via selectional preference violation and searched its database for a metaphor explaining
the anomaly in the question.

Another branch of early work on metaphor interpretation relied on performing
inferences about entities and events in the source and target domains. The most promi-
nent approaches include the KARMA system (Narayanan 1997, 1999; Feldman and
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Narayanan 2004) and the ATT-Meta project (Barnden and Lee 2002; Agerri et al. 2007).
Within both systems the authors developed a metaphor-based reasoning framework in
accordance with the theory of conceptual metaphor. The reasoning process relied on
manually constructed knowledge about the world and operated mainly in the source
domain. The results were then projected onto the target domain using the conceptual
mapping representation. The ATT-Meta project concerned metaphorical and metonymic
description of mental states and reasoning about mental states using first order logic.
Their system, however, did not take natural language sentences as input, but logical
expressions that are representations of small discourse fragments. KARMA in turn dealt
with a broad range of abstract actions and events and took parsed text as input.

Since then the field moved towards acquiring the knowledge necessary for meta-
phor interpretation automatically (and at a larger scale) from lexical resources, corpora,
and the Web. Veale and Hao (2008) derived a “fluid knowledge representation for
metaphor interpretation and generation,” called Talking Points. Talking Points are a set
of characteristics of concepts belonging to source and target domains and related facts
about the world which the authors acquired automatically from WordNet and from
the Web. Talking Points were then organized in Slipnet, a framework that allowed for
a number of insertions, deletions, and substitutions in definitions of such characteris-
tics in order to establish a connection between the target and the source concepts.
This work built on the idea of slippage in knowledge representation for understand-
ing analogies in abstract domains (Hofstadter and Mitchell 1994; Hofstadter 1995).
Example (6) demonstrates how slippage operates to explain the metaphor Make-up is
a Western burqa.

(6) Make-up =>
≡ typically worn by women
≈ expected to be worn by women
≈must be worn by women
≈must be worn by Muslim women

Burqa <=

By doing insertions and substitutions the system arrived from the definition typically
worn by women to that of must be worn by Muslim women, and thus established a link
between the concepts of make-up and burqa. Veale and Hao (2008), however, did not
evaluate to what extent their knowledge base of Talking Points and the associated
reasoning framework are useful to interpret metaphorical expressions occurring in text.

Shutova (2010) defined metaphor interpretation as a paraphrasing task and pre-
sented a method for deriving literal paraphrases for metaphorical expressions from the
BNC. For example, for the metaphors in “All of this stirred an unfathomable excitement
in her” or “a carelessly leaked report,” their system produced interpretations All of
this provoked an unfathomable excitement in her and a carelessly disclosed report, respec-
tively. They first applied a probabilistic model to rank all possible paraphrases for the
metaphorical expressions, given the context; and then used automatically induced selec-
tional preferences to discriminate between figurative and literal paraphrases. The selec-
tional preference distribution was defined in terms of selectional association measures
introduced by Resnik (1993) over the noun classes automatically produced by Sun and
Korhonen (2009). Shutova (2010) tested her system only on metaphors expressed by a
verb and reports an accuracy of 0.81, as evaluated on top-ranked paraphrases produced
by the system. However, she used WordNet for supervision, which limits the number
and range of paraphrases that can be identified by her method. Shutova, Van de Cruys,
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and Korhonen (2012) and Bollegala and Shutova (2013) expanded on this work, ad-
dressing the metaphor paraphrasing task in an unsupervised setting and extending the
coverage. The method of Shutova, Van de Cruys, and Korhonen (2012) first computed
candidate paraphrases according to the context in which the metaphor appeared, using
a vector space model. It then used a selectional preference model to measure the degree
of literalness of the paraphrases. The authors evaluated their method on the metaphor
paraphrasing data set of Shutova (2010) and reported a top-rank precision of 0.52.
Bollegala and Shutova (2013) used a similar experimental set-up, however, their method
extracted a set of candidate paraphrases from the Web using lexico-syntactic patterns as
queries and ranked them based on search engine hits, attaining a precision of 0.42.

Shutova, Teufel, and Korhonen (2013) combined metaphor identification (Shutova,
Sun, and Korhonen 2010) and interpretation (Shutova 2010) to perform text-to-text
metaphor processing. The resulting system could take arbitrary text as input, parse it
using a syntactic parser, identify metaphorical expressions in it, retrieve their literal
paraphrases, and output a new version of the text in which metaphors were interpreted.
The motivation behind such a set-up was that it allowed for a relatively straightfor-
ward integration with external NLP applications. To evaluate the system, the authors
extracted a random sample of 200 metaphorical expressions the system identified in
the BNC and applied the paraphrasing method to them. They evaluated the accu-
racy of metaphor identification and interpretation when performed simultaneously, as
well as the system’s applicability. The applicability was defined as the proportion of
cases where the paraphrase was literal and the meaning of the phrase was retained,
indicating whether this type of system paraphrasing would result in an error when
hypothetically integrated with an external NLP application. In 54% of cases, the system
both identified and interpreted the metaphor correctly, which is a promising result. In
a further 13% of cases, the system produced a correct, literal paraphrase for a literal
expression erroneously identified as a metaphor, leading to the overall applicability
of integrated metaphor processing at 67%. Although the system is easy to integrate
with external NLP applications that could benefit from metaphor resolution, it should
be noted that some information conveyed by the metaphor is inevitably lost during
literal paraphrasing. Metaphor paraphrasing as an approach thus rests on a crucial
assumption that the benefit of correct metaphor understanding would outweigh the
loss of additional connotations and rhetorical elements. This assumption is yet to be
verified through an integration of this technology into real-world NLP, however.

Shutova (2013) presented a computational method that identified metaphorical
expressions in unrestricted text by means of their interpretation. She again treated
metaphor interpretation as paraphrasing and introduced the concept of symmetric
reverse paraphrasing as a criterion for metaphor identification. The hypothesis behind
the method is that literal paraphrases of literally used words should yield the origi-
nal phrase when paraphrased in reverse. For example, when the expression clean the
house is paraphrased as tidy the house, the reverse paraphrasing of tidy would generate
clean as one of possible paraphrases. Shutova’s expectation was that such symmetry in
paraphrasing is indicative of literal use. The metaphorically used words are unlikely to
exhibit this symmetry property when paraphrased in reverse. For example, the literal
paraphrasing of the verb stir in “stir excitement” would yield “provoke excitement,” but
the reverse paraphrasing of provoke would not retrieve stir, indicating the non-literal
use of stir. Shutova experimentally verified this hypothesis in a setting involving single-
word metaphors expressed by a verb in verb–subject and verb–direct object relations.
She applied the selectional preference-based metaphor paraphrasing method (Shutova
2010) to retrieve literal paraphrases of all input verbs and extended the method to
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FYT Gorbachev inherited a Soviet state which was, in a celebrated Stalinist formulation,
“national in form but socialist in content.”
Paraphrase: Gorbachev received a Soviet state which was, in a celebrated Stalinist formula-
tion, “national in form but socialist in content.”

CEK The Clinton campaign surged again and he easily won the Democratic nomination.
Paraphrase: The Clinton campaign improved again and he easily won the Democratic nom-
ination.

CEK Their views reflect a lack of enthusiasm among the British people at large for John
Major’s idea of European unity.
Paraphrase: Their views show a lack of enthusiasm among the British people at large for
John Major’s idea of European unity.

J85 [..] the reasons for this superiority are never spelled out.
Paraphrase [..] the reasons for this superiority are never specified.

J85 Anyone who has introduced speech act theory to students will know that these technical
terms are not at all easy to grasp.
Paraphrase: Anyone who has introduced speech act theory to students will know that these
technical terms are not at all easy to understand.

G0N The man’s voice cut in .
Paraphrase: The man’s voice interrupted.

Figure 10
Metaphors tagged by the system of Shutova (2013) (in bold) and their paraphrases.

perform metaphor identification by reverse paraphrasing. She evaluated the perfor-
mance of the system on verb–subject and verb–object relations using the manually
annotated metaphor corpus of Shutova and Teufel (2010), reporting a precision of 0.68
and a recall of 0.66. The system outperformed a baseline using selectional preference
violation as an indicator of metaphor, that only attained a precision of 0.17 and a recall
of 0.55. Some examples of metaphorical expressions identified by the system and their
literal paraphrases are shown in Figure 10.

6. Investigated Techniques and Lessons Learned

The community has investigated a wide range of techniques and features for meta-
phor identification and interpretation in a variety of experimental settings. The major-
ity of identification systems focus on the linguistic level, identifying either linguistic
metaphor or non-literal language more generally, with a few identifying conceptual
metaphor. Table 4 presents a summary of the tasks addressed. Some systems annotated
metaphorical expressions at the word level, whereas others opted for the relation level
or carried out sentence-level annotation. Individual approaches frequently limited the
scope of their experiments to metaphors expressed by a particular part of speech and
syntactic construction, as shown in Table 5. The majority of the systems focused on
metaphorically used verbs or adjectives, with a few also considering nouns (in modifier
or copula constructions) and multiword metaphors. The systems that identified con-
ceptual metaphor also exhibit some variation in the representations they used. Source
and target domains were represented as WordNet synsets (Mason 2004); individual
nouns (Li, Zhu, and Wang 2013); or clusters of nouns (Shutova and Sun 2013; Gandy
et al. 2013). Recent work on metaphor interpretation unfolded along two main axes:
metaphor explanation (i.e., identifying the properties of concepts that the metaphor
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Table 4
Identification systems: Task definition.

System Ling. Concept. Non-lit. Word Relation Sent.

Mason (2004) – 4 – – – –
Birke and Sarkar (2006) 4 – 4 4 – –
Gedigian et al. (2006) 4 – – 4 – –
Krishnakumaran and Zhu (2007) 4 – – – – 4
Shutova et al. (2010) 4 – – 4 4 –
Li and Sporleder (2009, 2010) 4 – 4 – 4 –
Turney et al. (2011) 4 – – 4 4 –
Neuman et al. (2013) 4 – – 4 4 –
Dunn (2013a, b) 4 – – – – 4
Tsvetkov et al. (2013, 2014) 4 – – – – 4
Mohler et al. (2013) 4 – – – – 4
Heintz et al. (2013) 4 – – 4 – –
Hovy et al. (2013) 4 – – 4 – –
Wilks et al. (2013) 4 – – 4 4 –
Strzalkowski et al. (2013) 4 – – – – 4
Shutova and Sun (2013) 4 4 – 4 4 –
Gandy et al. (2013) 4 4 – 4 4 –
Li et al. (2013) 4 4 – – – 4
Shutova (2013) 4 – – 4 4 –

Table 5
Identification systems: Parts of speech and constructions covered.

System Verb Adjective Nominal Copula Multi-word

Mason (2004) – – – – –
Birke and Sarkar (2006) 4 – – – –
Gedigian et al. (2006) 4 – – – –
Krishnakumaran and Zhu (2007) 4 4 – 4 –
Shutova et al. (2010) 4 – – – –
Li and Sporleder (2009; 2010) – – – – 4
Turney et al. (2011) 4 4 – – –
Neuman et al. (2013) 4 4 – 4 –
Dunn (2013a, b) 4 4 4 4 4
Tsvetkov et al. (2013, 2014) 4 4 – – –
Mohler et al. (2013) 4 4 4 4 4
Heintz et al. (2013) 4 4 4 4 4
Hovy et al. (2013) 4 4 4 4 4
Wilks et al. (2013) 4 – – – –
Strzalkowski et al. (2013) 4 – 4 – –
Shutova and Sun (2013) 4 – – – –
Gandy et al. (2013) 4 4 – 4 –
Li et al. (2013) 4 – 4 4 –
Shutova (2013) 4 – – – –

highlights and the comparisons it involves [Veale and Hao 2008]) and metaphor para-
phrasing (i.e., identifying a literal [or more conventional] paraphrase of the metaphori-
cal expression [Shutova 2010; Bollegala and Shutova 2013]).

Identification and interpretation approaches investigated a range of properties
of metaphor and implemented them in a variety of system components. The most
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prominent ones include selectional preferences (Martin 1990; Fass 1991; Mason 2004;
Krishnakumaran and Zhu 2007; Li and Sporleder 2009, 2010; Shutova 2010; Shutova,
Sun, and Korhonen 2010; Hovy et al. 2013; Li, Zhu, and Wang 2013; Wilks et al. 2013);
semantic properties of concepts, such as imageability and concreteness (Turney et al.
2011; Gandy et al. 2013; Neuman et al. 2013; Strzalkowski et al. 2013); and topical
structure of text (Heintz et al. 2013; Strzalkowski et al. 2013). The common methods
used include supervised classification (Gedigian et al. 2006; Dunn 2013a; Hovy et al.
2013; Mohler et al. 2013; Tsvetkov, Mukomel, and Gershman 2013); clustering (Gandy
et al. 2013; Shutova and Sun 2013; Shutova, Sun, and Korhonen 2010; Strzalkowski et al.
2013); vector space models (Shutova, Van de Cruys, and Korhonen 2012); the use of
lexical resources and ontologies (Mason 2004; Krishnakumaran and Zhu 2007; Dunn
2013b; Gandy et al. 2013; Hovy et al. 2013; Mohler et al. 2013; Strzalkowski et al. 2013;
Tsvetkov, Mukomel, and Gershman 2013; Wilks et al. 2013); and Web search (Veale
and Hao 2008; Bollegala and Shutova 2013; Li, Zhu, and Wang 2013). A summary of
techniques investigated by the community is presented in Table 6. In what follows
we will discuss the main trends in metaphor processing research and the usefulness
of individual types of techniques.

6.1 Selectional Preferences

Selectional preferences have long established themselves as one of the central compo-
nents in metaphor-processing research. Wilks’ (1978) selectional preference violation
view of metaphor has been highly influential, with numerous approaches to metaphor
identification implementing it directly or indirectly (Fass 1991; Martin 1990; Wilks et al.
2013). Other approaches modified this view and treated metaphor as a violation of
semantic norm construed more broadly—for example, searching for expressions with
low bi-gram probabilities (Krishnakumaran and Zhu 2007), identifying units that break
sentence cohesion (Li and Sporleder 2009, 2010), or detecting unusual patterns in words’
compositional behavior (Hovy et al. 2013).

Generally speaking, selectional preference violations (or other semantic violations
mentioned above) are a property of surface realization of metaphor rather than its
underlying conceptual mechanisms. One needs to bear this in mind when using this as a
heuristic. On one hand, such violations are indicative of any kind of non-literalness (i.e.,
not only metaphor, but also, for instance, metonymy) or anomaly in language and the
approach is likely to overgenerate. On the other hand, in the case of most conventional
metaphors that are highly frequent, no statistically significant violation can be detected
in the data, and the approach would bypass many such metaphors. Shutova (2013)
conducted a data-driven study, where verb preferences were automatically acquired
from the data and all the nominal arguments below a certain selectional association
threshold were considered to represent a violation and were tagged as metaphorical.
Such a technique attained a precision of 0.17 and a recall of 0.55, suggesting that
the selectional preference violation hypothesis does not port well beyond handcrafted
descriptions to large-scale, data-driven techniques.

In contrast, other, “non-violation” applications of selectional preferences have been
fruitful in metaphor modeling. Mason (2004) automatically acquired domain-specific
selectional preferences of verbs, and then, by mapping their common nominal ar-
guments in different domains, arrived at the corresponding metaphorical mappings.
Shutova (2010) presented a modification of Wilks’ view, treating a strong selectional
preference fit as a likely indicator of literalness or conventionality. In her metaphor
paraphrasing system, Shutova ranks candidate paraphrases based on how well the
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context fits their preferences, thus determining their literalness. In their metaphor iden-
tification system, Shutova, Sun, and Korhonen (2010) filtered out verbs that have weak
selectional preferences, that is, that are equally associated with many argument classes
(e.g., choose or remember), as having a lower metaphorical potential. Li, Zhu, and Wang
(2013) used selectional preferences to assign the corresponding conceptual metaphor
to metaphorical expressions. Although the idea of violation (i.e., treating metaphor as
merely a context outlier) is controversial and should be applied with care, selectional
preferences themselves are an important source of semantic information about the
properties of concepts, which can be successfully exploited in metaphor processing in a
variety of ways.

6.2 Topical Structure of Text

Two approaches (Heintz et al. 2013; Strzalkowski et al. 2013) focused on modeling
topical structure of text to identify metaphor. The main hypothesis behind these meth-
ods is that metaphorical language (coming from a different domain) would represent
atypical vocabulary within the topical structure of the text. This intuition is somewhat
similar to the idea of semantic norm violation as an indicator of metaphor, although it
is different in two crucial ways: (1) topical structure-based approaches explicitly model
the interaction of vocabulary from two different domains (i.e., the source and the target);
and (2) these approaches take into account domain interactions over extended discourse
fragments, rather than individual expressions, thus utilizing information from wider
context. Exploiting the wider topical structure of text is a promising avenue for meta-
phor processing. However, one needs to keep in mind that distributional similarity-
based methods risk assigning frequent metaphors to target domains (as is the case for
other semantic violation-based methods). For instance, cut may appear more frequently
within the domain of economics and finance, rather than its original source domain.
The choice of data for training such a model thus becomes crucial, and an appropri-
ately balanced data set is needed. Investigating the topical structure of text is also an
important step towards modeling extended metaphor, which interweaves the narrative
in complex, but systematic ways.

6.3 Concreteness

Turney et al. (2011) introduced the idea of measuring concreteness of concepts to predict
metaphorical use. The intuition behind their approach is that metaphor is commonly
used to describe abstract concepts in terms of more concrete or physical experiences.
Thus, Turney and colleagues expect that there would be some discrepancy in the level
of concreteness of source and target terms in the metaphor. Neuman et al. (2013) and
Gandy et al. (2013) followed in Turney’s steps, reporting promising results. Tsvetkov,
Mukomel, and Gershman (2013) took a different route, and used concreteness as one of
the features to train a classifier. Strzalkowski et al. (2013) experimented with the image-
ability feature (that indicates how easy it is to visualize a concept) and demonstrated its
relevance to metaphor identification.

Based on the results of these experiments, concreteness is likely to be a practically
useful feature for metaphor processing. However, it should be noted that Turney’s
hypothesis (that target words tend to be abstract and source words tend to be con-
crete) explains only a fraction of metaphors and does not always hold. For example,
one can use concrete–concrete metaphors (e.g., “broken heart”), abstract–abstract meta-
phors (“diagnose corruption”), and even abstract–concrete metaphors (“invent a soup”).
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However, it may be the case that within the concrete–abstract class of metaphor, the
method operates with reasonable performance. Thus concreteness may become a useful
feature of a more complex system that takes multiple factors into account, but is unlikely
to be a reliable indicator of metaphor on its own.

6.4 Supervised Classification

A number of approaches trained classifiers on manually annotated data to recognize
metaphor. The key question that supervised classification poses is what features are
indicative of metaphor and how can one abstract from individual expressions to its
high-level mechanisms? The community has experimented with a number of features,
including lexical and syntactic information; higher-level features such as semantic
roles, WordNet supersenses, named-entity types, and domain types extracted from
ontologies; and semantic properties of concepts, such as animateness and concreteness.
Gedigian et al. (2006) classified verb uses as literal or metaphorical, using the verbs’
nominal arguments and their semantic roles (as annotated in PropBank) as features.
They reported unusually high performance scores, although the narrow focus on spe-
cific lexical items makes it possible for the system to learn a model for individual words
rather than performing generalization. In contrast, Dunn (2013a, 2013b) experimented
with a wide range of metaphorical expressions from the VU Amsterdam Metaphor
corpus, using high-level properties of concepts extracted an ontology, such as domain
type and event status. Tsvetkov, Mukomel, and Gershman (2013) and Tsvetkov et al.
(2014) used coarse semantic features, such as concreteness, animateness, named-entity
types, and WordNet supersenses. What is particularly interesting about this work is
that the authors have shown that the model learned with such coarse semantic features
is portable across languages, thus suggesting that the chosen features successfully
capture some of the properties of metaphor (even if the shallow ones). The work of
Hovy et al. (2013) is notable as they focused on compositional rather than categorical
features. They trained an SVM with dependency-tree kernels to capture compositional
information using lexical, part-of-speech tags, and WordNet supersense representations
of sentence trees, achieving successful results. The system of Mohler et al. (2013) aimed
at modeling conceptual information in the form of semantic signatures of domains
and metaphors. Such rich semantic information is likely to be a successful feature in
metaphor recognition: however, Mohler and colleagues experimented within a limited
domain and it is not clear how scalable such features would be.

To reliably capture the patterns of the use of metaphor in the data at a large scale,
one needs to address conceptual properties of metaphor, along with the surface ones.
Thus the models making generalizations at the level of metaphorical mappings and
coarse-grained classes of concepts, in essence representing different domains, are likely
to yield the optimal framework for the task. However, this hypothesis is yet to be
experimentally verified.

6.5 Clustering

Clustering techniques were used in numerous approaches, predominantly to identify
concepts similar or related to each other. Mason (2004) performed WordNet sense
clustering to obtain selectional preference classes, whereas Mohler et al. (2013) used
it to determine similarity between concepts and to link them in semantic signatures.
Strzalkowski et al. (2013) and Gandy et al. (2013) clustered metaphorically used terms to
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form potential source domains. Birke and Sarkar (2006) clustered sentences containing
metaphorical and literal uses of verbs.

Another line of research focused on the use of clustering methods to investigate
how metaphor partitions the linguistic feature space. Shutova, Sun, and Korhonen
(2010) pointed out that the metaphorical uses of words constitute a large portion of
the co-occurrence features extracted for abstract concepts from the data. For example,
the feature vector for politics would contain GAME or MECHANISM terms among the
frequent features. As a result, distributional clustering of abstract nouns with such
features identifies groups of diverse concepts metaphorically associated with the same
source domain (or sets of source domains). Shutova, Sun, and Korhonen exploit this
property of co-occurrence vectors to identify new metaphorical mappings starting from
a set of examples. The work of Shutova and Sun (2013) is based on the same observation.
Through the use of hierarchical clustering techniques they derive a network of concepts
in which metaphorical associations are exhibited at different levels of generality.

6.6 The Use of Lexical Resources

Peters and Peters (2000) and Wilks et al. (2013) detected metaphor directly in lexical
resources. Peters and Peters mine WordNet for examples of systematic polysemy, which
allows them to capture metonymic and metaphorical relations. Their system searches
for nodes that are relatively high in the WordNet hierarchy (i.e., are relatively general)
and that share a set of common word forms among their descendants. Peters and Peters
found that such nodes often happen to be in a metonymic (e.g., publisher – publication)
or a metaphorical (e.g. theory – supporting structure) relation. Wilks et al. (2013) used
WordNet glosses to learn selectional preferences of verbs, which were then used to
annotate senses as literal or metaphorical, based on the selectional preference–violation
hypothesis. Krishnakumaran and Zhu (2007) use hyponymy relation in WordNet to
detect semantic violations. Shutova (2010, 2013) also relied on the hierarchical structure
of WordNet, but to identify concepts that share common features (defined as sharing a
common hypernym within three levels of the hierarchy).

WordNet synsets were also used to form selectional preference classes in SP-based
methods (Mason 2004) or to detect semantically related concepts (Mohler et al. 2013;
Strzalkowski et al. 2013; Gandy et al. 2013). Other researchers used WordNet to identify
high-level properties of concepts, most notably WordNet supersenses, that served as
features for classification (Tsvetkov, Mukomel, and Gershman 2013; Hovy et al. 2013).

6.7 Web Search

Because metaphor is a knowledge-intensive phenomenon, multiple approaches at-
tempted to acquire the knowledge necessary for its identification and interpretation
from the Web (Veale and Hao 2008; Bollegala and Shutova 2013; Li, Zhu, and Wang
2013). Web search engines provide a flexible tool for retrieving information that matches
specific lexico-syntactic patterns (used as queries) and quantifying co-occurrence. Veale
and Hao (2008) query the Web to harvest properties of concepts and cultural stereo-
types, such as has magical skill for Wizard or has brave spirit for Lion, which are then
used to perform metaphor interpretation through property comparison and substitu-
tion. Bollegala and Shutova (2013) use the Web to extract co-occurrence information
for verbs and nouns, which allows them to generate a set of candidate paraphrases
for metaphorical verbs. Li, Zhu, and Wang (2013) query the Web with Hearst pat-
terns to acquire a large knowledge base of hyponymy relations; and simile patterns
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(* is like *) to acquire a set of potential conceptual metaphors. Along with the flexibility
and convenience of information retrieval tools, these three approaches also boast of
wide coverage that the use of the Web allows them to achieve. The knowledge contained
on the Web is not merely vast, but it is also constantly updated, which allows the system
to stay on par with the current events and trends. Because metaphor is a productive and
dynamic phenomenon (new metaphors arise as new events take place), such scalability
and ongoing expansion of the Web make it an attractive corpus for metaphor research.

7. System Evaluation

System evaluation methodologies continue to be debated in many areas of compu-
tational semantics. Identifying a comprehensive and fair evaluation strategy for the
task in mind is crucial for the development of fully functional NLP systems. In that
light, a number of shared tasks have been proposed over the years at Workshops on
Semantic Evaluation (SemEval) that enabled performance comparison across systems
and methods. Such tasks as sentiment analysis, word similarity, word sense induction
and disambiguation, coreference resolution, lexical substitution, and many others are
commonly addressed at SemEval and have a number of benchmark data sets created
for them (Agirre and Soroa 2007; McCarthy and Navigli 2007; Lefever and Hoste 2010;
Manandhar et al. 2010; Mihalcea, Sinha, and McCarthy 2010; Recasens et al. 2010; Nakov
et al. 2013), against which the systems are evaluated and compared. Computational
work on metaphor, on the contrary, is considerably more fragmented than similar
research efforts in other areas of NLP. With the lack of an established data set, the
community has utilized a variety of evaluation strategies, including the use of anno-
tated corpora, human judgments of system output, evaluation against the MML, and
annotation of individual selected examples (usually phrases or sentences) via Amazon
Mechanical Turk. With a few exceptions, the majority of approaches created their own
test sets, making the results not directly comparable.

The most desirable type of evaluation is that conducted against an annotated
full-text corpus, namely, naturally occurring, continuous text manually annotated for
metaphor. Ideally, such a corpus should be open-domain and representative of a range
of genres, making the results indicative of the likely performance of the system on
arbitrary text. Another benefit of this type of evaluation is that it allows one to assess
both the precision and the recall of the system. However, only two of the presented
approaches (Dunn 2013b; Shutova 2013) conducted this type of evaluation, as shown
in Table 7. More typically, approaches were instead evaluated on a random sample of
system output against human judgments (Mason 2004; Shutova, Sun, and Korhonen
2010; Heintz et al. 2013; Shutova and Sun 2013; Strzalkowski et al. 2013). Although
this type of evaluation allows one to measure the precision of the system on a random
sample, it does not provide any information about the possible recall. Shutova, Sun,
and Korhonen (2010) and Shutova and Sun (2013) applied their methods to a general-
domain corpus (the BNC), from which a random sample of metaphorical expressions
annotated by the system was then extracted for evaluation. In contrast, Heintz et al.
(2013) and Strzalkowski et al. (2013) collected their data with a focus on a limited
domain. The experiments of Mason (2004) and Shutova and Sun (2013) were concerned
with conceptual metaphor, and a random sample of the metaphorical mappings identi-
fied by the systems was extracted and evaluated against human judgments in terms of
precision. However, the latter two approaches also measured recall, by manually com-
piling a gold-standard of metaphorical mappings for the concepts of interest (Shutova
and Sun 2013) or against the MML (Mason 2004).
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Table 7
Identification systems: Evaluation set-up.

System Annotated
corpus

Continuous
text

Human
judgments

Individual
selected
examples

MML AMT

Mason (2004) – – 4 4 4 –
Birke and Sarkar (2006) – – – 4 – –
Gedigian et al. (2006) – – – 4 – –
Krishnakumaran and Zhu (2007) – – – 4 4 –
Shutova et al. (2010) – 4 4 – – –
Li and Sporleder (2010) – – – 4 – –
Turney et al. (2011) – – – 4 – –
Neuman et al. (2013) – – – 4 – –
Dunn (2013) 4 4 – – – –
Tsvetkov et al. (2013, 2014) – – – 4 – –
Mohler et al. (2013) – – – 4 – –
Heintz et al. (2013) – – 4 – – 4
Hovy et al. (2013) – – – 4 – 4
Wilks et al. (2013) – – – 4 – –
Strzalkowski et al. (2013) – – 4 – – 4
Shutova and Sun (2013) – 4 4 – – –
Gandy et al. (2013) – – – 4 – –
Li et al. (2013) – – – 4 4 4
Shutova (2013) 4 4 – – – –

The majority of approaches (see Table 7) did not apply their systems to continu-
ous text, but rather to a set of pre-selected examples (phrases, sentences, or occasion-
ally paragraphs) in isolation from wider context. Such examples were annotated as
metaphorical or literal by independent expert annotators or via Amazon Mechanical
Turk. The benefit of this set-up (as opposed to the evaluation on a random sample of
system output) is that it allows one to measure both precision and recall. However,
the method used for selection of individual examples may introduce a bias into the
evaluation and provide an unfair advantage to the system, unless the test sample
was selected randomly from arbitrary text. In other words, this type of evaluation is
likely to be less objective than the evaluation on continuous corpus text or a random
sample.

A number of approaches (Gedigian et al. 2006; Krishnakumaran and Zhu 2007;
Gandy et al. 2013; Heintz et al. 2013; Mohler et al. 2013; Neuman et al. 2013; Strzalkowski
et al. 2013; Wilks et al. 2013) conducted their experiments within a limited domain.
Despite allowing for an in-depth investigation of domain-specific patterns of metaphor
use, such evaluations are problematic as they provide no indication of the scalability of
the method beyond the studied domain to real-world data. This criticism also applies
to the evaluations against MML, as the list is limited in domain coverage and the type
of metaphors it provides.

Two data sets stand out as having been repeatedly adopted for metaphor research,
enabling direct system comparison. These include the TroFi data set of Birke and Sarkar
(2006) and the metaphor paraphrasing data set of Shutova (2010). The TroFi dataset
consists of 25 verbs and example sentences, containing their metaphorical and literal
use. It was adopted by Turney et al. (2011) and Tsvetkov, Mukomel, and Gershman
(2013) in their metaphor identification experiments. The paraphrasing data set and gold
standard of Shutova (2010) consists of 52 metaphorically used verbs and their human-
derived literal (or more conventional) paraphrases in the given context. The data set
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Table 8
Identification systems: Measures used and results.

System Precision Recall F-score Acc Lim. Open

Mason (2004) – – – 0.77 – 4
Birke and Sarkar (2006) – – 0.54 – – 4
Gedigian et al. (2006) – – – 0.95∗ 4 –
Krishnakumaran, Zhu (2007) – – – 0.58 4 –
Shutova et al. (2010) 0.79 – – – – 4
Li and Sporleder (2010) – – 0.75 0.78 – 4
Turney et al. (2011) – – 0.68∗∗ 0.79∗∗ – 4
Neuman et al. (2013) 0.71 0.43–0.97 – – 4 –
Dunn (2013) – – 0.58 – – 4
Tsvetkov et al. (2013; 2014) 0.78 0.79 0.78 – – 4
Mohler et al. (2013) 0.56 0.93 0.7 – 4 –
Heintz et al. (2013) 0.54 0.64 0.59 – 4 –
Hovy et al. (2013) 0.7 0.8 0.75 0.75 – 4
Wilks et al. (2013) 0.57 0.82 0.67 – 4 –
Strzalkowski et al. (2013) – – – 0.71 4 –
Shutova and Sun (2013) 0.65 (LM);

0.69 (CM)
0.61 (CM) – – – 4

Gandy et al. (2013) 0.76 (LM);
0.65 (CM)

0.82 (LM) – – 4 –

Li et al. (2013) 0.65–0.73 0.52–0.66 0.58–0.69 – – 4
Shutova (2013) 0.68 0.66 0.67 – – 4

∗ The results of Gedigian et al. (2006) should be interpreted with a reference to the performance
of an all metaphor baseline attaining 0.92.
∗∗ Turney et al. (2011) report results on the verb dataset in terms of F-score and on the adjec-
tive dataset in terms of accuracy. LM stands for linguistic metaphor and CM for conceptual
metaphor.

has been used in multiple metaphor interpretation experiments (Shutova 2010; Shutova,
Van de Cruys, and Korhonen 2012; Bollegala and Shutova 2013).

The evaluations of metaphor identification tend to be conducted in terms of pre-
cision and recall, and occasionally, accuracy. Table 8 presents a summary of results
of metaphor identification experiments, classified by domain coverage. The most suc-
cessful systems attain an F-score in the range of 70–78%, with the highest precision
reported for the methods of Tsvetkov, Mukomel, and Gershman (2013), Shutova, Sun,
and Korhonen (2010), and Gandy et al. (2013); and the highest recall for the methods
of Mohler et al. (2013), Wilks et al. (2013), Gandy et al. (2013) (limited domain) and
Tsvetkov, Mukomel, and Gershman (2013) and Hovy et al. (2013) (open domain). How-
ever, because the methods were evaluated on data sets of different size and balance of
categories, as well as created with different criteria in mind, this comparison is only
approximate. A comprehensive evaluation on the same large data set is needed to
determine the best performing techniques. For example, the accuracy of 95% reported
by Gedigian et al. (2006) was measured on a data set dominated by metaphorical ex-
pressions (all metaphor baseline achieves 92%). This result cannot be directly compared
to that of a system evaluated on a test set with a balance of metaphorical and literal
instances.

One of the key difficulties metaphor processing research is facing today is that
of a lack of annotated data. The data sets used in the experiments are typically too
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small to obtain a generalizable result. Another issue is that many data sets created
to evaluate individual methods were designed for a specific task, focusing on a par-
ticular type of metaphor and using an annotation scheme of their own. This makes
the results not directly comparable and the overall performance landscape difficult
to interpret. This situation calls for the consolidation of the insights gained from the
current experiments into a single task definition and the creation of a large data
set with this task in mind. Ideally, the systems should be evaluated on an expert-
annotated corpus, containing continuous, general-domain text. In order to be indica-
tive of the likely performance of the system on real-world data, the corpus needs to
have a comprehensive coverage of registers and genres. Finally, a large corpus anno-
tated for metaphor would enable reliable evaluation both in terms of precision and
recall.

The work of Dunn (2013b) was exemplary in that he evaluated and compared
four different methods on the same data set. Dunn used the VU Amsterdam Metaphor
Corpus (Steen et al. 2010), which is currently the largest metaphor corpus in existence,
containing approximately 200,000 words. However, because Steen and colleagues were
interested in historical aspects of metaphor along with its use in modern language,
the VU metaphor corpus contains a large proportion of lexicalized metaphors. Their
meanings are ingrained in everyday use and can be interpreted via established tech-
niques (e.g., word sense disambiguation), and their metaphorical nature may or may
not be of interest to wider NLP. Whether metaphor processing systems should address
highly conventional and dead metaphors depends on the task and application in mind,
and corpus annotation should reflect this task definition in a consistent way. As the
field moves forward, it would also be desirable to conduct extrinsic evaluations of
the metaphor processing systems, in order to determine their usefulness for external
NLP applications. One such experiment has already been carried out by Agerri (2008),
who has demonstrated that metaphor interpretation plays an important role in textual
entailment resolution.

8. Conclusion

Metaphor makes our thoughts move vivid and enriches our communication with novel
imagery, but most importantly it plays a fundamental structural role in our cognition,
helping us organize and project knowledge. As a result, its manifestations are pervasive
in language and reasoning, making its computational processing an imperative task
within NLP and intelligent systems engineering at large. Despite involving complex
comparisons and information transfers, metaphor is a well-structured and system-
atic phenomenon, highly suitable for computational modeling. Focusing primarily on
linguistic metaphor, the community has investigated a range of its aspects, imple-
mented in a variety of system features. Among the most successful features are con-
creteness, distributional behavior of source and target domain vocabulary, selectional
preferences, textual coherence, and topical properties of source and target words. The
field has evolved from the widespread use of hand-coded knowledge to mainly data-
driven research. Balanced corpora, the Web, Wikipedia and, sometimes, domain-specific
corpora have become the primary source of knowledge for metaphor processing.
The community has investigated supervised learning, clustering, topic modeling, and
pattern-based search to acquire lexical, relational, and domain knowledge from these
corpora. Yielding promising results, this was a significant advance in computational
modeling of metaphor, allowing for the application of the systems to real-world data.
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These experiments also provided new insights on the behavior of metaphor across
domains, genres, and types of discourse.

The research on mining metaphorical associations from the data sheds light on
how metaphors structure our conceptual system, as well as how specific conceptual
metaphors are realized in language, revealing new information about their cognitive
processing. Large-scale, automatic identification of conceptual metaphor thus pro-
vides a bridge between computational and cognitive research in this area, and has
a wider scientific relevance beyond NLP. An interdisciplinary approach, leveraging
knowledge from linguistics, cognitive science, psychology, neuroscience, and com-
puter science, would be well-positioned to advance our understanding of metaphor-
ical mechanisms and take the performance of metaphor processing systems to the
next level. Two areas that are particularly likely to benefit from an interdisciplinary
approach are metaphorical inference and extended metaphor, which have so far es-
caped attention in NLP. Recent advances in processing linguistic and conceptual
metaphor, however, bring us a step closer to understanding and modeling these
phenomena.

Despite the promising experimental results reported by the community, little
attention has yet been given to real-world applications of metaphor processing.
Possible applications include other semantic tasks within NLP and data mining, as
well as social science and educational applications. Within NLP, most applications
that need to access semantic knowledge would benefit from robust and accurate
metaphor resolution. These include, for instance, machine translation, sentiment anal-
ysis, or text classification. Because the metaphors we use are known to be indica-
tive of our underlying viewpoints, metaphor processing is likely to be fruitful in
determining political affiliation from text or pinning down cross-cultural and cross-
population differences, and thus become a useful tool in data mining. In social sci-
ence, metaphor is extensively studied as a way to frame cultural and moral models,
and to predict social choice (Landau, Sullivan, and Greenberg 2009; Thibodeau and
Boroditsky 2011; Lakoff and Wehling 2012). Metaphor is also widely viewed as a
creative tool. Its knowledge projection mechanisms help us to grasp new concepts
and generate innovative ideas. This opens many avenues for the creation of compu-
tational tools that foster creativity (Veale 2011, 2014) and support assessment in educa-
tion (Burstein et al. 2013).

The design of the metaphor processing task should thus be informed by the
possible applications. The application in mind may place particular requirements on
the types of metaphor the system needs to address and the output representations
it is expected to produce. Whereas an NLP application, such as machine translation,
would be primarily concerned with linguistic metaphors and, possibly, the more cre-
ative instances thereof, a data mining application, aiming to detect a set of trends,
may find the identification of conceptual metaphors prominent in the data more in-
formative. The formulation of the task and experimental design, in turn, predeter-
mine how system performance is best evaluated. So far, the lack of a common task
definition and a shared data set have hampered our progress as a community in
this area. This calls for a unification of the task definition and a large-scale anno-
tation effort that would provide a data set for metaphor system evaluation, built
with the insights gained from the present studies. The main purpose of this paper
is to provide a platform for debate that would assist us in formulating the overall
goals of metaphor processing and devising an optimal experimental strategy, enabling
us as a community to make significant progress in this important and fascinating
area.
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