
Learning Dependency-Based
Compositional Semantics

Percy Liang∗

University of California, Berkeley

Michael I. Jordan∗∗

University of California, Berkeley

Dan Klein†

University of California, Berkeley

Suppose we want to build a system that answers a natural language question by representing its
semantics as a logical form and computing the answer given a structured database of facts. The
core part of such a system is the semantic parser that maps questions to logical forms. Semantic
parsers are typically trained from examples of questions annotated with their target logical forms,
but this type of annotation is expensive.

Our goal is to instead learn a semantic parser from question–answer pairs, where the logical
form is modeled as a latent variable. We develop a new semantic formalism, dependency-based
compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The
model parameters are estimated using a simple procedure that alternates between beam search
and numerical optimization. On two standard semantic parsing benchmarks, we show that our
system obtains comparable accuracies to even state-of-the-art systems that do require annotated
logical forms.

No rights reserved. This work was authored as part of the Contributor’s official duties as an Employee of
the United States Government and is therefore a work of the United States Government. In accordance with
17 U.S.C. 105, no copyright protection is available for such works under U.S. law.

1. Introduction

One of the major challenges in natural language processing (NLP) is building systems
that both handle complex linguistic phenomena and require minimal human effort. The
difficulty of achieving both criteria is particularly evident in training semantic parsers,
where annotating linguistic expressions with their associated logical forms is expensive
but until recently, seemingly unavoidable. Advances in learning latent-variable models,
however, have made it possible to progressively reduce the amount of supervision

∗ Computer Science Division, University of California, Berkeley, CA 94720, USA.
E-mail: pliang@cs.stanford.edu.

∗∗ Computer Science Division and Department of Statistics, University of California, Berkeley, CA 94720,
USA. E-mail: jordan@cs.berkeley.edu.
† Computer Science Division, University of California, Berkeley, CA 94720, USA.
E-mail: klein@cs.berkeley.edu.

Submission received: 12 September 2011; revised submission received: 19 February 2012; accepted for
publication: 18 April 2012.

doi:10.1162/COLI a 00127

Computational Linguistics Volume 39, Number 2

required for various semantics-related tasks (Zettlemoyer and Collins 2005; Branavan
et al. 2009; Liang, Jordan, and Klein 2009; Clarke et al. 2010; Artzi and Zettlemoyer 2011;
Goldwasser et al. 2011). In this article, we develop new techniques to learn accurate
semantic parsers from even weaker supervision.

We demonstrate our techniques on the concrete task of building a system to answer
questions given a structured database of facts; see Figure 1 for an example in the domain
of U.S. geography. This problem of building natural language interfaces to databases
(NLIDBs) has a long history in NLP, starting from the early days of artificial intelligence
with systems such as LUNAR (Woods, Kaplan, and Webber 1972), CHAT-80 (Warren
and Pereira 1982), and many others (see Androutsopoulos, Ritchie, and Thanisch [1995]
for an overview). We believe NLIDBs provide an appropriate starting point for semantic
parsing because they lead directly to practical systems, and they allow us to temporarily
sidestep intractable philosophical questions on how to represent meaning in general.
Early NLIDBs were quite successful in their respective limited domains, but because
these systems were constructed frommanually built rules, they became difficult to scale
up, both to other domains and to more complex utterances. In response, against the
backdrop of a statistical revolution in NLP during the 1990s, researchers began to build
systems that could learn from examples, with the hope of overcoming the limitations of
rule-based methods. One of the earliest statistical efforts was the CHILL system (Zelle
and Mooney 1996), which learned a shift-reduce semantic parser. Since then, there has
been a healthy line of work yielding increasingly more accurate semantic parsers by
using new semantic representations andmachine learning techniques (Miller et al. 1996;
Zelle and Mooney 1996; Tang andMooney 2001; Ge andMooney 2005; Kate, Wong, and
Mooney 2005; Zettlemoyer and Collins 2005; Kate andMooney 2006;Wong andMooney
2006; Kate and Mooney 2007; Wong and Mooney 2007; Zettlemoyer and Collins 2007;
Kwiatkowski et al. 2010, 2011).

Although statistical methods provided advantages such as robustness and portabil-
ity, however, their application in semantic parsing achieved only limited success. One
of the main obstacles was that these methods depended crucially on having examples
of utterances paired with logical forms, and this requires substantial human effort to
obtain. Furthermore, the annotators must be proficient in some formal language, which
drastically reduces the size of the annotator pool, dampening any hope of acquiring
enough data to fulfill the vision of learning highly accurate systems.

In response to these concerns, researchers have recently begun to explore the pos-
sibility of learning a semantic parser without any annotated logical forms (Clarke et al.

Figure 1
The concrete objective: A system that answers natural language questions given a structured
database of facts. An example is shown in the domain of U.S. geography.

390

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 2
Our statistical methodology consists of two steps: (i) semantic parsing (p(z | x;θ)): an utterance x
is mapped to a logical form z by drawing from a log-linear distribution parametrized by a
vector θ; and (ii) evaluation ([[z]]w): the logical form z is evaluated with respect to the world w
(database of facts) to deterministically produce an answer y. The figure also shows an example
configuration of the variables around the graphical model. Logical forms z are represented as
labeled trees. During learning, we are given w and (x, y) pairs (shaded nodes) and try to infer
the latent logical forms z and parameters θ.

2010; Artzi and Zettlemoyer 2011; Goldwasser et al. 2011; Liang, Jordan, andKlein 2011).
It is in this vein that we develop our present work. Specifically, given a set of (x, y)
example pairs, where x is an utterance (e.g., a question) and y is the corresponding
answer, we wish to learn a mapping from x to y. What makes this mapping particularly
interesting is that it passes through a latent logical form z, which is necessary to capture
the semantic complexities of natural language. Also note that whereas the logical form
z was the end goal in much of earlier work on semantic parsing, for us it is just an
intermediate variable—a means towards an end. Figure 2 shows the graphical model
which captures the learning setting we just described: The question x, answer y, and
world/database w are all observed. We want to infer the logical forms z and the
parameters θ of the semantic parser, which are unknown quantities.

Although liberating ourselves from annotated logical forms reduces cost, it does
increase the difficulty of the learning problem. The core challenge here is program
induction: On each example (x, y), we need to efficiently search over the exponential
space of possible logical forms (programs) z and find ones that produce the target
answer y, a computationally daunting task. There is also a statistical challenge: How
do we parametrize the mapping from utterance x to logical form z so that it can be
learned from only the indirect signal y? To address these two challenges, we must first
discuss the issue of semantic representation. There are two basic questions here: (i) what

391

Computational Linguistics Volume 39, Number 2

should the formal language for the logical forms z be, and (ii) what are the compositional
mechanisms for constructing those logical forms?

The semantic parsing literature has considered many different formal languages
for representing logical forms, including SQL (Giordani and Moschitti 2009), Prolog
(Zelle and Mooney 1996; Tang and Mooney 2001), a simple functional query language
called FunQL (Kate, Wong, and Mooney 2005), and lambda calculus (Zettlemoyer and
Collins 2005), just to name a few. The construction mechanisms are equally diverse, in-
cluding synchronous grammars (Wong and Mooney 2007), hybrid trees (Lu et al. 2008),
Combinatory Categorial Grammars (CCG) (Zettlemoyer and Collins 2005), and shift-
reduce derivations (Zelle and Mooney 1996). It is worth pointing out that the choice of
formal language and the construction mechanism are decisions which are really more
orthogonal than is often assumed—the former is concerned with what the logical forms
look like; the latter, with how to generate a set of possible logical forms compositionally
given an utterance. (How to score these logical forms is yet another dimension.)

Existing systems are rarely based on the joint design of the formal language and
the construction mechanism; one or the other is often chosen for convenience from
existing implementations. For example, Prolog and SQL have often been chosen as
formal languages for convenience in end applications, but they were not designed
for representing the semantics of natural language, and, as a result, the construction
mechanism that bridges the gap between natural language and formal language is
generally complex and difficult to learn. CCG (Steedman 2000) is quite popular in
computational linguistics (for example, see Bos et al. [2004] and Zettlemoyer and Collins
[2005]). In CCG, logical forms are constructed compositionally using a small handful
of combinators (function application, function composition, and type raising). For a
wide range of canonical examples, CCG produces elegant, streamlined analyses, but
its success really depends on having a good, clean lexicon. During learning, there is
often a great amount of uncertainty over the lexical entries, which makes CCG more
cumbersome. Furthermore, in real-world applications, we would like to handle disflu-
ent utterances, and this further strains CCG by demanding either extra type-raising
rules and disharmonic combinators (Zettlemoyer and Collins 2007) or a proliferation of
redundant lexical entries for each word (Kwiatkowski et al. 2010).

To cope with the challenging demands of program induction, we break away from
tradition in favor of a new formal language and construction mechanism, which we call
dependency-based compositional semantics (DCS). The guiding principle behind DCS
is to provide a simple and intuitive framework for constructing and representing logical
forms. Logical forms in DCS are tree structures calledDCS trees. The motivation is two-
fold: (i) DCS trees are meant to parallel syntactic dependency trees, which facilitates
parsing; and (ii) a DCS tree essentially encodes a constraint satisfaction problem, which
can be solved efficiently using dynamic programming to obtain the denotation of a DCS
tree. In addition, DCS provides a mark–execute construct, which provides a uniform
way of dealing with scope variation, a major source of trouble in any semantic for-
malism. The construction mechanism in DCS is a generalization of labeled dependency
parsing, which leads to simple and natural algorithms. To a linguist, DCS might appear
unorthodox, but it is important to keep in mind that our primary goal is effective
program induction, not necessarily to model new linguistic phenomena in the tradition
of formal semantics.

Armed with our new semantic formalism, DCS, we then define a discriminative
probabilistic model, which is depicted in Figure 2. The semantic parser is a log-linear
distribution over DCS trees z given an utterance x. Notably, z is unobserved, and we in-
stead observe only the answer y, which is obtained by evaluating z on a world/database

392

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

w. There are an exponential number of possible trees z, and usually dynamic program-
ming can be used to efficiently search over trees. However, in our learning setting
(independent of the semantic formalism), we must enforce the global constraint that
z produces y. This makes dynamic programming infeasible, so we use beam search
(though dynamic programming is still used to compute the denotation of a fixed DCS
tree). We estimate the model parameters with a simple procedure that alternates be-
tween beam search and optimizing a likelihood objective restricted to those beams. This
yields a natural bootstrapping procedure in which learning and search are integrated.

We evaluated our DCS-based approach on two standard benchmarks, GEO, a U.S.
geography domain (Zelle and Mooney 1996), and JOBS, a job queries domain (Tang and
Mooney 2001). On GEO, we found that our system significantly outperforms previous
work that also learns from answers instead of logical forms (Clarke et al. 2010). What
is perhaps a more significant result is that our system obtains comparable accuracies to
state-of-the-art systems that do rely on annotated logical forms. This demonstrates the
viability of training accurate systems with much less supervision than before.

The rest of this article is organized as follows: Section 2 introduces DCS, our new
semantic formalism. Section 3 presents our probabilistic model and learning algorithm.
Section 4 provides an empirical evaluation of our methods. Section 5 situates this work
in a broader context, and Section 6 concludes.

2. Representation

In this section, we present the main conceptual contribution of this work, dependency-
based compositional semantics (DCS), using the U.S. geography domain (Zelle and
Mooney 1996) as a running example. To do this, we need to define the syntax and
semantics of the formal language. The syntax is defined in Section 2.2 and is quite
straightforward: The logical forms in the formal language are simply trees, which we
callDCS trees. In Section 2.3, we give a type-theoretic definition ofworlds (also known
as databases or models) with respect to which we can define the semantics of DCS trees.

The semantics, which is the heart of this article, contains two main ideas: (i) using
trees to represent logical forms as constraint satisfaction problems or extensions thereof,
and (ii) dealing with cases when syntactic and semantic scope diverge (e.g., for general-
ized quantification and superlative constructions) using a new construct which we call
mark–execute. We start in Section 2.4 by introducing the semantics of a basic version
of DCS which focuses only on (i) and then extend it to the full version (Section 2.5) to
account for (ii).

Finally, having fully specified the formal language, we describe a construction
mechanism for mapping a natural language utterance to a set of candidate DCS trees
(Section 2.6).

2.1 Notation

Operations on tuples will play a prominent role in this article. For a sequence1 v =
(v1, . . . , vk), we use |v| = k to denote the length of the sequence. For two sequences u
and v, we use u + v = (u1, . . . ,u|u|, v1, . . . , v|v|) to denote their concatenation.

1 We use the term sequence to refer to both tuples (v1, . . . , vk) and arrays [v1, . . . , vk]. For our purposes, there
is no functional difference between tuples and arrays; the distinction is convenient when we start to talk
about arrays of tuples.

393

Computational Linguistics Volume 39, Number 2

For a sequence of positive indices i = (i1, . . . , im), let vi = (vi1 , . . . , vim) consist of the
components of v specified by i; we call vi the projection of v onto i. We use negative
indices to exclude components: v−i = (v(1,...,|v|)\i). We can also combine sequences of
indices by concatenation: vi,j = vi + vj. Some examples: if v = (a, b, c, d), then v2 = b,
v3,1 = (c, a), v−3 = (a, b, d), v3,−3 = (c, a, b, d).

2.2 Syntax of DCS Trees

The syntax of the DCS formal language is built from two ingredients, predicates and
relations:

� Let P be a set of predicates. We assume that P contains a special null
predicate ø, domain-independent predicates (e.g., count, <, >, and =), and
domain-specific predicates (for the U.S. geography domain, state, river,
border, etc.). Right now, think of predicates as just labels, which have yet
to receive formal semantics.

� LetR be the set of relations. Note that unlike the predicates P , which can
vary across domains, the relationsR are fixed. The full set of relations are
shown in Table 1. For now, just think of relations as labels—their semantics
will be defined in Section 2.4.

The logical forms in DCS are called DCS trees. A DCS tree is a directed rooted tree
in which nodes are labeled with predicates and edges are labeled with relations; each
node also maintains an ordering over its children. Formally:

Definition 1 (DCS trees)
Let Z be the set of DCS trees, where each z ∈ Z consists of (i) a predicate z.p ∈ P and (ii)
a sequence of edges z.e = (z.e1, . . . , z.em). Each edge e consists of a relation e.r ∈ R (see
Table 1) and a child tree e.c ∈ Z .

We will either draw a DCS tree graphically or write it compactly as 〈p; r1 :c1; . . . ; rm :cm〉
where p is the predicate at the root node and c1, . . . , cm are its m children connected via
edges labeled with relations r1, . . . , rm, respectively. Figure 3(a) shows an example of a
DCS tree expressed using both graphical and compact formats.

Table 1
Possible relations that appear on edges of DCS trees. Basic DCS uses only the join and aggregate
relations; the full version of DCS uses all of them.

RelationsR

Name Relation Description of semantic function

join j
j′ for j, j′ ∈ {1, 2, . . . } j-th component of parent = j′-th component of child

aggregate Σ parent = set of feasible values of child

extract E mark node for extraction
quantify Q mark node for quantification, negation
compare C mark node for superlatives, comparatives
execute Xi for i ∈ {1, 2 . . . }∗ process marked nodes specified by i

394

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 3
(a) An example of a DCS tree (written in both the mathematical and graphical notations). Each
node is labeled with a predicate, and each edge is labeled with a relation. (b) A DCS tree zwith
only join relations encodes a constraint satisfaction problem, represented here as a lambda
calculus formula. For example, the root node label city corresponds to a unary predicate
city(c), the right child node label loc corresponds to a binary predicate loc(�) (where � is a
pair), and the edge between them denotes the constraint c1 = �1 (where the indices correspond to
the two labels on the edge). (c) The denotation of z is the set of feasible values for the root node.

A DCS tree is a logical form, but it is designed to look like a syntactic dependency
tree, only with predicates in place of words. As we’ll see over the course of this section,
it is this transparency between syntax and semantics provided by DCS which leads to a
simple and streamlined compositional semantics suitable for program induction.

2.3 Worlds

In the context of question answering, the DCS tree is a formal specification of the
question. To obtain an answer, we still need to evaluate the DCS tree with respect to
a database of facts (see Figure 4 for an example). We will use the term world to refer

Figure 4
We use the domain of U.S. geography as a running example. The figure presents an example of a
world w (database) in this domain. A world maps each predicate to a set of tuples. For example,
the depicted world wmaps the predicate loc to the set of pairs of places and their containers.
Note that functions (e.g., population) are also represented as predicates for uniformity. Some
predicates (e.g., count) map to an infinite number of tuples and would be represented implicitly.

395

Computational Linguistics Volume 39, Number 2

to this database (it is sometimes also called a model, but we avoid this term to avoid
confusion with the probabilistic model for learning that we will present in Section 3.1).
Throughout this work, we assume the world is fully observed and fixed, which is a
realistic assumption for building natural language interfaces to existing databases, but
questionable for modeling the semantics of language in general.

2.3.1 Types and Values. To define a world, we start by constructing a set of values V .
The exact set of values depends on the domain (we will continue to use U.S. geog-
raphy as a running example). Briefly, V contains numbers (e.g., 3 ∈ V), strings (e.g.,
Washington ∈ V), tuples (e.g., (3,Washington) ∈ V), sets (e.g., {3,Washington} ∈ V), and
other higher-order entities.

To be more precise, we construct V recursively. First, define a set of primitive values
V�, which includes the following:

� Numeric values. Each value has the form x : t ∈ V�, where x ∈ R is a real
number and t ∈ {number, ordinal, percent, length, . . . } is a tag. The tag
allows us to differentiate 3, 3rd, 3%, and 3 miles—this will be important in
Section 2.6.3. We simply write x for the value x :number.

� Symbolic values. Each value has the form x : t ∈ V�, where x is a string (e.g.,
Washington) and t ∈ {string, city, state, river, . . . } is a tag. Again, the
tag allows us to differentiate, for example, the entitiesWashington :city
andWashington :state.

Now we build the full set of values V from the primitive values V�. To define V , we
need a bit more machinery: To avoid logical paradoxes, we construct V in increasing
order of complexity using types (see Carpenter [1998] for a similar construction). The
casual reader can skip this construction without losing any intuition.

Define the set of types T to be the smallest set that satisfies the following properties:

1. The primitive type � ∈ T ;

2. The tuple type (t1, . . . , tk) ∈ T for each k ≥ 0 and each non-tuple type
ti ∈ T for i = 1, . . . , k; and

3. The set type {t} ∈ T for each tuple type t ∈ T .

Note that {�}, {{�}}, and ((�)) are not valid types.
For each type t ∈ T , we construct a corresponding set of values Vt:

1. For the primitive type t = �, the primitive values V� have already been
specified. Note that these types are rather coarse: Primitive values with
different tags are considered to have the same type �.

2. For a tuple type t = (t1, . . . , tk), Vt is the cross product of the values of its
component types:

Vt = {(v1, . . . , vk) : ∀i, vi ∈ Vti} (1)

396

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

3. For a set type t = {t′}, Vt contains all subsets of its element type t′:

Vt = {s : s ⊂ Vt′} (2)

With this last condition, we ensure that all elements of a set must have the
same type. Note that a set is still allowed to have values with different tags
(e.g., {(Washington :city), (Washington :state)} is a valid set, which might
denote the semantics of the utterance things named Washington). Another
distinction is that types are domain-independent whereas tags tend to be
more domain-specific.

Let V = ∪t∈T Vt be the set of all possible values.
A world maps each predicate to its semantics, which is a set of tuples (see Figure 4

for an example). First, let TTUPLE ⊂ T be the tuple types, which are the ones of the form
(t1, . . . , tk) for some k. Let V{TUPLE} denote all the sets of tuples (with the same type):

V{TUPLE}
def
=

⋃
t∈TTUPLE

V{t} (3)

Now we define a world formally.

Definition 2 (World)
A world w : P �→ V{TUPLE} ∪ {V} is a function that maps each non-null predicate p ∈
P\{ø} to a set of tuples w(p) ∈ V{TUPLE} and maps the null predicate ø to the set of all
values (w(ø) = V).

For a set of tuplesAwith the same arity, let ARITY(A) = |x|, where x ∈ A is arbitrary;
if A is empty, then ARITY(A) is undefined. Now for a predicate p ∈ P and world w,
define ARITYw(p), the arity of predicate pwith respect to w, as follows:

ARITYw(p) =

{
1 if p = ø

ARITY(w(p)) if p �= ø
(4)

The null predicate has arity 1 by fiat; the arity of a non-null predicate p is inherited from
the tuples in w(p).

Remarks. In higher-order logic and lambda calculus, we construct function types and
values, whereas in DCS, we construct tuple types and values. The two are equivalent
in representational power, but this discrepancy does point out the fact that lambda
calculus is based on function application, whereas DCS, as we will see, is based on
declarative constraints. The set type {(�, �)} in DCS corresponds to the function type
�→ (�→ bool). In DCS, there is no explicit bool type—it is implicitly represented by
using sets.

2.3.2 Examples. The world w maps each domain-specific predicate to a set of tuples
(usually a finite set backed by a database). For the U.S. geography domain, w has a

397

Computational Linguistics Volume 39, Number 2

predicate that maps to the set of U.S. states (state), another predicate that maps to the
set of pairs of entities and where they are located (loc), and so on:

w(state) = {(California :state), (Oregon :state), . . . } (5)

w(loc) = {(San Francisco :city,California :state), . . . } (6)

. . . (7)

To shorten notation, we use state abbreviations (e.g., CA = California :state).
The world w also specifies the semantics of several domain-independent predicates

(think of these as helper functions), which usually correspond to an infinite set of tuples.
Functions are represented in DCS by a set of input–output pairs. For example, the
semantics of the countt predicate (for each type t ∈ T) contains pairs of sets S and their
cardinalities |S|:

w(countt) = {(S, |S|) : S ∈ V{(t)}} ∈ V{({(t)},�)} (8)

As another example, consider the predicate averaget (for each t ∈ T), which takes a
set of key–value pairs (with keys of type t) and returns the average value. For notational
convenience, we treat an arbitrary set of pairs S as a set-valued function: We let S1 = {x :
(x, y) ∈ S} denote the domain of the function, and abusing notation slightly, we define
the function S(x) = {y : (x, y) ∈ S} to be the set of values y that co-occur with the given
x. The semantics of averaget contains pairs of sets and their averages:

w(averaget) =

(S, z) : S ∈ V{(t,�)}, z = |S1|−1

∑
x∈S1

|S(x)|−1 ∑

y∈S(x)

y

 ∈ V{({(t,�)},�)}

(9)

Similarly, we can define the semantics of argmint and argmaxt, which each takes a set of
key–value pairs and returns the keys that attain the smallest (largest) value:

w(argmint) =

{
(S, z) : S ∈ V{(t,�)}, z ∈ argmin

x∈S1

min S(x)

}
∈ V{({(t,�)},t)} (10)

w(argmaxt) =

{
(S, z) : S ∈ V{(t,�)}, z ∈ argmax

x∈S1

max S(x)

}
∈ V{({(t,�)},t)} (11)

The extra min and max is needed because S(x) could contain more than one value. We
also impose that w(argmint) contains only (S, z) such that y is numeric for all (x, y) ∈ S;
thus argmint denotes a partial function (same for argmaxt).

These helper functions are monomorphic: For example, countt only computes
cardinalities of sets of type {(t)}. In practice, we mostly operate on sets of primitives
(t = �). To reduce notation, we omit t to refer to this version: count = count�, average =
average�, and so forth.

398

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

2.4 Semantics of DCS Trees without Mark–Execute (Basic Version)

The semantics or denotation of a DCS tree z with respect to a world w is denoted �z�w.
First, we define the semantics of DCS trees with only join relations (Section 2.4.1). In
this case, a DCS tree encodes a constraint satisfaction problem (CSP); this is important
because it highlights the constraint-based nature of DCS and also naturally leads to a
computationally efficient way of computing denotations (Section 2.4.2). We then allow
DCS trees to have aggregate relations (Section 2.4.3). The fragment of DCS which has
only join and aggregate relations is called basic DCS.

2.4.1 Basic DCS Trees as Constraint Satisfaction Problems. Let z be a DCS tree with only
join relations on its edges. In this case, z encodes a CSP as follows: For each node x in z,
the CSP has a variable with value a(x); the collection of these values is referred to as an
assignment a. The predicates and relations of z introduce constraints:

1. a(x) ∈ w(p) for each node x labeled with predicate p ∈ P ; and

2. a(x)j = a(y)j′ for each edge (x, y) labeled with
j
j′ ∈ R, which says that the

j-th component of a(x) must equal the j′-th component of a(y).

We say that an assignment a is feasible if it satisfies these two constraints. Next, for a node
x, defineV(x) = {a(x) : assignment a is feasible} as the set of feasible values for x—these
are the ones that are consistent with at least one feasible assignment. Finally, we define
the denotation of the DCS tree z with respect to the world w to be �z�w = V(x0), where
x0 is the root node of z.

Figure 3(a) shows an example of a DCS tree. The corresponding CSP has four vari-
ables c,m, �, s.2 In Figure 3(b), we have written the equivalent lambda calculus formula.
The non-root nodes are existentially quantified, the root node c is λ-abstracted, and
all constraints introduced by predicates and relations are conjoined. The λ-abstraction
of c represents the fact that the denotation is the set of feasible values for c (note the
equivalence between the Boolean function λc.p(c) and the set {c : p(c)}).

Remarks. Note that CSPs only allow existential quantification and conjunction. Why
did we choose this particular logical subset as a starting point, rather than allowing
universal quantification, negation, or disjunction? There seems to be something fun-
damental about this subset, which also appears in Discourse Representation Theory
(DRT) (Kamp and Reyle 1993; Kamp, van Genabith, and Reyle 2005). Briefly, logical
forms in DRT are called Discourse Representation Structures (DRSs), each of which
contains (i) a set of existentially quantified discourse referents (variables), (ii) a set of
conjoined discourse conditions (constraints), and (iii) nested DRSs. If we exclude nested
DRSs, a DRS is exactly a CSP.3 The default existential quantification and conjunction are
quite natural for modeling cross-sentential anaphora: New variables can be added to

2 Technically, the node is c and the variable is a(c), but we use c to denote the variable to simplify notation.
3 Unlike the CSPs corresponding to DCS trees, the CSPs corresponding to DRSs need not be
tree-structured, though economical DRT (Bos 2009) imposes a tree-like restriction on DRSs for
computational reasons.

399

Computational Linguistics Volume 39, Number 2

a DRS and connected to other variables. Indeed, DRT was originally motivated by these
phenomena (see Kamp and Reyle [1993] for more details).4

Tree-structured CSPs can capture unboundedly complex recursive structures—such
as cities in states that border states that have rivers that. . . . Trees are limited, however, in
that they are unable to capture long-distance dependencies such as those arising from
anaphora. For example, in the phrase a state with a river that traverses its capital, its binds
to state, but this dependence cannot be captured in a tree structure. A solution is
to simply add an edge between the its node and the state node that forces the two
nodes to have the same value. The result is still a well-defined CSP, though not a tree-
structured one. The situation would become trickier if we were to integrate the other
relations (aggregate, mark, and execute). We might be able to incorporate some ideas
from Hybrid Logic Dependency Semantics (Baldridge and Kruijff 2002; White 2006),
given that hybrid logic extends the tree structures of modal logic with nominals, thereby
allowing a node to freely reference other nodes. In this article, however, we will stick to
trees and leave the full exploration of non-trees for future work.

2.4.2 Computation of Join Relations. So far, we have given a declarative definition of the
denotation �z�w of a DCS tree z with only join relations. Now we will show how to
compute �z�w efficiently. Recall that the denotation is the set of feasible values for the
root node. In general, finding the solution to a CSP is NP-hard, but for trees, we can
exploit dynamic programming (Dechter 2003). The key is that the denotation of a tree
depends on its subtrees only through their denotations:

�
〈
p; j1j′1 :c1; · · · ;

jm
j′m
:cm

〉
�
w
= w(p) ∩

m⋂
i=1

{v : vji = tj′i , t ∈ �ci�w} (12)

On the right-hand side of Equation (12), the first termw(p) is the set of values that satisfy
the node constraint, and the second term consists of an intersection across all m edges
of {v : vji = tj′i , t ∈ �ci�w}, which is the set of values v which satisfy the edge constraint
with respect to some value t for the child ci.

To further flesh out this computation, we express Equation (12) in terms of two
operations: join and project. Join takes a cross product of two sets of tuples and retains
the resulting tuples that match the join constraint:

A ��j,j′ B = {u + v : u ∈ A, v ∈ B,uj = vj′} (13)

Project takes a set of tuples and retains a fixed subset of the components:

A[i] = {vi : v ∈ A} (14)

The denotation in Equation (12) can now be expressed in terms of these join and project
operations:

�
〈
p; j1j′1 :c1; · · · ;

jm
j′m
:cm

〉
�
w
= ((w(p) ��j1,j′1

�c1�w)[i] · · · ��jm,j′m �cm�w)[i] (15)

4 DRT started the dynamic semantics tradition where meanings are context-change potentials, a natural
way to capture anaphora. The DCS formalism presented here does not deal with anaphora, so we give it
a purely static semantics.

400

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

where i = (1, . . . , ARITYw(p)). Projecting onto i retains only components corresponding
to p.

The time complexity for computing the denotation of a DCS tree �z�w scales linearly
with the number of nodes, but there is also a dependence on the cost of performing the
join and project operations. For details on howwe optimize these operations and handle
infinite sets of tuples (for predicates such as count), see Liang (2011).

The denotation of DCS trees is defined in terms of the feasible values of a CSP, and
the recurrence in Equation (15) is only one way of computing this denotation. In light of
the extensions to come, however, we now consider Equation (15) as the actual definition
rather than just a computational mechanism. It will still be useful to refer to the CSP in
order to access the intuition of using declarative constraints.

2.4.3 Aggregate Relation. Thus far, we have focused on DCS trees that only use join
relations, which are insufficient for capturing higher-order phenomena in language. For
example, consider the phrase number of major cities. Suppose that number corresponds
to the count predicate, and that major cities maps to the DCS tree 〈city; 11 :〈major〉〉. We
cannot simply join countwith the root of this DCS tree because count needs to be joined
with the set of major cities (the denotation of 〈city; 11 :〈major〉〉), not just a single city.

We therefore introduce the aggregate relation (Σ) that takes a DCS subtree and
reifies its denotation so that it can be accessed by other nodes in its entirety. Consider a
tree 〈ø;Σ :c〉, where the root is connected to a child c via Σ. The denotation of the root is
simply the singleton set containing the denotation of c:

�〈ø;Σ :c〉�w = {(�c�w)} (16)

Figure 5(a) shows the DCS tree for our running example. The denotation of the
middle node is {(s)}, where s is all major cities. Everything above this node is an
ordinary CSP: s constrains the count node, which in turns constrains the root node to
|s|. Figure 5(b) shows another example of using the aggregate relation Σ. Here, the node
right above Σ is constrained to be a set of pairs of major cities and their populations.
The average predicate then computes the desired answer.

To represent logical disjunction in natural language, we use the aggregate relation
and two predicates, union and contains, which are defined in the expected way:

w(union) = {(A,B,C) : C = A ∪ B,A ∈ V{�},B ∈ V{�}} (17)

w(contains) = {(A, x) : x ∈ A,A ∈ V{�}} (18)

where A,B,C ∈ V{�} are sets of primitive values (see Section 2.3.1). Figure 5(c) shows
an example of a disjunctive construction: We use the aggregate relations to construct
two sets, one containing Oregon, and the other containing states bordering Oregon. We
take the union of these two sets; contains takes the set and reads out an element, which
then constrains the city node.

Remarks. A DCS tree that contains only join and aggregate relations can be viewed as
a collection of tree-structured CSPs connected via aggregate relations. The tree struc-
ture still enables us to compute denotations efficiently based on the recurrences in
Equations (15) and (16).

Recall that a DCS tree with only join relations is a DRS without nested DRSs. The
aggregate relation corresponds to the abstraction operator in DRT and is one way of

401

Computational Linguistics Volume 39, Number 2

Figure 5
Examples of DCS trees that use the aggregate relation (Σ) to (a) compute the cardinality of a set,
(b) take the average over a set, (c) represent a disjunction over two conditions. The aggregate
relation sets the parent node deterministically to the denotation of the child node. Nodes with
the special null predicate ø are represented as empty nodes.

making nested DRSs. It turns out that the abstraction operator is sufficient to obtain
the full representational power of DRT, and subsumes generalized quantification and
disjunction constructs in DRT. By analogy, we use the aggregate relation to handle
disjunction (Figure 5(c)) and generalized quantification (Section 2.5.6).

DCS restricted to join relations is less expressive than first-order logic because it
does not have universal quantification, negation, and disjunction. The aggregate rela-
tion is analogous to lambda abstraction, and in basic DCS we use the aggregate relation
to implement those basic constructs using higher-order predicates such as not, every,
and union. We can also express logical statements such as generalized quantification,
which go beyond first-order logic.

2.5 Semantics of DCS Trees with Mark–Execute (Full Version)

Basic DCS includes two types of relations, join and aggregate, but it is already quite
expressive. In general, however, it is not enough just to be able to express the meaning
of a sentence using some logical form; we must be able to derive the logical form
compositionally and simply from the sentence.

Consider the superlative constructionmost populous city, which has a basic syntactic
dependency structure shown in Figure 6(a). Figure 6(b) shows that we can in principle

402

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 6
Two semantically equivalent DCS trees are shown in (b) and (c). The DCS tree in (b), which uses
the join and aggregate relations in the basic DCS, does not align well with the syntactic structure
of most populous city (a), and thus is undesirable. The DCS tree in (c), by using the mark–execute
construct, aligns much better, with city rightfully dominating its modifiers. The full version of
DCS allows us to construct (c), which is preferable to (b).

already use a DCS tree with only join and aggregate relations to express the correct
semantics of the superlative construction. Note, however, that the two structures are
quite divergent—the syntactic head is city and the semantic head is argmax. This diver-
gence runs counter to a principal desideratum of DCS, which is to create a transparent
interface between coarse syntax and semantics.

In this section, we introduce mark and execute relations, which will allow us to
use the DCS tree in Figure 6(c) to represent the semantics associated with Figure 6(a);
these two are more similar than (a) and (b). The focus of this section is on this mark–
execute construct—usingmark and execute relations to give proper semantically scoped
denotations to syntactically scoped tree structures.

The basic intuition of the mark–execute construct is as follows: We mark a node
low in the tree with a mark relation; then, higher up in the tree, we invoke it with a
corresponding execute relation (Figure 7). For our example in Figure 6(c), we mark the
population node, which puts the child argmax in a temporary store; when we execute
the city node, we fetch the superlative predicate argmax from the store and invoke it.

This divergence between syntactic and semantic scope arises in other linguistic
contexts besides superlatives, such as quantification and negation. In each of these
cases, the general template is the same: A syntactic modifier low in the tree needs to
have semantic force higher in the tree. A particularly compelling case of this divergence
happenswith quantifier scope ambiguity (e.g., Some river traverses every city5), where the

5 The two meanings are: (i) there is a river x such that x traverses every city; and (ii) for every city x, some
river traverses x.

403

Computational Linguistics Volume 39, Number 2

Figure 7
The template for the mark–execute construct. A mark relation (one of E, Q, C) “stores” the
modifier. Then an execute relation (of the form Xi for indices i) higher up “recalls” the
modifier and applies it at the desired semantic point.

quantifiers appear in fixed syntactic positions, but the surface and inverse scope read-
ings correspond to different semantically scoped denotations. Analogously, a single syn-
tactic structure involving superlatives can also yield two different semantically scoped
denotations—the absolute and relative readings (e.g., state bordering the largest state6).
The mark–execute construct provides a unified framework for dealing all these forms
of divergence between syntactic and semantic scope. See Figures 8 and 9 for concrete
examples of this construct.

2.5.1 Denotations.We now formalize the mark–execute construct. We saw that the mark–
execute construct appears to act non-locally, putting things in a store and retrieving
them later. This means that if we want the denotation of a DCS tree to only depend
on the denotations of its subtrees, the denotations need to contain more than the set of
feasible values for the root node, as was the case for basic DCS. We need to augment de-
notations to include information about all marked nodes, because these can be accessed
by an execute relation higher up in the tree.

More specifically, let z be a DCS tree and d = �z�w be its denotation. The denotation
d consists of n columns. The first column always corresponds to the root node of z,
and the rest of the columns correspond to non-root marked nodes in z. In the example
in Figure 10, there are two columns, one for the root state node and the other for size
node, which is marked by C. The columns are ordered according to a pre-order traversal
of z, so column 1 always corresponds to the root node. The denotation d contains a set of
arrays d.A, where each array represents a feasible assignment of values to the columns
of d; note that we quantify over non-marked nodes, so they do not correspond to any
column in the denotation. For example, in Figure 10, the first array in d.A corresponds to
assigning (OK) to the state node (column 1) and (TX, 2.7e5) to the size node (column 2).
If there are no marked nodes, d.A is basically a set of tuples, which corresponds to a
denotation in basic DCS. For each marked node, the denotation d also maintains a store

6 The two meanings are: (i) a state that borders Alaska (which is the largest state); and (ii) a state with the
highest score, where the score of a state x is the maximum size of any state that x borders (Alaska is
irrelevant here because no states border it).

404

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 8
Examples of DCS trees that use the mark–execute construct with the E and Q mark relations.
(a) The head verb borders, which needs to be returned, has a direct object statesmodified by
which. (b) The quantifier no is syntactically dominated by state but needs to take wider scope.
(c) Two quantifiers yield two possible readings; we build the same basic structure, marking
both quantifiers; the choice of execute relation (X12 versus X21) determines the reading. (d) We
use two mark relations, Q on river for the negation, and E on city to force the quantifier to be
computed for each value of city.

with information to be retrieved when that marked node is executed. A store σ for a
marked node contains the following: (i) the mark relation σ.r (C in the example), (ii) the
base denotation σ.b, which essentially corresponds to denotation of the subtree rooted at
the marked node excluding the mark relation and its subtree (�〈size〉�w in the example),
and (iii) the denotation of the child of the mark relation (�〈argmax〉�w in the example).
The store of any unmarked nodes is always empty (σ = ø).

Definition 3 (Denotations)
Let D be the set of denotations, where each denotation d ∈ D consists of

� a set of arrays d.A, where each array a = [a1, . . . , an] ∈ d.A is a sequence of
n tuples for some n ≥ 0; and

405

Computational Linguistics Volume 39, Number 2

Figure 9
Examples of DCS trees that use the mark–execute construct with the E and C relation. (a,b,c)
Comparatives and superlatives are handled as follows: For each value of the node marked
by E, we compute a number based on the node marked by C; based on this information,
a subset of the values is selected as the possible values of the root node. (d) Analog of quantifier
scope ambiguity for superlatives: The placement of the execute relation determines an absolute
versus relative reading. (e) Interaction between a quantifier and a superlative: The lower execute
relation computes the largest city for each state; the second execute relation invokes most and
enforces that the major constraint holds for the majority of states.

406

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 10
Example of the denotation for a DCS tree (with the compare relation C). This denotation has two
columns, one for each active node—the root node state and the marked node size.

� a sequence of n stores d.σ = (d.σ1, . . . , d.σn), where each store σ contains a
mark relation σ.r ∈ {E, Q, C, ø}, a base denotation σ.b ∈ D ∪ {ø}, and a
child denotation σ.c ∈ D ∪ {ø}.

Note that denotations are formally defined without reference to DCS trees (just as sets
of tuples were in basic DCS), but it is sometimes useful to refer to the DCS tree that
generates that denotation.

For notational convenience, we write d as 〈〈A; (r1, b1, c1); . . . ; (rn, bn, cn)〉〉. Also let
d.ri = d.σi.r, d.bi = d.σi.b, and d.ci = d.σi.c. Let d{σi = x} be the denotation which is
identical to d, except with d.σi = x; d{ri = x}, d{bi = x}, and d{ci = x} are defined
analogously. We also define a project operation for denotations: 〈〈A;σ〉〉[i] def= 〈〈{ai : a ∈
A};σi〉〉. Extending this notation further, we use ø to denote the indices of the non-initial
columns with empty stores (i > 1 such that d.σi = ø). We can then use d[−ø] to represent
projecting away the non-initial columns with empty stores. For the denotation d in
Figure 10, d[1] keeps column 1, d[−ø] keeps both columns, and d[2,−2] swaps the two
columns.

In basic DCS, denotations are sets of tuples, which works quite well for repre-
senting the semantics of wh-questions such as What states border Texas? But what about
polar questions such as Does Louisiana border Texas? The denotation should be a simple
Boolean value, which basic DCS does not represent explicitly. Using our new deno-
tations, we can represent Boolean values explicitly using zero-column structures: true
corresponds to a singleton set containing just the empty array (dT = 〈〈{[]}〉〉) and false
is the empty set (dF = 〈〈∅〉〉).

Having described denotations as n-column structures, we now give the formal
mapping from DCS trees to these structures. As in basic DCS, this mapping is defined
recursively over the structure of the tree. We have a recurrence for each case (the first
line is the base case, and each of the others handles a different edge relation):

�〈p〉�w = 〈〈{[v] : v ∈ w(p)}; ø〉〉 [base case] (19)

�
〈
p; e; j

j′ :c
〉
�
w
= �〈p; e〉�w ��−øj,j′ �c�w [join] (20)

�〈p; e;Σ :c〉�w = �〈p; e〉�w ��−ø∗,∗ Σ
(
�c�w

)
[aggregate] (21)

407

Computational Linguistics Volume 39, Number 2

�〈p; e; Xi :c〉�w = �〈p; e〉�w ��−ø∗,∗ xi(�c�w) [execute] (22)

�〈p; e; E :c〉�w =M(�〈p; e〉�w, E, �c�w) [extract] (23)

�〈p; e; C :c〉�w =M(�〈p; e〉�w, C, �c�w) [compare] (24)

�〈p; Q :c; e〉�w =M(�〈p; e〉�w, Q, �c�w) [quantify] (25)

We define the operations ��−øj,j′ ,Σ,Xi, andM in the remainder of this section.

2.5.2 Base Case. Equation (19) defines the denotation for a DCS tree z with a single node
with predicate p. The denotation of z has one column whose arrays correspond to the
tuples w(p); the store for that column is empty.

2.5.3 Join Relations. Equation (20) defines the recurrence for join relations. On the left-
hand side,

〈
p; e; j

j′ :c
〉
is a DCS tree with p at the root, a sequence of edges e followed by

a final edge with relation j
j′ connected to a child DCS tree c. On the right-hand side, we

take the recursively computed denotation of 〈p; e〉, the DCS tree without the final edge,
and perform a join-project-inactive operation (notated ��−øj,j′) with the denotation of the
child DCS tree c.

The join-project-inactive operation joins the arrays of the two denotations (this is
the core of the join operation in basic DCS—see Equation (13)), and then projects away
the non-initial empty columns:7

〈〈A;σ〉〉 ��−øj,j′ 〈〈A
′;σ′〉〉 = 〈〈A′′;σ+ σ

′〉〉[−ø],where (26)

A′′ = {a+ a′ : a ∈ A, a′ ∈ A′, a1j = a′1j′}

We concatenate all arrays a ∈ A with all arrays a′ ∈ A′ that satisfy the join condition
a1j = a′1j′ . The sequences of stores are simply concatenated: (σ+ σ′). Finally, any non-
initial columns with empty stores are projected away by applying ·[−ø].

Note that the join works on column 1; the other columns are carried along for the
ride. As another piece of convenient notation, we use ∗ to represent all components, so
��−ø∗,∗ imposes the join condition that the entire tuple has to agree (a1 = a′1).

2.5.4 Aggregate Relations. Equation (21) defines the recurrence for aggregate relations.
Recall that in basic DCS, aggregate (16) simply takes the denotation (a set of tuples) and
puts it into a set. Now, the denotation is not just a set, so we need to generalize this
operation. Specifically, the aggregate operation applied to a denotation forms a set out
of the tuples in the first column for each setting of the rest of the columns:

Σ (〈〈A;σ〉〉) = 〈〈A′ ∪ A′′;σ〉〉 (27)

A′ = {[S(a), a2, . . . , an] : a ∈ A}

S(a) = {a′1 : [a
′
1, a2, . . . , an] ∈ A}

A′′ = {[∅, a2, . . . , an] : ∀i ∈ {2, . . . ,n}, [ai] ∈ σi.b.A[1],¬∃a1, a ∈ A}

7 The join and project operations are taken from relational algebra.

408

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

The aggregate operation takes the set of arrays A and produces two sets of arrays, A′

andA′′, which are unioned (note that the stores do not change). The setA′ is the one that
first comes to mind: For every setting of a2, . . . , an, we construct S(a), the set of tuples a′1
in the first column which co-occur with a2, . . . , an in A.

There is another case, however: what happens to settings of a2, . . . , an that do not
co-occur with any value of a′1 in A? Then, S(a) = ∅, but note that A′ by construction will
not have the desired array [∅, a2, . . . , an]. As a concrete example, suppose A = ∅ and we
have one column (n = 1). Then A′ = ∅, rather than the desired {[∅]}.

Fixing this problem is slightly tricky. There are an infinite number of a2, . . . , anwhich
do not co-occur with any a′1 inA, so for which ones do we actually include [∅, a2, . . . , an]?
Certainly, the answer to this question cannot come from A, so it must come from the
stores. In particular, for each column i ∈ {2, . . . ,n}, we have conveniently stored a base
denotation σi.b. We consider any ai that occurs in column 1 of the arrays of this base
denotation ([ai] ∈ σi.b.A[1]). For this a2, . . . , an, we include [∅, a2, . . . , an] in A′′ as long as
a2, . . . , an does not co-occur with any a1. An example is given in Figure 11.

The reason for storing base denotations is thus partially revealed: The arrays rep-
resent feasible values of a CSP and can only contain positive information. When we
aggregate, we need to access possibly empty sets of feasible values—a kind of negative
information, which can only be recovered from the base denotations.

Figure 11
An example of applying the aggregate operation, which takes a denotation and aggregates the
values in column 1 for every setting of the other columns. The base denotations (b) are used to
put in {} for values that do not appear in A (in this example, AK, corresponding to the fact that
Alaska does not border any states).

409

Computational Linguistics Volume 39, Number 2

2.5.5 Mark Relations. Equations (23), (24), and (25) each processes a different mark
relation. We define a general mark operation, M(d, r, c) which takes a denotation d, a
mark relation r ∈ {E, Q, C} and a child denotation c, and sets the store of d in column 1
to be (r, d, c):

M(d, r, c) = d{r1 = r, b1 = d, c1 = c} (28)

The base denotation of the first column b1 is set to the current denotation d. This, in
some sense, creates a snapshot of the current denotation. Figure 12 shows an example
of the mark operation.

2.5.6 Execute Relations. Equation (22) defines the denotation of a DCS tree where the last
edge of the root is an execute relation. Similar to the aggregate case (21), we recurse on
the DCS tree without the last edge (〈p; e〉) and then join it to the result of applying the
execute operation Xi to the denotation of the child (�c�w).

The execute operation Xi is the most intricate part of DCS and is what does the
heavy lifting. The operation is parametrized by a sequence of distinct indices i that
specifies the order in which the columns should be processed. Specifically, i indexes into
the subsequence of columns with non-empty stores. We then process this subsequence
of columns in reverse order, where processing a column means performing some op-
erations depending on the stored relation in that column. For example, suppose that
columns 2 and 3 are the only non-empty columns. Then X12 processes column 3 before
column 2. On the other hand, X21 processes column 2 before column 3. We first define

Figure 12
An example of applying the mark operation, which takes a denotation and modifies the store of
the column 1. This information is used by other operations such as aggregate and execute.

410

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 13
An example of applying the execute operation on column 1 with the extract relation E. The
denotation prior to execution consists of two columns: column 1 corresponds to the border
node; column 2 to the state node. The join relations and predicates CA and state constrain the
arrays A in the denotation to include only the states that border California. After execution, the
non-marked column 1 is projected away, leaving only the state column with its store emptied.

the execute operation Xi for a single column i. There are three distinct cases, depending
on the relation stored in column i:

Extraction. For a denotation d with the extract relation E in column i, executing Xi(d)
involves three steps: (i) moving column i to before column 1 (·[i,−i]), (ii) projecting
away non-initial empty columns (·[−ø]), and (iii) removing the store (·{σ1 = ø}):

Xi(d) = d[i,−i][−ø]{σ1 = ø} if d.ri = E (29)

An example is given in Figure 13. There are two main uses of extraction.

1. By default, the denotation of a DCS tree is the set of feasible values of the
root node (which occupies column 1). To return the set of feasible values
of another node, we mark that node with E. Upon execution, the feasible
values of that node move into column 1. Extraction can be used to handle
in situ questions (see Figure 8(a)).

2. Unmarked nodes (those that do not have an edge with a mark relation) are
existentially quantified and have narrower scope than all marked nodes.
Therefore, we can make a node x have wider scope than another node y by

411

Computational Linguistics Volume 39, Number 2

marking x (with E) and executing y before x (see Figure 8(d,e) for
examples). The extract relation E (in fact, any mark relation) signifies
that we want to control the scope of a node, and the execute relation
allows us to set that scope.

Generalized Quantification.Generalized quantifiers are predicates on two sets, a restrictor
A and a nuclear scope B. For example,

w(some) = {(A,B) : A ∩ B > 0} (30)

w(every) = {(A,B) : A ⊂ B} (31)

w(no) = {(A,B) : A ∩ B = ∅} (32)

w(most) = {(A,B) : |A ∩ B| > 1
2
|A|} (33)

We think of the quantifier as amodifier which always appears as the child of a Q relation;
the restrictor is the parent. For example, in Figure 8(b), no corresponds to the quantifier
and state corresponds to the restrictor. The nuclear scope should be the set of all states
that Alaska borders. More generally, the nuclear scope is the set of feasible values of the
restrictor node with respect to the CSP that includes all nodes between the mark and
execute relations. The restrictor is also the set of feasible values of the restrictor node,
but with respect to the CSP corresponding to the subtree rooted at that node.8

We implement generalized quantifiers as follows: Let d be a denotation and suppose
we are executing column i. We first construct a denotation for the restrictor dA and a
denotation for the nuclear scope dB. For the restrictor, we take the base denotation in
column i (d.bi)—remember that the base denotation represents a snapshot of the restric-
tor node before the nuclear scope constraints are added. For the nuclear scope, we take
the complete denotation d (which includes the nuclear scope constraints) and extract
column i (d[i,−i][−ø]{σ1 = ø}—see (29)). We then construct dA and dB by applying the
aggregate operation to each. Finally, we join these sets with the quantifier denotation,
stored in d.ci:

xi(d) =
((

d.ci ��
−ø
1,1 dA

)
��−ø2,1 dB

)
[−1] if d.ri = Q,where (34)

dA = Σ (d.bi) (35)

dB = Σ (d[i,−i][−ø]{σ1 = ø}) (36)

When there is one quantifier, think of the execute relation as performing a syntactic
rewriting operation, as shown in Figure 14(b). For more complex cases, we must defer
to (34).

Figure 8(c) shows an example with two interacting quantifiers. The denotation of
the DCS tree before execution is the same in both readings, as shown in Figure 15. The

8 Defined this way, we can only handle conservative quantifiers, because the nuclear scope will always be
a subset of the restrictor. This design decision is inspired by DRT, where it provides a way of modeling
donkey anaphora. We are not treating anaphora in this work, but we can handle it by allowing pronouns
in the nuclear scope to create anaphoric edges into nodes in the restrictor. These constraints naturally
propagate through the nuclear scope’s CSP without affecting the restrictor.

412

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 14
(a) An example of applying the execute operation on column iwith the quantify relation Q.
Before executing, note that A = {} (because Alaska does not border any states). The restrictor (A)
is the set of all states, and the nuclear scope (B) is empty. Because the pair (A,B) does exist in
w(no), the final denotation is 〈〈{[]}〉〉 (which represents true). (b) Although the execute operation
actually works on the denotation, think of it in terms of expanding the DCS tree. We introduce
an extra projection relation [−1], which projects away the first column of the child subtree’s
denotation.

quantifier scope ambiguity is resolved by the choice of execute relation: X12 gives the
surface scope reading, X21 gives the inverse scope reading.

Figure 8(d) shows how extraction and quantification work together. First, the no
quantifier is processed for each city, which is an unprocessed marked node. Here, the
extract relation is a technical trick to give city wider scope.

Comparatives and Superlatives. Comparative and superlative constructions involve com-
paring entities, and for this we rely on a set S of entity–degree pairs (x, y), where x is an

Figure 15
Denotation of Figure 8(c) before the execute relation is applied.

413

Computational Linguistics Volume 39, Number 2

entity and y is a numeric degree. Recall that we can treat S as a function, which maps
an entity x to the set of degrees S(x) associated with x. Note that this set can contain
multiple degrees. For example, in the relative reading of state bordering the largest state,
we would have a degree for the size of each neighboring state.

Superlatives use the argmax and argmin predicates, which are defined in Section 2.3.
Comparatives use the more and less predicates: w(more) contains triples (S, x, y), where
x is “more than” y as measured by S; w(less) is defined analogously:

w(more) = {(S, x, y) : max S(x) > max S(y)} (37)

w(less) = {(S, x, y) : min S(x) < min S(y)} (38)

We use the same mark relation C for both comparative and superlative construc-
tions. In terms of the DCS tree, there are three key parts: (i) the root x, which corresponds
to the entity to be compared, (ii) the child c of a C relation, which corresponds to the
comparative or superlative predicate, and (iii) c’s parent p, which contains the “degree
information” (which will be described later) used for comparison. We assume that the
root is marked (usually with a relation E). This forces us to compute a comparison
degree for each value of the root node. In terms of the denotation d corresponding to the
DCS tree prior to execution, the entity to be compared occurs in column 1 of the arrays
d.A, the degree information occurs in column i of the arrays d.A, and the denotation of
the comparative or superlative predicate itself is the child denotation at column i (d.ci).

First, we define a concatenating function +i (d), which combines the columns i of d
by concatenating the corresponding tuples of each array in d.A:

+i (〈〈A;σ〉〉) = 〈〈A′;σ′〉〉, where (39)

A′ = {a(1...i1)\i+ [ai1 + · · ·+ ai|i|]+ a(i1...n)\i : a ∈ A}

σ
′ = σ(1...i1)\i+ [σi1]+ σ(i1...n)\i

Note that the store of column i1 is kept and the others are discarded. As an example:

+2,1 (〈〈{[(1), (2), (3)], [(4), (5), (6)]};σ1,σ2,σ3〉〉) = 〈〈{[(2, 1), (3)], [(5, 4), (6)]};σ2,σ3〉〉
(40)

We first create a denotation d′ where column i, which contains the degree infor-
mation, is extracted to column 1 (and thus column 2 corresponds to the entity to be
compared). Next, we create a denotation dS whose column 1 contains a set of entity-
degree pairs. There are two types of degree information:

1. Suppose the degree information has arity 2 (ARITY(d.A[i]) = 2). This
occurs, for example, in most populous city (see Figure 9(b)), where column i
is the population node. In this case, we simply set the degree to the
second component of population by projection (�〈ø〉�w ��−ø1,2 d′). Now
columns 1 and 2 contain the degrees and entities, respectively. We
concatenate columns 2 and 1 (+2,1 (·)) and aggregate to produce a
denotation dS which contains the set of entity–degree pairs in column 1.

2. Suppose the degree information has arity 1 (ARITY(d.A[i]) = 1). This
occurs, for example, in state bordering the most states (see Figure 9(a)), where

414

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

column i is the lower marked state node. In this case, the degree of an
entity from column 2 is the number of different values that column 1 can
take. To compute this, aggregate the set of values (Σ

(
d′
)
) and apply the

count predicate. Now with the degrees and entities in columns 1 and 2,
respectively, we concatenate the columns and aggregate again to obtain dS.

Having constructed dS, we simply apply the comparative/superlative predicate which
has been patiently waiting in d.ci. Finally, the store of d’s column 1 was destroyed by the
concatenation operation+2,1 (() ·), so wemust restore it with ·{σ1 = d.σ1}. The complete
operation is as follows:

xi(d) =
(
�〈ø〉�w ��−ø1,2

(
d.ci ��

−ø
1,1 dS

))
{σ1 = d.σ1} if d.σi = C, d.σ1 �= ø, where (41)

dS =

Σ
(
+2,1

(
�〈ø〉�w ��−ø1,2 d′

))
if ARITY(d.A[i]) = 2

Σ
(
+2,1

(
�〈ø〉�w ��−ø1,2

(
�〈count〉�w ��−ø1,1 Σ

(
d′
))))

if ARITY(d.A[i]) = 1

(42)

d′ = d[i,−i][−ø]{σ1 = ø} (43)

An example of executing the C relation is shown in Figure 16(a). As with executing a
Q relation, for simple cases we can think of executing a C relation as expanding a DCS
tree, as shown in Figure 16(b).

Figure 9(a) and Figure 9(b) show examples of superlative constructions with the ar-
ity 1 and arity 2 types of degree information, respectively. Figure 9(c) shows an example
of a comparative construction. Comparatives and superlatives use the same machinery,
differing only in the predicate: argmax versus 〈more; 31 :TX〉 (more than Texas). But both
predicates have the same template behavior: Each takes a set of entity–degree pairs and
returns any entity satisfying some property. For argmax, the property is obtaining the
highest degree; for more, it is having a degree higher than a threshold. We can handle
generalized superlatives (the five largest or the fifth largest or the 5% largest) as well by
swapping in a different predicate; the execution mechanisms defined in Equation (41)
remain the same.

We saw that the mark–execute machinery allows decisions regarding quantifier
scope to be made in a clean and modular fashion. Superlatives also have scope am-
biguities in the form of absolute versus relative readings. Consider the example in
Figure 9(d). In the absolute reading, we first compute the superlative in a narrow scope
(the largest state is Alaska), and then connect it with the rest of the phrase, resulting in
the empty set (because no states border Alaska). In the relative reading, we consider the
first state as the entity we want to compare, and its degree is the size of a neighboring
state. In this case, the lower state node cannot be set to Alaska because there are no
states bordering it. The result is therefore any state that borders Texas (the largest state
that does have neighbors). The two DCS trees in Figure 9(d) show that we can naturally
account for this form of superlative ambiguity based on where the scope-determining
execute relation is placed without drastically changing the underlying tree structure.

Remarks. These scope divergence issues are not specific to DCS—every serious semantic
formalism must address them. Generative grammar uses quantifier raising to move the
quantifier from its original syntactic position up to the desired semantic position before
semantic interpretation even occurs (Heim and Kratzer 1998). Other mechanisms such

415

Computational Linguistics Volume 39, Number 2

Figure 16
(a) Executing the compare relation C for an example superlative construction (relative reading
of state bordering the largest state from Figure 9(d)). Before executing, column 1 contains the
entity to compare, and column 2 contains the degree information, of which only the second
component is relevant. After executing, the resulting denotation contains a single column with
only the entities that obtain the highest degree (in this case, the states that border Texas). (b) For
this example, think of the execute operation as expanding the original DCS tree, although the
execute operation actually works on the denotation, not the DCS tree. The expanded DCS tree
has the same denotation as the original DCS tree, and syntactically captures the essence of the
execute–compare operation. Going through the relations of the expanded DCS tree from
bottom to top: The X2 relation swaps columns 1 and 2; the join relation keeps only the second
component ((TX, 267K) becomes (267K)); +2,1 concatenates columns 2 and 1 ([(267K), (AR)]
becomes [(AR, 267K)]); Σ aggregates these tuples into a set; argmax operates on this set and
returns the elements.

as Montague’s (1973) quantifying in, Cooper storage (Cooper 1975), and Carpenter’s
(1998) scoping constructor handle scope divergence during semantic interpretation.
Roughly speaking, these mechanisms delay application of a quantifier, “marking” its
spot with a dummy pronoun (as inMontague’s quantifying in) or putting it in a store (as
in Cooper storage), and then “executing” the quantifier at a later point in the derivation
either by performing a variable substitution or retrieving it from the store. Continuation,
from programming languages, is another solution (Barker 2002; Shan 2004); this sets the
semantics of a quantifier to be a function from its continuation (which captures all the
semantic content of the clause minus the quantifier) to the final denotation of the clause.

416

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Intuitively, continuations reverse the normal evaluation order, allowing a quantifier to
remain in situ but still outscope the rest of the clause. In fact, the mark and execute
relations of DCS are analogous to the shift and reset operators used in continuations.
One of the challenges with allowing flexible scope is that free variables can yield invalid
scopings, a well-known issuewith Cooper storage that the continuation-based approach
solves. Invalid scopings are filtered out by the construction mechanism (Section 2.6).

One difference between mark–execute in DCS and many other mechanisms is that
DCS trees (which contain mark and execute relations) are the final logical forms—the
handling of scope divergence occurs in the computing their denotations. The analog
in the other mechanisms resides in the construction mechanism—the actually final
logical form is quite simple.9 Therefore, we have essentially pushed the inevitable
complexity from the construction mechanism into the semantics of the logical form.
This is a conscious design decision: We want our construction mechanism, which maps
natural language to logical form, to be simple and not burdened with complex linguistic
issues, for our focus is on learning this mapping. Unfortunately, the denotation of our
logical forms (Section 2.5.1) do become more complex than those of lambda calculus
expressions, but we believe this is a reasonable tradeoff to make for our particular
application.

2.6 Construction Mechanism

We have thus far defined the syntax (Section 2.2) and semantics (Section 2.5) of DCS
trees, but we have only vaguely hinted at how these DCS trees might be connected
to natural language utterances by appealing to idealized examples. In this section, we
formally define the construction mechanism for DCS, which takes an utterance x and
produces a set of DCS trees ZL(x).

Because wemotivated DCS trees based on dependency syntax, it might be tempting
to take a dependency parse tree of the utterance, replace the words with predicates, and
attach some relations on the edges to produce a DCS tree. To a first approximation, this
is what we will do, but we need to be a bit more flexible for several reasons: (i) some
nodes in the DCS tree do not have predicates (e.g., children of an E relation or parent
of an Xi relation); (ii) nodes have predicates that do not correspond to words (e.g., in
California cities, there is a implicit loc predicate that bridges CA and city); (iii) some
words might not correspond to any predicates in our world (e.g., please); and (iv) the
DCS tree might not always be aligned with the syntactic structure depending on which
syntactic formalism one ascribes to. Although syntax was the inspiration for the DCS
formalism, we will not actually use it in construction.

It is also worth stressing the purpose of the construction mechanism. In linguistics,
the purpose of the construction mechanism is to try to generate the exact set of valid
logical forms for a sentence. We view the construction mechanism instead as simply a
way of creating a set of candidate logical forms. A separate step defines a distribution
over this set to favor certain logical forms over others. The construction mechanism
should therefore simply overapproximate the set of logical forms. Linguistic constraints
that are normally encoded in the construction mechanism (for example, in CCG, that
the disharmonic pair S/NP and S\NP cannot be coordinated, or that non-indefinite
quantifiers cannot extend their scope beyond clause boundaries) would be instead

9 In the continuation-based approach, this difference corresponds to the difference between assigning a
denotational versus an operational semantics.

417

Computational Linguistics Volume 39, Number 2

encoded as features (Section 3.1.1). Because feature weights are estimated from data,
one can view our approach as automatically learning the linguistic constraints relevant
to our end task.

2.6.1 Lexical Triggers. The construction mechanism assumes a fixed set of lexical triggers
L. Each trigger is a pair (s, p), where s is a sequence of words (usually one) and p is a
predicate (e.g., s = California and p = CA). We use L(s) to denote the set of predicates p
triggered by s ((s, p) ∈ L). We should think of the lexical triggers L not as pinning down
the precise predicate for each word, but rather as producing an overapproximation.
For example, Lmight contain {(city, city), (city, state), (city, river), . . . }, reflecting our
initial ignorance prior to learning.

We also define a set of trace predicates L(ε), which can be introduced without an
overt lexical element. Their name is inspired by trace/null elements in syntax, but they
serve a more practical rather than a theoretical role here. As we shall see in Section 2.6.2,
trace predicates provide more flexibility in the construction of logical forms, allowing
us to insert a predicate based on the partial logical form constructed thus far and assess
its compatibility with the words afterwards (based on features), rather than insisting on
a purely lexically driven formalism. Section 4.1.3 describes the lexical triggers and trace
predicates that we use in our experiments.

2.6.2 Recursive Construction of DCS Trees. Given a set of lexical triggers L, we will now
describe a recursive mechanism for mapping an utterance x = (x1, . . . , xn) to ZL(x), a
set of candidate DCS trees for x. The basic approach is reminiscent of projective labeled
dependency parsing: For each span i..j of the utterance, we build a set of trees Ci,j(x).
The set of trees for the span 0..n is the final result:

ZL(x) = C0,n(x) (44)

Each set of DCS trees Ci,j(x) is constructed recursively by combining the trees of its
subspans Ci,k(x) and Ck′,j(x) for each pair of split points k, k′ (words between k and k′

are ignored). These combinations are then augmented via a function A and filtered via a
function F; these functions will be specified later. Formally, Ci,j(x) is defined recursively
as follows:

Ci,j(x) = F
(
A
(
{〈p〉i..j : p ∈ L(xi+1..j)} ∪

⋃
i≤k≤k′<j
a∈Ci,k(x)
b∈Ck′ ,j(x)

T1(a, b))
))

(45)

This recurrence has two parts:

� The base case: we take the phrase (sequence of words) over span i..j
and look up the set of predicates p in the set of lexical triggers. For each
predicate, we construct a one-node DCS tree. We also extend the definition
of DCS trees in Section 2.2 to allow each node to store the indices of the
span i..j that triggered the predicate at that node; this is denoted by 〈p〉i..j.
This span information will be useful in Section 3.1.1, where we will need
to talk about how an utterance x is aligned with a DCS tree z.

418

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

� The recursive case: T1(a, b), which we will define shortly, that takes two
DCS trees, a and b, and returns a set of new DCS trees formed by
combining a and b. Figure 17 shows this recurrence graphically.

We now focus on how to combine two DCS trees. Define Td(a, b) as the set of DCS
trees that result by making either a or b the root and connecting the other via a chain of
relations and at most d trace predicates (d is a small integer that keeps the set of DCS
trees manageable):

Td(a, b) = T↘
d (a, b) ∪ T↙

d (b, a) (46)

Here, T↘
d (a, b) is the set of DCS trees where a is the root; for T↙

d (a, b), b is the root. The

former is defined recursively as follows:

T↘
0 (a, b) = ∅, (47)

T↘
d (a, b) =

⋃
r∈R

p∈L(ε)

{〈a.p; a.e; r :b〉 , 〈a.p; a.e; r :〈Σ :b〉〉} ∪ T↘
d−1(a, 〈p; r :b〉)

First, we consider all possible relations r ∈ R and try appending an edge to a with

relation r and child b (〈a.p; a.e; r :b〉); an aggregate relation Σ can be inserted in addition
(〈a.p; a.e; r :〈Σ :b〉〉). Of course, R contains an infinite number of join and execute rela-
tions, but only a small finite number of them make sense: We consider join relations
j
j′ only for j ∈ {1, . . . , ARITY(a.p)} and j′ ∈ {1, . . . , ARITY(b.p)}, and execute relations Xi
for which i does not contain indices larger than the number of columns of �b�w. Next,
we further consider all possible trace predicates p ∈ L(ε), and recursively try to connect

Figure 17
An example of the recursive construction of Ci,j(x), a set of DCS trees for span i..j.

419

Computational Linguistics Volume 39, Number 2

Figure 18
Given two DCS trees, a and b, T↘

1 (a, b) and T↙
1 (a, b) are the two sets of DCS trees formed by

combining a and bwith a at the root and b at the root, respectively; one trace predicate can be
inserted in between. In this example, the DCS trees which survive filtering (Section 2.6.3)
are shown.

awith the intermediate 〈p; r :b〉, now allowing d− 1 additional predicates. See Figure 18
for an example. In the other direction, T↙

d is defined similarly:

T↙
0 (a, b) = ∅ (48)

T↙
d (a, b) =

⋃
r∈R

p∈L(ε)

{〈b.p; r :a; b.e〉 , 〈b.p; r :〈Σ :a〉 ; b.e〉} ∪ T↙
d−1(a, 〈p; r :b〉)

Inserting trace predicates allows us to build logical forms with more predicates
than are explicitly triggered by the words. This ability is useful for several reasons.
Sometimes, there is a predicate not overtly expressed, especially in noun compounds
(e.g., California cities). For semantically light words such as prepositions (e.g., for) it is
difficult to enumerate all the possible predicates that they might trigger; it is simpler
computationally to try to insert trace predicates. We can even omit lexical triggers
for transitive verbs such as border because the corresponding predicate border can be
inserted as a trace predicate.

The function T1(a, b) connects two DCS trees via a path of relations and trace predi-
cates. The augmentation function A adds additional relations (specifically, E and/or Xi)
on a single DCS tree:

A(Z) =
⋃
z∈Z
Xi∈R

{z, 〈z; E :〈ø〉〉 , 〈Xi :z〉 , 〈Xi :〈z; E :〈ø〉〉〉} (49)

2.6.3 Filtering using Abstract Interpretation. The construction procedure as described thus
far is extremely permissive, generating many DCS trees which are obviously wrong—
for example, 〈state; 11 :〈>;

2
1 〈3〉〉〉, which tries to compare a state with the number 3. There

is nothing wrong with this expression syntactically: Its denotation will simply be empty
(with respect to the world). But semantically, this DCS tree is anomalous.

We cannot simply just discard DCS trees with empty denotations, because we
would incorrectly rule out 〈state; 11 :〈border;

2
1 〈AK〉〉〉. The difference here is that even

though the denotation is empty in this world, it is possible that it might not be empty

420

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

in a different world where history and geology took another turn, whereas it is simply
impossible to compare cities and numbers.

Now let us quickly flesh out this intuition before falling into a philosophical dis-
cussion about possible worlds. Given a world w, we define an abstract world α(w),
to be described shortly. We compute the denotation of a DCS tree z with respect to
this abstract world. If at any point in the computation we create an empty denotation,
we judge z to be impossible and throw it away. The filtering function F is defined as
follows:10

F(Z) = {z ∈ Z : ∀z′ subtree of z , �z′�α(w).A �= ∅} (50)

Now we need to define the abstract world α(w). The intuition is to map concrete
values to abstract values: 3 :length becomes ∗ :length,Oregon :state becomes ∗ :state,
and in general, primitive value x : t becomes ∗ : t. We perform abstraction on tuples
componentwise, so that (Oregon :state, 3 :length) becomes (∗ :state, ∗ :length). Our
abstraction of sets is slightly more complex: The empty set maps to the empty set, a set
containing values all with the same abstract value a maps to {a}, and a set containing
values with more than one abstract value maps to {MIXED}. Finally, a world maps each
predicate onto a set of (concrete) tuples; the corresponding abstract world maps each
predicate onto the set of abstract tuples. Formally, the abstraction function is defined as
follows:

α(x : t) = ∗ : t [primitive value] (51)

α((v1, . . . , vn)) = (α(v1), . . . ,α(vn)) [tuple] (52)

α(A) =

∅ if A = ∅
{α(x) : x ∈ A} if |{α(x) : x ∈ A}| = 1
{MIXED} otherwise

[set] (53)

α(w) = λp.{α(x) : x ∈ w(p)} [world] (54)

As an example, the abstract world might look like this:

α(w)(>) = {(∗ :number, ∗ :number, ∗ :number) (55)

(∗ :length, ∗ :length, ∗ :length), . . . }

α(w)(state) = {(∗ :state)} (56)

α(w)(AK) = {(∗ :state)} (57)

α(w)(border) = {(∗ :state, ∗ :state)} (58)

Now returning to our motivating example at the beginning of this section, we see
that the bad DCS tree has an empty abstract denotation �〈state; 11 :〈>;

2
1 〈3〉〉〉�α(w) =

〈〈∅; ø〉〉. The good DCS tree has a non-empty abstract denotation: �〈state; 11 :〈border;
2
1 〈AK〉〉〉�α(w) = 〈〈{(∗ :state)}; ø〉〉, as desired.

10 To further reduce the search space, F imposes a few additional constraints: for example, limiting the
number of columns to 2, and only allowing trace predicates between arity 1 predicates.

421

Computational Linguistics Volume 39, Number 2

Remarks. Computing denotations on an abstract world is called abstract interpretation
(Cousot and Cousot 1977) and is a very powerful framework commonly used in the
programming languages community. The idea is to obtain information about a program
(in our case, a DCS tree) without running it concretely, but rather just by running it
abstractly. It is closely related to type systems, but the type of abstractions one uses is
often much richer than standard type systems.

2.6.4 Comparison with CCG. We now compare our construction mechanism with CCG
(see Figure 19 for an example). The main difference is that our lexical triggers contain
less information than a lexical entry in a CCG. In CCG, the lexicon would have an entry
such as

major � N/N : λf.λx.major(x) ∧ f (x) (59)

which gives detailed information about how this word should interact with its context.
In DCS construction, however, each lexical trigger only has the minimal amount of
information:

major � major (60)

A lexical trigger specifies a pre-theoretic “meaning” of a word which does not commit
to any formalisms. One advantage of this minimality is that lexical triggers could be
easily obtained from non-expert supervision: One would only have to associate words
with database table names (predicates).

In some sense, the DCS construction mechanism pushes the complexity out of the
lexicon. In linguistics, this complexity usually would end up in the grammar, which
would be undesirable. We do not have to respect this tradeoff, however, because the

Figure 19
Comparison between the construction mechanisms of CCG and DCS. There are three principal
differences: First, in CCG, words are mapped onto lambda calculus expressions; in DCS, words
are just mapped onto predicates. Second, in CCG, lambda calculus expressions are built by
combining (e.g., via function application) two smaller expressions; in DCS, trees are combined
by inserting relations (and possibly other predicates between them). Third, in CCG, all words
map to logical expressions; in DCS, only a small subset of words (e.g., state and Texas) map to
predicates; the rest participate in features for scoring DCS trees.

422

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

construction mechanism only produces an overapproximation, which means it is possi-
ble to have both a simple “lexicon” and a simple “grammar.”

There is an important practical rationale for this design decision. During learning,
we never just have one clean lexical entry per word. Rather, there are often many
possible lexical entries (and to handle disfluent utterances or utterances in free word-
order languages, we might actually need many of them [Kwiatkowski et al. 2010]):

major � N : λx.major(x) (61)

major � N/N : λf.λx.major(x) ∧ f (x) (62)

major � N\N : λf.λx.major(x) ∧ f (x) (63)

. . . (64)

Now think of a DCS lexical trigger major � major as simply a compact representation for
a set of CCG lexical entries. Furthermore, the choice of the lexical entry is made not
at the initial lexical base case, but rather during the recursive construction by inserting
relations between DCS subtrees. It is exactly at this point that the choice can be made,
because after all, the choice is one that depends on context. The general principle is to
compactly represent the indeterminacy until one can resolve it. Compactly representing
a set of CCG lexical entries can also be done within the CCG framework by factoring
lexical entries into a lexeme and a lexical template (Kwiatkowski et al. 2011).

Type raising is a combinator in CCG that traditionally converts x to λf.f (x). In
recent work, Zettlemoyer and Collins (2007) introduced more general type-changing
combinators to allow conversion from one entity into a related entity in general (a
kind of generalized metonymy). For example, in order to parse Boston flights, Boston
is transformed to λx.to(x, Boston). This type changing is analogous to inserting trace
predicates in DCS, but there is an important distinction: Type changing is a unary
operation and is unconstrained in that it changes logical forms into new ones without
regard for how they will be used downstream. Inserting trace predicates is a binary
operation that is constrained by the two predicates that it is mediating. In the example,
to would only be inserted to combine Boston with flight. This is another instance of
the general principle of delaying uncertain decisions until there is more information.

3. Learning

In Section 2, we defined DCS trees and a construction mechanism for producing a set
of candidate DCS trees given an utterance. We now define a probability distribution
over that set (Section 3.1) and an algorithm for estimating the parameters (Section 3.2).
The number of candidate DCS trees grows exponentially, so we use beam search to
control this growth. The final learning algorithm alternates between beam search and
optimization of the parameters, leading to a natural bootstrapping procedure which
integrates learning and search.

3.1 Semantic Parsing Model

The semantic parsing model specifies a conditional distribution over a set of candi-
date DCS trees C(x) given an utterance x. This distribution depends on a function
φ(x, z) ∈ R

d, which takes a (x, z) pair and extracts a set of local features (see Section 3.1.1

423

Computational Linguistics Volume 39, Number 2

for a full specification). Associated with this feature vector is a parameter vector θ ∈ R
d.

The inner product between the two vectors, φ(x, z)�θ, yields a numerical score, which
intuitively measures the compatibility of the utterance x with the DCS tree z. We expo-
nentiate the score and normalize over C(x) to obtain a proper probability distribution:

p(z | x;C,θ) = exp{φ(x, z)�θ−A(θ; x,C)} (65)

A(θ; x,C) = log
∑

z∈C(x)

exp{φ(x, z)�θ} (66)

where A(θ; x,C) is the log-partition function with respect to the candidate set function
C(x).

3.1.1 Features.We now define the feature vector φ(x, z) ∈ R
d, the core part of the seman-

tic parsing model. Each component j = 1, . . . , d of this vector is a feature, and φ(x, z)j
is the number of times that feature occurs in (x, z). Rather than working with indices,
we treat features as symbols (e.g., TRIGGERPRED[states, state]). Each feature captures
some property about (x, z) that abstracts away from the details of the specific instance
and allows us to generalize to new instances that share common features.

The features are organized into feature templates, where each feature template
instantiates a set of features. Figure 20 shows all the feature templates for a concrete
example. The feature templates are as follows:

� PREDHIT contains the single feature PREDHIT, which fires for each
predicate in z.

� PRED contains features {PRED[α(p)] : p ∈ P}, each of which fires on
α(p), the abstraction of predicate p, where

α(p) =

{
∗ : t if p = x : t

p otherwise
(67)

The purpose of the abstraction is to abstract away the details of concrete
values such as TX = Texas :state.

� PREDREL contains features {PREDREL[α(p),q] : p ∈ P ,q ∈ ({↙,↘}×
R)∗}. A feature fires when a node x has predicate p and is connected via
some path q = (d1, r1), . . . , (dm, rm) to the lowest descendant node ywith
the property that each node between x and y has a null predicate. Each
(d, r) on the path represents an edge labeled with relation r connecting
to a left (d =↙) or right (d =↘) child. If x has no children, then m = 0.
The most common case is when m = 1, but m = 2 also occurs with the
aggregate and execute relations (e.g., PREDREL[count,↘ 1

1↘ Σ] fires
for Figure 5(a)).

� PREDRELPRED contains features {PREDRELPRED[α(p),q,α(p′)] : p, p′ ∈
P ,q ∈ ({↙,↘}×R)∗}, which are the same as PREDREL, except that we
include both the predicate p of x and the predicate p′ of the descendant
node y. These features do not fire if m = 0.

424

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 20
For each utterance–DCS tree pair (x, z), we define a feature vector φ(x, z), whose j-th component
is the number of times a feature j occurs in (x, z). Each feature has an associated parameter θj,
which is estimated from data in Section 3.2. The inner product of the feature vector and
parameter vector yields a compatibility score.

� TRIGGERPRED contains features {TRIGGERPRED[s, p] : s ∈W∗, p ∈ P},
whereW = {it,Texas, . . . } is the set of words. Each of these features fires
when a span of the utterance with words s triggers the predicate p—more
precisely, when a subtree 〈p; e〉i..j exists with s = xi+1..j. Note that these
lexicalized features use the predicate p rather than the abstracted
version α(p).

� TRACEPRED contains features {TRACEPRED[s, p, d] : s ∈W∗, p ∈ P , d ∈
{↙,↘}}, each of which fires when a trace predicate p has been inserted

425

Computational Linguistics Volume 39, Number 2

over a word s. The situation is the following: Suppose we have a subtree
a that ends at position k (there is a predicate in a that is triggered by a
phrase with right endpoint k) and another subtree b that begins at k′.
Recall that in the construction mechanism (46), we can insert a trace
predicate p ∈ L(ε) between the roots of a and b. Then, for every word
xj between the spans of the two subtrees (j = {k + 1, . . . , k′}), the
feature TRACEPRED[xj, p, d] fires (d =↙ if b dominates a and d =↘
if a dominates b).

� TRACEREL contains features {TRACEREL[s, d, r] : s ∈W∗, d ∈ {↙,↘}, r ∈
R}, each of which fires when some trace predicate with parent relation r
has been inserted over a word s.

� TRACEPREDREL contains features {TRACEPREDREL[s, p, d, r] : s ∈W∗,
p ∈ P , d ∈ {↙,↘}, r ∈ R}, each of which fires when a predicate p is
connected via child relation r to some trace predicate over a word s.

These features are simple generic patterns which can be applied for modeling
essentially any distribution over sequences and labeled trees—there is nothing spe-
cific to DCS at all. The first half of the feature templates (PREDHIT, PRED, PREDREL,
PREDRELPRED) capture properties of the tree independent of the utterance, and
are similar to those used for syntactic dependency parsing. The other feature tem-
plates (TRIGGERPRED, TRACEPRED, TRACEREL, TRACEPREDREL) connect predicates
in the DCS tree with words in the utterance, similar to those in a model of machine
translation.

3.2 Parameter Estimation

We have now fully specified the details of the graphical model in Figure 2: Section 3.1
described semantic parsing and Section 2 described semantic evaluation. Next, we focus
on the inferential problem of estimating the parameters θ of the model from data.

3.2.1 Objective Function.We assume that our learning algorithm is given a training data
setD containing question–answer pairs (x, y). Because the logical forms are unobserved,
we work with log p(y | x;C,θ), the marginal log-likelihood of obtaining the correct
answer y given an utterance x. This marginal log-likelihood sums over all z ∈ C(x) that
evaluate to y:

log p(y | x;C,θ) = log p(z ∈ Cy(x) | x;C,θ) (68)

= A(θ; x,Cy)−A(θ, x,C), where (69)

Cy(x)
def
= {z ∈ C(x) : �z�w = y} (70)

Here, Cy(x) is the set of DCS trees z with denotation y.
We call an example (x, y) ∈ D feasible if the candidate set of x contains a DCS

tree that evaluates to y (Cy(x) �= ∅). Define an objective function O(θ,C) containing
two terms. The first term is the sum of the marginal log-likelihood over all feasible

426

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

training examples. The second term is a quadratic penalty on the parameters θ with
regularization parameter λ. Formally:

O(θ,C) def=
∑
(x,y)∈D
Cy(x)=∅

log p(y | x;C,θ)− λ

2
‖θ‖22 (71)

=
∑
(x,y)∈D
Cy(x)=∅

(A(θ; x,Cy)−A(θ; x,C))− λ

2
‖θ‖22

We would like to maximize O(θ,C). The log-partition function A(θ; ·, ·) is convex,
but O(θ,C) is the difference of two log-partition functions and hence is not concave
(nor convex). Thus we resort to gradient-based optimization. A standard result is that
the derivative of the log-partition function is the expected feature vector (Wainwright
and Jordan 2008). Using this, we obtain the gradient of our objective function:11

∂O(θ,C)
∂θ

=
∑
(x,y)∈D
Cy(x)=∅

(
Ep(z|x;Cy,θ)[φ(x, z)]− Ep(z|x;C,θ)[φ(x, z)]

)
− λθ (72)

Updating the parameters in the direction of the gradient would move the parameters
towards the DCS trees that yield the correct answer (Cy) and away from overall can-
didate DCS trees (C). We can use any standard numerical optimization algorithm that
requires only black-box access to a gradient. Section 4.3.4 will discuss the empirical
ramifications of the choice of optimization algorithm.

3.2.2 Algorithm. Given a candidate set function C(x), we can optimize Equation (71) to
obtain estimates of the parameters θ. Ideally, we would use C(x) = ZL(x), the candidate
sets from our construction mechanism in Section 2.6, but we quickly run into the prob-
lem of computing Equation (72) efficiently. Note that ZL(x) (defined in Equation (44))
grows exponentially with the length of x. This by itself is not a show-stopper. Our
features (Section 3.1.1) decompose along the edges of the DCS tree, so it is possible
to use dynamic programming12 to compute the second expectation Ep(z|x;ZL,θ)[φ(x, z)]
of Equation (72). The problem is computing the first expectation Ep(z|x;Zy

L ,θ)
[φ(x, z)],

which sums over the subset of candidate DCS trees z satisfying the constraint �z�w = y.
Though this is a smaller set, there is no efficient dynamic program for this set because
the constraint does not decompose along the structure of the DCS tree. Therefore, we
need to approximate Zy

L , and, in fact, we will approximate ZL as well so that the two
expectations in Equation (72) are coherent.

Recall that ZL(x) was built by recursively constructing a set of DCS trees Ci,j(x)
for each span i..j. In our approximation, we simply use beam search, which truncates
each Ci,j(x) to include the (at most) K DCS trees with the highest score φ(x, z)�θ. We

11 Notation: Ep(x)[f (x)] =
∑

x p(x)f (x).
12 The state of the dynamic program would be the span i..j and the head predicate over that span.

427

Computational Linguistics Volume 39, Number 2

let C̃i,j,θ(x) denote this approximation and define the set of candidate DCS trees with
respect to the beam search:

Z̃L,θ(x) = C̃0,n,θ(x) (73)

We now have a chicken-and-egg problem: If we had good parameters θ, we
could generate good candidate sets C(x) using beam search Z̃L,θ(x). If we had good
candidate sets C(x), we could generate good parameters by optimizing our objective
O(θ,C) in Equation (71). This problem leads to a natural solution: simply alternate
between the two steps (Figure 21). This procedure is not guaranteed to converge, due
to the heuristic nature of the beam search, but we have found it to be convergent in
practice.

Finally, we use the trained model with parameters θ to answer new questions x by
choosing the most likely answer y, summing out the latent logical form z:

Fθ(x)
def
= argmax

y
p(y | x;θ, Z̃L,θ) (74)

= argmax
y

∑
z∈Z̃L,θ(x)
�z�w=y

p(z | x;θ, Z̃L,θ) (75)

4. Experiments

We have now completed the conceptual part of this article—using DCS trees to rep-
resent logical forms (Section 2), and learning a probabilistic model over these trees
(Section 3). In this section, we evaluate and study our approach empirically. Our
main result is that our system can obtain comparable accuracies to state-of-the-art
systems that require annotated logical forms. All the code and data are available at
cs.stanford.edu/~pliang/software/.

4.1 Experimental Set-up

We first describe the data sets (Section 4.1.1) that we use to train and evaluate our
system. We then mention various choices in the model and learning algorithm (Sec-
tion 4.1.2). One of these choices is the lexical triggers, which are further discussed in
Section 4.1.3.

Figure 21
The learning algorithm alternates between updating the candidate sets based on beam search
and updating the parameters using standard numerical optimization.

428

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

4.1.1 Data sets. We tested our methods on two standard data sets, referred to in this
article as GEO and JOBS. These data sets were created by Ray Mooney’s group during
the 1990s and have been used to evaluate semantic parsers for over a decade.

U.S. Geography. The GEO data set, originally created by Zelle and Mooney (1996), con-
tains 880 questions about U.S. geography and a database of facts encoded in Prolog. The
questions in GEO ask about general properties (e.g., area, elevation, and population) of
geographical entities (e.g., cities, states, rivers, andmountains). Across all the questions,
there are 280 word types, and the length of an utterance ranges from 4 to 19 words,
with an average of 8.5 words. The questions involve conjunctions, superlatives, and
negation, but no generalized quantification. Each question is annotated with a logical
form in Prolog, for example:

Utterance: What is the highest point in Florida?
Logical form: answer(A,highest(A,(place(A),loc(A,B),const(B,stateid(florida)))))

Because our approach learns from answers, not logical forms, we evaluated the
annotated logical forms on the provided database to obtain the correct answers.

Recall that a world/database w maps each predicate p ∈ P to a set of tuples w(p).
Some predicates contain the set of tuples explicitly (e.g., mountain); others can be
derived (e.g., higher takes two entities x and y and returns true if elevation(x) >
elevation(y)). Other predicates are higher-order (e.g., sum, highest) in that they take
other predicates as arguments. We do not use the provided domain-specific higher-
order predicates (e.g., highest), but rather provide domain-independent higher-order
predicates (e.g., argmax) and the ordinary domain-specific predicates (e.g., elevation).
This provides more compositionality and therefore better generalization. Similarly, we
use more and elevation instead of higher. Altogether, P contains 43 predicates plus
one predicate for each value (e.g., CA).

Job Queries. The JOBS data set (Tang and Mooney 2001) contains 640 natural language
queries about job postings. Most of the questions ask for jobs matching various criteria:
job title, company, recruiter, location, salary, languages and platforms used, areas of
expertise, required/desired degrees, and required/desired years of experience. Across
all utterances, there are 388 word types, and the length of an utterance ranges from 2 to
23 words, with an average of 9.8 words.

The utterances are mostly based on conjunctions of criteria, with a sprinkling of
negation and disjunction. Here is an example:

Utterance: Are there any jobs using Java that are not with IBM?
Logical form: answer(A,(job(A),language(A,’java’),¬company(A,’IBM’)))

The JOBS data set comes with a database, which we can use as the world w. When
the logical forms are evaluated on this database, however, close to half of the answers
are empty (no jobs match the requested criteria). Therefore, there is a large discrepancy
between obtaining the correct logical form (which has been the focus of most work on
semantic parsing) and obtaining the correct answer (our focus).

To bring these two into better alignment, we generated a random database as
follows: We created m = 100 jobs. For each job j, we go through each predicate p (e.g.,
company) that takes two arguments, a job, and a target value. For each of the possible
target values v, we add (j, v) to w(p) independently with probability α = 0.8. For exam-
ple, for p = company, j = job37, we might add (job37, IBM) to w(company). The result is

429

Computational Linguistics Volume 39, Number 2

a database with a total of 23 predicates (which includes the domain-independent ones)
in addition to the value predicates (e.g., IBM).

The goal of using randomness is to ensure that two different logical forms will most
likely yield different answers. For example, consider two logical forms:

z1 = λj.job(j) ∧ company(j, IBM), (76)

z2 = λj.job(j) ∧ language(j, Java). (77)

Under the random construction, the denotation of z1 is S1, a random subset of the jobs,
where each job is included in S1 independently with probability α, and the denotation
of z2 is S2, which has the same distribution as S1 but importantly is independent of S1.
Therefore, the probability that S1 = S2 is [α

2 + (1− α)2]m, which is exponentially small
in m. This construction yields a world that is not entirely “realistic” (a job might have
multiple employers), but it ensures that if we get the correct answer, we probably also
obtain the correct logical form.

4.1.2 Settings. There are a number of settings that control the tradeoffs between compu-
tation, expressiveness, and generalization power of our model, shown here. For now,
we will use generic settings chosen rather crudely; Section 4.3.4 will explore the effect
of changing these settings.

Lexical Triggers The lexical triggers L (Section 2.6.1) define the set of candidate DCS
trees for each utterance. There is a tradeoff between expressiveness and computa-
tional complexity: The more triggers we have, the more DCS trees we can consider
for a given utterance, but then either the candidate sets become too large or beam
search starts dropping the good DCS trees. Choosing lexical triggers is important
and requires additional supervision (Section 4.1.3).

Features Our probabilistic semantic parsing model is defined in terms of feature tem-
plates (Section 3.1.1). Richer features increase expressiveness but also might lead
to overfitting. By default, we include all the feature templates.

Number of training examples (n) An important property of any learning algorithm is
its sample complexity—how many training examples are required to obtain a
certain level of accuracy? By default, all training examples are used.

Number of training iterations (T) Our learning algorithm (Figure 21) alternates be-
tween updating candidate sets and updating parameters for T iterations. We use
T = 5 as the default value.

Beam size (K) The computation of the candidate sets in Figure 21 is based on beam
search where each intermediate state keeps at most K DCS trees. The default value
is K = 100.

Optimization algorithm To optimize the objective functionO(θ,C) our default is to use
the standard L-BFGS algorithm (Nocedal 1980) with a backtracking line search for
choosing the step size.

Regularization (λ) The regularization parameter λ > 0 in the objective functionO(θ,C)
is another knob for controlling the tradeoff between fitting and overfitting. The
default is λ = 0.01.

4.1.3 Lexical Triggers. The lexical trigger set L (Section 2.6.1) is a set of entries (s, p), where
s is a sequence of words and p is a predicate. We run experiments on two sets of lexical
triggers: base triggers LB and augmented triggers LB+P.

430

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Base Triggers. The base trigger set LB includes three types of entries:

� Domain-independent triggers: For each domain-independent predicate
(e.g., argmax), we manually specify a few words associated with that
predicate (e.g., most). The full list is shown at the top of Figure 22.

� Values: For each value x that appears in the world (specifically,
x ∈ vj ∈ w(p) for some tuple v, index j, and predicate p), LB contains an
entry (x, x) (e.g., (Boston,Boston :city)). Note that this rule implicitly
specifies an infinite number of triggers.

Regarding predicate names, we do not add entries such as (city, city),
because we want our system to be language-independent. In Turkish,
for instance, we would not have the luxury of lexicographical cues that
associate citywith şehir. So we should think of the predicates as just
symbols predicate1, predicate2, and so on. On the other hand, values
in the database are generally proper nouns (e.g., city names) for which
there are generally strong cross-linguistic lexicographic similarities.

� Part-of-speech (POS) triggers:13 For each domain-specific predicate p,
we specify a set of POS tags T. Implicitly, LB contains all pairs (x, p) where
the word x has a POS tag t ∈ T. For example, for city, we would specify
NN and NNS, which means that any word which is a singular or plural
common noun triggers the predicate city. Note that city triggers city as
desired, but state also triggers city.

The POS triggers for GEO and JOBS domains are shown in the left side of
Figure 22. Note that some predicates such as traverse and loc are
not associated with any POS tags. Predicates corresponding to verbs and
prepositions are not included as overt lexical triggers, but rather included
as trace predicates L(ε). In constructing the logical forms, nouns and
adjectives serve as anchor points. Trace predicates can be inserted between
these anchors. This strategy is more flexible than requiring each predicate
to spring from some word.

Augmented Triggers.We nowdefine the augmented trigger set LB+P, which containsmore
domain-specific information than LB. Specifically, for each domain-specific predicate
(e.g., city), we manually specify a single prototype word (e.g., city) associated with
that predicate. Under LB+P, city would trigger only city because city is a prototype
word, but townwould trigger all the NN predicates (city, state, country, etc.) because
it is not a prototype word.

Prototype triggers require only a modest amount of domain-specific supervision
(see the right side of Figure 22 for the entire list for GEO and JOBS). In fact, as we’ll see
in Section 4.2, prototype triggers are not absolutely required to obtain good accuracies,
but they give an extra boost and also improve computational efficiency by reducing the
set of candidate DCS trees.

13 To perform POS tagging, we used the Berkeley Parser (Petrov et al. 2006), trained on the WSJ Treebank
(Marcus, Marcinkiewicz, and Santorini 1993) and the Question Treebank (Judge, Cahill, and v. Genabith
2006)—thanks to Slav Petrov for providing the trained parser.

431

Computational Linguistics Volume 39, Number 2

Figure 22
Lexical triggers used in our experiments.

Finally, to determine triggering, we stem all words using the Porter stemmer (Porter
1980), so that mountains triggers the same predicates as mountain. We also decompose
superlatives into two words (e.g., largest is mapped to most large), allowing us to con-
struct the logical form more compositionally.

4.2 Comparison with Other Systems

We now compare our approach with existing methods. We used the same training-test
splits as Zettlemoyer and Collins (2005) (600 training and 280 test examples for GEO,
500 training and 140 test examples for JOBS). For development, we created five random
splits of the training data. For each split, we put 70% of the examples into a development
training set and the remaining 30% into a development test set. The actual test set was
only used for obtaining final numbers.

4.2.1 Systems that Learn from Question–Answer Pairs.We first compare our system (hence-
forth, LJK11) with Clarke et al. (2010) (henceforth, CGCR10), which is most similar to
our work in that it also learns from question–answer pairs without using annotated
logical forms. CGCR10 works with the FunQL language and casts semantic parsing as
integer linear programming (ILP). In each iteration, the learning algorithm solves the

432

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Table 2
Results on GEO with 250 training and 250 test examples. Our system (LJK11 with base triggers
and no logical forms) obtains higher test accuracy than CGCR10, even when CGCR10 is trained
using logical forms.

System Accuracy (%)

CGCR10 w/answers (Clarke et al. 2010) 73.2
CGCR10 w/logical forms (Clarke et al. 2010) 80.4
LJK11 w/base triggers (Liang, Jordan, and Klein 2011) 84.0
LJK11 w/augmented triggers (Liang, Jordan, and Klein 2011) 87.6

ILP to predict the logical form for each training example. The examples with correct
predictions are fed to a structural support vector machine (SVM) and the model param-
eters are updated.

Though similar in spirit, there are some important differences between CGCR10
and our approach. They use ILP instead of beam search and structural SVM instead of
log-linear models, but the main difference is which examples are used for learning. Our
approach learns on any feasible example (Section 3.2.1), one where the candidate set
contains a logical form that evaluates to the correct answer. CGCR10 uses a much more
stringent criterion: The highest scoring logical formmust evaluate to the correct answer.
Therefore, for their algorithm to progress, the model already must be non-trivially good
before learning even starts. This is reflected in the amount of prior knowledge and
initialization that CGCR10 uses before learning starts: WordNet features, syntactic parse
trees, and a set of lexical triggers with 1.42 words per non-value predicate. Our system
with base triggers requires only simple indicator features, POS tags, and 0.5 words per
non-value predicate.

CGCR10 created a version of GEO which contains 250 training and 250 test exam-
ples. Table 2 compares the empirical results of this split. We see that our system (LJK11)
with base triggers significantly outperforms CGCR10 (84% vs. 73.2%), and it even
outperforms the version of CGCR10 that is trained using logical forms (84.0% vs. 80.4%).
If we use augmented triggers, we widen the gap by another 3.6 percentage points.14

4.2.2 State-of-the-Art Systems. We now compare our system (LJK11) with state-of-the-
art systems, which all require annotated logical forms (except PRECISE). Here is a brief
overview of the systems:

� COCKTAIL (Tang and Mooney 2001) uses inductive logic programming to
learn rules for driving the decisions of a shift-reduce semantic parser. It
assumes that a lexicon (mapping from words to predicates) is provided.

� PRECISE (Popescu, Etzioni, and Kautz 2003) does not use learning, but
instead relies on matching words to strings in the database using various
heuristics based on WordNet and the Charniak parser. Like our work, it
also uses database type constraints to rule out spurious logical forms. One
of the unique features of PRECISE is that it has 100% precision—it refuses
to parse an utterance which it deems semantically intractable.

14 Note that the numbers for LJK11 differ from those presented in Liang, Jordan, and Klein (2011), which
reports results based on 10 different splits rather than the set-up used by CGCR10.

433

Computational Linguistics Volume 39, Number 2

� SCISSOR (Ge and Mooney 2005) learns a generative probabilistic model
that extends the Collins (1999) models with semantic labels, so
that syntactic and semantic parsing can be done jointly.

� SILT (Kate, Wong, and Mooney 2005) learns a set of transformation rules
for mapping utterances to logical forms.

� KRISP (Kate and Mooney 2006) uses SVMs with string kernels to drive the
local decisions of a chart-based semantic parser.

� WASP (Wong and Mooney 2006) uses log-linear synchronous grammars to
transform utterances into logical forms, starting with word alignments
obtained from the IBM models.

� λ-WASP (Wong and Mooney 2007) extends WASP to work with logical
forms that contain bound variables (lambda abstraction).

� LNLZ08 (Lu et al. 2008) learns a generative model over hybrid trees,
which are logical forms augmented with natural language words.
IBM model 1 is used to initialize the parameters, and a discriminative
reranking step works on top of the generative model.

� ZC05 (Zettlemoyer and Collins 2005) learns a discriminative log-linear
model over CCG derivations. Starting with a manually constructed
domain-independent lexicon, the training procedure grows the lexicon
by adding lexical entries derived from associating parts of an utterance
with parts of the annotated logical form.

� ZC07 (Zettlemoyer and Collins 2007) extends ZC05 with extra
(disharmonic) combinators to increase the expressive power of the model.

� KZGS10 (Kwiatkowski et al. 2010) uses a restricted higher-order
unification procedure, which iteratively breaks up a logical form into
smaller pieces. This approach gradually adds lexical entries of increasing
generality, thus obviating the need for the manually specified templates
used by ZC05 and ZC07 for growing the lexicon. IBM model 1 is used to
initialize the parameters.

� KZGS11 (Kwiatkowski et al. 2011) extends KZGS10 by factoring lexical
entries into a template plus a sequence of predicates that fill the slots of
the template. This factorization improves generalization.

With the exception of PRECISE, all other systems require annotated logical forms,
whereas our system learns only from annotated answers. On the other hand, our system
does rely on a fewmanually specified lexical triggers, whereasmany of the later systems
essentially require no manually crafted lexica. For us, the lexical triggers play a crucial
role in the initial stages of learning because they constrain the set of candidate DCS
trees; otherwise we would face a hopelessly intractable search problem. The other
systems induce lexica using unsupervised word alignment (Wong and Mooney 2006,
2007; Kwiatkowski et al. 2010, 2011) and/or on-line lexicon learning (Zettlemoyer and
Collins 2005, 2007; Kwiatkowski et al. 2010, 2011). Unfortunately, we cannot use these
automatic techniques because they rely on having annotated logical forms.

Table 3 shows the results for GEO. Semantic parsers are typically evaluated on
the accuracy of the logical forms: precision (the accuracy on utterances which are

434

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Table 3
Results on GEO: Logical form accuracy (LF) and answer accuracy (Answer) of the various
systems. The first group of systems are evaluated using 10-fold cross-validation on all 880
examples; the second are evaluated on the 680+ 200 split of Zettlemoyer and Collins (2005).
Our system (LJK11) with base triggers obtains comparable accuracy to past work, whereas
with augmented triggers, our system obtains the highest overall accuracy.

System LF (%) Answer (%)

COCKTAIL (Tang and Mooney 2001) 79.4 –
PRECISE (Popescu, Etzioni, and Kautz 2003) 77.5 77.5
SCISSOR (Ge and Mooney 2005) 72.3 –
SILT (Kate, Wong, and Mooney 2005) 54.1 –
KRISP (Kate and Mooney 2006) 71.7 –
WASP (Wong and Mooney 2006) 74.8 –
λ-WASP (Wong and Mooney 2007) 86.6 –
LNLZ08 (Lu et al. 2008) 81.8 –

ZC05 (Zettlemoyer and Collins 2005) 79.3 –
ZC07 (Zettlemoyer and Collins 2007) 86.1 –
KZGS10 (Kwiatkowski et al. 2010) 88.2 88.9
KZGS11 (Kwiatkowski et al. 2010) 88.6 –
LJK11 w/base triggers (Liang, Jordan, and Klein 2011) – 87.9
LJK11 w/augmented triggers (Liang, Jordan, and Klein 2011) – 91.4

successfully parsed) and recall (the accuracy on all utterances). We only focus on recall
(a lower bound on precision) and simply use the word accuracy to refer to recall.15 Our
system is evaluated only on answer accuracy because our model marginalizes out the
latent logical form. All other systems are evaluated on the accuracy of logical forms. To
calibrate, we also evaluated KZGS10 on answer accuracy and found that it was quite
similar to its logical form accuracy (88.9% vs. 88.2%).16 This does not imply that our
system would necessarily have a high logical form accuracy because multiple logical
forms can produce the same answer, and our system does not receive a training signal
to tease them apart. Even with only base triggers, our system (LJK11) outperforms all
but two of the systems, falling short of KZGS10 by only one percentage point (87.9% vs.
88.9%).17 With augmented triggers, our system takes the lead (91.4% vs. 88.9%).

Table 4 shows the results for JOBS. The two learning-based systems (COCKTAIL
and ZC05) are actually outperformed by PRECISE, which is able to use strong database
type constraints. By exploiting this information and doing learning, we obtain the best
results.

4.3 Empirical Properties

In this section, we try to gain intuition into properties of our approach. All experiments
in this section were performed on random development splits. Throughout this section,
“accuracy” means development test accuracy.

15 Our system produces a logical form for every utterance, and thus our precision is the same as our recall.
16 The 88.2% corresponds to 87.9% in Kwiatkowski et al. (2010). The difference is due to using a slightly
newer version of the code.

17 The 87.9% and 91.4% correspond to 88.6% and 91.1% in Liang, Jordan, and Klein (2011). These differences
are due to minor differences in the code.

435

Computational Linguistics Volume 39, Number 2

Table 4
Results on JOBS: Both PRECISE and our system use database type constraints, which results in a
decisive advantage over the other systems. In addition, LJK11 incorporates learning and
therefore obtains the highest accuracies.

System LF (%) Answer (%)

COCKTAIL (Tang and Mooney 2001) 79.4 –
PRECISE (Popescu, Etzioni, and Kautz 2003) 88.0 88.0

ZC05 (Zettlemoyer and Collins 2005) 79.3 –
LJK11 w/base triggers (Liang, Jordan, and Klein 2011) – 90.7
LJK11 w/augmented triggers (Liang, Jordan, and Klein 2011) – 95.0

4.3.1 Error Analysis. To understand the type of errors our system makes, we examined
one of the development runs, which had 34 errors on the test set. We classified these
errors into the following categories (the number of errors in each category is shown in
parentheses):

� Incorrect POS tags (8): GEO is out-of-domain for our POS tagger, so the
tagger makes some basic errors that adversely affect the predicates that
can be lexically triggered. For example, the questionWhat states border
states . . . is tagged as WP VBZ NN NNS . . . , which means that the first states
cannot trigger state. In another example, major river is tagged as NNP
NNP, so these cannot trigger the appropriate predicates either, and thus
the desired DCS tree cannot even be constructed.

� Non-projectivity (3): The candidate DCS trees are defined by a projective
construction mechanism (Section 2.6) that prohibits edges in the DCS
tree from crossing. This means we cannot handle utterances such as
largest city by area, because the desired DCS tree would have city
dominating area dominating argmax. To construct this DCS tree,
we could allow local reordering of the words.

� Unseen words (2): We never saw at least or sea level at training time.
The former has the correct lexical trigger, but not a sufficiently large
feature weight (0) to encourage its use. For the latter, the problem is
more structural: We have no lexical triggers for 0 :length, and only
adding more lexical triggers can solve this problem.

� Wrong lexical triggers (7): Sometimes the error is localized to a single
lexical trigger. For example, the model incorrectly thinksMississippi
is the state rather than the river, and that Rochester is the city in
New York rather than the name, even though there are contextual
cues to disambiguate in these cases.

� Extra words (5): Sometimes, words trigger predicates that should be
ignored. For example, for population density, the first word triggers
population, which is used rather than density.

� Over-smoothing of DCS tree (9): The first half of our features (Figure 20)
are defined on the DCS tree alone; these produce a form of smoothing
that encourages DCS trees to look alike regardless of the words. We found

436

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

several instances where this essential tool for generalization went too
far. For example, in state of Nevada, the trace predicate border is inserted
between the two nouns, because it creates a structure more similar to
that of the common question what states border Nevada?

4.3.2 Visualization of Features.Having analyzed the behavior of our system for individual
utterances, let us move from the token level to the type level and analyze the learned
parameters of our model. We do not look at raw feature weights, because there are
complex interactions between them not represented by examining individual weights.
Instead, we look at expected feature counts, which we think are more interpretable.

Consider a group of “competing” features J, for example J = {TRIGGERPRED[city,
p] : p ∈ P}. We define a distribution q(·) over J as follows:

q(j) =
Nj∑

j′∈J Nj′
, where (78)

Nj =
∑
(x,y)∈D

Ep(z|x,Z̃L,θ,θ)
[φ(x, z)]

Think of q(j) as a marginal distribution (because all our features are positive) that
represents the relative frequencies with which the features j ∈ J fire with respect to
our training data set D and trained model p(z | x, Z̃L,θ,θ). To appreciate the difference
between what this distribution and raw feature weights capture, suppose we had two
features, j1 and j2, which are identical (φ(x, z)j1 ≡ φ(x, z)j2). The weights would be split
across the two features, but the features would have the same marginal distribution
(q(j1) = q(j2)). Figure 23 shows some of the feature distributions learned.

4.3.3 Learning, Search, Bootstrapping. Recall from Section 3.2.1 that a training example
is feasible (with respect to our beam search) if the resulting candidate set contains a
DCS tree with the correct answer. Infeasible examples are skipped, but an example may
become feasible in a later iteration. A natural question is how many training examples
are feasible in each iteration. Figure 24 shows the answer: Initially, only around 30% of
the training examples are feasible; this is not surprising given that all the parameters
are zero, so our beam search is essentially unguided. Training on just these examples
improves the parameters, however, and over the next few iterations, the number of
feasible examples steadily increases to around 97%.

In our algorithm, learning and search are deeply intertwined. Search is of course
needed to learn, but learning also improves search. The general approach is similar in
spirit to Searn (Daume, Langford, andMarcu 2009), althoughwe do not have any formal
guarantees at this point.

Our algorithm also has a bootstrapping flavor. The “easy” examples are processed
first, where easy is defined by the ability of beam search to generate the correct answer.
This bootstrapping occurs quite naturally: Unlikemost bootstrapping algorithms, we do
not have to set a confidence threshold for accepting new training examples, something
that can be quite tricky to do. Instead, our threshold falls out of the discrete nature of
the beam search.

4.3.4 Effect of Various Settings. So far, we have used our approach with default settings
(Section 4.1.2). How sensitive is the approach to these choices? Table 5 shows the impact
of the feature templates. Figure 25 shows the effect of the number of training examples,

437

Computational Linguistics Volume 39, Number 2

Figure 23
Learned feature distributions. In a feature group (e.g., TRIGGERPRED[city, ·]), each feature is
associated with the marginal probability that the feature fires according to Equation (78). Note
that we have successfully learned that citymeans city, but incorrectly learned that sparsemeans
elevation (due to the confounding fact that Alaska is the most sparse state and has the highest
elevation).

number of training iterations, beam size, and regularization parameter. The overall
conclusion is that there are no big surprises: Our default settings could be improved
on slightly, but these differences are often smaller than the variation across different
development splits.

We now consider the choice of optimization algorithm to update the parameters
given candidate sets (see Figure 21). Thus far, we have been using L-BFGS (Nocedal
1980), which is a batch algorithm. Each iteration, we construct the candidate

Figure 24
The fraction of feasible training examples increases steadily as the parameters, and thus the
beam search improves. Each curve corresponds to a run on a different development split.

438

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Table 5
There are two classes of feature templates: lexical features (TRIGGERPRED,TRACE*) and
non-lexical features (PREDREL,PREDRELPRED). The lexical features are relatively much more
important for obtaining good accuracy (76.4% vs. 23.1%), but adding the non-lexical features
makes a significant contribution as well (84.7% vs. 76.4%).

Features Accuracy (%)

PRED 13.4± 1.6
PRED + PREDREL 18.4± 3.5
PRED + PREDREL + PREDRELPRED 23.1± 5.0
PRED + TRIGGERPRED 61.3± 1.1
PRED + TRIGGERPRED + TRACE* 76.4± 2.3
PRED + PREDREL + PREDRELPRED + TRIGGERPRED + TRACE* 84.7± 3.5

sets C(t)(x) for all the training examples before solving the optimization problem
argmax

θ
O(θ,C(t)). We now consider an on-line algorithm, stochastic gradient descent

(SGD) (Robbins and Monro 1951), which updates the parameters after computing
the candidate set for each example. In particular, we iteratively scan through the
training examples in a random order. For each example (x, y), we compute the
candidate set using beam search. We then update the parameters in the direction of
the gradient of the marginal log-likelihood for that example (see Equation (72)) with
step size t−α:

θ
(t+1) ← θ

(t) + t−α

(
∂ log p(y | x; Z̃L,θ(t) ,θ)

∂θ

∣∣∣
θ=θ(t)

)
(79)

The trickiest aspect of using SGD is selecting the correct step size: A small α leads to
quick progress but also instability; a large α leads to the opposite. We let L-BFGS and
SGD both take the same number of iterations (passes over the training set). Figure 26
shows that a very small value of α (less than 0.2) is best for our task, even though
only values between 0.5 and 1 guarantee convergence. Our setting is slightly different
because we are interleaving the SGD updates with beam search, which might also
lead to unpredictable consequences. Furthermore, the non-convexity of the objective
function exacerbates the unpredictability (Liang and Klein 2009). Nonetheless, with
a proper α, SGD converges much faster than L-BFGS and even to a slightly better
solution.

5. Discussion

The work we have presented in this article addresses three important themes. The
first theme is semantic representation (Section 5.1): How do we parametrize the mapping
from utterances to their meanings? The second theme is program induction (Section 5.2):
How do we efficiently search through the space of logical structures given a weak
feedback signal? Finally, the last theme is grounded language (Section 5.3): Howdowe use
constraints from the world to guide learning of language and conversely use language
to interact with the world?

439

Computational Linguistics Volume 39, Number 2

Figure 25
(a) The learning curve shows test accuracy as the number of training examples increases; about
300 examples suffices to get around 80% accuracy. (b) Although our algorithm is not guaranteed
to converge, the test accuracy is fairly stable (with one exception) with more training
iterations—hardly any overfitting occurs. (c) As the beam size increases, the accuracy increases
monotonically, although the computational burden also increases. There is a small gain from our
default setting of K = 100 to the more expensive K = 300. (d) The accuracy is relatively
insensitive to the choice of the regularization parameter for a wide range of values. In fact, no
regularization is also acceptable. This is probably because the features are simple, and the lexical
triggers and beam search already provide some helpful biases.

5.1 Semantic Representation

Since the late nineteenth century, philosophers and linguists have worked on elucidat-
ing the relationship between an utterance and its meaning. One of the pillars of formal
semantics is Frege’s principle of compositionality, that the meaning of an utterance
is built by composing the meaning of its parts. What these parts are and how they
are composed is the main question. The dominant paradigm, which stems from the
seminal work of Richard Montague (1973) in the early 1970s, states that parts are
lambda calculus expressions that correspond to syntactic constituents, and composition
is function application.

440

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 26
(a) Given the same number of iterations, compared to default batch algorithm (L-BFGS),
the on-line algorithm (stochastic gradient descent) is slightly better for aggressive step
sizes (small α) and worse for conservative step sizes (large α). (b) The on-line algorithm
(with an appropriate choice of α) obtains a reasonable accuracy much faster than L-BFGS.

Consider the compositionality principle from a statistical point of view, where we
construe compositionality as factorization. Factorization, the way a statistical model
breaks into features, is necessary for generalization: It enables us to learn from pre-
viously seen examples and interpret new utterances. Projecting back to Frege’s orig-
inal principle, the parts are the features (Section 3.1.1), and composition is the DCS
construction mechanism (Section 2.6) driven by parameters learned from training
examples.

Taking the statistical view of compositionality, finding a good semantic represen-
tation becomes designing a good statistical model. But statistical modeling must also
deal with the additional issue of language acquisition or learning, which presents
complications: In absorbing training examples, our learning algorithm must inevitably
traverse through intermediate models that are wrong or incomplete. The algorithms
must therefore tolerate this degradation, and do so in a computationally efficient way.
For example, in the line of work on learning probabilistic CCGs (Zettlemoyer and
Collins 2005, 2007; Kwiatkowski et al. 2010), many candidate lexical entries must be
entertained for each word even when polysemy does not actually exist (Section 2.6.4).

To improve generalization, the lexicon can be further factorized (Kwiatkowski et al.
2011), but this is all done within the constraints of CCG. DCS represents a departure
from this tradition, which replaces a heavily lexicalized constituency-based formalism
with a lightly-lexicalized dependency-based formalism. We can think of DCS as a shift
in linguistic coordinate systems, which makes certain factorizations or features more
accessible. For example, we can define features on paths between predicates in a DCS
tree which capture certain lexical patterns much more easily than in a lambda calculus
expression or a CCG derivation.

DCS has a family resemblance to a semantic representation called natural logic form
(Alshawi, Chang, and Ringgaard 2011), which is also motivated by the benefits of work-
ing with dependency-based logical forms. The goals and the detailed structure of the
two semantic formalisms are different, however. Alshawi, Chang, and Ringgaard (2011)
focus on parsing complex sentences in an open domain where a structured database
or world does not exist. Whereas they do equip their logical forms with a full model-
theoretic semantics, the logical forms are actually closer to dependency trees: Quantifier
scope is left unspecified, and the predicates are simply the words.

441

Computational Linguistics Volume 39, Number 2

Perhaps not immediately apparent is the fact that DCS draws an important idea
from Discourse Representation Theory (DRT) (Kamp and Reyle 1993)—not from the
treatment of anaphora and presupposition which it is known for, but something closer
to its core. This is the idea of having a logical form where all variables are existentially
quantified and constraints are combined via conjunction—a Discourse Representation
Structure (DRS) in DRT, or a basic DCS tree with only join relations. Computationally,
these logical structures conveniently encode CSPs. Linguistically, it appears that existen-
tial quantifiers play an important role and should be treated specially (Kamp and Reyle
1993). DCS takes this core and focuses on semantic compositionality and computation,
whereas DRT focuses more on discourse and pragmatics.

In addition to the statistical view of DCS as a semantic representation, it is use-
ful to think about DCS from the perspective of programming language design. Two
programming languages can be equally expressive, but what matters is how simple it
is to express a desired type of computation in a given language. In some sense, we
designed the DCS formal language to make it easy to represent computations expressed
by natural language. An important part of DCS is themark–execute construct, a uniform
framework for dealing with the divergence between syntactic and semantic scope. This
construct allows us to build simple DCS tree structures and still handle the complexities
of phenomena such as quantifier scope variation. Compared to lambda calculus, think
of DCS as a higher-level programming language tailored to natural language, which
results in simpler programs (DCS trees). Simpler programs are easier for us to work
with and easier for an algorithm to learn.

5.2 Program Induction

Searching over the space of programs is challenging. This is the central computational
challenge of program induction, that of inferring programs (logical forms) from their
behavior (denotations). This problem has been tackled by different communities in
various forms: program induction in AI, programming by demonstration in Human–
Computer Interaction, and program synthesis in programming languages. The core
computational difficulty is that the supervision signal—the behavior—is a complex
function of the program that cannot be easily inverted. What program generated the
output Arizona, Nevada, and Oregon?

Perhaps somewhat counterintuitively, program induction is easier if we infer pro-
grams for not a single task but for multiple tasks. The intuition is that when the tasks
are related, the solution to one task can help another task, both computationally in
navigating the program space and statistically in choosing the appropriate program if
there are multiple feasible possibilities (Liang, Jordan, and Klein 2010). In our semantic
parsing work, we want to infer a logical form for each utterance (task). Clearly the tasks
are related because they use the same vocabulary to talk about the same domain.

Natural language also makes program induction easier by providing side informa-
tion (words) which can be used to guide the search. There have been several papers
that induce programs in this setting: Eisenstein et al. (2009) induce conjunctive for-
mulae from natural language instructions, Piantadosi et al. (2008) induce first-order
logic formulae using CCG in a small domain assuming observed lexical semantics,
and Clarke et al. (2010) induce logical forms in semantic parsing. In the ideal case, the
words would determine the program predicates, and the utterance would determine
the entire program compositionally. But of course, this mapping is not given and must
be learned.

442

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

5.3 Grounded Language

In recent years, there has been an increased interest in connecting language with the
world.18 One of the primary issues in grounded language is alignment—figuring out
what fragments of utterances refer to what aspects of the world. In fact, semantic
parsers trained on examples of utterances and annotated logical form (those discussed
in Section 4.2.2) need to solve the task of aligning words to predicates. Some can learn
from utterances paired with a set of logical forms, one of which is correct (Kate and
Mooney 2007; Chen and Mooney 2008). Liang, Jordan, and Klein (2009) tackle the even
more difficult alignment problem of segmenting and aligning a discourse to a database
of facts, where many parts on either side are irrelevant.

If we know how the world relates to language, we can leverage structure in the
world to guide the learning and interpretation of language.We saw that type constraints
from the database/world reduce the set of candidate logical forms and lead to more
accurate systems (Popescu, Etzioni, and Kautz 2003; Liang, Jordan, and Klein 2011).
Even for syntactic parsing, information from the denotation of an utterance can be
helpful (Schuler 2003).

One of the exciting aspects about using the world for learning language is that
it opens the door to many new types of supervision. We can obtain answers given a
world, which are cheaper to obtain than logical forms (Clarke et al. 2010; Liang, Jordan,
and Klein 2011). Other researchers have also pushed in this direction in various ways:
learning a semantic parser based on bootstrapping and estimating the confidence of its
own predictions (Goldwasser et al. 2011), learning a semantic parser from user interac-
tions with a dialog system (Artzi and Zettlemoyer 2011), and learning to execute natural
language instructions from just a reward signal using reinforcement learning (Branavan
et al. 2009; Branavan, Zettlemoyer, and Barzilay 2010; Branavan, Silver, and Barzilay
2011). In general, supervision from the world is indirectly related to the learning task,
but it is often much more plentiful and natural to obtain.

The benefits can also flow from language to the world. For example, previous work
learned to interpret language to troubleshoot aWindows machine (Branavan et al. 2009;
Branavan, Zettlemoyer, and Barzilay 2010), win a game of Civilization (Branavan, Silver,
and Barzilay 2011), play a legal game of solitaire (Eisenstein et al. 2009; Goldwasser and
Roth 2011), and navigate a map by following directions (Vogel and Jurafsky 2010; Chen
and Mooney 2011). Even when the objective in the world is defined independently of
language (e.g., in Civilization), language can provide a useful bias towards the non-
linguistic end goal.

6. Conclusions

The main conceptual contribution of this article is a new semantic formalism,
dependency-based compositional semantics (DCS), and techniques to learn a semantic
parser from question–answer pairs where the intermediate logical form (a DCS tree) is
induced in an unsupervised manner. Our final question–answering system was able to
match the accuracies of state-of-the-art systems that learn from annotated logical forms.

There is currently a significant conceptual gap between our question–answering
system (which can be construed as a natural language interface to a database) and

18 Here, world need not refer to the physical world, but could be any virtual world. The point is that the
world has non-trivial structure and exists extra-linguistically.

443

Computational Linguistics Volume 39, Number 2

open-domain question–answering systems. The former focuses on understanding a
question compositionally and computing the answer compositionally, whereas the lat-
ter focuses on retrieving and ranking answers from a large unstructured textual corpus.
The former has depth; the latter has breadth. Developing methods that can both model
the semantic richness of language and scale up to an open-domain setting remains an
open challenge.

We believe that it is possible to push our approach in the open-domain direction.
Neither DCS nor the learning algorithm is tied to having a clean rigid database, which
could instead be a database generated from a noisy information extraction process. The
key is to drive the learning with the desired behavior, the question–answer pairs. The
latent variable is the logical form or program, which just tries to compute the desired
answer by piecing together whatever information is available. Of course, there aremany
open challenges ahead, but with the proper combination of linguistic, statistical, and
computational insight, we hope to eventually build systems with both breadth and
depth.

Acknowledgments
We thank Luke Zettlemoyer and Tom
Kwiatkowski for providing us with data
and answering questions, as well as the
anonymous reviewers for their detailed
feedback. P. L. was supported by an NSF
Graduate Research Fellowship.

References
Alshawi, H., P. Chang, and M. Ringgaard.
2011. Deterministic statistical mapping
of sentences to underspecified
semantics. In International Conference
on Compositional Semantics (IWCS),
pages 15–24, Oxford.

Androutsopoulos, I., G. D. Ritchie, and
P. Thanisch. 1995. Natural language
interfaces to databases—an introduction.
Journal of Natural Language Engineering,
1:29–81.

Artzi, Y. and L. Zettlemoyer. 2011.
Bootstrapping semantic parsers from
conversations. In Empirical Methods in
Natural Language Processing (EMNLP),
pages 421–432, Edinburgh.

Baldridge, J. and G. M. Kruijff. 2002.
Coupling CCG with hybrid logic
dependency semantics. In Association
for Computational Linguistics (ACL),
pages 319–326, Philadelphia, PA.

Barker, C. 2002. Continuations and the
nature of quantification. Natural
Language Semantics, 10:211–242.

Bos, J. 2009. A controlled fragment of
DRT. InWorkshop on Controlled Natural
Language, pages 1–5.

Bos, J., S. Clark, M. Steedman, J. R. Curran,
and J. Hockenmaier. 2004. Wide-coverage
semantic representations from a CCG

parser. In International Conference on
Computational Linguistics (COLING),
pages 1240–1246, Geneva.

Branavan, S., H. Chen, L. S. Zettlemoyer, and
R. Barzilay. 2009. Reinforcement learning
for mapping instructions to actions. In
Association for Computational Linguistics and
International Joint Conference on Natural
Language Processing (ACL-IJCNLP),
pages 82–90, Singapore.

Branavan, S., D. Silver, and R. Barzilay. 2011.
Learning to win by reading manuals in a
Monte-Carlo framework. In Association
for Computational Linguistics (ACL),
pages 268–277.

Branavan, S., L. Zettlemoyer, and R. Barzilay.
2010. Reading between the lines: Learning
to map high-level instructions to
commands. In Association for Computational
Linguistics (ACL), pages 1268–1277,
Portland, OR.

Carpenter, B. 1998. Type-Logical Semantics.
MIT Press, Cambridge, MA.

Chen, D. L. and R. J. Mooney. 2008. Learning
to sportscast: A test of grounded language
acquisition. In International Conference on
Machine Learning (ICML), pages 128–135,
Helsinki.

Chen, D. L. and R. J. Mooney. 2011.
Learning to interpret natural language
navigation instructions from observations.
In Association for the Advancement
of Artificial Intelligence (AAAI),
pages 128–135, Cambridge, MA.

Clarke, J., D. Goldwasser, M. Chang,
and D. Roth. 2010. Driving semantic
parsing from the world’s response.
In Computational Natural Language
Learning (CoNLL), pages 18–27,
Uppsala.

444

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Collins, M. 1999. Head-Driven Statistical
Models for Natural Language Parsing.
Ph.D. thesis, University of Pennsylvania.

Cooper, R. 1975.Montague’s semantic theory
and transformational syntax. Ph.D. thesis,
University of Massachusetts at Amherst.

Cousot, P. and R. Cousot. 1977. Abstract
interpretation: A unified lattice model for
static analysis of programs by construction
or approximation of fixpoints. In Principles
of Programming Languages (POPL),
pages 238–252, Los Angeles, CA.

Daume, H., J. Langford, and D. Marcu.
2009. Search-based structured prediction.
Machine Learning Journal (MLJ), 75:297–325.

Dechter, R. 2003. Constraint Processing.
Morgan Kaufmann.

Eisenstein, J., J. Clarke, D. Goldwasser,
and D. Roth. 2009. Reading to learn:
Constructing features from semantic
abstracts. In Empirical Methods in
Natural Language Processing (EMNLP),
pages 958–967, Singapore.

Ge, R. and R. J. Mooney. 2005. A statistical
semantic parser that integrates syntax
and semantics. In Computational Natural
Language Learning (CoNLL), pages 9–16,
Ann Arbor, MI.

Giordani, A. and A. Moschitti. 2009.
Semantic mapping between natural
language questions and SQL queries
via syntactic pairing. In International
Conference on Applications of Natural
Language to Information Systems,
pages 207–221, Saarbrücken.

Goldwasser, D., R. Reichart, J. Clarke,
and D. Roth. 2011. Confidence driven
unsupervised semantic parsing. In
Association for Computational Linguistics
(ACL), pages 1486–1495, Barcelona.

Goldwasser, D. and D. Roth. 2011. Learning
from natural instructions. In International
Joint Conference on Artificial Intelligence
(IJCAI), pages 1794–1800, Portland, OR.

Heim, I. and A. Kratzer. 1998. Semantics in
Generative Grammar. Wiley-Blackwell,
Oxford.

Judge, J., A. Cahill, and J. v. Genabith.
2006. Question-bank: Creating a
corpus of parse-annotated questions.
In International Conference on Computational
Linguistics and Association for Computational
Linguistics (COLING/ACL), pages 497–504,
Sydney.

Kamp, H. and U. Reyle. 1993. From Discourse
to Logic: An Introduction to the
Model-theoretic Semantics of Natural
Language, Formal Logic and Discourse
Representation Theory. Kluwer, Dordrecht.

Kamp, H., J. van Genabith, and U. Reyle.
2005. Discourse representation theory.
In Handbook of Philosophical Logic,
Kluwer, Dordrecht.

Kate, R. J. and R. J. Mooney. 2006. Using
string-kernels for learning semantic
parsers. In International Conference on
Computational Linguistics and Association for
Computational Linguistics (COLING/ACL),
pages 913–920, Sydney.

Kate, R. J. and R. J. Mooney. 2007.
Learning language semantics from
ambiguous supervision. In Association
for the Advancement of Artificial
Intelligence (AAAI), pages 895–900,
Cambridge, MA.

Kate, R. J., Y. W. Wong, and R. J. Mooney.
2005. Learning to transform natural to
formal languages. In Association for the
Advancement of Artificial Intelligence
(AAAI), pages 1062–1068.

Kwiatkowski, T., L. Zettlemoyer,
S. Goldwater, and M. Steedman. 2010.
Inducing probabilistic CCG grammars
from logical form with higher-order
unification. In Empirical Methods in
Natural Language Processing (EMNLP),
pages1223–1233, Cambridge, MA.

Kwiatkowski, T., L. Zettlemoyer,
S. Goldwater, and M. Steedman. 2011.
Lexical generalization in CCG grammar
induction for semantic parsing. In
Empirical Methods in Natural Language
Processing (EMNLP), pages 1512–1523,
Cambridge, MA.

Liang, P. 2011. Learning Dependency-Based
Compositional Semantics. Ph.D. thesis,
University of California at Berkeley.

Liang, P., M. I. Jordan, and D. Klein. 2009.
Learning semantic correspondences
with less supervision. In Association for
Computational Linguistics and International
Joint Conference on Natural Language
Processing (ACL-IJCNLP), pages 91–99,
Singapore.

Liang, P., M. I. Jordan, and D. Klein. 2010.
Learning programs: A hierarchical
Bayesian approach. In International
Conference on Machine Learning (ICML),
pages 639–646, Haifa.

Liang, P., M. I. Jordan, and D. Klein.
2011. Learning dependency-based
compositional semantics. In Association
for Computational Linguistics (ACL),
pages 590–599, Portland, OR.

Liang, P. and D. Klein. 2009. Online EM for
unsupervised models. In North American
Association for Computational Linguistics
(NAACL), pages 611–619, Boulder, CO.

445

Computational Linguistics Volume 39, Number 2

Lu, W., H. T. Ng, W. S. Lee, and L. S.
Zettlemoyer. 2008. A generative model for
parsing natural language to meaning
representations. In Empirical Methods in
Natural Language Processing (EMNLP),
pages 783–792, Honolulu, HI.

Marcus, M. P., M. A. Marcinkiewicz, and
B. Santorini. 1993. Building a large
annotated corpus of English: The Penn
Treebank. Computational Linguistics,
19:313–330.

Miller, S., D. Stallard, R. Bobrow, and
R. Schwartz. 1996. A fully statistical
approach to natural language interfaces.
In Association for Computational Linguistics
(ACL), pages 55–61, Santa Cruz, CA.

Montague, R. 1973. The proper treatment
of quantification in ordinary English.
In J. Hiutikka, J. Moravcsik, and
P. Suppes, editors, Approaches to Natural
Language, pages 221–242, Dordrecht,
The Netherlands.

Nocedal, J. 1980. Updating quasi-Newton
matrices with limited storage.Mathematics
of Computation, 35:773–782.

Petrov, S., L. Barrett, R. Thibaux, and
D. Klein. 2006. Learning accurate,
compact, and interpretable tree
annotation. In International Conference on
Computational Linguistics and Association for
Computational Linguistics (COLING/ACL),
pages 433–440, Sydney.

Piantadosi, S. T., N. D. Goodman, B. A. Ellis,
and J. B. Tenenbaum. 2008. A Bayesian
model of the acquisition of compositional
semantics. In Proceedings of the Thirtieth
Annual Conference of the Cognitive Science
Society, pages 1620–1625, Washington, DC.

Popescu, A., O. Etzioni, and H. Kautz. 2003.
Towards a theory of natural language
interfaces to databases. In International
Conference on Intelligent User Interfaces
(IUI), pages 149–157, Miami, FL.

Porter, M. F. 1980. An algorithm for suffix
stripping. Program, 14:130–137.

Robbins, H. and S. Monro. 1951. A stochastic
approximation method. Annals of
Mathematical Statistics, 22(3):400–407.

Schuler, W. 2003. Using model-theoretic
semantic interpretation to guide statistical
parsing and word recognition in a spoken
language interface. In Association for
Computational Linguistics (ACL),
pages 529–536, Sapporo.

Shan, C. 2004. Delimited continuations in
natural language. Technical report, ArXiv.
Available at http://arvix.org/abs/
cs.CL/0404006.

Steedman, M. 2000. The Syntactic Process.
MIT Press, Cambridge, MA.

Tang, L. R. and R. J. Mooney. 2001. Using
multiple clause constructors in inductive
logic programming for semantic parsing.
In European Conference on Machine Learning,
pages 466–477, Freiburg.

Vogel, A. and D. Jurafsky. 2010. Learning
to follow navigational directions.
In Association for Computational Linguistics
(ACL), pages 806–814, Uppsala.

Wainwright, M. and M. I. Jordan. 2008.
Graphical models, exponential families,
and variational inference. Foundations and
Trends in Machine Learning, 1:1–307.

Warren, D. and F. Pereira. 1982. An efficient
easily adaptable system for interpreting
natural language queries. Computational
Linguistics, 8:110–122.

White, M. 2006. Efficient realization of
coordinate structures in combinatory
categorial grammar. Research on Language
and Computation, 4:39–75.

Wong, Y. W. and R. J. Mooney. 2006.
Learning for semantic parsing with
statistical machine translation. In North
American Association for Computational
Linguistics (NAACL), pages 439–446,
New York, NY.

Wong, Y. W. and R. J. Mooney. 2007.
Learning synchronous grammars for
semantic parsing with lambda calculus.
In Association for Computational Linguistics
(ACL), pages 960–967, Prague.

Woods, W. A., R. M. Kaplan, and
B. N. Webber. 1972. The lunar sciences
natural language information system:
Final report. Technical Report 2378,
Bolt Beranek and Newman Inc.,
Cambridge, MA.

Zelle, M. and R. J. Mooney. 1996. Learning to
parse database queries using inductive
logic programming. In Association for the
Advancement of Artificial Intelligence
(AAAI), pages 1050–1055, Cambridge, MA.

Zettlemoyer, L. S. and M. Collins. 2005.
Learning to map sentences to logical
form: Structured classification with
probabilistic categorial grammars.
In Uncertainty in Artificial Intelligence
(UAI), pages 658–666.

Zettlemoyer, L. S. and M. Collins. 2007.
Online learning of relaxed CCG grammars
for parsing to logical form. In Empirical
Methods in Natural Language Processing
and Computational Natural Language
Learning (EMNLP/CoNLL), pages 678–687,
Prague.

446

