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Linguistic steganography is concerned with hiding information in natural language text.
One of the major transformations used in linguistic steganography is synonym substitution.
However, few existing studies have studied the practical application of this approach. In this
article we propose two improvements to the use of synonym substitution for encoding hidden
bits of information. First, we use the Google n-gram corpus for checking the applicability of a
synonym in context, and we evaluate this method using data from the SemEval lexical substitu-
tion task and human annotated data. Second, we address the problem that arises from words with
more than one sense, which creates a potential ambiguity in terms of which bits are represented
by a particular word. We develop a novel method in which words are the vertices in a graph,
synonyms are linked by edges, and the bits assigned to a word are determined by a vertex coding
algorithm. This method ensures that each word represents a unique sequence of bits, without
cutting out large numbers of synonyms, and thus maintains a reasonable embedding capacity.

1. Introduction

In order to transmit information through an open channel without detection by anyone
other than the receiver, a covert channel can be used. In information theory, a covert
channel is a parasitic communications channel that is hidden within the medium of
a legitimate communication channel (Lampson 1973). For example, steganography is a
form of covert channel in which certain properties of the cover medium are manipulated
in an unexpected, unconventional, or unforeseen way so that, with steganographic
transmission, the encrypted messages can be camouflaged in a seemly innocent medium
and sent to the receiver with less chance of being suspected and attacked. Ideally,
because the changes to the medium are so subtle, anyone not specifically looking for
a hidden message is unlikely to notice the changes (Fridrich 2009).

∗ 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK. E-mail: Ching-Yun.Chang@cl.cam.ac.uk.
∗∗ 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK. E-mail: Stephen.Clark@cl.cam.ac.uk.

Submission received: 18 January 2013; revised version received: 3 June 2013; accepted for publication:
1 August 2013.

doi:10.1162/COLI a 00176

© 2014 Association for Computational Linguistics



Computational Linguistics Volume 40, Number 2

In this article, we aim at concealing secret information in natural language text by
manipulating cover words. The proposed steganography system replaces selected cover
words with their synonyms, which is the mechanism used to embed information. In
order to ensure the lexical substitutions in the cover text are imperceptible, the system
uses the Google n-gram corpus (Brants and Franz 2006) for checking the applicability
of a synonym in context. In addition, the system assigns codes to acceptable substitutes
using a novel vertex coding method in which words are represented as vertices in a
graph, synonyms are linked by edges, and the bits assigned to a vertex represent the
code of a particular word. Our lexical substitution-based steganography system was
previously published in Chang and Clark (2010b), in which the system was evaluated
automatically by using data from the English lexical substitution task for SemEval-
2007.1 In this article, we extend the previous work by more closely addressing the
practical application of the proposed system. We present results from a new human
evaluation of the system’s output and a simple computational steganalysis of word-
frequency statistics which is a more direct evaluation for linguistic steganography. We
also give an extended literature review which will serve as a useful introduction to
linguistic steganography for those Computational Linguistics readers not familiar with
the problem.

1.1 Steganography

The word steganography has Greek origins and means ‘concealed writing.’ The original
practice can be traced back to around 440 BC when the ancient Greeks hid messages
within wax tablets by writing messages on the wood before applying a wax surface
(Herodotus 1987). Another early recorded use of steganography occurred in ancient
Greece when messengers tattooed messages on their shaved heads and concealed the
messages with the hair that grew over them afterwards, a technique also used by
German spies in the early 20th century (Newman 1940). With the advent of tiny images,
in the Russo-Japanese War (1905) microscopic images were hidden in ears, nostrils, or
under fingernails (Stevens 1957); during both World Wars messages were reduced to
microdots and stuck on top of printed periods or commas in innocent cover material
such as magazines, or inserted into slits of the edges of postcards (Newman 1940;
Hoover 1946). In both World Wars invisible inks were also used extensively to write
messages under visible text (Kahn 1967). The application of special inks is still used
today in the field of currency security to write a hidden message on bank notes or other
secure documents.

Since the 1980s, with the advent of computer technologies, digital equivalents of
these camouflage techniques were invented to hide messages in digital cover me-
dia, such as images, video, and audio signals (Fridrich 2009). For example, in 2010,
the United States Department of Justice documented that more than 100 text files
were retrieved from images posted on publicly accessible Web sites.2 According to
the Steganography Analysis and Research Centre,3 there have been over 1,100 digi-
tal steganography applications identified. Most of the digital steganography systems
exploit the redundancy of the cover media and rely on the limitations of the human
auditory or visual systems. For example, a standard image steganography system uses

1 http://www.dianamccarthy.co.uk/task10index.html.
2 http://www.justice.gov/opa/documents/062810complaint2.pdf.
3 http://www.sarc-wv.com/.
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the least-significant-bit substitution technique. Because the difference between 11111111
and 11111110 in the value for red/green/blue intensity is likely to be undetectable by
the human eye, the least-significant-bit can be used to hide information other than color,
without being perceptable by a human observer.4

Simmons (1984) formulated steganography as the “Prisoners’ Problem.” The prob-
lem describes a scenario where two prisoners named Alice and Bob are locked up in
separate cells far apart from each other and wish to hatch an escape plan. All their
communications have to pass through the warden, Willie. If Willie detects any sign
of a conspiracy, he will thwart their plan by throwing them into high-security cells
from which nobody has ever escaped; as long as Willie does not suspect anything,
the communication can be put through. So Alice and Bob must find some way for
embedding hidden information into their seemingly innocent messages. Alice and Bob
can succeed if they are able to exchange information allowing them to coordinate their
escape without arousing Willie’s suspicion. According to information-hiding terminol-
ogy (Pfitzmann 1996), a legitimate communication among the prisoners is called a cover
object, and a message with embedded hidden information is called a stego object,
where object stands for “text,” “image,” “audio,” or whatever media is being used.
The algorithms that Alice uses for creating the stego object and Bob uses for decoding
the message are collectively called a stegosystem.

A stegosystem has to fulfil two fundamental requirements. The first and foremost
requirement is security. This means that the stegomedia in which the secret message
is hidden must be unsuspicious according to a human or a computer. The second
requirement is payload capacity. The payload is the size of the secret message that
the sender wishes to conceal and transport relative to the size of the cover media.
Because steganography aims at covert information transmission, it requires sufficient
embedding capacity. An ideal stegosystem would have a high level of security and
large payload capacity. However, there is a fundamental trade-off between security and
payload because any attempt to embed additional information in the cover media is
likely to increase the chance of introducing anomalies into the media, thus degrading
the security level.

A related area to steganography is digital watermarking, in which changes are
made to a cover medium in order to verify its authenticity or to show the identity of
its owners—for example, for copyright purposes (Cox et al. 2008; Shih 2008). An inter-
esting watermarking application is “traitor tracing,” in which documents are changed
in order to embed individual watermarks. These marks can then be used to later
identify particular documents and, if necessary, to trace the source of the documents;
for example, if a set of documents—identical except for the changes used to embed
the watermarks—has been sent to a group of individuals, and one of the documents has
been leaked to a newspaper. Both steganography and watermarking use steganographic
techniques to embed information in cover media. However, steganography aims for the
imperceptibility of a secret message to an observer, whereas watermarking tries to mark
cover media with information that is robust against modifications or for the purpose of
tamperproofing. For steganography a user can have the freedom to choose the cover
medium to carry messages, whereas for watermarking the cover medium is already
decided.

4 The observer may also be a computer program, designed to detect statistical anomalies in the image
representation that may indicate the presence of hidden information.
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Figure 1
The linguistic steganography framework.

1.2 Linguistic Steganography

A key question for any stegosystem is the choice of cover medium. Given the ubiquitous
nature of natural language and the omnipresence of text, text is an obvious medium
to consider. For example, a Nazi spy in World War II sent the following message
(Kahn 1967):

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit. Blockade
issue affects pretext for embargo on by-products, ejecting suets and vegetable oils.

By taking the second letter from each word the following message emerges:

Pershing sails from NY June I

The advantage of this method is that the secret message appears as some normal
communication that may not arouse suspicion. However, given the current state-of-the-
art of Natural Language Processing (NLP) technology, NLP techniques are not capable of
creating meaningful and natural text from scratch and of hiding messages in it. There-
fore, most of the existing linguistic stegosystems take already-existing text as the cover
text, and linguistic properties of the text are used to modify it and hide information.

Figure 1 shows the general linguistic steganography framework. First, some secret
message, represented as a sequence of bits, is hidden in a cover text using the embedding
algorithm, resulting in the stego text.5 Next, the stego text passes the observer (human
or computer), who does not object to innocuous messages passing between the sender
and receiver, but will examine the text for any suspicious looking content. Once the
stego text reaches the receiver, the hidden message is recovered using the extracting
algorithm.

In order to embed messages, a cover text must provide information carriers that can
be modified to represent the secret. For example, a lexical substitution-based stegosys-
tem substitutes selected words (the information carriers) with their synonyms so that
the concatenation of the bitstrings represented by the synonyms is identical to the
secret. Note that an unmodifiable text cannot carry information. So far, the literature on

5 The message may have been encrypted initially also, as in the figure, but this is not important in this
article; the key point is that the hidden message is a sequence of bits.
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linguistic steganography is small compared with other media (Bergmair 2007). One of
the likely reasons is that it is easier to make changes to images and other non-linguistic
media that are undetectable by an observer. Language has the property that even small
local changes to a text (e.g., replacing a word with a word with similar meaning) may
result in text that is anomalous at the document level, or anomalous with respect to the
state of the world. Hence finding linguistic transformations that can be applied reliably
and frequently is a challenging problem for linguistic steganography.

An additional challenge for linguistic steganography is that evaluation of linguistic
stegosystems is much more difficult than that of image, audio, or video stegosystems be-
cause such evaluation requires us to consider many controversial linguistic issues, such
as meaning, grammaticality, fluency, and style. The current state-of-the-art techniques
for automatically evaluating the fluency and grammaticality of natural language gener-
ation systems are based on techniques for evaluating the output of machine translation
systems, such as comparing the n-grams in the machine translation output with those
in a reference translation (Papineni et al. 2002; Zhang and Clark 2011). Although some
computational steganalysis systems have been developed to identify stego text from
innocent text using statistical methods, these systems can only be applied to text that
undergoes certain linguistic transformations such as translation and lexical substitution,
and they are not accurate enough for practical evaluation. Therefore, most of the current
linguistic stegosystems were evaluated by human judges (Murphy and Vogel 2007a,
2007b; Meral et al. 2007, 2009; Kim 2008, 2009; Chang and Clark 2010a, 2012a, 2012b),
where a human assessor was provided with stego text and was asked to rate or improve
the naturalness of the stego text.

1.3 Linguistic Stegosystem

Most existing stegosystems consist of three independent modules—linguistic transfor-
mation, encoder generation, and text selection—as shown in Figure 2. As explained
earlier, in order to embed messages, a cover text must provide information carriers that
can be modified to represent the secret, and the modification must be imperceptible
to an observer. This first step of modification is called linguistic transformation. For
example, suppose there is a cover sentence I like biscuits with a cup of tea, in which
biscuits can be replaced by its synonym cookies without degrading the naturalness of
the original sentence; hence biscuits can serve as an information carrier in this example
(using synonym substitution as the transformation). After the linguistic transformation
stage, there are two alternative sentences I like biscuits with a cup of tea and I like cookies
with a cup of tea. According to the linguistic transformation used in a stegosystem, we
can classify existing work into three major categories, which will be discussed in detail

Figure 2
Three modules in a linguistic stegosystem.
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in Section 2.1: lexical or phrase substitutions, syntactic transformations, and semantic
transformations.

After generating different versions of the cover text, an encoding method is used to
assign bitstrings to the alternatives, which is called encoder generation. To continue the
previous example, a simple encoding method would first sort the alternative sentences
alphabetically and then encode the first alternative, namely, the one containing biscuits
with bit 0, and the other sentence containing cookies with bit 1. The final phase is text
selection, which chooses the alternative representing the secret bitstring as the stego
text. Let us assume the secret bit is 1; therefore during the text selection phase, I like
cookies with a cup of tea is chosen as the stego sentence in order to embed the secret. If
there is no alternative associated with the secret bitstring, the secret embedding fails.
Therefore, it is important to generate sufficient alternatives as well as to efficiently
encode each option.

To recover the secret in the example, the sender and receiver must share the same
linguistic transformation and encoder generation modules. The receiver first uses the
transformation method to determine that, in the stego sentence, cookies can be replaced
by its synonym biscuits; hence, two alternative sentences are derived. Next, the receiver
uses the encoding method to assign codes to the two alternatives. Because the stego
sentence I like cookies with a cup of tea is encoded by bit 1, the receiver knows that the
secret is 1.

The convenient modularity between the linguistic transformation and encoder gen-
eration allows a transformation to be combined with different encoding algorithms,
although the transformation may put some constraints on what encoding method can be
used. For example, suppose we replace the synonym substitution-based transformation
in the example with a translation-based transformation that takes a non-English cover
sentence as input and outputs two different English translations as the alternatives.
Assume the two translations are I like biscuits with a cup of tea and I like cookies with a
cup of tea, and that the second alternative is the stego sentence. Now the receiver has
to recover the secret from this stego sentence. However, the receiver does not know the
original cover sentence, so it is unlikely that the receiver will be able to obtain the other
translations used by the sender to derive the code assigned to the stego sentence. In
this case, the translation-based transformation cannot work with block code encoding.
A possible solution is to use hash function encoding, as explained in Section 2.2.4.

1.4 Overview

In this article we focus on linguistic steganography rather than watermarking, because
we are interested in the requirement that any changes to a text must be imperceptible
to an observer, as this makes for a strong test of the NLP technology used to modify
the cover text. There are some practical security issues in the steganography application
that we have chosen to ignore or simplify in order to focus on the underlying NLP tech-
niques. For example, we assume the adversary in the espionage scenario is acting pas-
sively rather than actively. A passive warden examines all messages exchanged between
Alice and Bob but crucially does not modify any message. In other words, we have
ignored the possibility of steganographic attacks (Fridrich 2009), via an active warden
who deliberately modifies messages in order to thwart any hidden communication. In
addition, for the human evaluation of the security level of our stegosystem, we evaluate
the naturalness of generated stego sentences. In other words, we do not investigate the
document-level coherence of stego text because this requires sophisticated knowledge
of natural language semantics and pragmatics which we consider to be outside the

408



Chang and Clark Practical Linguistic Steganography

scope of this work. Therefore, it is possible that a totally natural stego sentence can
still raise suspicion if it contains words which stand out as being completely different
from the rest of the paragraph. For the computational steganalysis, we use a simple
statistical analysis proposed in Meng et al. (2010), which compares the frequency of
high-frequency words in a stego text and in its original text.

The main objective of this article is to explore the applicability of lexical substitution
to steganography. Lexical substitution is a relatively straightforward modification of
text. It replaces selected words with the same part of speech (POS) synonyms, and
does not involve operating on the sentence structure, so the modification is likely to
be grammatical. Another advantage of this transformation is that many languages are
profuse in synonyms so there is a rich source of information carriers in a cover text.
In this work we focus on hiding information in English text. However, the proposed
methods can also be applied to other languages as long as the same resources and tools
are available for the other language, such as synonym dictionaries and n-gram corpora.

There are two practical difficulties associated with hiding bits using lexical sub-
stitution. The first is that words can have more than one sense. In terms of WordNet
(Fellbaum 1998), which is the electronic dictionary we use, words can appear in more
than one synonym set (synset). This is a problem because a word may be assigned
different secret bitstrings in the different synsets, and the receiver does not know which
of the senses to use, and hence does not know which hidden bitstring to recover. Our
solution to this problem is a novel vertex coding method which ensures that words are
always assigned the same bitstring, even when they appear in different synsets.

The second problem is that many synonyms are only applicable in certain contexts.
For example, the words in the WordNet synset {bridge, span} share the meaning of “a
structure that allows people or vehicles to cross an obstacle such as a river or canal
or railway etc.” However, bridge and span cannot be substituted for each other in the
sentence suspension bridges are typically ranked by the length of their main span, and doing so
would likely raise the suspicion of an observer due to the resulting anomaly in the text.
Our solution to this problem is to perform a contextual check that utilizes the Google
n-gram corpus (Brants and Franz 2006). We evaluate the substitution checker using the
data from the English lexical substitution task for SemEval-2007 and a human judgment
corpus created specifically for this work.

For the proposed lexical substitution checker, the higher quality the passed substi-
tutions are, the less suspicious the stego text may be. In addition, the more substitutions
that pass the check, the more information carriers the stegosystem can use. Hence the
evaluation of the proposed substitution checker can be seen as an indirect evaluation of
the proposed stegosystem. For this reason, the performance of the proposed substitu-
tion checker is evaluated in terms of precision and recall in our automatic evaluation.
Precision is the percentage of substitutions judged acceptable by the checker that are
also in the gold standard of the SemEval-2007 English lexical substitution task; recall is
the percentage of substitutions in the gold standard that are also passed by the checker.
The interpretation of the measures for a stegosystem is that a higher precision value
implies a better security level, whereas a larger recall value means a greater payload
capacity. Apart from precision and recall evaluations, we also asked human judges to
evaluate the naturalness of the substitutions that pass the proposed checker, which is a
more direct evaluation of the imperceptibility of the steganography application.

A significant contribution of this article is to advertise the linguistic steganography
problem to the NLP community. The requirement that any linguistic transformations
maintain the grammaticality and meaning of the cover text makes the problem a strong
test for existing NLP technology. In addition, the proposed substitution checker for
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certifying sentence naturalness potentially benefits not only the steganography ap-
plication, but also other NLP applications that require a measure of how natural a
word is in a particular context. Another contribution of the work is the evaluation of
the proposed stegosystems. The results suggest that it is possible to develop a prac-
tical linguistic steganography system based on lexical substitution with current NLP
techniques.

The rest of this article is organized as follows. Section 2 reviews the current state of
the art in linguistic steganography and the various linguistic transformations that have
been used in existing stegosystems. This is a substantial literature review designed to
introduce the problem to the Computational Linguistics reader. In Section 3, we describe
our lexical substitution-based stegosystem, along with the method for checking substi-
tution quality together with an empirical evaluation. In Section 4 we propose a novel
vertex coding algorithm to solve the decoding ambiguity problem and demonstrate the
proposed stegosystem using an example.

2. Background

This section reviews existing linguistic stegosystems. Under our interpretation of the
term linguistic steganography, we are only concerned with stegosystems that make
changes that are linguistic in nature, rather than operating on superficial properties of
the text, for example, the amount of white space between words (Por, Fong, and Delina
2008), font colors (Khairullah 2009), or relying on specific file formats, such as ASCII or
HTML (Bennett 2004; Shahreza 2006).

2.1 Linguistic Transformations

In the following, we describe the three linguistic transformation categories—lexical
or phrase substitutions, syntactic transformations, and semantic transformations—that
have been used in existing stegosystems to modify cover text. For each transformation,
some examples are provided to demonstrate the text manipulation.

2.1.1 Lexical and Phrase Transformations. There are a few electronic dictionaries available
that are designed to capture various lexical relationships between words and serve as
lexical reference systems (Fellbaum 1998; Schuler 2005). These can be used to perform
lexical substitution. One of the most well-known electronic dictionaries is WordNet
(Fellbaum 1998), in which English nouns, verbs, adjectives, and adverbs are categorized
into synonym sets (synsets). Words in the same synset have the same or similar meaning

Table 1
Synsets of the word marry in WordNet 3.1.

marry (verb)

gloss: take in marriage
synset: marry, get married, wed, conjoin, hook up with, get hitched with, espouse
gloss: perform a marriage ceremony
synset: marry, wed, tie, splice
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and in principle can be substituted with each other. For example, a search result of the
word marry in WordNet 3.1 is summarized in Table 1. According to this table, we can
change the sentence The minister will marry us on Sunday to The minister will wed us on
Sunday without introducing much semantic difference because marry and wed express a
similar lexical concept in this context.

There are three main challenges when using lexical substitution as the linguistic
transformation. The first is word-category disambiguation, which marks up a word
with a particular POS based on both its definition as well as the context. For example,
fast is an adverb in the phrase hold fast to the rope, an adjective in the phrase a fast car,
and a verb in the phrase Catholics fast during Lent. Existing POS taggers have achieved
97% accuracy on the Penn Treebank (Toutanova et al. 2003; Shen, Satta, and Joshi 2007;
Spoustová et al. 2009; Søgaard 2010) and are widely used in lexical substitution-based
stegosystems (Chapman, Davida, and Rennhard 2001; Bolshakov 2004; Taskiran, Top-
kara, and Delp 2006; Topkara, Topkara, and Atallah 2006b; Topkara et al. 2006; Chang
and Clark 2010b).

The second challenge is word-sense disambiguation, which identifies the sense of
a word in context (if the word has more than one meaning) so the correct synset can
be used. For example, according to the context, bottom means “a cargo ship” rather
than “the lower side of anything” in the sentence we did our overseas trade in foreign
bottoms, and therefore it can be replaced with freighter but not undersurface. The first
lexical substitution stegosystem was proposed by Winstein (1999). In order to han-
dle the fact that a word may appear in more than one synset in WordNet, Winstein
defines “interchangeable” words as words that belong to exactly the same synsets,
and only uses these words for substitution. For example, marry and wed in Table 1
are interchangeable words because they are always synonyms even under different
meanings. Any words that are not interchangeable are discarded and not available for
carrying information. Winstein calculates that only 30% of WordNet can be used in such
a system.

The main purpose of linguistic transformations is to generate unsuspicious alterna-
tives for a cover sentence. Although replacing a word with its synonym that conveys the
same concept may preserve the meaning of the sentence, much of the time there are still
semantic and pragmatic differences among synonyms. For example, the synset {chase,
trail, tail, tag, dog, track}means “go after with the intent to catch.” However, an awkward
sentence would be generated if we replaced chase with dog in the sentence the dogs chase
the rabbit. Hence, it is important to check the acceptability of a synonym in context.
Bolshakov (2004) used a collocation-based test to determine whether a substitution
is applicable in context. Taskiran, Topkara, and Delp (2006) attempted to use context
by prioritizing the alternatives using an n-gram language model; that is, rather than
randomly choose an option from the synset, the system relies on the language model to
select the synonym. In Section 3, we describe how our proposed lexical substitution-
based stegosystem uses the Google n-gram corpus to certify the naturalness of the
proposed substitution.

Similar to synonym substitution, text paraphrasing restates a phrase using different
words while preserving the essential meaning of the source material being paraphrased.
In other words, text paraphrasing is multi-word substitution. For example, we can para-
phrase a high percentage of by a large number of in the sentence a form of asbestos has caused a
high percentage of cancer deaths. However, text paraphrasing may have more effect on the
grammaticality of a sentence than lexical substitution. In our earlier work (Chang and
Clark 2010a) we developed a stegosystem exploiting a paraphrase dictionary (Callison-
Burch 2008) to find potential information carriers, and used the Google n-gram corpus
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Table 2
Some common syntactic transformations in English.

Transformation Original sentence Transformed sentence

Passivization The dog kissed Peter. Peter was kissed by the dog.
Topicalization I like pasta. Pasta, I like.
Clefting He won a new bike. It was a new bike that he won.
Extraposition To achieve that is impossible. It is impossible to achieve that.
Preposing I like cheese bagels. Cheese bagels are what I like.
There-construction A cat is in the garden. There is a cat in the garden.
Pronominalization I put the cake in the fridge. I put it there.
Fronting “What!” Peter said. “What!” said Peter.

and a combinatory categorial grammar (CCG) parser (Clark and Curran 2007) to certify
the paraphrasing grammaticality.

2.1.2 Syntactic Transformations. Syntactic transformation methods are based on the fact
that a sentence can be transformed into more than one semantically equivalent syntac-
tic structure, using transformations such as passivization, topicalization, and clefting.
Table 2 lists some of the common syntactic transformations in English.6

The first syntactic transformation method was presented by Atallah et al. (2000).
Later, Atallah et al. (2001) generated alternative sentences by adjusting the structural
properties of intermediate representations of a cover sentence. In other words, instead
of performing lexical substitution directly on the text, the modifications are performed
on the syntactic parse tree of a cover sentence. Murphy (2001), Liu, Sun, and Wu
(2005), Topkara, Topkara, and Atallah (2006a), Meral et al. (2007), Murphy and Vogel
(2007b), and Meral et al. (2009) all belong to this syntactic transformation category. After
manipulating the syntactic parse tree, the modified deep structure form is converted
into the surface structure format via language generation tools.

Aside from these systems, Wayner (1995) and Chapman and Davida (1997) pro-
posed mimicry text approaches associated with linguistic syntax. These two stegosys-
tems generate stego text from scratch instead of modifying an existing text. Wayner
(1995) proposed a method with his context-free mimic function (Wayner 1992) to gen-
erate a stego text that has statistical properties close to natural language. The context-
free mimic function uses a probabilistic grammar-based model to structure the stego
text. Because the mimicry method only puts emphasis on the syntactic structure of a
sentence, it is likely to generate nonsensical stego text which is perceptible by humans.
Chapman and Davida (1997) developed a stegosystem called NICETEXT that generates
stego sentences using style sources and context-free grammars to simulate certain as-
pects of writing style. Compared to Wayner’s mimicry method, the stego text generated
by NICETEXT is more natural in terms of the semantics, but still not at a level that
would be suitable for practical steganography.

2.1.3 Semantic Transformations. The semantic transformation is the most sophisticated
approach for linguistic steganography, and perhaps impractical given the current state-
of-the-art for NLP technology. It requires some sophisticated tools and knowledge to

6 The categories of transformations are adopted from Topkara, Taskiran, and Delp (2005).
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Afghanistan (nation)
borders-on China, Iran, Pakistan, Tajikistan, Uzbekistan
has-currency afghani
has-member Pashtun, Tajik, Hazara, Uzbek
has-representative Mullah Mohammad Omar

Figure 3
Parts of the ontological semantics for Afghanistan.

assault–|–agent–nation–“United States”
|–theme–nation–“Afghanistan”

(a)

assault–|–agent–nation–“United States”
|–theme–nation–“Afghanistan”–|–has-representative–politician–“Mullah Mohammad Omar”

(b)

Figure 4
An example of the TMR tree modification taken from Atallah et al. (2002).

model natural language semantics and to evaluate equivalence between texts in order to
perform deep semantic manipulations. For example, consider the following sentences:

Bond takes revenge for Vesper’s death.
Vesper’s death is avenged by Bond.
007 takes revenge for Vesper’s death.

The idea is to define the semantic representation in such a way that the translation from
any of these sentences to their semantic representations would yield the same form.
In this manner, the meaning of the cover sentence can be expressed in another natural
language text. For this to be successful for the example, we would have to understand
the sentences in different voices, such as active and passive, and make use of some
world knowledge, such as the fact that the codename of James Bond is 007.

The work of Atallah et al. (2002) used semantic transformations and aimed to
output alternatives by modifying the text-meaning representation (TMR) tree of a
cover sentence. The modifications include pruning, grafting, or substituting the tree
structure with information available from ontological semantic resources. A linguistic
ontology is a formal knowledge representation of the world; a conceptualization of
entities, events, and their relationships in an abstract way. For example, Figure 3, taken
from Atallah et al. (2002), shows parts of the ontological semantics for Afghanistan
that are structured in a tree-like hierarchy.7 An ontology provides concepts that are
used to define propositions in TMR. The TMR of a natural language expression can
show information such as clause relationship, author attitude, and topic composition.
It is constructed through mapping lexical items and events that are referred in the
expression to their ontology concepts. Figure 4(a) shows the TMR of the sentence the
United States are attacking Afghanistan. A modification of the tree can be performed
by grafting additional semantic information of Afghanistan as shown in Figure 4(b),
yielding the alternative sentence the United States are attacking Afghanistan, which is ruled
by Mullah Mohammed Omar. Vybornova and Macq (2007) also exploited the linguistic

7 Afghanistan was ruled by Mullah Mohammed Omar at the time of Atallah et al. (2002).
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phenomenon of presupposition, with the idea that some presuppositional information
can be removed without changing the meaning of a sentence.

Another group of studies aims to use machine-translated sentences as the alterna-
tives. The main advantage of using machine-translated text is that translations are not
perfect and therefore it is hard to determine whether the anomalies are introduced by a
translation system or due to the camouflage of secret information.

The first translation-based stegosystem was proposed by Grothoff et al. (2005). In
their method, the sender uses a set of machine translation systems to generate multiple
translations for a given cover sentence. Stutsman et al. (2006) also utilized multiple
translation systems to output alternatives for a cover sentence. Because Grothoff et al.
(2005) and Stutsman et al. (2006) used multiple machine translation systems to generate
alternative translations, which leads to a stego text containing a mixture of translations
generated from different systems and each stego sentence may have different statistical
distribution of features (e.g., percentage of high-frequency words), a simple comparison
of the statistical distribution of features obtained from a normal text and from a stego
text might be able to detect the existence of the secret message (Meng et al. 2010;
Chen et al. 2011). Instead of obtaining alternative translations from multiple translation
systems, Meng et al. (2011) and Venugopal et al. (2011) used a statistical machine
translation system to generate the n-best translations for a given cover sentence. Because
translations are from one system, each of them is more similar to the rest than that
derived from another translation system.

Another of our papers (Chang and Clark 2012b) proposed a word-ordering-based
stegosystem, where the word-ordering technique can be seen as a “monolingual trans-
lation” that translates a cover sentence into different permutations. Because not all
the sentence permutations generated by a word-ordering system are grammatical and
semantically meaningful, we developed a maximum entropy classifier to distinguish
natural word orders from awkward ones.

Another possible semantic transformation for linguistic steganography is sentence
compression (Dorr, Zajic, and Schwartz 2003; Cohn and Lapata 2008; Zhu, Bernhard,
and Gurevych 2010). Different compressed versions of the original text provide various
alternatives for a stegosystem. We developed a compression-based stegosystem that
generates alternatives for a cover sentence by removing unnecessary adjectives in noun
phrases (Chang and Clark 2012a). For example, he spent only his own money and he
spent only his money almost express the same meaning. In order to certify the deletion
grammaticality, we only accept a deletion that does not change the CCG categories of
the words in the rest of the sentence. In addition, we propose two methods to determine
whether the adjective in a noun phrase is necessary to the context. The first method
uses the Google n-gram corpus, and the second method, which performs better, trains
a support vector machine model that combines n-gram statistics, lexical association
measures, entropy-based measures, and an n-gram divergence statistic.

2.2 Encoding Methods

In the previous sections we have explained different transformation methods for gen-
erating alternatives for an input text. This procedure is seen as the linguistic transfor-
mation module in Figure 2. After deriving alternatives for a cover text, the encoder
generation module maps each alternative to a code that can be used to represent a secret
bitstring. In this section, we introduce four encoding methods that assign bitstrings
to the alternative candidates and have been used in existing stegosystems. In order
to demonstrate each encoding method, we assume the cover sentence is we finish the
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charitable project and the transformation applied to the text consists of simply replacing
a word with its synonym. The alternatives for the cover text arise from replacing
finish with complete, and replacing project with labor, task, or undertaking. Note that, as
mentioned earlier, linguistic transformations are largely independent of the encoding
methods and therefore the encoding methods explained here are not restricted to lexical
substitutions. After encoding the alternatives, the secret can be embedded by selecting
alternatives that directly associate with the secret bitstring.

2.2.1 Block Code Method. For a set with cardinality n, the block code method assigns
m-bit binary codes from 0 to 2m − 1 to the elements in the set, where 2m ≤ n. For exam-
ple, the synonym set {complete, finish} has cardinality n = 2 so 1-bit binary codes 0 and 1
are assigned to complete and finish, respectively. Because the synonym set {labor, project,
task, undertaking} has cardinality n = 4, the block code method can use either one-bit or
2-bit codes to encode the words as shown in Figure 5. When one-bit codes are used, both
labor and task represent code 0, and both project and undertaking represent code 1; when
two-bit codes are used, the four words are assigned different codes 00, 01, 10, and 11.
The advantage of using one-bit codes is that the cover word project needs to be replaced
with its synonym only 50% of the time, whereas the two-bit scheme has a 75% chance of
modifying the cover word, assuming the secret is a random bitstring. However, one-bit
codes embed less information. Hence, there is a trade-off between security and payload
capacity. It is worth noting that, in this simple scheme, each block code representation
has the same probability of being chosen, even though native speakers might have a
preference for the choice of synonyms, which would be security-relevant. For example,
if the block code method is applied to Table 1, wed, tie, and splice would have the same
probability of replacing marry in the cover sentence The minister will marry us on Sunday.
However, of these three alternatives only wed is allowed in this context; hence choosing
tie or splice may arouse suspicion in others.

2.2.2 Mixed-Radix Number Method. In a mixed-radix number system, the numerical base
differs from position to position. For example, 8 hours, 41 minutes, and 21 seconds
can be presented relative to seconds in mixed-radix notation as: 8(24)41(60)21(60), where
each digit is written above its associated base. The numerical interpretation of a mixed-
radix number an(bn )an−1(bn−1 )...a0(b0 ) is anbn−1bn−2...b0 + an−1bn−2bn−3...b0 + ...+ a1b0 +
a0, and any number can be uniquely expressed in mixed-radix form (Soderstrand et al.
1986).

Figure 6 shows the use of the mixed-radix number method with the lexical substi-
tution example which is described in Bergmair (2004). Firstly, the words in the synsets
{complete, finish} are encoded with 0 and 1 with base 2, and the words in the synset
{labor, project, task, undertaking} are encoded with 0, 1, 2, and 3 with base 4. Therefore,
the combinations of the substitutions yield the two-digit mixed-radix numbers from
0204 to 1234, which are equal to the decimal numbers 0 to 7. Assume the secret bitstring

1-bit Word 1-bit 2-bit Word
We 0 complete the charitable 0 00 labor .

1 finish 1 01 project
0 10 task
1 11 undertaking

Figure 5
An example of the block code method.
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Code Word Code Word
We 02 complete the charitable 04 labor .

12 finish 14 project
24 task
34 undertaking

Figure 6
An example of the mixed-radix number method.

to be embedded is 110, which can be seen as the binary number for six. Because we
finish the charitable task represents the mixed-radix number 1224, which is the decimal
number 6, this sentence will be the stego sentence that embeds the secret. Like the
Block code method, each mixed-radix number representation has the same probability
of being chosen, which may have security implications. To solve this issue, one can
utilize variable-length code methods described in the next section.

2.2.3 Huffman Code Method. Figure 7 demonstrates the use of variable-length codes, in the
form of the Huffman code (Huffman 1952), for encoding words in a synset. Assuming
there is a utility score for each word, then the Huffman algorithm determines a way
to produce a variable-length binary string for each word. More importantly, it does so
in such a way that an optimal encoding is created; that is, words with higher utility
have shorter codes whereas words with lower utility get longer codes. Thus, words
frequently used by native speakers are more likely to be chosen by the stegosystem
(assuming utility corresponds to frequency). In addition, when making a low-utility
choice, the tree ensures that maximal (bitrate) benefit will be derived from that choice.
The process shown in Figure 8 begins with leaf nodes each containing a word along with
its associated probability. The two nodes with the smallest probabilities are then chosen
to become the children of a new node whose probability is the sum of the probabilities
of its children. The newly created left and right branches are assigned bit 0 and 1,
respectively. Now only the newly created node is taken into consideration instead of its
children. The procedure is repeated until only one node remains, thereby constructing
the Huffman tree. To determine the binary code assigned to a particular word, we start
from the root node and gather the bits on the path to the leaf node connected to that
word. In this example we can see that project has the highest probability among words
in the same synset and is encoded with the shortest code. Thus, it is more likely to match
the secret bitstring.

One existing stegosystem that uses Huffman code encoding is proposed by Grothoff
et al. (2005). Their system takes different translations of a cover sentence as alternatives,
each of which is assigned a probability that represents the quality of the translation.
Then a Huffman tree is built for the translations based on the probabilities, where
poorer translations are at the bottom of the tree (with lower probabilities), and quality

Code Word Prob. Code Word Prob.
We 0 complete 0.77 the charitable 110 labor 0.05 .

1 finish 0.23 0 project 0.69
10 task 0.25
111 undertaking 0.01

Figure 7
An example of the Huffman code method.

416



Chang and Clark Practical Linguistic Steganography

Figure 8
The process of constructing a Huffman tree.

translations are higher in the tree. In other words, poor translations have longer codes
while better translations have shorter codes. This ensures that quality translations ap-
pear more often, and when a poorer translation (and thus potentially more perceptible
sentence) appears, it transmits a maximal number of bits.

As described in Section 2.1.2, Wayner (1995) generates stego text by exploiting a
probabilistic context-free grammar. His method creates a Huffman tree for each set of
productions that expand the same non-terminal symbol. In this way, each production
has its own Huffman code representation, as shown in Figure 9(a). Then, we begin
with a designated start-symbol S, and expand a non-terminal symbol by choosing
the production whose Huffman code representation is identical to the portion of the

Rule No. Rule Code Probability
1. S→AB 0 0.3
2. S→AC 1 0.7
3. A→I 0 0.4
4. A→You 10 0.3
5. A→He 110 0.15
6. A→She 111 0.15
7. B→lost 0 0.4
8. B→won 1 0.6
9. C→lost the D 0 0.4

10. C→won the D 1 0.6
11. D→game 0 0.4
12. D→match 10 0.3
13. D→championship 110 0.2
14. D→competition 111 0.1

(a)

Position Prefix Rule Output
•1101110 1 2. AC
1•101110 10 4. You C
110•1110 1 10. You won the D
1101•110 110 13. You won the championship

(b)

Figure 9
An example of the Wayner (1995) mimicry method.
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secret bitstring. The procedure is repeated until a grammatical message is generated.
In the embedding example given in Figure 9(b), the secret bitstring is 1101110 and a
symbol “•” is used to indicate the current bit in reading the string. At the beginning,
the prefix string of the secret message •1101110 is “1” which is associated with the
second production, so the start-symbol S is expanded to AC. Now, the prefix string of
the message 1•101110 becomes “10”. The fourth production is applied, and a string
“You C” is generated. Next, we see the prefix string “1” in the message 101•110,
and therefore, the output string turns into “You won the D”. Finally, the end of the
secret message 1101110• is reached, and a stego sentence You won the championship is
generated. Theoretically, the block code representation or the mixed-radix technique
explained in the previous sections can be utilized in Wayner’s stegosystem.

2.2.4 Hash Function Method. For the block code method, the mixed-radix number ap-
proach, and the Huffman code representation, the encoding process is dependent on
knowing all the alternatives (e.g., the synset). Hence, in order to extract the code
assigned to the stego text during the secret recovery process, all the alternatives must be
known to the receiver as well. Note that the receiver does not need to know the original
cover text. However, not all the linguistic transformations can meet this requirement.
For example, if the sender encodes the four best machine translations of the cover
sentence using block coding and sends the translation that represents the secret bits to
the receiver, it is unlikely that the receiver can retrieve the four best machine translations
without knowing the original cover sentence. Thus, the secret recovery fails. For this
reason, Stutsman et al. (2006), Meng et al. (2011), Venugopal et al. (2011), and Chang and
Clark (2012b) used a hash function to map a translation to a code, which is independent
of the rest of the alternatives.

Venugopal et al. (2011) defined a random hashing operation that maps a translation
to a bit sequence of fixed length. Venugopal et al. stated that a good hash function
should produce a bitstring whose 0s and 1s are generated with equal probability.
Stutsman et al. (2006) proposed a hash function encoding scheme which uses the first
h bits of a translation hash bitstring as the header bits and the next b bits as the code
represented by the translation, where h is shared between the sender and the receiver,
and b is the integer represented by the header bits. For example, assume h = 2; a hash
bitstring “1011. . . ” has header bits 10 to indicate a 10(2)-bit code is carried by this
translation, and the two-bits are 11. Among all possible translations of a cover sentence,
the one with the combination of header and information-carrying bits for the given h
representing the next b bits of the message is chosen as the stego sentence.

2.3 Stegosystem Evaluations

So far we have introduced different linguistic transformations used to produce alter-
natives for a cover text as well as some encoding methods that are used to assign a
bitstring to a candidate. The final procedure is text selection, in which an alternative
that represents the secret bits is chosen as the stego text. We can see that the quality
of a stego text mainly relies on the quality of the applied linguistic transformation,
typically requiring sophisticated NLP tools and resources to produce a realistic stego
text. However, given the current state-of-the-art, such NLP techniques cannot guarantee
the transformation’s imperceptibility. Hence it is important to evaluate a stegosystem.

A stegosystem can be evaluated from two aspects: the security level and the embed-
ding capacity. The security assessment methods used so far can be classified into two
categories: automatic evaluation and human evaluation. Topkara, Topkara, and Atallah
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(2006a) and Topkara et al. (2006) used machine translation evaluation metrics BLEU
(Papineni et al. 2002) and NIST (Doddington 2002), automatically measuring how close
a stego sentence is to the original. Topkara, Topkara, and Atallah (2006a) admitted that
machine translation evaluation metrics are not sufficient for evaluating stegosystems;
for example, BLEU relies on word sequences in the stego sentence matching those in
the cover sentence and thus is not suitable for evaluating transformations that change
the word order significantly.

The other widely adopted evaluation method is based on human judgments. Meral
et al. (2007, 2009) and Kim (2008, 2009) asked participants to edit stego text for im-
proving intelligibility and style. The fewer edit-hits a transformed text received, the
higher the reported security level. Murphy and Vogel (2007a, 2007b) first asked subjects
to rate the acceptability (in terms of plausibility, grammaticality, and style) of the stego
sentences on a seven-point scale. Then participants were provided with the originals
and asked to judge to what extent meaning was preserved, also on a seven-point scale.
In Chang and Clark (2010a) we asked participants to judge whether a paraphrased
sentence is grammatical and whether the paraphrasing retains the meaning of the
original. In Chang and Clark (2012a) we asked participants to annotate the naturalness
of the resulting sentences after adjective deletions; and in Chang and Clark (2012b) we
asked participants to rate the naturalness of sentence permutations on a four-point scale.
For the work presented in this article, we also use human judgments to evaluate the
proposed stegosystem, as this is close to the linguistic steganography scenario where
we assume the adversary is a human acting passively.

The other aspect of the stegosystem evaluation is to calculate the amount of data
capable of being embedded in a stego text, which can be quantified in terms of bits
of hidden message per bit transmitted or per language unit (e.g., per word or per
sentence). Payload measurements can be theoretical or empirical. The theoretical pay-
load measurement only depends on an encoding method and is independent of the
quality of a stego text; the empirical measurement takes the applicability of a linguistic
transformation, namely, the security of a stego text, into consideration and measures
the payload capacity while a certain security level is achieved. Most of the payload
rates reported in existing work are based on empirical measurements.

For the lexical substitution transformation, Topkara, Taskiran, and Delp (2005) and
Topkara, Topkara, and Atallah (2006b) achieved an average embedding payload of
0.67 bits per sentence, despite the large number of synonyms in English. In Chang
and Clark (2012a) we showed that the payload upper bound of using the adjective
deletion technique is around 0.4 bits per sentence if a deletion represents a secret
bit. The payload attained by syntactic transformations was around 0.5 to 1.0 bits per
sentence. For example, both Atallah et al. (2001) and Topkara, Topkara, and Atallah
(2006a) achieved an embedding payload of 0.5 bits per sentence, and Meral et al. (2009)
reported the data embedding rate of their system as 0.81 bits per sentence. Because the
ontological semantic transformation is currently impractical, the empirical payload is
not available for this transformation type. Another semantic method (Vybornova and
Macq 2007) that aims at modifying presuppositional information in text achieved a
payload of 1 bit per sentence through the use of a secret key to indicate sentences
with or without presupposition information. Stutsman et al. (2006) showed that their
translation-based stegosystem has a payload of 0.33 bits of hidden message for every
100 bits of data transmitted.

Not only the linguistic transformation and the encoding method, but also the choice
of cover text, can affect the security level and the payload capacity of a stegosystem.
For example, if a newspaper article were chosen as the cover text, then any changes
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could be easily found in practice by comparing the stego text with the original article,
which is likely to be readily available. In addition, an anomaly introduced by a linguistic
transformation may be more noticeable in a newspaper article than in a blog article. In
terms of payload capacity, a synonym substitution–based stegosystem may find more
words that can be substituted in a storybook than in a car repair manual because there
are usually many terminologies in a manual which cannot be changed or even cannot be
found in a standard dictionary (assuming the system does not happen to have a detailed
ontology of car parts). To the best of our knowledge, there is no study on the practical
issue of using different types of cover text for the steganography application.

3. Lexical Substitution

In the following sections we introduce our linguistic stegosystem based on lexical
substitution. In the original work on linguistic steganography, Winstein (1999) proposed
an information-hiding algorithm using a block coding method to encode synonyms, so
that the selection of a word from a synset directly associates with part of the secret
bitstring. An example of Winstein’s system can be found in Figure 5. In his system, a
sender and a receiver share the same coded synonym dictionary as the secret key. To
recover the hidden message, the receiver first seeks words in the stego text that can be
found in the shared dictionary. Those words are information carriers, and therefore the
codes assigned to them are secret bitstrings. Note that the receiver does not need the
original cover text to recover the secret message.

One of the problems faced by a synonym-based stegosystem is that many words are
polysemous, having more than one sense, and this may cause ambiguities during the
secret recovery stage. In WordNet a synset contains words expressing a similar concept,
and a word may appear in more than one synset. For example, both marry and wed
appear in the two synsets in Table 1. Figure 10 shows what happens when the block
coding method is applied to the two overlapping synsets, assuming the stego sentence
received by the receiver is the minister will marry us on Sunday. Note that we only take
single word substitution into consideration in order to avoid the confusion of finding
information carriers during the secret recovering phase. For example, if the cover word
espouse is replaced by hook up with, the receiver would not know whether the secret
message is embedded in the word hook or the phrase hook up with. After deleting multi-
word synonyms, words in the two synsets are sorted alphabetically and assigned two-
bit codes. As can be seen in Figure 10, marry is encoded by two different codewords
and thus the secret bitstring cannot be reliably recovered, because the receiver does not
know the original cover word or the sense of the word.

In order to solve the problem of words appearing in more than one synonym
set, Winstein defines interchangeable words as words that are always synonyms to
each other even under different meanings (i.e., they always appear together in the

Synset 1 Synset 2
Word Code Word Code
conjoin 00 marry 00
espouse 01 splice 01
marry 10 tie 10
wed 11 wed 11

Figure 10
An example of decoding ambiguity using lexical substitution.

420



Chang and Clark Practical Linguistic Steganography

same synsets). For example, marry and wed are interchangeable words under Winstein’s
definition. The advantage in this approach is that interchangeable words always receive
the same codeword. The disadvantage is that many synonyms need to be discarded
in order to achieve this property. As mentioned previously, Winstein reported that
only 30% of words in WordNet are interchangeable words. In addition, as explained
in Section 2.1.1, many synonyms are only applicable in certain contexts. However, in
Winstein’s steganography scheme there is no method to filter out unacceptable substi-
tutions so the generated stego text may be unnatural and arouse suspicion in others.

Another synonym substitution-based stegosystem was proposed by Bolshakov
(2004), who applies transitive closure to overlapping synsets to avoid the decoding
ambiguity. Applying transitive closure leads to a merger of all the overlapping synsets
into one set which is then seen as the synset of a target word. Consider the overlapping
synsets in Figure 10 as an example. After applying transitive closure, the resulting set is
{conjoin, espouse, marry, splice, tie, wed}. The disadvantage of Bolshakov’s system is that
all words in a synonym transitive closure chain need to be considered, which can lead to
very large sets of synonyms, many of which are not synonymous with the original target
word. For this reason, Bolshakov used a collocation-based test to remove unsuitable
words after merging the synsets. Finally, the collocationally verified synonyms are
encoded using the block coding method. Note that in Bolshakov’s system it is possible
to replace an original word with a non-synonymous word if the non-synonymous
word passes the collocation-based test.

Similar to Bolshakov’s method, our approach takes words in a synonym transitive
closure chain into consideration and assigns a score to each word using the proposed
substitution checker. A score threshold is applied to eliminate low-score words; that
is, the remaining words are both in the synonym transitive closure chain as well as
acceptable to the context. More details of the proposed substitution checker will be
described later. We then construct a synonym graph that has a vertex for each remaining
word and an undirected edge for every pair of words that share the same meaning.
After constructing the synonym graph, we use a novel vertex coding method inspired
by vertex coloring to assign codes to every word in the graph.

A crucial difference from Bolshakov’s method is that in our approach the sender
only considers words that are synonymous with the cover word as alternatives, even
though the other words in the synonym graph can also fit into the context. The reason
for also including non-synonymous words during the encoding is because the receiver
does not know the cover word and, therefore, we need a method to ensure that the
receiver is encoding the same list of words, namely, the same synonym graph, as the
sender during the secret recovery. In other words, the sender and the receiver must
derive the same synonym graph so that the sender knows the cover word and the
receiver knows the stego word.

Figure 11(a) shows a synonym graph constructed from a synonym transitive closure
chain that contains six synsets: {bind, tie}, {tie, draw}, {tie, wed, splice, marry}, {marry,
wed, espouse, conjoin}, {conjoin, join}, {join, link, unite, connect}. Assume the cover word
is conjoin. In Bolshakov’s system, there is a chance of replacing conjoin with draw, which
is three steps away from the original word in the graph; in our method, however,
we only consider a cover word’s synonyms as alternatives—that is, conjoin is only
allowed to be replaced by wed, espouse, marry, or join. Note that we have not applied
the substitution check in this example.

Now let us apply the substitution check to words in the synonym transitive closure
chain, and suppose join and marry do not pass the check. Figure 11(b) shows the
two disconnected synonym graphs G1 and G2 derived from the checked pool. The two
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(a) An unchecked synonym graph

(b) Synonym graphs derived after substitution checking

(c) Another example of checked synonym graphs

Figure 11
Synonym graphs with and without the substitution check.

synonym graphs are then encoded independently. In other words, the encoding of G1
does not affect the codes assigned to the words in G2. Because conjoin is the cover word,
the system may replace conjoin with either wed or espouse, or keep the original word
depending on the encoding of G1 and the secret bits. Assume wed is chosen as the stego
word. In order to work out the embedded message, the receiver needs to construct and
encode the same graphs as those generated by the sender. The decoding process starts
from extracting the synonym transitive closure chain of wed, and then applying the
substitution checker to the pool to filter out unacceptable words. Because the remaining
words are the same as those used by the sender, the receiver can successfully extract
the secret bits after constructing and encoding the synonym graphs.

Because the proposed substitution checker measures the acceptability of a word
according to the context, the synonym graph for a target word varies depending on its
context. Let us consider another case where the cover word is still conjoin, but this time
the substitution checker determines that conjoin, espouse, and marry are not acceptable to
the context. Figure 11(c) shows the corresponding synonym graphs of the remaining
words. In this case, the applicable alternatives are either wed or join because they
are synonyms of conjoin. As mentioned previously, disconnected graphs are encoded
independently. Therefore, it is possible that both wed and join are assigned the same
codeword which does not match the secret bits. If neither of the synonyms can be used
as the stego word, the sender will keep the original word and send conjoin to the receiver.
During the decoding process, the receiver should be able to know that conjoin fails the
check and thus does not carry any message. In contrast, if wed and join are encoded
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by different codewords, say 0 and 1, respectively, the system can choose the one that
represents the secret bit as the stego word.

3.1 Substitution Checkers

The aim of the proposed checkers is to filter out inapplicable substitutes given the orig-
inal word in context. The substitution checkers must not only work with the proposed
linguistic stegosystem, but can also be integrated into other synonym substitution-
based applications to certify the transformation quality. The following sections are
organized so that the basic substitution checker using the Google n-gram corpus (Brants
and Franz 2006) is described first. Then we introduce the α-skew divergence measure
(Lee 1999) that can be combined with the basic n-gram method. The proposed checkers
are evaluated using data from the SemEval lexical substitution task (McCarthy and
Navigli 2007), which is independent of the steganography application. We also perform
a more direct evaluation of the imperceptibility of the steganography application by
asking human judges to evaluate the naturalness of sentences. After explaining the
linguistic transformation module in our stegosystem, we proceed with the encoder
generation module and present the vertex coding method. Finally, we use an example
to demonstrate the complete stegosystem.

3.1.1 n-Gram Count Method (NGM). The basic checking method, referred to as NGM,
utilizes the Google n-gram corpus to calculate a substitution score for a candidate word
in context based on Bergsma, Lin, and Goebel (2009). The Google n-gram corpus was
collected by Google Research for statistical language modeling, and has been used for
many tasks such as spelling correction (Carlson, Mitchell, and Fette 2008; Islam and
Inkpen 2009), multi-word expression classification (Kummerfeld and Curran 2008), and
lexical disambiguation (Bergsma, Lin, and Goebel 2009). It contains frequency counts
for n-grams from uni-grams through to 5-grams obtained from over 1 trillion word
tokens of English Web text. Only n-grams appearing more than 40 times were kept in
the corpus.

The checking method first extracts contextual bi- to 5-grams around the word to be
tested and uses the Minnen, Carroll, and Pearce (2001) tools for correcting the form of
an indefinite and a verb’s tense. For example, if the word to be tested is maverick and it is
going to replace unorthodox in the phrase the help of an unorthodox speech therapist named
Lionel, the indefinite an will be corrected as a when extracting contextual n-grams. As
another example, assume the word to be replaced is bleach in the original phrase he
might be bleaching his skin; then a verb substitute decolor will be corrected as decoloring
because the original word is in the progressive tense.

After extracting contextual bi- to 5-grams, the checking method queries the n-gram
frequency counts from the Google n-gram corpus. For each n, the total count fn is
calculated by summing up individual n-gram frequencies, for every contextual n-gram
containing the candidate word. We define a count function:

Count(w) =
5∑

n=2

log(fn),

where log(0) is defined as zero. If Count(w)=0, we assume the word w is unrelated to
the context and therefore is eliminated from the synonym transitive closure chain. After
calculating Count(w) for each word in the pool, the word that has the highest count
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is called the most likely word and its count is referred as maxcount. The main purpose of
having maxcount is to score each word relative to the most likely substitute in the chain,
so even in less frequent contexts which lead to smaller frequency counts, the score of
each word can still indicate the degree of feasibility. We also need to use the most likely
word, rather than the original cover word, because the receiver does not have access to
the cover text when applying the check. The most likely word in the context may be the
original word or another word in the synonym transitive closure chain. The substitution
score is defined as:

ScoreNGM(w) = Count(w)
maxcount

The hypothesis is that a word with a high score is more suitable for the context, and we
apply a threshold so that words having a score lower than the threshold are discarded.

Consider as an example the calculation of the substitution score for the candidate
word clever as a possible replacement for the word bright in the cover sentence he
was bright and independent and proud. First of all, various contextual n-grams are ex-
tracted from the sentence and the Google n-gram corpus is consulted to obtain their
frequency counts, as shown in Figure 12. The derived fn values can then be used to
calculate Count(clever), which is 27.5 in this example. Suppose the threshold is 0.9, and
the maxcount is 30 from the synonym transitive closure chain. The substitution score is
as follows:

ScoreNGM(clever) = Count(clever)
maxcount

= 27.5
30 = 0.92

which is greater than the threshold (0.9), and so the word clever is determined as
acceptable for this context and is kept in the pool.

One disadvantage of using n-gram statistics is that high-frequency n-grams may
dominate the substitution score, especially lower-order n-grams. For example, even is
not a good substitute for eve in the sentence on the eve of the wedding, Miranda tells
Mr. Big that marriage ruins everything, but it still has a reasonably high score of 0.74
since the bigrams the even and even of have high frequency counts compared with those
of the 4-grams and 5-grams. As a way of overcoming this problem, we consider the

n-gram frequency fn
was clever 40,726 f2 = 302,492
clever and 261,766
He was clever 1,798 f3 = 8,072
was clever and 6,188
clever and independent 86
He was clever and 343 f4 = 343
was clever and independent 0
clever and independent and 0
He was clever and independent 0 f5 = 0
was clever and independent and 0
clever and independent and proud 0

Figure 12
n-grams and their frequency counts for calculating ScoreNGM(clever).
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C21 C22 C31 C32 C33 C41 C42 C43 C51 C52 C53

bright 0.081 0.892 0.002 0.024 0.0002 0 0 0 0 0 0
clever 0.130 0.843 0.006 0.020 0.0002 0.001 0 0 0 0 0

Figure 13
n-gram frequency distributions of bright and clever for calculating the contextual divergence.

n-gram distributional similarity between a most likely word and a candidate substitute
in context using α-skew divergence as explained in the next section. We assume that an
acceptable substitute should have a similar n-gram distribution to the most likely word
across the various n-gram counts.

3.1.2 Contextual α-skew Divergence. The α-skew divergence is a non-symmetric measure
of the difference between two probability distributions P and Q. Typically, P represents
the observations, in our case the n-gram count distribution of the most likely word, and
Q represents a model, in our case the candidate’s distribution. The α-skew divergence
measure is defined as:

Sα(Q, P) = D(P‖α·Q + (1− α)·P)

where 0 ≤ α ≤ 1 and D is the Kullback-Leibler divergence (Kullback 1959):

D(P‖Q) =
∑

v

P(v) log P(v)
Q(v)

The α parameter allows us to avoid the problem of zero probabilities, and in our
method we use α = 0.99. The value of the α-skew divergence measure is zero if the
two probability distributions are identical and increases positively as the distributions
become less similar.

We use the following example to demonstrate how to calculate the contextual
divergence between two words. Assume the most likely word is bright and a substitute
to be considered is clever. First we need to derive the n-gram frequency distributions
of both words. We divide each n-gram frequency by the total frequency to get Cni, as
shown in Figure 13, where i means the ith n-gram (e.g., C32 is the second trigram). For a
word, Cni should sum up to 1 (over all n, i). Then we can calculate theα-skew divergence
of these two distributions:

Sα(clever,bright) =
∑

n

∑
i

Cbright
ni · log(

Cbright
ni

αCclever
ni + (1− α)Cbright

ni

) = 0.014

Similar to the NGM method, we define a score function:

ScoreDVG(w) = 1− Sα(−→w ,
−−−−−−−−−−−−−→
the most likely word)

maxdivergence

where −→w and
−−−−−−−−−−−−−→
the most likely word are the probability distributions of n-gram counts

of the target substitute and the most likely word, respectively, and maxdivergence is the
maximum divergence between the most likely word and another word in the synonym
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transitive closure chain. In this example, suppose maxdivergence is 0.15 and therefore we
can derive the contextual divergence-based substitution score:

ScoreDVG(clever) = 1− 0.014
0.15 = 0.91

The reason to calculate Sα(−→w ,
−−−−−−−−−−−→
the most likely word)
maxdivergence is to spread the divergence score between

0 and 1. Note that the higher the divergence Sα(−→w ,
−−−−−−−−−−−−−→
the most likely word) is, the lower

the score ScoreDVG(w). Finally we combine the distributional similarity with the NGM
method, referred to as NGM DVG method, by modifying the score function as follows:

ScoreNGM DVG(w) = λ·ScoreNGM(w) + (1− λ)·ScoreDVG(w)

where 0 ≤ λ ≤ 1. The value of λ determines the relative weights of ScoreNGM(w) and
ScoreDVG(w).

3.2 Ranking Task Evaluation

Both NGM and NGM DVG assign a score to a word according to the context and the
most likely word in the group of alternatives. In order to evaluate the performance
of the proposed scoring methods, we apply our approaches to a ranking task that
requires a system to rank a list of substitute words given an original word and its
context. The task can test whether the proposed methods are capable of assigning higher
scores to appropriate substitutes than to unacceptable ones and thus is useful for the
steganography application. The gold standard data is derived from the English lexical
substitution task for SemEval-2007 (McCarthy and Navigli 2007) and the evaluation
measure used is Generalized Average Precision (Kishida 2005). In this section we first
describe the gold standard data used in this evaluation and then provide the results. We
compare our results with three other models developed by Erk and Padó (2010), Dinu
and Lapata (2010), and Ó Séaghdha and Korhonen (2011), all of which are designed
for measuring word meaning similarity in context. Note that our substitution checkers
do not aim at modeling word similarity, and therefore the result comparison is just
trying to show that our substitution checkers are competitive. Later, we will evaluate
the proposed checkers with the human annotated data and see whether our methods
would be practical for linguistic steganography.

3.2.1 Data. For this evaluation, we use the SemEval-2007 lexical substitution data set as
the gold standard. The original purpose of the data set was to develop systems that
can automatically find feasible substitutes given a target word in context. The human
annotation data comprises 2,010 sentences selected from the English Internet Corpus
(Sharoff 2006), and consists of 201 target words: nouns, verbs, adjectives, and adverbs,
each with ten sentences containing that word. The five annotators were asked to provide
up to three substitutes for a target word in the context of a sentence, and were permitted
to consult a dictionary or thesaurus of their choosing. After filtering out annotation
sentences where the target word is part of a proper name and for which annotators
could not think of a good substitute, the data was separated into 298 trial sentences
and 1,696 test sentences. Table 3 illustrates two examples from the gold standard, both
featuring the target word bright. The right column lists appropriate substitutes of bright
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in each context, and the numbers in parentheses indicate the number of annotators who
provided that substitute.

To allow comparison with previous results reported on the substitution ranking
task, following Erk and Padó (2010), Dinu and Lapata (2010) and Ó Séaghdha and
Korhonen (2011), we pool together the positive substitutes for each target word, con-
sidering all contexts, and rank the substitutes using our scoring methods. For instance,
assume in the gold standard there are only two sentences containing the target word
bright as shown in Table 3. We merge all the substitutes of bright given by the annotators
and derive a large candidate pool {intelligent, clever, colorful, brilliant, gleam, luminous}.
We expect intelligent and clever to be ranked at the top of the list for the first sentence,
with colorful, brilliant, gleam, and luminous ranked at the top for the second sentence.

3.2.2 Experiments and Results. In the SemEval-2007 lexical substitution task participants
were asked to discover possible replacements of a target word so the evaluation metrics
provided are designed to give credit for each correct guess and do not take the ordering
of the guesses into account. In contrast, in the ranking task a system is already given a
fixed pool of substitutes and is asked to recover the order of the list. Therefore, we use
the Generalized Average Precision (GAP) to evaluate the ranked lists rather than the
metrics provided in the SemEval-2007 lexical substitution task. GAP rewards correctly
ranked items with respect to their gold standard weights while the traditional average
precision is only sensitive to the relative positions of correctly and incorrectly ranked
items. Let G = 〈g1, g2, ..., gm〉 be the list of gold substitutions with weights 〈y1, y2, ..., ym〉
for a target word in context. In our task, the weight is the frequency of a substitute
in the gold standard. Let S = 〈s1, s2, ..., sn〉 be the system ranked substitute list and
〈x1, x2, ..., xn〉 be the weights associated with them, where m ≤ n and xi = 0 if si is not in
the gold list and G ⊆ S. Then

GAP(S, G) = 1∑m
j=1 I(yj)ȳj

n∑
i=1

I(xi)x̄i and x̄i =
1
i

i∑
k=1

xk

where I(xi) = 1 if xi is larger than zero, zero otherwise; x̄i is the average gold weight of
the first i system ranked items; ȳi is defined analogously.

After experimenting on the trial data, we decided a λ value of 0.6 for the NGM DVG
method. We then applied the proposed NGM and NGM DVG methods to rank pooled
substitutes for each sentence in the test data. Table 4 summarizes the performances
of our approaches, where mean GAP values are reported on the whole test data as
well as for different POSs. We can see that the NGM DVG performs better than the
NGM system on the ranking task and achieved a mean GAP of 50.8% on the whole test

Table 3
Two sentences in the SemEval-2007 lexical substitution gold standard.

Sentence Substitutes

He was bright and independent and proud. intelligent(3), clever(3)

The roses have grown out of control, wild and carefree, their
bright blooming faces turned to bathe in the early autumn sun.

colorful(2), brilliant(1),
gleam(1), luminous(1)
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Table 4
GAP values (%) of the ranking task evaluation.

System test set noun verb adj adv

NGM 49.7 48.5 44.3 53.2 64.7
NGM DVG 50.8 50.9 44.6 53.7 66.2
Dinu and Lapata (2010) 42.9 n/a n/a n/a n/a
Erk and Padó (2010) 38.6 n/a n/a n/a n/a
Ó Séaghdha and Korhonen (2011) 49.5 50.7 45.1 48.8 55.9

data. We then compare our results with those achieved by Erk and Padó (2010), Dinu
and Lapata (2010), and Ó Séaghdha and Korhonen (2011). Erk and Padó developed an
exemplar-based model for capturing word meaning in context, where the meaning of a
word in context is represented by a set of exemplar sentences most similar to it. Dinu
and Lapata proposed a vector-space model that models the meaning of a word as a
probability distribution over a set of latent senses. Ó Séaghdha and Korhonen also use
probabilistic latent variable models to describe patterns of syntactic interaction. The best
mean GAP values reported by Erk and Padó, Dinu and Lapata, and Ó Séaghdha and
Korhonen are 38.6%, 42.9%, and 49.5% on the test data, respectively.

3.3 Classification Task Evaluation

Although the ranking task evaluation gives some indication of how reliable the pro-
posed scoring methods are, for the steganography application we require a system
that can correctly distinguish acceptable substitutes from unacceptable ones. Thus, we
conduct a classification task evaluation which is more related to the steganography
application. The task requires a system to determine acceptable substitutes from a group
of candidates given the word to be replaced and its context. Those passed substitutes
can then carry different codes and be used as stego words. Similar to the previous
section, we first describe the data and then explain the experimental setup and the
evaluation results.

3.3.1 Data. We use the sentences in the gold standard of the SemEval-2007 lexical
substitution task as the cover text in our experiments so that the substitutes provided
by the annotators can be the positive data. Because we only take into consideration
the single word substitutions, multi-word substitutes are removed from the positive
data. Moreover, we use WordNet as the source of providing candidate substitutes in
our stegosystem, so if a human-provided substitute does not appear in any synsets of
its target word in WordNet, there is no chance for our stegosystem to replace the target
word with the substitute; therefore, the substitute can be eliminated. Table 5 presents
the statistics of the positive data for our experiments.

In addition to the positive data, we also need some negative data to test whether our
methods have the ability to filter out bad substitutions. We extract the negative data for
our experiments by first matching positive substitutes of a target word to all the synsets
that contain the target word in WordNet. The synset that includes the most positive
substitutes is used to represent the meaning of the target word. If there is more than
one synset containing the highest number of positives, all of those synsets are taken
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Table 5
Statistics of experimental data.

noun verb adj adv

number of target words 59 54 57 35
number of sentences 570 527 558 349
number of positives 2,343 2,371 2,708 1,269
number of negatives 1,914 1,715 1,868 884

into consideration. We then randomly select up to six single-word synonyms other than
positive substitutes from the chosen synset(s) as negative instances of the target word.

Let us use an example to demonstrate our automatic negative data collection. In
this example, we need to generate bad substitutions for a cover word remainder in the
sentence if we divide any number by 4, we would get 1 or 2 or 3, as the remainders, given
that the annotator-provided positives are leftover and residual. Table 6 lists the synsets of
remainder found in WordNet 3.1. Because the synset {remainder, balance, residual, residue,
residuum, rest} contains one of the positives whereas the other synsets do not, this synset
is selected for our negative data collection. We assume the selected synset represents
the meaning of the original word, and those synonyms in the synset which are not
annotated as positives must have a certain degree of mismatch to the context. Therefore,
from this example, balance, residue, residuum, and rest are extracted as negatives to test
whether our checking methods can pick out bad substitutions from a set of words
sharing similar or the same meaning.

In order to examine whether the automatically collected instances are true negatives
and hence form a useful test set, a sample of automatically generated negatives was
selected for human evaluation. For each POS one sentence of each different target word
was selected, which results in roughly 13% of the collected negative data, and every neg-
ative substitute of the selected sentences was judged by the second author of this article.
As can be seen from the annotation results shown in Table 7, most of the instances are
true negatives, and only a few cases are incorrectly chosen as false negatives. Because
the main purpose of the data set is to test whether the proposed checking methods can
guard against inappropriate lexical substitutions and be integrated in the stegosystem,
it is reasonable to have a few false negatives in our experimental data. Also, it is

Table 6
Synsets of remainder in WordNet 3.1.

remainder (noun)

gloss: something left after other parts have been taken away
synset: remainder, balance, residual, residue, residuum, rest
gloss: the part of the dividend that is left over when the dividend is not evenly divisible by
the divisor
synset: remainder
gloss: the number that remains after subtraction; the number that when added to the
subtrahend gives the minuend
synset: remainder, difference
gloss: a piece of cloth that is left over after the rest has been used or sold
synset: end, remainder, remnant, oddment
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Table 7
Annotation results for negative data.

noun verb adj adv

number of true negatives 234 201 228 98
number of false negatives 9 20 28 16

more harmless to rule out a permissible substitution than to include an inappropriate
replacement for a stegosystem in terms of its security. Table 5 gives the statistics of the
automatically collected negative data for our experiments.

3.3.2 Experiments and Results. We evaluate the classification performance of the NGM
system and the NGM DVG system in terms of accuracy, precision, and recall. Accuracy
is the percentage of correct classification decisions over all acceptable and unacceptable
substitutes; precision is the percentage of system accepted substitutes being human-
provided; recall is the percentage of human-provided substitutes being accepted by the
system. Accuracy is less important for the steganography application, and the reasons
for using precision and recall were explained in Section 1.4: A higher precision value
implies a better security level, and a larger recall value means a greater payload capacity.
It is worth noting that, although there will be a decrease in recall if more false negatives
are obtained from a system, there will not be a negative effect on the value of precision.
That is, from a security perspective, rejecting an acceptable substitute does not damage
the quality of stego text. However, it will lower the payload capacity so more stego text
transmission is needed in order to send the secret message, which may raise a security
concern.

Both the NGM system and the NGM DVG system require a threshold to decide
whether a word is acceptable in context. In order to derive sensible threshold values for
each POS, five-fold cross validation was used for the experiments. For each fold, 80%
of the data is used to find the threshold value which maximizes the accuracy, and that
threshold is then applied to the remaining 20% to get the final result.

We first test whether the proposed methods would benefit from using only longer
n-grams. We compare the performance of different combinations of n-gram counts,
which are frequency counts of bi- to five-grams, tri- to five-grams, four- to five-grams,
and five-grams only. The results show that for both methods the accuracy, precision,
and recall values drop when using fewer n-grams. In other words, among the four com-
binations, the one including bigram to five-gram frequency counts performs the best
across different POS and, therefore, is adopted in the NGM system and the NGM DVG
system. Next, we try weighting different sized n-grams in the proposed methods, as
have Bergsma, Lin, and Goebel (2009) in related work. According to the preliminary
experiments we conducted and the conclusion given by Bergsma, Lin, and Goebel, such
a method does not do much better than the simple method using uniform weights for
different sized n-grams.

Table 8 gives the results for the two checking methods and the average threshold
values over the five folds. In addition, for each POS, a simple baseline is derived by al-
ways saying a substitute is acceptable. From the table we can see that both the NGM and
the NGM DVG systems have higher precision than the baseline, which performs well
in terms of embedding capacity (100% recall) but at the expense of a lower security level
(lower precision). However, in contrast to the results of the ranking task evaluation, the
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Table 8
Performance of the NGM and NGM DVG systems on the classification task.

NGM NGM DVG Baseline

POS Acc % Pre % Rec % Thr Acc % Pre % Rec % Thr Acc, Pre % Rec %

noun 70.2 70.0 80.2 0.58 68.1 66.5 67.3 0.70 55.0 100
verb 68.1 69.7 79.5 0.56 64.8 65.7 66.7 0.70 58.0 100
adj 72.5 72.7 85.7 0.48 70.2 68.8 77.7 0.63 59.2 100
adv 73.7 76.4 80.1 0.54 68.0 66.4 75.9 0.63 58.9 100

NGM system slightly outperforms the NGM DVG system. Because imperceptibility is
an important issue for steganography, we would prefer a system with a higher precision
value. Thus we adopt the NGM method as the linguistic transformation checker in our
lexical substitution-based stegosystem.

In addition, we are interested in the effect of the threshold value on the performance
of the NGM method. Figure 14 shows the precision and recall values with respect to
different thresholds for each POS. From the charts we can clearly see the trade-off
between precision and recall. Although a higher precision can be achieved by using
a higher threshold value—for example, noun substitutions reach almost 90% precision
with threshold equal to 0.9—the large drop in recall means many applicable substitutes
are being eliminated. In other words, the trade-off between precision and recall implies
the trade-off between imperceptibility and payload capacity for linguistic steganogra-
phy. Therefore, the practical threshold setting would depend on how steganography
users want to trade off imperceptibility for payload.

So far we have presented the performance of our checking methods using two
different automatic evaluations, the ranking task and the classification task. From the
ranking task evaluation we can see that the n-gram distributional similarity does have
the ability to further eliminate some bad substitutes after applying the basic n-gram

Figure 14
The performance of the NGM method under various thresholds.
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method. However, when facing the classification task, which is more related to the
steganography application, we find that the checking method simply based on counts
from the Google n-gram corpus is hard to beat. In addition, from the results of different
order n-gram combinations we can conclude that the more information we include
in the checking method (i.e., using all counts from bi- to five-grams) the better the
performance. This is similar to the conclusion given by Bergsma, Lin, and Goebel (2009).

3.4 Human Evaluation

We want to test how reliable the proposed NGM method is if it is used in a lexical
substitution-based stegosystem to guard against inappropriate substitutions. Therefore,
apart from the automatic evaluations, we conducted a more direct evaluation of the
imperceptibility for the steganography application by asking human judges to evaluate
the naturalness of sentences. In the following sections, we explain the evaluation data
first and then describe the evaluation setup and results.

3.4.1 Data. We collected a total of 60 sentences from Robert Peston’s BBC blog.8 For
each noun, verb, adjective, and adverb in a sentence, we first group the target word’s
synset(s) in WordNet and apply the NGM method with a score threshold equal to 0.95
to eliminate bad substitutes. If more than one substitute passes the check, the one with
the lowest score is used to replace the original word. The reason for choosing the word
with the lowest score is because this makes the test more challenging. This process is
applied to a sentence where possible and results in around two changes being made per
sentence.

We also generated another version of a sentence changed by random choice of a
target word and random choice of a substitute from a target word’s synset(s) (in order
to provide a baseline comparison). The number of changes made to a sentence using
this random method is the same as that in the version generated by the NGM method.
In this way, it is fair to compare the qualities of the two modified versions because both
of them receive the same number of substitutions. Table 9 shows lexical substituted
sentences generated by our method and by the random method. We can see that our
system replaces four words (in boldface) in the original sentence so the same number
of words (in boldface) are randomly selected when applying the random method. Note
that the random method just happens to pick the word big in the original sentence which
is also replaced by our system. We refer to an original sentence as COVER, a version
generated by our method as SYSTEM, and a version modified by the random method
as RANDOM.

3.4.2 Evaluation Setup and Results. The experimental setup follows a Latin square design
(Kirk 2012) with three groups of 10 native English speakers as shown in Table 10. In
this table, each row represents a set of annotation sentences for a group of judges,
and we can see that each sentence is presented in three different conditions: COVER,
SYSTEM, and RANDOM, as shown in a column. Subjects in the same group receive
the 60 sentences under the same set of conditions, and each subject sees each sentence
only once in one of the three conditions. The annotation process is Web-based. At the
beginning of the annotation task, we describe the aim of the annotation as shown in
Figure A1 in the Appendix. Subjects are asked to rate the naturalness of each sentence

8 http://www.bbc.co.uk/news/correspondents/robertpeston/.
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Table 9
Different versions of a cover sentence.

Version Sentence

COVER Apart from anything else, big companies have the size and muscle to derive gains
by forcing their suppliers to cut prices (as shown by the furore highlighted in
yesterday’s Telegraph over Serco’s demand - now withdrawn - for a 2.5% rebate
from its suppliers); smaller businesses lower down the food chain simply don’t
have that opportunity.

SYSTEM Apart from anything else, large companies have the size and muscle to derive gains
by pushing their suppliers to cut prices (as evidenced by the furore highlighted in
yesterday’s Telegraph over Serco’s need - now withdrawn - for a 2.5% rebate from
its suppliers); smaller businesses lower down the food chain simply don’t have that
opportunity.

RANDOM Apart from anything else, self-aggrandizing companies have the size and muscle
to derive gains by forcing their suppliers to foreshorten prices (as shown by the
furore highlighted in yesterday’s Telegraph over Serco’s demand - now with-
drawn - for a 2.5% rebate from its suppliers); smaller businesses lower down the
food chain simply don’t birth that chance.

Table 10
Latin square design with three groups of judges.

s1, s2, . . . , s20 s21, s22, . . . , s40 s41, s42, . . . , s60

Group 1 COVER SYSTEM RANDOM
Group 2 RANDOM COVER SYSTEM
Group 3 SYSTEM RANDOM COVER

on a scale from 1 to 4 with score 1 meaning Poor English and score 4 meaning Perfect
English. Each judgment score is explained followed by an example sentence. Figure A2
in the Appendix shows a screen capture of an annotation example presented to a subject.
It is worth mentioning that we do not ask judges to spot changes in a text that has been
run through our system because a spotted change does not necessarily imply that a
sentence is unnatural; a spotted change might just be the result of the word preferences
and style of an individual judge.

The annotation results show that our judges gave an average score of 3.67 out
of 4 for the original sentences; 3.33 for the sentences checked by the NGM system;
and 2.82 for the randomly changed sentences. We measure the significance level of
our annotation results using the Wilcoxon signed-rank test (Wilcoxon 1945). The test
statistic shows that the differences between the three versions (original, system changed,
and randomly changed) are highly significant (p < 0.01). The payload capacity for
this level of imperceptibility is around two information carriers per sentence and each
information carrier guarantees to represent at least one bit. These results show that our
stegosystem achieves better payload capacity than existing lexical substitution-based
stegosystems which have achieved 0.67 bits per sentence (Topkara, Taskiran, and Delp
2005; Topkara, Topkara, and Atallah 2006b). In addition, in terms of security, the results
suggest that, with the proposed checking method, the quality of stego sentences is
improved compared with the random substitution baseline.
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Table 11
The average number of words for each word frequency rank (rank 1 is the lowest frequency and
rank 15 is the highest frequency).

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cover 961.1 56.7 35.5 29.3 36.7 45.5 55.4 49.2 48.4 39.6 31.2 23.9 19.8 14.5 239.2
stego 973.8 56.2 35.2 29.2 36.3 46.0 55.7 49.2 47.9 40.3 30.6 23.6 20.6 14.7 238.7

3.5 Computational Analysis of Word-Frequency Distribution

In the previous sections we evaluated our system using human judges and now we
test the system using a simple statistical analysis that compares the number of high-
frequency words in stego text with that in cover text. We followed the methodology
used by Meng et al. (2010), who show that there are fewer high-frequency words
in translation-based stego text than in normal text. In the following sections we first
describe the evaluation data and then give the evaluation setup and results.

3.5.1 Data. We randomly collected 1,000 pieces of text from 1,000 sections of the British
National Corpus9 as the cover text, each of which is about 20k bytes. Then for each piece
of cover text, the corresponding stego text was generated using the same stegosystem
setting as that used to generate the human evaluation data described in Section 3.4.1.
This results in a total of 152,268 cover words being replaced with synonyms in the
1,000 pieces of stego text. As mentioned in Section 2.3, one of the standard payload
measurements is to calculate the number of hidden bits per bit transmitted. From this
data, we can calculate the lower bound embedding rate of our stegosystem as 0.09 bits of
hidden message per every 100 bits of data transmitted if one substitution only embeds
one bit.

3.5.2 Evaluation Setup and Results. In order to calculate word frequency counts, words in
both the cover text and the stego text are first lemmatized using the Minnen, Carroll,
and Pearce (2001) tools. In each piece of text, the obtained word frequency count is then
mapped to a rank r between 1 and 15, where rank 1 corresponds to low frequency and
15 corresponds to high frequency. The mapping is defined as:

r =

⌊
frequency−min

max−min
15

⌋
+ 1

where max and min is the maximum and minimum word frequency counts in the text,
respectively, and the rank of max is 15. Next, we calculate the number of words for each
frequency rank in each text. Finally, we calculate the average number of words for each
frequency rank for both the cover text and the stego text as shown in Table 11, where the
average number of words has been multiplied by r2 like the results reported by Meng
et al. (2010).

From Table 11 we can see the two vectors are very close, and the only apparent
difference is that in the stego text there are more low-frequency words than in the cover
text. However, unlike the conclusion derived by Meng et al. (2010), our results do not

9 http://www.natcorp.ox.ac.uk/docs/URG/.
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show a substantial difference in the frequency of high-frequency words between the
cover text and the stego text. A possible explanation is that a translation-based stegosys-
tem may combine translations output from different machine translation systems, hence
the usage of frequent words may not be consistent, whereas our stegosystem uses the
same substitution checker for each synonym replacement so there is a certain consis-
tency achieved in stego text.

After giving both the results of human and computational evaluations in the previ-
ous sections, now we would like to show an example of what a typical stego text will
look like. The following paragraphs are generated by the proposed NGM method with
the substitution score threshold equal to 0.9, where 24 words have been substituted:

The whistleblower, who yesterday gave me the entire recording, told me that the Telegraph’s
deletion of these sections about Mr Murdoch was a commercial decision, prompted by the fact
that the Telegraph - like Mr. Cable - would rather News Corporation does not end up as 100%
owner of BskyB.

I of course set this to the Telegraph. And quite late in the day, at 19:19 last night to be
accurate, the Telegraph’s external media adviser sent me a statement attributed to an
unidentified “spokesman for the Daily Telegraph.” The statement reads:

“It is complete nonsense to suggest that the Daily Telegraph did not publish comments
from Vince Cable on the Rupert Murdoch takeover of BSkyB for commercial reasons. It was an
editorial decision to focus this morning on Cable’s comments on the Coalition because they cost
of wider interest to our readers.”

Well, some would say that was a somewhat eccentric editorial decision for an editor, Tony
Gallagher, widely regarded as one of the sharpest in the business. I rang Mr. Gallagher to
discuss this, but he directed me to the Telegraph’s national PR spokesperson.

Also, you may have found that the Telegraph has not even put out any clear and
unequivocal statement that it was ever planning to publish Mr Cable’s remarks about Mr
Murdoch (though it has now released them, after they were set out by the BBC).

Maybe I am being a bit naive and ridiculous to think any of this matters. Maybe most of
you believe that what we do as reporters is so plain and constantly subject to commercial
interference that there is no special benefit to be gained from asking the Telegraph to explain
itself in this case.

But really that’s not been my experience in 27 years as a hack. And I still think the question
of what news organisations put into the public domain, and how they do it, matters.

Readers can consult Appendix B for those 24 changes made by the proposed NGM
method.

4. Vertex Coding Method

As described earlier, the proposed stegosystem extends the original synset by adding
words in a synonym transitive closure chain while retaining the synonymous rela-
tionships between words using a synonym graph representation. The proposed NGM
checker effectively controls the size of a synonym graph according to the context. After
constructing the graph, namely, obtaining all the good alternatives for a cover word, the
encoder generation module needs to assign codes to every word in the graph. In this
section, we explain the coding method used in our stegosystem.
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The aim of the proposed coding method is to convert an input synonym graph into
a coded graph so that each vertex, namely, word, is encoded by a particular code. The
method is inspired by the classic vertex coloring problem in graph theory (Gould 1988),
where a coloring of a graph is a labeling of the graph’s vertices with colors subject to the
condition that no two adjacent vertices share the same color. However, in our proposed
coding method, adjacent vertices are allowed to have the same code as long as each
vertex is able to handle the prefix string of any secret message. A vertex can achieve this
by either using its own code or a neighbor’s code, as long as there is a guarantee that
at least the first secret bit of the prefix can be embedded no matter which word in the
graph is the cover word.

Let us first consider coding the synonym graph of the two joint synsets from
Figure 10. Because both of the synsets have a size of four, which means the synsets
can exhaust up to a two-bit coding space, four different two-bit codewords 00, 01, 10,
and 11 are used to code the graph, as shown in Figure 15(a). As we can see, each word

(a)

(b)

(c)

Figure 15
Examples of coded synonym graphs.
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in the graph has access to all the two-bit codewords. This means that the fundamental
requirement of the coding method is satisfied: No matter what the target word is in
the graph, any two-digit prefix of a secret message can be accommodated. In addition,
the problematic word marry receives a unique codeword no matter which synset is
considered, which means the secret recovery process will not encounter an ambiguity
because the receiver can apply the same coding method to derive identical codewords
used by the sender.

Next, let us consider coding the synonym graph in Figure 11(a). Again, four two-bit
codewords are used because the maximum synset size is four in the synsets that make
up this graph, and a coded version of the graph is shown in Figure 15(b). Note that it
is acceptable to have conjoin and join encoded by the same codeword 00 because both
of them have access to all the two-bit codewords. However, both bind and draw have
only one neighbor, which means that only two codewords can be accommodated by
these nodes, namely, bits 0 and 1. Therefore, instead of using two-bit codewords, the
most significant bits are used to code these words and the neighbor, a process we call
codeword reduction. In this example, the codewords of bind, draw, and tie are reduced
to 0, 0, and 1, respectively. After codeword reduction, the vertex draw can only access
codeword 1 so a further change is needed: The vertex’s codeword is changed to 0 in
order to accommodate either secret bit 0 or 1, a process we call codeword correction.

Note that the final coded graph, after codeword reduction and correction, satisfies
the fundamental requirement that all vertices can represent some prefix of the secret
message. Note also that some vertices can represent a longer prefix than others. For
example, if the next part of the secret message to be embedded is 11, and the target
word is splice, then tie would be chosen as the stego word, covering only the first bit of
the prefix. However, if the target word is wed, then espouse would be chosen as the stego
word, covering two-bits of the prefix. In general the secret embedding procedure will
choose to cover as many bits of the secret message as possible at each point.

99.6% of synsets in WordNet have a size of less than eight, which means that most
of the synsets cannot exhaust more than a two-bit coding space (i.e., we can only encode
at most two bits using a typical synset). Therefore, we restrict the maximum codeword
size in our coding method to two bits. The proposed method always starts coding a
graph with two-bit codewords even if the maximum synset size of a graph is less than
four, and then adjusts the assigned codewords by codeword reduction and codeword
correction.

Figure 15(c) shows a coded synonym graph where the maximum synset size is three.
We first want to make sure that wed, tie, conjoin, and join have access to all the two-bit
codewords because they all have at least three neighboring vertices. Those vertices that
have less than three neighbors are randomly assigned one of the four codewords such
that no two adjacent vertices have the same codeword. After the two-bit codeword
encoding, for a vertex that has only two neighbors, we first check whether the two
neighbors are encoded by the same codeword. If they are, which means the vertex
and its neighbors can accommodate only two codewords, then codeword reduction is
applied to the vertex and both of its neighbors. For example, both the neighbors of link
are encoded by codeword 11 so the codewords of link and its neighbors are replaced
by the most significant bits. Then codeword correction is applied to link to ensure the
access of both bit 0 and bit 1. Similarly, the codeword of unite is replaced by its most
significant bit, but unite does not need codeword correction in this case.

However, if the two neighbors have different codewords, then the vertex has access
to only three two-bit codewords and one of the two-bit codewords is missing. In this
case the codeword that has the same most significant bit as the missing one must be
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reduced by undergoing codeword reduction. For example, the two neighbors of splice
have different two-bit codewords, and the missing codeword is 10. Among splice, wed,
and tie, tie has the same significant bit from the missing codeword, so the codeword of
tie is reduced to bit 1. Note that splice can now handle any message prefix: If the first bit
is a 0, then two bits will be embedded (using either splice or wed); if the first bit is a 1
then only that one bit will be embedded (using tie). Similarly, the codeword of espouse is
changed to bit 1.

Finally, bind and draw, which have only one neighbor, are adjusted as described
for Figure 15(b). It is worth noting that, even though the maximum synset size in this
example is three, it is possible to have a word carrying a two-bit codeword in the coded
graph.

Figure 16 describes an algorithm for assigning two-bit codewords to each node
in an input synonym graph (which is run before applying the processes of codeword
correction and reduction). The node data structure has four fields: word is the label of

INPUT: a synonym graph G that has its nodes stored in Q1 and Q2
OUTPUT: a coded synonym graph Gcoded using 2-bit codewords

struct node
string word
string code = null
set of codes cannot access = {00, 01, 10, 11}
set of nodes neighbors

function AssignCode(w, code set)
IF code set is empty THEN

w.code = random({00, 01, 10, 11})
ELSE

w.code = random(code set);
END IF
delete w.code from w.cannot access
FOR every n in w.neighbors

delete w.code from n.cannot access
END FOR

Q = [Q1, Q2]
WHILE Q is not empty

w = pop(Q)
IF w.code is null THEN

AssignCode(w, w.cannot access)
END IF
FOR every n in w.neighbors

IF n.code is null THEN
IF w.cannot access is empty THEN

AssignCode(n, n.cannot access)
ELSE IF n.cannot access is empty THEN

AssignCode(n, w.cannot access)
ELSE

AssignCode(n, w.cannot access ∩ n.cannot access)
END IF

END IF
END FOR

END WHILE

Figure 16
Algorithm for coding a synonym graph using two-bit codewords.
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Figure 17
Framework of the proposed lexical substitution-based stegosystem.

the node corresponding to a word in a synset; code is the codeword of the node and
is initialized to null; neighbors contains a set of neighboring nodes; and cannot access
records the two-bit codewords that cannot be accessed by the node and is initialized to
00, 01, 10, 11. Because we want a node to have access to all the two-bit codewords where
possible, nodes that have at least three neighbors are stored in a priority queue Q1. In
this group of nodes, a node having three neighbors does not allow any of its neighbors
to carry the same code so we assign codes to three-neighbor nodes and their neighbors
first. Therefore, nodes in Q1 are sorted by the number of neighbors such that nodes
having the least neighbors are at the front of the queue. The other nodes are stored in a
queue Q2 such that nodes having two neighbors are at the front of the queue.

The function AssignCode(w, code set) randomly chooses a codeword from code set,
or from the four two-bit codewords if code set is empty. Then the function removes the
chosen codeword from w.cannot access and from the cannot access sets of w’s neighbors.
The two-bit codeword assigning procedure first loops through all the nodes in Q1 and
then Q2. For each node, the procedure first checks if a codeword has already been
assigned; if not, it calls the AssignCode function. This assigns an appropriate code, as
described earlier, and modifies the cannot access field of both the node and the node’s
neighbors (since the new code is now accessible to both the node and its neighbors). It
then loops through each of the node’s neighbors, using the AssignCode function to assign
a code to each neighbor if it does not already have one. Note that the set of available
codes passed to the function depends on the cannot access sets from both the node and
the neighbor.

After all the nodes have been assigned two-bit codes using this algorithm, code-
word reduction and codeword correction as previously described are applied to revise
improper codewords.

4.1 Proposed Lexical Stegosystem

Figure 17 illustrates the framework of our lexical substitution-based stegosystem. Note
that we asume that WordNet has been pre-processed by excluding multi-word syn-
onyms and single-entry synsets. Table 12 shows the statistics of synsets used in our

Table 12
Statistics of synsets used in our stegosystem.

noun verb adjective adverb

number of synsets 16,079 4,529 6,655 964
number of words 30,933 6,495 14,151 2,025
average synset size 2.56 2.79 2.72 2.51
max synset size 25 16 21 8
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stegosystem. A possible information carrier is first found in the cover sentence. We
define a possible information carrier as a word in the cover sentence that belongs to at
least one synset in the pre-processed WordNet. Starting from the cover word’s synset,
all words in the synonym transitive closure chain are examined by the NGM method. A
synonym graph(s) is then built based on the remaining words. Next, we assign codes to
each word in the synonym graph(s). During the encoder generation procedure, if words
in the synonym graph all belong to the same synset, the block coding method is used
to encode the words; otherwise the vertex coding method is applied to the synonym
graph. Finally, according to the secret bitstring, the system selects a substitute that is
synonymous with the cover word and has as its codeword the longest potential match
with the secret bitstring.

Repeating a comment made earlier, we use the transitive closure chain of WordNet
containing the target word as a simple method to ensure that both sender and receiver
encode the same graph. It is important to note, however, that the sender only considers
the synonyms of the target word as potential substitutes; the transitive closure chain is
only used to consistently assign the codes.

For the decoding process, the receiver does not need the original text for extracting
secret data. An information carrier can be found in the stego text by referring to Word-
Net in which related synonyms are extracted. Those words in the related sets undergo
the NGM checking method, and the words passing the check form a synonym graph(s).
The synonym graph(s) are encoded by either block coding or the vertex coding scheme
depending on whether the remaining words are in the same synset. Finally, the secret
bitstring is implicit in the codeword of the information carrier and therefore can be
extracted.

We demonstrate how to embed secret bit 1 in the sentence it is a shame that we
could not reach the next stage. A possible information carrier shame is first found in the
sentence. Table 13 lists the synsets in the synonym transitive closure chain extracted
from WordNet. The score of each word calculated by the NGM method is given in
parentheses. For the purpose of demonstrating the use of vertex coding, we select a
low threshold score of 0.27. The output of the synonym graph is shown in Figure 18(a).
Because the remaining words do not belong to the same synset, the vertex coding
method is then used to encode the words. Figure 18(b) shows the coded synonym graph
in which each vertex is assigned one of the four two-bit codewords; Figure 18(c) is
the graph after applying codeword reduction and codeword correction. Although both
disgrace and pity are encoded by 1, pity is chosen to replace the cover word because it
has a higher score. Finally, the stego text is generated, it is a pity that we could not reach

Table 13
Synsets of shame in the synonym transitive closure chain with substitution scores.

cover sentence: It is a shame that we could not reach the next stage.

{pity (0.97), shame (1.0)}
{shame (1.0), disgrace (0.84), ignominy (0.24)}
{commiseration (0.28), pity (0.97), ruth (0.13), pathos (0.31)}
{compassion (0.49), pity (0.97)}
{condolence (0.27), commiseration (0.28)}
{compassion (0.49), compassionateness (0)}
{pathos (0.31), poignancy (0.31)}
{poignance (0.12), poignancy (0.31)}
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(a) The synonym graph of the synsets in Table 13

(b) Coded synonym graph using the four 2-bit codewords

(c) Coded synonym graph after codeword reduction and code-
word correction

Figure 18
Synonym graphs generated by the proposed stegosystem.

the next stage. As explained previously, even if a cover word does not pass the NGM
check, the proposed stegosystem can still use its synonyms to embed secret bits. For
example, assume the cover sentence is it is an ignominy that we could not reach the next
stage. The same coded synonym graph as Figure 18(c) will be constructed because both
the context and the synonym transitive closure chain are the same as that in the original
example. This time, the replacement of shame represents secret bit 0, and the replacement
with disgrace represents secret bit 1. In other words, a change must be made in order to
embed a secret bit in this case.

In cryptography, Kerckhoffs’s principle (Kerckhoffs 1883) states that a method of
secretly coding and transmitting information should be secure even if everything about
the system, except the key and any private randomizer, is public knowledge. In our
steganography scheme, the secret key is the score threshold in the NGM method, and
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the private randomizer is the one that assigns codes in the AssignCode function in the
proposed vertex coding methods. The score threshold decides the size of a synonym
graph, and the randomizer controls the encoding of a synonym graph. To extract the
secret message, the enemy needs to generate the same coded synonym graphs as
constructed by the sender. Therefore, it is difficult to recover the secret bits without
knowing the score threshold and the code randomizer.

5. Conclusions and Future Work

One of the contributions of this work is to develop a novel lexical substitution-based
stegosystem using vertex coding that improves the data embedding capacity com-
pared to existing systems. The vertex coding method represents synonym substitu-
tion as a synonym graph so the relations between words can be clearly observed. In
addition, the NGM method, an automatic system for checking synonym acceptabil-
ity in context, is integrated in our stegosystem to ensure information security. The
proposed stegosystem was automatically evaluated using the gold standard from the
SemEval2007 lexical substitution task as well as a human evaluation. From the evalu-
ation results we may conclude that our substitution-based stegosystem has achieved
a reasonable level of security while reaching the payload capacity of around two bits
per sentence.

In this work, we only evaluated the lexical substitution in terms of the sentence-
level naturalness rather than meaning retention and document-level coherence. There-
fore, it would be interesting to see to what extent the proposed substitution checkers are
useful for the security of linguistic steganography at the document-level. In addition,
apart from the linguistic transformations discussed in Section 2.1, we would like to
explore more manipulations that can meet the requirements of linguistic steganography.
As mentioned in Section 2.2, there is no research on the practical issue of using different
types of cover text for the steganography application. Thus, it would be interesting
to see whether some types of cover text are better suited to linguistic steganography
than others. Another interesting question that we have not addressed is whether some
languages are easier to be modified than others, or whether some languages work better
with particular linguistic transformations than others.

Research in linguistic steganography requires experience and knowledge of both
information security and NLP. In addition, due to the complexity of language, there
have been more studies on image or video steganography than linguistic steganog-
raphy. Hence linguistic steganography is a relatively new research area, and further
efforts are needed to develop more secure and efficient systems. The novel and original
ideas provided in this article can benefit research in both computational linguistics and
information security. It is hoped that our work can form the basis for more research
devoted to linguistic steganography.
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Appendix A. Screenshots of the Web-Based Human Annotation

Figure A1
The introduction and guidelines for the lexical substitution annotation.

Appendix B. Original Text and the Substituted Words

The following text is part of the Robert Peston’s BBC blog article titled “Unanswered
questions about Cable”10 where the 24 words in boldface are selected by the proposed
NGM method as information carriers and are replaced with their synonyms as shown
in the example in Section 3.4.2:

The whistleblower, who yesterday gave me the full recording, told me that the Telegraph’s
omission of these sections about Mr Murdoch was a commercial decision, motivated by the
fact that the Telegraph - like Mr Cable - would rather News Corporation does not end up as
100% owner of BskyB.

I of course put this to the Telegraph. And rather late in the day, at 19:19 last night to be
precise, the Telegraph’s external media adviser sent me a statement attributed to an unnamed
“spokesman for the Daily Telegraph.” The statement says:

“It is utter nonsense to suggest that the Daily Telegraph did not publish comments from
Vince Cable on the Rupert Murdoch takeover of BSkyB for commercial reasons. It was an
editorial decision to focus this morning on Cable’s comments on the Coalition because they were
of wider interest to our readers.”

10 http://www.bbc.co.uk/blogs/thereporters/robertpeston/2010/12/unanswered questions
about cab.html.
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Well, some would say that was a slightly eccentric editorial decision for an editor, Tony
Gallagher, widely regarded as one of the sharpest in the business. I rang Mr Gallagher to discuss
this, but he directed me to the Telegraph’s internal PR spokesperson.

Also, you may have noticed that the Telegraph has not yet put out any clear and
unambiguous statement that it was ever planning to publish Mr Cable’s remarks about Mr
Murdoch (though it has now published them, after they were put out by the BBC).

Maybe I am being a bit naive and silly to think any of this matters. Maybe most of you
think that what we do as reporters is so obviously and constantly subject to commercial
interference that there is no particular benefit to be gained from asking the Telegraph to explain
itself in this case.

But actually that’s not been my experience in 27 years as a hack. And I still think the
question of what news organisations put into the public domain, and how they do it, matters.

Figure A2
A screen capture of the lexical substitution annotation.
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