
Semantic Role Labeling of Implicit
Arguments for Nominal Predicates

Matthew Gerber∗
University of Virginia

Joyce Y. Chai∗∗
Michigan State University

Nominal predicates often carry implicit arguments. Recent work on semantic role labeling has
focused on identifying arguments within the local context of a predicate; implicit arguments,
however, have not been systematically examined. To address this limitation, we have manually
annotated a corpus of implicit arguments for ten predicates from NomBank. Through analysis
of this corpus, we find that implicit arguments add 71% to the argument structures that are
present in NomBank. Using the corpus, we train a discriminative model that is able to identify
implicit arguments with an F1 score of 50%, significantly outperforming an informed baseline
model. This article describes our investigation, explores a wide variety of features important for
the task, and discusses future directions for work on implicit argument identification.

1. Introduction

Recent work has shown that semantic role labeling (SRL) can be applied to nominal
predicates in much the same way as verbal predicates (Liu and Ng 2007; Johansson and
Nugues 2008; Gerber, Chai, and Meyers 2009). In general, the nominal SRL problem
is formulated as follows: Given a predicate that is annotated in NomBank as bear-
ing arguments, identify these arguments within the clause or sentence that contains
the predicate. As shown in our previous work (Gerber, Chai, and Meyers 2009), this
problem definition ignores the important fact that many nominal predicates do not
bear arguments in the local context. Such predicates need to be addressed in order
for nominal SRL to be used by downstream applications such as automatic question
answering, information extraction, and statistical machine translation.

Gerber, Chai, and Meyers (2009) showed that it is possible to accurately identify
nominal predicates that bear arguments in the local context. This makes the nominal
SRL system applicable to text that does not contain annotated predicates. The system
does not address a fundamental question regarding arguments of nominal predicates,
however: If an argument is missing from the local context of a predicate, might the
argument be located somewhere in the wider discourse? Most prior work on nominal

∗ 151 Engineer’s Way, University of Virginia, Charlottesville, VA 22904.
E-mail: matt.gerber@virginia.edu.

∗∗ 3115 Engineering Building, Michigan State University, East Lansing, MI 48824.
E-mail: jchai@cse.msu.edu.

Submission received: 4 August 2011; revised version received: 23 December 2011; accepted for publication:
7 February 2012.

© 2012 Association for Computational Linguistics

Computational Linguistics Volume 38, Number 4

and verbal SRL has stopped short of answering this question, opting instead for an
approach that only labels local arguments and thus ignores predicates whose arguments
are entirely non-local. This article directly addresses the issue of non-local (or implicit)
argument identification for nominal predicates.

As an initial example, consider the following sentence, which is taken from the Penn
TreeBank (Marcus, Santorini, and Marcinkiewicz 1993):

(1) A SEC proposal to ease [arg1 reporting] [predicate requirements] [arg2
for some company executives] would undermine the usefulness of
information on insider trades, professional money managers contend.

The NomBank (Meyers 2007) role set for requirement is shown here:

Frame for requirement, role set 1:

arg0: the entity that is requiring something

arg1: the entity that is required

arg2: the entity of which something is being required

In Example (1), the predicate has been annotated with the local argument labels pro-
vided by NomBank. As shown, NomBank does not annotate an arg0 for this instance of
the requirement predicate; a reasonable interpretation of the sentence, however, is that
SEC is the entity that is requiring something.1 This article refers to arguments such as
SEC in Example (1) as implicit. In this work, the notion of implicit argument covers any
argument that is not annotated by NomBank.2

Building on Example (1), consider the following sentence, which directly follows
Example (1) in the corresponding TreeBank document:

(2) Money managers make the argument in letters to the agency about
[arg1 rule] [predicate changes] proposed this past summer.

The NomBank role set for change is as follows:

Frame for change, role set 1:

arg0: the entity that initiates the change

arg1: the entity that is changed

arg2: the initial state of the changed entity

arg3: the final state of the changed entity

Similarly to the previous example, Example (2) shows the local argument labels pro-
vided by NomBank. These labels only indicate that rules have been changed. For a
full interpretation, Example (2) requires an understanding of Example (1). Without

1 The Securities and Exchange Commission (SEC) is responsible for enforcing investment laws in the
United States.

2 NomBank annotates arguments in the noun phrase headed by the predicate as well as arguments
brought in by so-called support verb structures. See Meyers (2007) for details.

756

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

the sentence from Example 1, the reader has no way of knowing that the agency in
Example (2) actually refers to the same entity as SEC in Example (1). As part of the
reader’s comprehension process, this entity is identified as the filler for the arg0 role in
Example (2). This identification must occur in order for these two sentences to form a
coherent discourse.

From these examples, it is clear that the scope of implicit arguments quite naturally
spans sentence boundaries. Thus, if one wishes to recover implicit arguments as part of
the SRL process, the argument search space must be expanded beyond the traditional,
single-sentence window used in virtually all prior SRL research. What can we hope
to gain from such a fundamental modification of the problem? Consider the following
question, which targets Examples (1) and (2):

(3) Who changed the rules regarding reporting requirements?

Question (3) is a factoid question, meaning it has a short, unambiguous answer in the
targeted text. This type of question has been studied extensively in the Text Retrieval
Conference Question Answering (QA) Track (Dang, Kelly, and Lin 2007). Using the
evaluation data from this track, Pizzato and Mollá (2008) showed that SRL can improve
the accuracy of a QA system; a traditional SRL system alone, however, is not enough
to recover the implied answer to Question (3): SEC or the agency. Successful implicit
argument identification provides the answer in this case.

This article presents an in-depth study of implicit arguments for nominal predi-
cates.3 The following section surveys research related to implicit argument identifica-
tion. Section 3 describes the study’s implicit argument annotation process and the data
it produced. The implicit argument identification model is formulated in Section 4 and
evaluated in Section 5. Discussion of results is provided in Section 6, and the article
concludes in Section 7.

2. Related Work

The research presented in this article is related to a wide range of topics in cognitive
science, linguistics, and natural language processing (NLP). This is partly due to the
discourse-based nature of the problem. In single-sentence SRL, one can ignore the dis-
course aspect of language and still obtain high marks in an evaluation (for examples, see
Carreras and Màrquez 2005 and Surdeanu et al. 2008); implicit argumentation, however,
forces one to consider the discourse context in which a sentence exists. Much has been
said about the importance of discourse to language understanding, and this section
will identify the points most relevant to implicit argumentation.

2.1 Discourse Comprehension in Cognitive Science

The traditional view of sentence-level semantics has been that meaning is composi-
tional. That is, one can derive the meaning of a sentence by carefully composing the
meanings of its constituent parts (Heim and Kratzer 1998). There are counterexamples
to a compositional theory of semantics (e.g., idioms), but those are more the exception
than the rule. Things change, however, when one starts to group sentences together

3 This article builds on our previous work (Gerber and Chai 2010).

757

Computational Linguistics Volume 38, Number 4

to form coherent textual discourses. Consider the following examples, borrowed from
Sanford (1981, page 5):

(4) Jill came bouncing down the stairs.

(5) Harry rushed off to get the doctor.

Examples (4) and (5) describe three events: bounce, rush, and get. These events are
intricately related. One cannot simply create a conjunction of the propositions bounce,
rush, and get and expect to arrive at the author’s intended meaning, which presumably
involves Jill’s becoming injured by her fall and Harry’s actions to help her. The mutual
dependence of these sentences can be further shown by considering a variant of the
situation described in Examples (4) and (5):

(6) Jill came bouncing down the stairs.

(7) Harry rushed over to kiss her.

The interpretation of Example (6) is vastly different from the interpretation of Exam-
ple (4). In Example (4), Jill becomes injured whereas in Example (6) she is quite happy.

Examples (4–7) demonstrate the fact that sentences do not have a fixed, compo-
sitional interpretation; rather, a sentence’s interpretation depends on the surrounding
context. The standard compositional theory of sentential semantics largely ignores con-
textual information provided by other sentences. The single-sentence approach to SRL
operates similarly. In both of these methods, the current sentence provides all of the
semantic information. In contrast to these methods—and aligned with the preceding
discussion—this article presents methods that rely heavily on surrounding sentences
to provide additional semantic information. This information is used to interpret the
current sentence in a more complete fashion.

Examples (4–7) also show that the reader’s knowledge plays a key role in discourse
comprehension. Researchers in cognitive science have proposed many models of reader
knowledge. Schank and Abelson (1977) proposed stereotypical event sequences called
scripts as a basis for discourse comprehension. In this approach, readers fill in a dis-
course’s semantic gaps with knowledge of how a typical event sequence might unfold.
In Examples (4) and (5), the reader knows that people typically call on a doctor only
if someone is hurt. Thus, the reader automatically fills the semantic gap caused by the
ambiguous predicate bounce with information about doctors and what they do. Similar
observations have been made by van Dijk (1977, page 4), van Dijk and Kintsch (1983,
page 303), Graesser and Clark (1985, page 14), and Carpenter, Miyake, and Just (1995).
Inspired by these ideas, the model developed in this article relies partly on large text
corpora, which are treated as repositories of typical event sequences. The model uses
information extracted from these event sequences to identify implicit arguments.

2.2 Automatic Relation Discovery

Examples (4) and (5) in the previous section show that understanding the relationships
between predicates is a key part of understanding a textual discourse. In this section, we
review work on automatic predicate relationship discovery, which attempts to extract
these relationships automatically.

758

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Lin and Pantel (2001) proposed a system that automatically identifies relationships
similar to the following:

(8) X eats Y ↔ X likes Y

This relationship creates a mapping between the participants of the two predicates.
One can imagine using such a mapping to fill in the semantic gaps of a discourse that
describes a typical set of events in a restaurant. In such a discourse, the author probably
will not state directly that X likes Y; the reader might need to infer this in order to make
sense of the fact that X left a large tip for the waiter, however.

Lin and Pantel (2001) created mappings such as the one in Example (8) using a
variation of the so-called “distributional hypothesis” posited by Harris (1985), which
states that words occurring in similar contexts tend to have similar meanings. Lin and
Pantel applied the same notion of similarity to dependency paths. For example, the
inference rule in Example 8 is identified by examining the sets of words in the two X
positions and the sets of words in the two Y positions. When the two pairs of sets are
similar, it is implied that the two dependency paths from X to Y are similar as well. In
Example (8), the two dependency paths are as follows:

X
subject←−−− eats

object−−−→ Y

X
subject←−−− likes

object−−−→ Y

One drawback of this method is that it assumes the implication is symmetric. Although
this assumption is correct in many cases, it often leads to invalid inferences. In Exam-
ple 8, it is not always true that if X likes Y then X will eat Y. The opposite—that X eating
Y implies X likes Y—is more plausible but not certain.

Bhagat, Pantel, and Hovy (2007) extended the work of Lin and Pantel (2001) to
handle cases of asymmetric relationships. The basic idea proposed by Bhagat, Pantel,
and Hovy is that, when considering a relationship of the form 〈x, p1, y〉 ↔ 〈x, p2, y〉, if p1
occurs in significantly more contexts (i.e., has more options for x and y) than p2, then p2
is likely to imply p1 but not vice versa. Returning to Example 8, we see that the correct
implication will be derived if likes occurs in significantly more contexts than eats. The
intuition is that the more general concept (i.e., like) will be associated with more contexts
and is more likely to be implied by the specific concept (i.e., eat). As shown by Bhagat,
Pantel, and Hovy, the system built around this intuition is able to effectively identify
the directionality of many inference rules.

Zanzotto, Pennacchiotti, and Pazienza (2006) presented another study aimed at
identifying asymmetric relationships between verbs. For example, the asymmetric en-
tailment relationship X wins −→ X plays holds, but the opposite (X plays −→ X wins) does
not. This is because not all those who play a game actually win. To find evidence for
this automatically, the authors examined constructions such as the following (adapted
from Zanzotto, Pennacchiotti, and Pazienza [2006]):

(9) The more experienced tennis player won the match.

The underlying idea behind the authors’ approach is that asymmetric relationships such
as X wins −→ X plays are often entailed by constructions involving agentive, nominalized
verbs as the logical subjects of the main verb. In Example (9), the agentive nominal

759

Computational Linguistics Volume 38, Number 4

“player” is logical subject to “won”, the combination of which entails the asymmetric
relationship of interest. Thus, to validate such an asymmetric relationship, Zanzotto,
Pennacchiotti, and Pazienza (2006) examined the frequency of the “player win” colloca-
tion using Google hit counts as a proxy for actual corpus statistics.

A number of other studies (e.g., Szpektor et al. 2004, Pantel et al. 2007) have been
conducted that are similar to that work. In general, such work focuses on the automatic
acquisition of entailment relationships between verbs. Although this work has often
been motivated by the need for lexical–semantic information in tasks such as automatic
question answering, it is also relevant to the task of implicit argument identification
because the derived relationships implicitly encode a participant role mapping between
two predicates. For example, given a missing arg0 for a like predicate and an explicit
arg0 = John for an eat predicate in the preceding discourse, inference rule (8) would
help identify the implicit arg0 = John for the like predicate.

The missing link between previous work on verb relationship identification and the
task of implicit argument identification is that previous verb relations are not defined
in terms of the argn positions used by NomBank. Rather, positions like subject and object
are used. In order to identify implicit arguments in NomBank, one needs inference rules
between specific argument positions (e.g., eat:arg0 and like:arg0). In the current article,
we propose methods of automatically acquiring these fine-grained relationships for
verbal and nominal predicates using existing corpora. We also propose a method of
using these relationships to recover implicit arguments.

2.3 Coreference Resolution

The referent of a linguistic expression is the real or imagined entity to which the expres-
sion refers. Coreference, therefore, is the condition of two linguistic expressions having
the same referent. In the following examples from the Penn TreeBank, the underlined
spans of text are coreferential:

(10) “Carpet King sales are up 4% this year,” said owner Richard Rippe.

(11) He added that the company has been manufacturing carpet since 1967.

Non-trivial instances of coreference (e.g., Carpet King and the company) allow the author
to repeatedly mention the same entity without introducing redundancy into the dis-
course. Pronominal anaphora is a subset of coreference in which one of the referring
expressions is a pronoun. For example, he in Example (11) refers to the same entity as
Richard Rippe in Example (10). These examples demonstrate noun phrase coreference.
Events, indicated by either verbal or nominal predicates, can also be coreferential when
mentioned multiple times in a document (Wilson 1974; Chen and Ji 2009).

For many years, the Automatic Content Extraction (ACE) series of large-scale eval-
uations (NIST 2008) has provided a test environment for systems designed to identify
these and other coreference relations. Systems based on the ACE data sets typically take
a supervised learning approach to coreference resolution in general (Versley et al. 2008)
and pronominal anaphor in particular (Yang, Su, and Tan 2008).

A phenomenon similar to the implicit argument has been studied in the context
of Japanese anaphora resolution, where a missing case-marked constituent is viewed
as a zero-anaphoric expression whose antecedent is treated as the implicit argument
of the predicate of interest. This behavior has been annotated manually by Iida et al.
(2007), and researchers have applied standard SRL techniques to this corpus, resulting

760

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

in systems that are able to identify missing case–marked expressions in the surrounding
discourse (Imamura, Saito, and Izumi 2009). Sasano, Kawahara, and Kurohashi (2004)
conducted similar work with Japanese indirect anaphora. The authors used automati-
cally derived nominal case frames to identify antecedents. However, as noted by Iida
et al., grammatical cases do not stand in a one-to-one relationship with semantic roles
in Japanese (the same is true for English).

Many other discourse-level phenomena interact with coreference. For example,
Centering Theory (Grosz, Joshi, and Weinstein 1995) focuses on the ways in which
referring expressions maintain (or break) coherence in a discourse. These so-called “cen-
tering shifts” result from a lack of coreference between salient noun phrases in adjacent
sentences. Discourse Representation Theory (DRT) (Kamp and Reyle 1993) is another
prominent treatment of referring expressions. DRT embeds a theory of coreference into
a first-order, compositional semantics of discourse.

2.4 Identifying Implicit Arguments

Past research on the actual task of implicit argument identification tends to be sparse.
Palmer et al. (1986) describe what appears to be the first computational treatment of
implicit arguments. In that work, Palmer et al. manually created a repository of knowl-
edge concerning entities in the domain of electronic device failures. This knowledge,
along with hand-coded syntactic and semantic processing rules, allowed the system to
identify implicit arguments across sentence boundaries. As a simple example, consider
the following two sentences (borrowed from Palmer et al. [1986]):

(12) Disk drive was down at 11/16-2305.

(13) Has select lock.

Example (13) does not specify precisely which entity has select lock. The domain knowl-
edge, however, tells the system that only disk drive entities can have such a property.
Using this knowledge, the system is able to search the local context and make explicit
the implied fact that the disk drive from Example (12) has select lock.

A similar line of work was pursued by Whittemore, Macpherson, and Carlson
(1991), who offer the following example of implicit argumentation (page 21):

(14) Pete bought a car.

(15) The salesman was a real jerk.

In Example (14), the buy event is not associated with an entity representing the seller.
This entity is introduced in Example (15) as the salesman, whose semantic properties
satisfy the requirements of the buy event. Whittemore, Macpherson, and Carlson (1991)
build up the event representation incrementally using a combination of semantic prop-
erty constraints and DRT.

The systems developed by Palmer et al. (1986) and Whittemore, Macpherson,
and Carlson (1991) are quite similar. They both make use of semantic constraints on
arguments, otherwise known as selectional preferences. Selectional preferences have
received a significant amount of attention over the years, with the work of Ritter,
Mausam, and Etzioni (2010) being some of the most recent. The model developed in

761

Computational Linguistics Volume 38, Number 4

the current article uses a variety of selectional preference measures to identify implicit
arguments.

The implicit argument identification systems described herein were not widely de-
ployed due to their reliance on hand-coded, domain-specific knowledge that is difficult
to create. Much of this knowledge targeted basic syntactic and semantic constructions
that now have robust statistical models (e.g., those created by Charniak and Johnson
[2005] for syntax and Punyakanok et al. [2005] for semantics). With this information
accounted for, it is easier to approach the problem of implicit argumentation. Subse-
quently, we describe a series of recent investigations that have led to a surge of interest
in statistical implicit argument identification.

Fillmore and Baker (2001) provided a detailed case study of FrameNet frames as a
basis for understanding written text. In their case study, Fillmore and Baker manually
build up a semantic discourse structure by hooking together frames from the various
sentences. In doing so, the authors resolve some implicit arguments found in the dis-
course. This process is an interesting step forward; the authors did not provide concrete
methods to perform the analysis automatically, however.

Nielsen (2004) developed a system that is able to detect the occurrence of verb
phrase ellipsis. Consider the following sentences:

(16) John kicked the ball.

(17) Bill [did], too.

The bracketed text in Example (17) is a placeholder for the verb phrase kicked the ball
in Example (16), which has been elided (i.e., left out). Thus, in Example (17), Bill can
be thought of as an implicit argument to some kicking event that is not mentioned. If
one resolved the verb phrase ellipsis, then the implicit agent (Bill) would be recovered.4

Nielsen (2004) created a system able to detect the presence of ellipses, producing the
bracketing in Example (17). Ellipsis resolution (i.e., figuring out precisely which verb
phrase is missing) was described by Nielsen (2005). Implicit argument identification for
nominal predicates is complementary to verb phrase ellipsis resolution: Both work to
make implicit information explicit.

Burchardt, Frank, and Pinkal (2005) suggested that frame elements from various
frames in a text could be linked to form a coherent discourse interpretation (this is
similar to the idea described by Fillmore and Baker [2001]). The linking operation
causes two frame elements to be viewed as coreferent. Burchardt, Frank, and Pinkal
(2005) propose to learn frame element linking patterns from observed data; the authors
did not implement and evaluate such a method, however. Building on the work of
Burchardt, Frank, and Pinkal, this article presents a model of implicit arguments that
uses a quantitative analysis of naturally occurring coreference patterns.

In our previous work, we demonstrated the importance of filtering out nominal
predicates that take no local arguments (Gerber, Chai, and Meyers 2009). This approach
leads to appreciable gains for certain nominals. The approach does not attempt to
actually recover implicit arguments, however.

4 Identification of the implicit patient in Example (17) (the ball) should be sensitive to the phenomenon of
sense anaphora. If Example (16) was changed to “a ball,” then we would have no implicit patient in
Example (17).

762

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Most recently, Ruppenhofer et al. (2009) proposed SemEval Task 10, “Linking
Events and Their Participants in Discourse,” which evaluated implicit argument iden-
tification systems over a common test set. The task organizers annotated implicit
arguments across entire passages, resulting in data that cover many distinct predi-
cates, each associated with a small number of annotated instances. As described by
Ruppenhofer et al. (2010), three submissions were made to the competition, with two of
the submissions attempting the implicit argument identification part of the task. Chen
et al. (2010) extended a standard SRL system by widening the candidate window to
include constituents from other sentences. A small number of features based on the
FrameNet frame definitions were extracted for these candidates, and prediction was
performed using a log-linear model. Tonelli and Delmonte (2010) also extended a stan-
dard SRL system. Both of these systems achieved an implicit argument F1 score of less
than 0.02. The organizers and participants appear to agree that training data sparseness
was a significant problem. This is likely the result of the annotation methodology: Entire
documents were annotated, causing each predicate to receive a very small number of
annotated examples.

In contrast to the evaluation described by Ruppenhofer et al. (2010), the study
presented in this article focused on a select group of nominal predicates. To help prevent
data sparseness, the size of the group was small, and the predicates were carefully
chosen to maximize the observed frequency of implicit argumentation. We annotated a
large number of implicit arguments for this group of predicates with the goal of training
models that generalize well to the testing data. In the following section, we describe
the implicit argument annotation process and resulting data set.

3. Implicit Argument Annotation and Analysis

As shown in the previous section, the existence of implicit arguments has been rec-
ognized for quite some time. This type of information, however, was not formally
annotated until Ruppenhofer et al. (2010) conducted their SemEval task on implicit
argument identification. There are two reasons why we chose to create an independent
data set for implicit arguments. The first reason is the aforementioned sparsity of the
SemEval data set. The second reason is that the SemEval data set is not built on top of
the Penn TreeBank, which is the gold-standard syntactic base for all work in this article.
Working on top of the Penn TreeBank makes the annotations immediately compatible
with PropBank, NomBank, and a host of other resources that also build on the TreeBank.

3.1 Data Annotation
3.1.1 Predicate Selection. Implicit arguments are a relatively new subject of annotation in
the field. To effectively use our limited annotation resources and allow the observation
of interesting behaviors, we decided to focus on a select group of nominal predicates.
Predicates in this group were required to meet the following criteria:

1. A selected predicate must have an unambiguous role set. This criterion
corresponds roughly to an unambiguous semantic sense and is motivated
by the need to separate the implicit argument behavior of a predicate from
its semantic meaning.

2. A selected predicate must be derived from a verb. This article focuses
primarily on the event structure of texts. Nominal predicates derived
from verbs denote events, but there are other, non-eventive predicates in

763

Computational Linguistics Volume 38, Number 4

NomBank (e.g., the partitive predicate indicated by the “%” symbol).
This criterion also implies that the annotated predicates have correlates
in PropBank with semantically compatible role sets.

3. A selected predicate should have a high frequency in the Penn TreeBank
corpus. This criterion ensures that the evaluation results say as much as
possible about the event structure of the underlying corpus. We calculated
frequency with basic counting over morphologically normalized
predicates (i.e., bids and bid are counted as the same predicate).

4. A selected predicate should express many implicit arguments. Of course,
this can only be estimated ahead of time because no data exist to compute
it. To estimate this value for a predicate p, we first calculated Np, the
average number of roles expressed by p in NomBank. We then calculated
Vp, the average number of roles expressed by the verb form of p in
PropBank. We hypothesized that the difference Vp − Np gives an
indication of the number of implicit arguments that might be present in
the text for a nominal instance of p. The motivation for this hypothesis is as
follows. Most verbs must be explicitly accompanied by specific arguments
in order for the resulting sentence to be grammatical. The following
sentences are ungrammatical if the parenthesized portion is left out:

(18) *John loaned (the money to Mary).

(19) *John invested (his money).

Examples (18) and (19) indicate that certain arguments must explicitly
accompany loan and invest. In nominal form, these predicates can exist
without such arguments and still be grammatical:

(20) John’s loan was not repaid.

(21) John’s investment was huge.

Note, however, that Examples (20) and (21) are not reasonable things to
write unless the missing arguments were previously mentioned in the text.
This is precisely the type of noun that should be targeted for implicit
argument annotation. The value of Vp − Np thus quantifies the desired
behavior.

Predicates were filtered according to criteria 1 and 2 and ranked according to the
product of criteria 3 and 4. We then selected the top ten, which are shown in the first
column of Table 1. The role sets (i.e., argument definitions) for these predicates can be
found in the Appendix on page 790.

3.1.2 Annotation Procedure. We annotated implicit arguments for instances of the ten se-
lected nominal predicates. The annotation process proceeded document-by-document.
For a document d, we annotated implicit arguments as follows:

1. Select from d all non-proper singular and non-proper plural nouns that are
morphologically related to the ten predicates in Table 1.

764

G
erber

and
C

hai
SR

L
ofIm

plicitA
rgum

ents
for

N
om

inalPredicates

Table 1
Annotation data analysis. Columns are defined as follows: (1) the annotated predicate, (2) the number of predicate instances that were annotated,
(3) the average number of implicit arguments per predicate instance, (4) of all roles for all predicate instances, the percentage filled by NomBank
arguments, (5) the average number of NomBank arguments per predicate instance, (6) the average number of PropBank arguments per instance of the
verb form of the predicate, (7) of all roles for all predicate instances, the percentage filled by either NomBank or implicit arguments, (8) the average
number of combined NomBank/implicit arguments per predicate instance. SD indicates the standard deviation with respect to an average.

Pre-annotation Post-annotation

Role avg. (SD)

Pred. # Pred. # Imp./pred. Role coverage (%) Noun Verb Role coverage (%) Noun role avg. (SD)

bid 88 1.4 26.9 0.8 (0.6) 2.2 (0.6) 73.9 2.2 (0.9)
sale 184 1.0 24.2 1.2 (0.7) 2.0 (0.7) 44.0 2.2 (0.9)
loan 84 1.0 22.1 1.1 (1.1) 2.5 (0.5) 41.7 2.1 (1.1)
cost 101 0.9 26.2 1.0 (0.7) 2.3 (0.5) 47.5 1.9 (0.6)
plan 100 0.8 30.8 1.2 (0.8) 1.8 (0.4) 50.0 2.0 (0.4)
investor 160 0.7 35.0 1.1 (0.2) 2.0 (0.7) 57.5 1.7 (0.6)
price 216 0.6 42.5 1.7 (0.5) 1.7 (0.5) 58.6 2.3 (0.6)
loss 104 0.6 33.2 1.3 (0.9) 2.0 (0.6) 48.1 1.9 (0.7)
investment 102 0.5 15.7 0.5 (0.7) 2.0 (0.7) 33.3 1.0 (1.0)
fund 108 0.5 8.3 0.3 (0.7) 2.0 (0.3) 21.3 0.9 (1.2)

Overall 1,247 0.8 28.0 1.1 (0.8) 2.0 (0.6) 47.8 1.9 (0.9)

(1) (2) (3) (4) (5) (6) (7) (8)

765

Computational Linguistics Volume 38, Number 4

2. By design, each selected noun has an unambiguous role set. Thus,
given the arguments supplied for a noun by NomBank, one can consult
the noun’s role set to determine which arguments are missing.5

3. For each missing argument position, search the current sentence and
all preceding sentences for a suitable implicit argument. Annotate all
suitable implicit arguments in this window.

4. When possible, match the textual bounds of an implicit argument
to the textual bounds of an argument given by either PropBank or
NomBank. This was done to maintain compatibility with these and
other resources.

In the remainder of this article, we will use iargn to refer to an implicit argument
position n. We will use argn to refer to an argument provided by PropBank or NomBank.
We will use p to mark predicate instances. Example (22) provides a sample annotation
for an instance of the investment predicate:

(22) [iarg0 Participants] will be able to transfer [iarg1 money] to [iarg2 other
investment funds]. The [p investment] choices are limited to [iarg2 a stock
fund and a money-market fund].

NomBank does not associate this instance of investment with any arguments; one can
easily identify the investor (iarg0), the thing invested (iarg1), and two mentions of the
thing invested in (iarg2) within the surrounding discourse, however.

Of course, not all implicit argument decisions are as easy as those in Example (22).
Consider the following contrived example:

(23) People in other countries could potentially consume large amounts of
[iarg0? Coke].

(24) Because of this, there are [p plans] to expand [iarg0 the company’s]
international presence.

Example (24) contains one mention of the iarg0 (the agentive planner). It might be
tempting to also mark Coke in Example (23) as an additional iarg0; the only reasonable
interpretation of Coke in 23 is as a consumable fluid, however. Fluids cannot plan things,
so this annotation should not be performed. This is a case of sense ambiguity between
Coke as a company and Coke as a drink. In all such cases, the annotator was asked to
infer the proper sense before applying an implicit argument label.

Lastly, it should be noted that we placed no restrictions on embedded argu-
ments. PropBank and NomBank do not allow argument extents to overlap. Tra-
ditional SRL systems such as the one created by Punyakanok, Roth, and Yih
(2008) model this constraint explicitly to arrive at the final label assignment; as the

5 See Appendix A for the list of role sets used in this study.

766

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

following example shows, however, this constraint should not be applied to implicit
arguments:

(25) Currently, the rules force [iarg0 executives, directors and other corporate
insiders] to report purchases and [p sales] [arg1 of [iarg0 their] companies’
shares] within about a month after the transaction.

Despite its embedded nature, the pronoun their in Example (25) is a perfectly reasonable
implicit argument (the seller) for the marked predicate. Systems should be required to
identify such arguments; thus, we included them in our annotations.

3.1.3 Inter-annotator Agreement. Implicit argument annotation is a difficult task because
it combines the complexities of traditional SRL annotation with those of coreference
annotation. To assess the reliability of the annotation process described previously, we
compared our annotations to those provided by an undergraduate linguistics student
who, after a brief training period, re-annotated a portion of the data set. For each miss-
ing argument position, the student was asked to identify the textually closest acceptable
implicit argument within the current and preceding sentences. The argument position
was left unfilled if no acceptable constituent could be found. For a missing argument
position iargn, the student’s annotation agreed with our own if both identified the same
implicit argument or both left iargn unfilled. The student annotated 480 of the 1,247
predicate instances shown in Table 1.

We computed Cohen’s chance-corrected kappa statistic for inter-annotator agree-
ment (Cohen 1960), which is based on two quantities:

po = observed probability of agreement

pc = probability of agreement by chance

The quantity 1 − pc indicates the probability of a chance disagreement. The quantity
po − pc indicates the probability of agreement that cannot be accounted for by chance
alone. Finally, Cohen defines κ as follows:

κ =
po − pc
1 − pc

Cohen’s kappa thus gives the probability that a chance-expected disagreement will not
occur. When agreement is perfect, κ = 1. If the observed agreement is less than the
expected chance agreement, then κ will be negative. As noted by Di Eugenio and Glass
(2004), researchers have devised different scales to assess κ. Many NLP researchers use
the scale created by Krippendorff (1980):

κ < 0.67 low agreement

0.67 ≤ κ < 0.8 moderate agreement

κ ≥ 0.8 strong agreement

Di Eugenio and Glass (2004) note, however, that this scale has not been rigorously
defended, even by Krippendorff (1980) himself.

767

Computational Linguistics Volume 38, Number 4

For the implicit argument annotation data, observed and chance agreement are
defined as follows:

po =

∑

iargn

agree(iargn)

N

pc =

∑

iargn

PA(n) ∗ PB(n) ∗ random agree(iargn) + (1 − PA(n)) ∗ (1 − PB(n))

N (1)

where N is the total number of missing argument positions that need to be annotated,
agree is equal to 1 if the two annotators agreed on iargn and 0 otherwise, PA(n) and PB(n)
are the observed prior probabilities that annotators A and B assign the argument label n
to a filler, and random agree is equal to the probability that both annotators would select
the same implicit argument for iargn when choosing randomly from the discourse. In
Equation (1), terms to the right of + denote the probability that the two annotators
agreed on iargn because they did not identify a filler for it.

Using these values for po and pc, Cohen’s kappa indicated an agreement of 64.3%.
According to the scale of Krippendorff (1980), this value is borderline between low and
moderate agreement. Possible causes for this low agreement include the brief training
period for the linguistics student and the sheer complexity of the annotation task. If one
considers only those argument positions for which both annotators actually located an
implicit filler, Cohen’s kappa indicates an agreement of 93.1%. This shows that much
of the disagreement concerned the question of whether a filler was present. Having
agreed that a filler was present, the annotators consistently selected the same filler.
Subsequently, we demonstrate this situation with actual data. First, we present our
annotations for two sentences from the same document:

(26) Shares of UAL, the parent of [iarg1 United Airlines], were extremely active
all day Friday, reacting to news and rumors about the proposed [iarg2 $6.79
billion] buy-out of [iarg1 the airline] by an employee–management group.

(27) And 10 minutes after the UAL trading halt came news that the UAL group
couldn’t get financing for [arg0 its] [p bid].

In Example (27), the predicate is marked along with the explicit arg0 argument. Our
task is to locate the implicit iarg1 (the entity bid for) and the implicit iarg2 (the amount
of the bid). We were able to locate these entities in a previous sentence (Example (26)).
Next, we present the second annotator’s (i.e., the student’s) annotations for the same
two sentences:

(28) Shares of UAL, the parent of [iarg1 United Airlines], were extremely active
all day Friday, reacting to news and rumors about the proposed $6.79
billion buy-out of [iarg1 the airline] by an employee–management group.

(29) And 10 minutes after the UAL trading halt came news that the UAL group
couldn’t get financing for [arg0 its] [p bid].

768

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

As shown in Example (28), the second annotator agreed with our identification of the
iarg1; the second annotator did not mark an implicit iarg2, however, despite the fact that
it can be inferred. We believe this type of error can be addressed with additional train-
ing. The student’s annotations were only used to compute agreement. We performed
all training and evaluation using randomized cross-validation over the annotations we
created.

3.2 Annotation Analysis

We carried out this annotation process on the standard training (2–21), development
(24), and testing (23) sections of the Penn TreeBank. Table 1 summarizes the results. In
this section, we highlight key pieces of information found in this table.

3.2.1 Implicit Arguments are Frequent. Column (3) of Table 1 shows that most predicate
instances are associated with at least one implicit argument. Implicit arguments vary
across predicates, with bid exhibiting (on average) more than one implicit argument
per instance versus the 0.5 implicit arguments per instance of the investment and fund
predicates. It turned out that the latter two predicates have unique senses that preclude
implicit argumentation (more on this in Section 6).

3.2.2 Implicit Arguments Create Fuller Event Descriptions. Role coverage for a predicate
instance is equal to the number of filled roles divided by the number of roles in the
predicate’s role set. Role coverage for the marked predicate in Example (22) is 0/3 for
NomBank-only arguments and 3/3 when the annotated implicit arguments are also
considered. Returning to Table 1, the fourth column gives role coverage percentages
for NomBank-only arguments. The seventh column gives role coverage percentages
when both NomBank arguments and the annotated implicit arguments are considered.
Overall, the addition of implicit arguments created a 71% relative (20-point absolute)
gain in role coverage across the 1,247 predicate instances that we annotated.

3.2.3 The Vp − Np Predicate Selection Metric Behaves as Desired. The predicate selection
method used the Vp − Np metric to identify predicates whose instances are likely to take
implicit arguments. Column (5) in Table 1 shows that (on average) nominal predicates
have 1.1 arguments in NomBank; this compared to the 2.0 arguments per verbal form
of the predicates in PropBank (compare columns (5) and (6)). We hypothesized that
this difference might indicate the presence of approximately one implicit argument per
predicate instance. This hypothesis is confirmed by comparing columns (6) and (8):
When considering implicit arguments, many nominal predicates express approximately
the same number of arguments on average as their verbal counterparts.

3.2.4 Most Implicit Arguments Are Nearby. In addition to these analyses, we examined the
location of implicit arguments in the discourse. Figure 1 shows that approximately 56%
of the implicit arguments in our data can be resolved within the sentence containing
the predicate. Approximately 90% are found within the previous three sentences. The
remaining implicit arguments require up to 4–6 sentences for resolution. These obser-
vations are important; they show that searching too far back in the discourse is likely to

769

Computational Linguistics Volume 38, Number 4

Figure 1
Location of implicit arguments. Of all implicitly filled argument positions, the y-axis indicates
the percentage that are filled at least once within the number of sentences indicated by the x-axis
(multiple fillers may exist for the same position).

produce many false positives without a significant increase in recall. Section 6 discusses
additional implications of this skewed distribution.

4. Implicit Argument Model

4.1 Model Formulation

Given a nominal predicate instance p with a missing argument position iargn, the task
is to search the surrounding discourse for a constituent c that fills iargn. The implicit
argument model conducts this search over all constituents that are marked with a core
argument label (arg0, arg1, etc.) associated with a NomBank or PropBank predicate.
Thus, the model assumes a pipeline organization in which a document is initially
analyzed by traditional verbal and nominal SRL systems. The core arguments from
this stage then become candidates for implicit argumentation. Adjunct arguments are
excluded.

A candidate constituent c will often form a coreference chain with other constituents
in the discourse. Consider the following abridged sentences, which are adjacent in their
Penn TreeBank document:

(30) [Mexico] desperately needs investment.

(31) Conservative Japanese investors are put off by [Mexico’s] investment
regulations.

(32) Japan is the fourth largest investor in [c Mexico], with 5% of the total
[p investments].

NomBank does not associate the labeled instance of investment with any arguments, but
it is clear from the surrounding discourse that constituent c (referring to Mexico) is the
thing being invested in (the iarg2). When determining whether c is the iarg2 of investment,

770

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Table 2
Primary feature groups used by the model. The third column gives the number of features in the
group, and the final column gives the number of features from the group that were ranked in the
top 20 among all features.

Feature group Resources used # Top 20

(1) Textual semantics PropBank, NomBank 13 4
(2) Ontologies FrameNet, VerbNet, WordNet 8 4
(3) Filler-independent Penn TreeBank 35 7
(4) Corpus statistics Gigaword, Verbal SRL, Nominal SRL 9 1
(5) Textual discourse Penn Discourse Bank 1 0
(6) Other Penn TreeBank 15 4

one can draw evidence from other mentions in c’s coreference chain. Example (30) states
that Mexico needs investment. Example (31) states that Mexico regulates investment.
These propositions, which can be derived via traditional SRL analyses, should increase
our confidence that c is the iarg2 of investment in Example (32).

Thus, the unit of classification for a candidate constituent c is the three-tuple
〈p, iargn, c′〉, where c′ is a coreference chain comprising c and its coreferent constituents.6

We defined a binary classification function Pr(+| 〈p, iargn, c′〉) that predicts the probabil-
ity that the entity referred to by c fills the missing argument position iargn of predicate
instance p. In the remainder of this article, we will refer to c as the primary filler,
differentiating it from other mentions in the coreference chain c′. This distinction is
necessary because our evaluation requires the model to select at most one filler (i.e., c)
for each missing argument position. In the following section, we present the feature
set used to represent each three-tuple within the classification function.

4.2 Model Features

Appendix Table B.1 lists all features used by the model described in the previous
section. For convenience, Table 2 presents a high-level grouping of the features and
the resources used to compute them. The broadest distinction to be made is whether a
feature depends on elements of c′. Features in Group 3 do not, whereas all others do.
The features in Group 3 characterize the predicate–argument position being filled (p and
iargn), independently of the candidate filler. This group accounts for 43% of the features
and 35% of those in the top 20.7 The remaining features depend on elements of c′ in some
way. Group 1 features characterize the tuple using the SRL propositions contained in
the text being evaluated. Group 2 features place the 〈p, iargn, c′〉 tuple into a manually
constructed ontology and compute a value based on the structure of that ontology.
Group 4 features compute statistics of the tuple within a large corpus of semantically
analyzed text. Group 5 contains a single feature that captures the discourse structure
properties of the tuple. Group 6 contains all other features, most of which capture
the syntactic relationships between elements of c′ and p. In the following sections, we
provide detailed examples of features from each group shown in Table 2.

6 We used OpenNLP for coreference identification: http://opennlp.sourceforge.net.
7 Features were ranked according to the order in which they were selected during feature selection

(Section 5.3 for details).

771

Computational Linguistics Volume 38, Number 4

4.2.1 Group 1: Features Derived from the Semantic Content of the Text. Feature 1 was often
selected first by the feature selection algorithm. This feature captures the semantic
properties of the candidate filler c′ and the argument position being filled. Consider
the following Penn TreeBank sentences:

(33) [arg0 The two companies] [p produce] [arg1 market pulp, containerboard
and white paper]. The goods could be manufactured closer to customers,
saving [p shipping] costs.

Here we are trying to fill the iarg0 of shipping. Let c′ contain a single mention, The two
companies, which is the arg0 of produce. Feature 1 takes a value of produce − arg0 − ship −
arg0. This value, which is derived from the text itself, asserts that producers are also
shippers. To reduce data sparsity, we generalized the predicates to their WordNet synset
IDs (creating Feature 4). We also generalized the predicates and arguments to their
VerbNet thematic roles using SemLink (creating Feature 23). Although the generalized
features rely on ontologies, they do so in a trivial way that does not take advantage of
the detailed structure of the ontologies. Such structure is used by features in the next
group.

4.2.2 Group 2: Features Derived from Manually Constructed Ontologies. Feature 9 captures
the semantic relationship between predicate–argument positions by examining paths
between frame elements in FrameNet. SemLink8 maps PropBank argument positions to
their FrameNet frame elements. For example, the arg1 position of sell maps to the Goods
frame element of the Sell frame. NomBank argument positions (e.g., arg1 of sale) can
be mapped to FrameNet by first converting the nominal predicate to its verb form. By
mapping predicate–argument structures into FrameNet, one can take advantage of the
rich network of frame–frame relations provided by the resource.

The value of Feature 9 has the following general form:

(34) Frame1.FE1
Rel1−−−→ Frame2.FE2

Rel2−−−→ . . .
Reln−1−−−−−→ Framen.FEn

This path describes how the frame elements at either end are related. For example,
consider the frame element path between the arg1 of sell and the arg1 of buy, both of
which denote the goods being transferred:

(35) Sell.Goods Inherits−−−−→ Give.Theme Causes−−−→ Get.Theme
Inherited by−−−−−−→ Buy.Goods

This path can be paraphrased as follows: things that are sold (Sell.Goods) are part of
a more general give scenario (Give.Theme) that can also be viewed as a get scenario
(Get.Theme) in which the buyer receives something (Buy.Goods). This complex world
knowledge is represented compactly using the relationships defined in FrameNet. In
our experiments, we searched all possible frame element paths of length five or less
that use the following relationships:

� Causative–of

8 http://verbs.colorado.edu/semlink.

772

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

� Inchoative–of
� Inherits
� Precedes
� Subframe–of

Feature 9 is helpful in situations such as the following (contrived):

(36) Consumers bought many [c cars] this year at reduced prices.

(37) [p Sales] are expected to drop when the discounts are eliminated.

In Example (37) we are looking for the iarg1 (thing sold) of sale. The path shown in
Example (35) indicates quite clearly that the candidate cars from Example (36), being
the entity purchased, is a suitable filler for this position. Lastly, note that the value
for Feature 9 is the actual path instead of a numeric value. When c′ contains multiple
coreferential elements, this feature can be instantiated using multiple values (i.e., paths).
Ultimately, these instantiations are binarized into the LibLinear input format, so the
existence of multiple feature values does not pose a problem.

Feature 59 is similar to Feature 9 (the frame element path) except that it cap-
tures the distance between predicate–argument positions within the VerbNet hierarchy.
Consider the following VerbNet classes:

13.2 lose, refer, relinquish, remit, resign, restore, gift, hand out, pass out, shell out
13.5.1.1 earn, fetch, cash, gain, get, save, score, secure, steal

The path from earn to lose in the VerbNet hierarchy is as follows:

(38) 13.5.1.1 ↑ 13.5.1 ↑ 13.5 ↑ 13 ↓ 13.2

The path in Example (38) is four links long. Intuitively, earn and lose are related to each
other—they describe two possible outcomes of a financial transaction. The VerbNet path
quantifies this intuition, with shorter paths indicating closer relationships. This informa-
tion can be used to identify implicit arguments in situations such as the following from
the Penn TreeBank (abridged):

(39) [c Monsanto Co.] is expected to continue reporting higher [p earnings].

(40) The St. Louis-based company is expected to report that [p losses] are
narrowing.

In Example (40) we are looking for the iarg0 (i.e., entity losing something) for the loss
predicate. According to SemLink, this argument position maps to the 13.2.Agent role in
VerbNet. In Example (39), we find the candidate implicit argument Monsanto Co., which
is the arg0 to the earning predicate in that sentence. This argument position maps to
the 13.5.1.1.Agent role in VerbNet. These two VerbNet roles are related according to the
VerbNet path in Example (38), producing a value for Feature 59 of four. This relatively
small value supports an inference of Monsanto Co. as the iarg0 for loss. It is important to
note that a VerbNet path only exists when the thematic roles are identical. For example, a
VerbNet path would not exist between 13.5.1.1.Theme and 13.2.Agent because the roles

773

Computational Linguistics Volume 38, Number 4

are not compatible. Lastly, recall that c′ might contain multiple coreferential elements.
In such a situation, the minimum path length is selected as the value for this feature.

4.2.3 Group 3: Filler-independent Features. Many of the features used by the model do not
depend on elements of c′. These features are usually specific to a particular predicate.
Consider the following example:

(41) Statistics Canada reported that its [arg1 industrial–product] [p price] index
dropped 2% in September.

The “[p price] index” collocation is rarely associated with an arg0 in NomBank or with
an iarg0 in the annotated data (both argument positions denote the seller). Feature 25
accounts for this type of behavior by encoding the syntactic head of p’s right sibling.
The value of Feature 25 for Example 41 is price:index. Contrast this with the following:

(42) [iarg0 The company] is trying to prevent further [p price] drops.

The value of Feature 25 for Example (42) is price:drop. This feature captures an important
distinction between the two uses of price: the former cannot easily take an iarg0, whereas
the latter can. Many other features in Table B.1 depend only on the predicate and have
values that take the form predicate:feature value.

4.2.4 Group 4: Features Derived from Corpus Statistics. Feature 13 is inspired by the work
of Chambers and Jurafsky (2008), who investigated unsupervised learning of narrative
event sequences using pointwise mutual information (PMI) between syntactic positions.
We extended this PMI score to semantic arguments instead of syntactic dependencies.
Thus, the value for this feature is computed as follows:

pmi(〈p1, argi〉 ,
〈
p2, argj

〉
) = log

Pcoref pmi(〈p1, argi〉 ,
〈
p2, argj

〉
)

Pcoref pmi(〈p1, argi〉 , ∗)Pcoref pmi(
〈
p2, argj

〉
, ∗)

(2)

We computed Equation (2) by applying verbal SRL (Punyakanok, Roth, and Yih
2008), nominal SRL (Gerber, Chai, and Meyers 2009), and coreference identification
(OpenNLP) to the Gigaword corpus (Graff 2003); because these tools are not fast enough
to process all 1,000,000 documents in the corpus, however, we selected subsets of
the corpus for each p1/p2 combination observed in our implicit argument data. We
first indexed the Gigaword corpus using the Lucene search engine.9 We then queried
this index using the simple boolean query “p1 AND p2,” which retrieved documents
relevant to the predicates considered in Equation (2). Assuming the resulting data have
N coreferential pairs of arguments, the numerator in Equation (2) is defined as follows:

Pcoref pmi(〈p1, argi〉 ,
〈
p2, argj

〉
) =

#coref (〈p1, argi〉 ,
〈
p2, argj

〉
)

N (3)

In Equation (3), #coref returns the number of times the given argument positions
are found to be coreferential. In order to penalize low-frequency observations with

9 http://lucene.apache.org.

774

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

artificially high scores, we used the simple discounting method described by Pantel
and Ravichandran (2004) resulting in the following modification of Equation (3):

x = #coref (〈p1, argi〉 ,
〈
p2, argj

〉
)

Pcoref pmi(〈p1, argi〉 ,
〈
p2, argj

〉
) = x

N ∗ x
x + 1 (4)

Thus, if two argument positions are rarely observed as coreferent, the value x
x+1 will

be small, reducing the PMI score. The denominator in Equation (2) is computed with a
similar discount factor:

x1 = #coref (〈p1, argi〉 , ∗)

x2 = #coref (
〈
p2, argj

〉
, ∗)

Pcoref pmi(〈p1, argi〉 , ∗)Pcoref pmi(
〈
p2, argj

〉
, ∗) = x1x2

(N2) min(x1,x2)
min(x1,x2)+1

(5)

Thus, if either of the argument positions is rarely observed as coreferent with other
argument positions, the value min(x1,x2)

min(x1,x2)+1 will be small, making the denominator of
Equation (2) large, reducing the PMI score. In general, the discount factors reduce the
PMI score for argument positions that are not frequent in the corpus.

We refer to Equation (2) as a targeted PMI score because it relies on data that have
been chosen specifically for the calculation at hand. Table 3 shows a sample of targeted
PMI scores between the arg1 of loss and other argument positions. There are two things
to note about this data: First, the argument positions listed are all naturally related to
the arg1 of loss. Second, the discount factor changes the final ranking by moving the
less frequent recoup predicate from a raw rank of 1 to a discounted rank of 3, preferring
instead the more common win predicate.

The information in Table 3 is useful in situations such as the following (contrived):

(43) Mary won [c the tennis match].

(44) [arg0 John’s] [p loss] was not surprising.

In Example (44) we are looking for the iarg1 of loss. The information in Table 3 strongly
suggests that the marked candidate c, being the arg1 of win, would be a suitable filler

Table 3
Targeted PMI scores between the arg1 of loss and other argument positions. The second column
gives the number of times that the argument position in the row is found to be coreferent with
the arg1 of the loss predicate. A higher value in this column results in a lower discount factor.
See Equation (4) for the discount factor.

Argument position #coref with loss.arg1 Raw PMI score Discounted PMI score

win.arg1 37 5.68 5.52
gain.arg1 10 5.13 4.64
recoup.arg1 2 6.99 4.27
steal.arg1 4 5.18 4.09
possess.arg1 3 5.10 3.77

775

Computational Linguistics Volume 38, Number 4

for this position. Lastly, note that if c were to form a coreference chain with other
constituents, it would be possible to calculate multiple PMI scores. In such cases, the
targeted PMI feature uses the maximum of all scores.

Feature 27 captures the selectional preference of a predicate p for the elements in c′

with respect to argument position iargn. In general, selectional preference scores denote
the strength of attraction for a predicate–argument position to a particular word or
class of words. To calculate the value for this feature, we used the information–theoretic
model proposed by Resnik (1996), which is defined as follows:

Pref (p, argn, s ∈ WordNet) =
Pr(s|p, argn)log

Pr(s|p, argn)
Pr(s)

Z (6)

Z =
∑

si∈WordNet

Pr(si|p, argn)log
Pr(si|p, argn)

Pr(si)

In Equation (6), Pref calculates the preference for a WordNet synset s in the given
predicate–argument position. Prior and posterior probabilities for s were calculated by
examining the arguments present in the Penn TreeBank combined with 20,000 docu-
ments randomly selected from the Gigaword corpus. PropBank and NomBank supplied
arguments for the Penn TreeBank, and we used the aforementioned verbal and nominal
SRL systems to extract arguments from Gigaword. The head word for each argument
was mapped to its WordNet synsets, and counts for these synsets were updated as
suggested by Resnik (1996). Note that a synset s that is not observed in the training
data will receive a score of zero because Pr(s|p, argn) will be zero.

Equation (6) computes the preference of a predicate–argument position for a synset;
a single word can map to multiple synsets if its sense is ambiguous, however. Given a
word w and its synsets s1, s2, . . . , sn, the preference of a predicate–argument position for
w is defined as follows:

Pref (p, argn, w) =

∑
si

Pref (p, argn, si)
n (7)

That is, the preference for a word is computed as the average preference across all possi-
ble synsets. The final value for Feature 27 is computed using the word-based preference
score defined in Equation (7). Given a candidate implicit argument c′ comprising the
primary filler c and its coreferent mentions, the following value is obtained:

Pref (p, iargn, c′) = min
f∈c′

Pref (p, argn, f) (8)

In Equation (8), each f is the syntactic head of a constituent from c′. The value of
Equation (8) is in (−∞,+∞), with larger values indicating higher preference for c as
the implicit filler of position iargn.

Feature 33 implements the suggestion of Burchardt, Frank, and Pinkal (2005) that
implicit arguments might be identified using observed coreference patterns in a large
corpus of text. Our implementation of this feature uses the same data used for the
previous feature: arguments extracted from the Penn TreeBank and 20,000 documents
randomly selected from Gigaword. Additionally, we identified coreferent arguments
in this corpus using OpenNLP. Using this information, we calculated the probability
of coreference between any two argument positions. As with Feature 13, we used

776

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

discounting to penalize low–frequency observations, producing an estimate of
coreference probability as follows:

Corefjoint = #coref (〈p1, argi〉 ,
〈
p2, argj

〉
)

Corefmarginal = #coref (〈p1, argi〉 , ∗)

Pcoref (〈p1, argi〉 ,
〈
p2, argj

〉
) =

Corefjoint

Corefmarginal
∗

Corefjoint

Corefjoint + 1
∗

Corefmarginal

Corefmarginal + 1
(9)

In Equation (9), Pcoref should be read as “the probability that 〈p1, argi〉 is coref-
erential with

〈
p2, argj

〉
given 〈p1, argi〉 is coreferential with something.” For example,

we observed that the arg1 for predicate reassess (the entity reassessed) is coreferential
with six other constituents in the corpus. Table 4 lists the argument positions with
which this argument is coreferential along with the raw and discounted probabilities.
The discounted probabilities can help identify the implicit argument in the following
contrived examples:

(45) Senators must rethink [c their strategy for the upcoming election].

(46) The [p reassessment] must begin soon.

In Example (46) we are looking for the iarg1 of reassess. Table 4 tells us that the marked
candidate (an arg1 to rethink) is likely to fill this missing argument position. When
c forms a coreference chain with other constituents, this feature uses the minimum
coreference probability between the implicit argument position and elements in the
chain.

4.2.5 Group 5: Features Derived from the Discourse Structure of the Text. Feature 67 identifies
the discourse relation (if any) that holds between the candidate constituent c and the
filled predicate p. Consider the following example:

(47) [iarg0 SFE Technologies] reported a net loss of $889,000 on sales of $23.4
million.

(48) That compared with an operating [p loss] of [arg1 $1.9 million] on sales of
$27.4 million in the year–earlier period.

In this case, a comparison discourse relation (signaled by the underlined text) holds be-
tween the first and second sentence. The coherence provided by this relation encourages

Table 4
Coreference probabilities between reassess.arg1 and other argument positions. See Equation (9)
for details on the discount factor.

Argument Raw coreference probability Discounted coreference probability

rethink.arg1 3/6 = 0.5 0.32
define.arg1 2/6 = 0.33 0.19
redefine.arg1 1/6 = 0.17 0.07

777

Computational Linguistics Volume 38, Number 4

an inference that identifies the marked iarg0 (the loser). The value for this feature is the
name of the discourse relation (e.g., comparison) whose two discourse units cover the
candidate (iarg0 above) and filled predicate (p above). Throughout our investigation,
we used gold-standard discourse relations provided by the Penn Discourse TreeBank
(Prasad et al. 2008).

4.2.6 Group 6: Other Features. A few other features that were prominent according to our
feature selection process are not contained in the groups described thus for. Feature 2
encodes the sentence distance from c (the primary filler) to the predicate for which we
are filling the implicit argument position. The prominent position of this feature agrees
with our previous observation that most implicit arguments can be resolved within a
few sentences of the predicate (see Figure 1 on p. 770). Feature 3 is another simple yet
highly ranked feature. This feature concatenates the head of an element of c′ with p
and iargn. For example, in sentences (45) and (46), this feature would have a value of
strategy − reassess − arg1, asserting that strategies are reassessed. Feature 5 generalizes
this feature by replacing the head word with its WordNet synset.

4.2.7 Comparison with Features for Traditional SRL. The features described thus far are
quite different from those used in previous work to identify arguments in the traditional
nominal SRL setting (see the work of Gerber, Chai, and Meyers 2009). The most impor-
tant feature used in traditional SRL—the syntactic parse tree path—is notably absent.
This difference is due to the fact that syntactic information, although present, does not
play a central role in the implicit argument model. The most important features are
those that capture semantic properties of the implicit predicate–argument position and
the candidate filler for that position.

4.3 Post-processing for Final Output Selection

Without loss of generality, assume there exists a predicate instance p with two missing
argument positions iarg0 and iarg1. Also assume that there are three candidate fillers
c1, c2, and c3 within the candidate window. The discriminative model will calculate the
probability that each candidate fills each missing argument position. Graphically:

iarg0 iarg1

c1 0.3 0.4
c2 0.1 0.05
c3 0.6 0.3

There exist two constraints on possible assignments of candidates to positions. First, a
candidate may not be assigned to more than one missing argument position. To enforce
this constraint, only the top-scoring cell in each row is retained, leading to the following:

iarg0 iarg1

c1 - 0.4
c2 0.1 -
c3 0.6 -

778

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Second, a missing argument position can only be filled by a single candidate. To enforce
this constraint, only the top-scoring cell in each column is retained, leading to the
following:

iarg0 iarg1

c1 - 0.4
c2 - -
c3 0.6 -

Having satisfied these constraints, a threshold t is imposed on the remaining cell prob-
abilities.10 Cells with probabilities less than t are cleared. Assuming that t = 0.42, the
final assignment would be as follows:

iarg0 iarg1

c1 - -
c2 - -
c3 0.6 -

In this case, c3 fills iarg0 with probability 0.6 and iarg1 remains unfilled. The latter
outcome is desirable because not all argument positions have fillers that are present
in the discourse.

5. Evaluation

5.1 Data

All evaluations in this study were performed using a randomized cross-validation
configuration. The 1,247 predicate instances were annotated document by document.
In order to remove any confounding factors caused by specific documents, we first
randomized the annotated predicate instances. Following this, we split the predicate
instances evenly into ten folds and used each fold as testing data for a model trained on
the instances outside the fold. This evaluation set-up is an improvement versus the one
we previously reported (Gerber and Chai 2010), in which fixed partitions were used for
training, development, and testing.

During training, the system was provided with annotated predicate instances. The
system identified missing argument positions and generated a set of candidates for
each such position. A candidate three-tuple 〈p, iargn, c′〉 was given a positive label if the
candidate implicit argument c (the primary filler) was annotated as filling the missing
argument position; otherwise, the candidate three-tuple was given a negative label.
During testing, the system was presented with each predicate instance and was required
to identify all implicit arguments for the predicate.

10 The threshold t is learned from the training data. The learning mechanism is explained in the following
section.

779

Computational Linguistics Volume 38, Number 4

Throughout the evaluation process we assumed the existence of gold-standard
PropBank and NomBank information in all documents. This factored out errors from
traditional SRL and affected the following stages of system operation:

� Missing argument identification. The system was required to figure out
which argument positions were missing. Each of the ten predicates was
associated with an unambiguous role set, so determining the missing
argument positions amounted to comparing the existing local arguments
with the argument positions listed in the predicate’s role set. Because
gold-standard local NomBank arguments were used, this stage produced
no errors.

� Candidate generation. As mentioned in Section 4.1, the set of candidates
for a missing argument position contains constituents labeled with a core
(e.g., arg0) PropBank or NomBank argument label. We used gold-standard
PropBank and NomBank arguments; it is not the case that all annotated
implicit arguments are given a core argument label by PropBank or
NomBank, however. Thus, despite the gold-standard argument labels,
this stage produced errors in which the system failed to generate a
true-positive candidate for an implicit argument position. Approximately
96% of implicit argument positions are filled by gold-standard PropBank
or NomBank arguments.

� Feature extraction. Many of the features described in Section 4.2 rely on
underlying PropBank and NomBank argument labels. For example, the
top-ranked Feature 1 relates the argument position of the candidate to the
missing argument position. In our experiments, values for this feature
contained no errors because gold-standard PropBank and NomBank labels
were used. Note, however, that many features were derived from the
output of an automatic SRL process that occasionally produced errors
(e.g., Feature 13, which used PMI scores between automatically identified
arguments). These errors were present in both the training and evaluation
stages.

We also assumed the existence of gold-standard syntactic structure when possible.
This was done in order to focus our investigation on the semantic nature of implicit
arguments.

5.2 Scoring Metrics

We evaluated system performance using the methodology proposed by Ruppenhofer
et al. (2010). For each missing argument position of a predicate instance, the system
was required to either (1) identify a single constituent that fills the missing argument
position or (2) make no prediction and leave the missing argument position unfilled. To
give partial credit for inexact argument bounds, we scored predictions using the Dice
coefficient, which is defined as follows:

Dice(Predicted, True) =
2 ∗ |Predicted

⋂
True|

|Predicted|+ |True| (10)

780

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Predicted contains the tokens that the model believes fill the implicit argument position.
True is the set of tokens from a single annotated constituent that fills the missing
argument position. The model’s prediction receives a score equal to the maximum Dice
overlap across any one of the annotated fillers (AF):

Score(Predicted) = max
True∈AF

Dice(Predicted, True) (11)

Precision is equal to the summed prediction scores divided by the number of argument
positions filled by the model. Recall is equal to the summed prediction scores divided
by the number of argument positions filled in the annotated data. Predictions not cover-
ing the head of a true filler were assigned a score of zero.11 For example, consider
the following true and predicted labelings:

(49) True labeling: [iarg0 Participants] will be able to transfer [iarg1 money] to
[iarg2 other investment funds]. The [p investment] choices are limited to
[iarg2 a stock fund and a money-market fund].

(50) Predicted labeling: Participants will be able to transfer [iarg1 money] to
other [iarg2 investment funds]. The [p investment] choices are limited to a
stock fund and a money-market fund.

In the ground-truth (49) there are three implicit argument positions to fill. The hypo-
thetical system has made predictions for two of the positions. The prediction scores are:

Score(iarg1 money) = Dice(money, money) = 1

Score(iarg2 investment funds) = max{Dice(investment funds, other investment funds),

Dice(investment funds, a stock . . . money–market fund)}
= max{0.8, 0} = 0.8

Precision, recall, and F1 for the example predicate are calculated as follows:

Precision = 1.8
2 = 0.9

Recall = 1.8
3 = 0.6

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall = 0.72

We calculated the F1 score for the entire testing fold by aggregating the counts used in
the above precision and recall calculations. Similarly, we aggregated the counts across
all folds to arrive at a single F1 score for the evaluated system.

We used a bootstrap resampling technique similar to those developed by Efron and
Tibshirani (1993) to test the significance of the performance difference between various
systems. Given a test pool comprising M missing argument positions iargn along with

11 Our evaluation methodology differs slightly from that of Ruppenhofer et al. (2010) in that we use the
Dice metric to compute precision and recall, whereas Ruppenhofer et al. reported the Dice metric
separately from exact-match precision and recall.

781

Computational Linguistics Volume 38, Number 4

the predictions by systems A and B for each iargn, we calculated the exact p-value of the
performance difference as follows:

1. Create r random resamples from M with replacement.

2. For each resample Ri, compute the system performance difference
dRi = ARi − BRi and store dri in D.

3. Find the largest symmetric interval [min, max] around the mean of D that
does not include zero.

4. The exact p-value equals the percentage of elements in D that are not in
[min, max].

Experiments have shown that this simple approach provides accurate estimates of
significance while making minimal assumptions about the underlying data distribution
(Efron and Tibshirani 1993). Similar randomization tests have been used to evaluate
information extraction systems (Chinchor, Lewis, and Hirschmant 1993).

5.3 LibLinear Model Configuration

Given a testing fold Ftest and a training fold Ftrain, we performed floating forward
feature subset selection using only the information contained in Ftrain. We used an
algorithm similar to the one described by Pudil, Novovicova, and Kittler (1994). As
part of the feature selection process, we conducted a grid search for the best c and w
LibLinear parameters, which govern the per-class cost of mislabeling instances from
a particular class (Fan et al. 2008). Setting per-class costs helps counter the effects of
class size imbalance, which is severe even when selecting candidates from the current
and previous few sentences (most candidates are negative). We ran the feature selection
and grid search processes independently for each Ftrain. As a result, the feature set and
model parameters are slightly different for each fold.12 For all folds, we used LibLinear’s
logistic regression solver and a candidate selection window of two sentences prior. As
shown in Figure 1, this window imposes a recall upper bound of approximately 85%.
The post-processing prediction threshold t was learned using a brute-force search that
maximized the system’s performance over the data in Ftrain.

5.4 Baseline and Oracle Models

We compared the supervised model with the simple baseline heuristic defined below:

Fill iargn for predicate instance p with the nearest constituent in the two-sentence
candidate window that fills argn for a different instance of p, where all nominal
predicates are normalized to their verbal forms.

The normalization allows, for example, an existing arg0 for the verb invested to fill an
iarg0 for the noun investment. This heuristic outperformed a more complicated heuristic
that relied on the PMI score described in Section 4.2. We also evaluated an oracle model
that made gold-standard predictions for candidates within the two-sentence prediction
window.

12 See Appendix Table C.1 for a per-fold listing of features and model parameters.

782

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

5.5 Results

Table 5 presents the evaluation results for implicit argument identification. Overall,
the discriminative model increased F1 performance by 21.4 percentage points (74.1%)
compared to the baseline (p < 0.0001). Predicates with the highest number of implicit
arguments (sale and price) showed F1 increases of 13.7 and 17.5 percentage points,
respectively (p < 0.001 for both differences). As expected, oracle precision is 100% for
all predictions, and the F1 difference between the discriminative and oracle systems is
significant at p < 0.0001 for all test sets. See the Appendix for a per-fold breakdown of
results and a listing of features and model parameters used for each fold.

We also measured human performance on this task by running the undergraduate
assistant’s annotations against a small portion of the evaluation data comprising 275
filled implicit arguments. The assistant achieved an overall F1 score of 56.0% using the
same two-sentence candidate window used by the baseline, discriminative, and oracle
models. Using an infinite candidate window, the assistant increased F1 performance
to 64.2%. Although these results provide a general idea about the performance upper
bound, they are not directly comparable to the cross-validated results shown in Table 5
because the assistant did not annotate the entire data set.

6. Discussion

6.1 Training Set Size

As described in Section 3.1, implicit argument annotation is an expensive process.
Thus, it is important to understand whether additional annotation would benefit the
ten predicates considered. In order to estimate the potential benefits, we measured the
effect of training set size on system performance. We retrained the discriminative model
for each evaluation fold using incrementally larger subsets of the complete training set
for the fold. Figure 2 shows the results, which indicate minimal gains beyond 80% of
the training set. Based on these results, we feel that future work should emphasize
feature and model development over training data expansion, as gains appear to trail
off significantly.

6.2 Feature Assessment

Previously (Gerber and Chai 2010), we assessed the importance of various implicit
argument feature groups by conducting feature ablation tests. In each test, the discrimi-
native model was retrained and reevaluated without a particular group of features. We
summarize the findings of this study in this section.

6.2.1 Semantic Roles are Essential. We observed statistically significant losses when ex-
cluding features that relate the semantic roles of elements in c′ to the semantic role of the
missing argument position. For example, Feature 1 appears as the top-ranked feature
in eight out of ten fold evaluations (see Appendix Table C.1). This feature is formed
by concatenating the filling predicate–argument position with the filled predicate–
argument position, producing values such as invest.arg0-lose.arg0. This value indicates
that the entity performing the investing is also the entity losing something. This type of
commonsense knowledge is essential to the task of implicit argument identification.

783

C
om

putationalLinguistics
Volum

e
38,N

um
ber

4

Table 5
Overall evaluation results for implicit argument identification. The second column gives the number of ground–truth implicitly filled argument
positions for the predicate instances. P, R, and F1 indicate precision, recall, and F–measure (β = 1), respectively. pexact is the bootstrapped exact
p-value of the F1 difference between two systems, where the systems are (B)aseline, (D)iscriminative, and (O)racle.

Baseline Discriminative Oracle

Imp. args. P R F1 P R F1 pexact(B,D) P R F1 pexact(D,O)

sale 181 57.0 27.7 37.3 59.2 44.8 51.0 0.0003 100.0 72.4 84.0 <0.0001
price 138 67.1 23.3 34.6 56.0 48.7 52.1 <0.0001 100.0 78.3 87.8 <0.0001
bid 124 66.7 14.5 23.8 60.0 36.3 45.2 <0.0001 100.0 60.5 75.4 <0.0001
investor 108 30.0 2.8 5.1 46.7 39.8 43.0 <0.0001 100.0 84.3 91.5 <0.0001
cost 86 60.0 10.5 17.8 62.5 50.9 56.1 <0.0001 100.0 86.0 92.5 <0.0001
loan 82 63.0 20.7 31.2 67.2 50.0 57.3 <0.0001 100.0 89.0 94.2 <0.0001
plan 77 72.7 20.8 32.3 59.6 44.1 50.7 0.0032 100.0 87.0 93.1 <0.0001
loss 62 78.8 41.9 54.7 72.5 59.7 65.5 0.0331 100.0 88.7 94.0 <0.0001
fund 56 66.7 10.7 18.5 80.0 35.7 49.4 <0.0001 100.0 66.1 79.6 <0.0001
investment 52 28.9 10.6 15.5 32.9 34.2 33.6 0.0043 100.0 80.8 89.4 <0.0001

Overall 966 61.4 18.9 28.9 57.9 44.5 50.3 <0.0001 100.0 78.0 87.6 <0.0001

784

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Figure 2
Effect of training set size on performance of discriminative model. The x-axis indicates the
percentage of training data used, and the y-axis indicates the overall F1 score that results.

6.2.2 Other Information is Important. Our 2010 study also found that semantic roles are
only one part of the solution. Using semantic roles in isolation also produced statistically
significant losses. This indicates that other features contribute useful information to
the task.

6.2.3 Discourse Structure Is not Essential. We also tested the effect of removing discourse
relations (Feature 67) from the model. Discourse structure has received a significant
amount of attention in NLP; it remains a very challenging problem, however, with
state-of-the-art systems attaining F1 scores in the mid-40% range (Sagae 2009). Our 2010
work as well as the updated work presented in this article used gold-standard discourse
relations from the Penn Discourse TreeBank. As shown by Sagae (2009), these relations
are difficult to extract in a practical setting. In our 2010 work, we showed that removing
discourse relations from the model did not have a statistically significant effect on
performance. Thus, this information should be removed in practical applications of the
model, at least until better uses for it can be identified.

6.2.4 Relative Feature Importance. We extended earlier findings by assessing the relative
importance of the features. We aggregated the feature rank information given in Ap-
pendix Table C.1. For each evaluation fold, each feature received a point value equal
to its reciprocal rank within the feature list. Thus, a feature appearing at rank 5 for a
fold would receive 1

5 = 0.2 points for that fold. We totaled these points across all folds,
arriving at the values shown in the final column of Appendix Table B.1. The scores
confirm the earlier findings. The highest scoring feature relates the semantic roles of
the candidate argument to the missing argument position. Non-semantic information
such as the sentence distance (Feature 2) also plays a key role. Discourse structure is
consistently ranked near the bottom of the list (Feature 67).

6.3 Error Analysis

Table 6 lists the errors made by the system and their frequencies. As shown, the single
most common error (type 1) occurred when a true filler was classified but an incor-
rect filler had a higher score. This occurred in approximately 31% of the error cases.

785

Computational Linguistics Volume 38, Number 4

Table 6
Implicit argument error analysis. The second column indicates the type of error that was made
and the third column gives the percentage of all errors that fall into each type.

Description %

1 A true filler was classified but an incorrect filler scored higher 30.6
2 A true filler did not exist but a prediction was made 22.4
3 A true filler existed within the window but was not a candidate 21.1
4 A true filler scored highest but below the threshold 15.9
5 A true filler existed but not within the window 10.0

Often, though, the system did not classify a true implicit argument because such a
candidate was not generated. Without such a candidate, the system stood no chance of
making a correct prediction. Errors 3 and 5 combined (also 31%) describe this behavior.
Type 3 errors resulted when implicit arguments were not core (i.e., argn) arguments
to other predicates. To reduce class imbalance, the system only used core arguments
as candidates; this came at the expense of increased type 3 errors, however. In many
cases, the true implicit argument filled a non-core (i.e., adjunct) role within PropBank
or NomBank.

Type 5 errors resulted when the true implicit arguments for a predicate were outside
the candidate window. Oracle recall (see Table 5) indicates the nominals that suffered
most from windowing errors. For example, the sale predicate was associated with the
highest number of true implicit arguments, but only 72% of those could be resolved
within the two-sentence candidate window. Empirically, we found that extending the
candidate window uniformly for all predicates did not increase F1 performance because
additional false positives were identified. The oracle results suggest that predicate-
specific window settings might offer some advantage for predicates such as fund and
bid, which take arguments at longer ranges.

Error types 2 and 4 are directly related to the prediction confidence threshold t.
The former would be reduced by increasing t and thus filtering out bad predictions.
The latter would be reduced by lowering t and allowing more true fillers into the final
output. It is unclear whether either of these actions would increase overall performance,
however.

6.4 The Investment and Fund Predicates

In Section 4.2, we discussed the price predicate, which frequently occurs in the “[p price]
index” collocation. We observed that this collocation is rarely associated with either an
overt arg0 or an implicit iarg0. Similar observations can be made for the investment and
fund predicates. Although these two predicates are frequent, they are rarely associated
with implicit arguments: investment takes only 52 implicit arguments and fund takes
only 56 implicit arguments (see Table 5). This behavior is due in large part to collocations
such as “[p investment] banker,” “stock [p fund],” and “mutual [p fund],” which use
predicate senses that are not eventive and take no arguments. Such collocations also
violate the assumption that differences between the PropBank and NomBank argument
structure for a predicate are indicative of implicit arguments (see Section 3.1 for this
assumption).

Despite their lack of implicit arguments, it is important to account for predicates
such as investment and fund because the incorrect prediction of implicit arguments for

786

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

them can lower precision. This is precisely what happened for the investment predicate
(P = 33%). The model incorrectly identified many implicit arguments for instances such
as “[p investment] banker” and “[p investment] professional,” which take no arguments.
The right context of investment should help the model avoid this type of error; however
in many cases this was not enough evidence to prevent a false positive prediction.
It might be helpful to distinguish eventive nominals from non-eventive ones, given
the observation that some non-eventive nominals rarely take arguments. Additional
investigation is needed to address this type of error.

6.5 Improvements versus the Baseline

The baseline heuristic covers the simple case where identical predicates share argu-
ments in the same position. Because the discriminative model also uses this information
(see Feature 8), it is interesting to examine cases where the baseline heuristic failed
but the discriminative model succeeded. Such cases represent more difficult inferences.
Consider the following sentence:

(51) Mr. Rogers recommends that [p investors] sell [iarg2 takeover–related
stock].

Neither NomBank nor the baseline heuristic associate the marked predicate in Exam-
ple (51) with any arguments; the feature-based model was able to correctly identify
the marked iarg2 as the entity being invested in, however. This inference relied on a
number of features that connect the invest event to the sell event (e.g., Features 1, 4,
and 76). These features captured a tendency of investors to sell the things they have
invested in.

We conclude our discussion with an example of a complex extra-sentential implicit
argument. Consider the following adjacent sentences:

(52) [arg0 Olivetti] [p exported] $25 million in “embargoed, state-of-the-art,
flexible manufacturing systems to the Soviet aviation industry.”

(53) [arg0 Olivetti] reportedly began [p shipping] these tools in 1984.

(54) [iarg0 Olivetti] has denied that it violated the rules, asserting that the
shipments were properly licensed.

(55) However, the legality of these [p sales] is still an open question.

In Example (55), we are looking for the iarg0 of sale. As shown, the discriminative model
was able to correctly identify Olivetti from Example (54) as the implied filler of this
argument position. The inference involved two key steps. First, the model identified
coreferent mentions of Olivetti in Examples (52) and (53). In these sentences, Olivetti
participates in the marked exporting and shipping events. Second, the model identified
a tendency for exporters and shippers to also be sellers (e.g., Features 1, 4, and 23 made
large contributions to the prediction). Using this knowledge, the system extracted infor-
mation that could not be extracted by the baseline heuristic or a traditional SRL system.

787

Computational Linguistics Volume 38, Number 4

6.6 Comparison with Previous Results

In a previous study, we reported initial results for the task of implicit argument identi-
fication (Gerber and Chai 2010). This article presents two major advancements versus
our prior work. First, this article presents a more rigorous evaluation set-up, which was
not used in our previous study. Our previous study used fixed partitions of training,
development, and testing data. As a result, feature and model parameter selections
overfit the development data; we observed a 23-point difference in F1 between the
development (65%) and testing (42%) partitions. The small size of the testing set also
led to small sample sizes and large p-values during significance testing. The cross-
validated approach reported in this article alleviated both problems. The F1 difference
between training and testing was approximately 10 percentage points for all folds, and
all of the data were used for testing, leading to more accurate p-values. It is not possible
to directly compare the evaluation scores in the two studies; the methodology in the
current article is preferable for the reasons mentioned, however.

Second, this article presents a wider range of features compared with the features
described in our previous study. In particular, we experimented with corpus statistics
derived from sub-corpora that were specifically tailored to the predicate instance under
consideration. See, for example, Feature 13 in Appendix B, which computed PMI scores
between arguments found in a custom sub-corpus of text. This feature was ranked
highly by a few of the evaluation folds (see Appendix B for feature rankings).

7. Conclusions

Previous work provided a partial solution to the problem of nominals with implicit
arguments (Gerber, Chai, and Meyers 2009). The model described in that work is able
to accurately identify nominals that take local arguments, thus filtering out predicates
whose arguments are entirely implicit. This increases standard nominal SRL perfor-
mance by reducing the number of false positive argument predictions; all implicit
arguments remain unidentified, however, leaving a large portion of the corresponding
event structures unrecognized.

This article presents our investigation of implicit argument identification for nom-
inal predicates. The study was based on a manually created corpus of implicit argu-
ments, which is freely available for research purposes. Our results show that models
can be trained by incorporating information from a variety of ontological and corpus-
based sources. The study’s primary findings include the following:

1. Implicit arguments are frequent. Given the predicates in a document,
there exist a fixed number of possible arguments that can be filled
according to NomBank’s predicate role sets. Role coverage is defined as
the fraction of these roles that are actually filled by constituents in the text.
Using NomBank as a baseline, the study found that role coverage
increases by 71% when implicit arguments are taken into consideration.

2. Implicit arguments can be automatically identified. Using the annotated
data, we constructed a feature-based supervised model that is able to
automatically identify implicit arguments. This model relies heavily on
the traditional, single-sentence SRL structure of both nominal and verbal
predicates. By unifying these sources of information, the implicit argument

788

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

model provides a more coherent picture of discourse semantics than is
typical in most recent work (e.g., the evaluation conducted by Surdeanu
et al. [2008]). The model demonstrates substantial gains over an informed
baseline, reaching an overall F1 score of 50% and per-predicate scores in
the mid-50s and mid-60s. These results are among the first for this task.

3. Much work remains. The study presented in the current article was very
focused: Only ten different predicates were analyzed. The goal was to
carefully examine the underlying linguistic properties of implicit
arguments. This examination produced many features that have not been
used in other SRL studies. The results are encouraging; a direct application
of the model to all NomBank predicates will require a substantial
annotation effort, however. This is because many of the most important
features are lexicalized on the predicate being analyzed and thus cannot be
generalized to novel predicates. Additional information might be
extracted from VerbNet, which groups related verbs together. Features
from this resource might generalize better because they apply to entire sets
of verbs (and verb-based nouns). Additionally, the model would benefit
from a deeper understanding of the relationships that obtain between
predicates in close textual proximity. Often, predicates themselves head
arguments to other predicates, and, as a result, borrow arguments from
those predicates following certain patterns. The work of Blanco and
Moldovan (2011) addresses this issue directly with the use of composition
rules. These rules would be helpful for implicit argument identification.
Lastly, it should be noted that the prediction model described in this article
is quite simple. Each candidate is independently classified as filling
each missing argument position, and a heuristic post-processing step is
performed to arrive at the final labeling. This approach ignores the joint
behavior of semantic arguments. We have performed a preliminary
investigation of joint implicit argument structures (Gerber, Chai, and Bart
2011); as described in that work, however, many issues remain concerning
joint implicit argument identification.

789

Computational Linguistics Volume 38, Number 4

Appendix A: Role Sets for the Annotated Predicates

Listed here are the role sets for the ten predicates used in this article.

Role set for bid:
Arg0: bidder
Arg1: thing being bid for
Arg2: amount of the bid

Role set for sale:
Arg0: seller
Arg1: thing sold
Arg2: buyer
Arg3: price paid
Arg4: beneficiary of sale

Role set for loan:
Arg0: giver
Arg1: thing given
Arg2: entity given to
Arg3: loan against
(collateral)
Arg4: interest rate

Role set for cost:
Arg1: commodity
Arg2: price
Arg3: buyer
Arg4: secondary commodity

Role set for plan:
Arg0: planner
Arg1: thing planned
Arg2: beneficiary of plan
Arg3: secondary plan

Role set for investor:
Arg0: investor
Arg1: thing invested
Arg2: thing invested in

Role set for price:
Arg0: seller
Arg1: commodity
Arg2: price
Arg3: secondary commodity

Role set for loss:
Arg0: entity losing
something
Arg1: thing lost
Arg2: entity gaining thing
lost
Arg3: source of loss

Role set for investment:
Arg0: investor
Arg1: thing invested
Arg2: thing invested in

Role set for fund:
Arg0: funder
Arg1: thing funded
Arg2: amount of funding
Arg3: beneficiary

790

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Appendix B: Implicit Argument Features

Table B.1
Features for determining whether c fills iargn of predicate p. For each mention f (denoting a
filler) in the coreference chain c′, pf , and argf are the predicate and argument position of f .
Unless otherwise noted, all argument positions (e.g., argn and iargn) should be interpreted as the
integer label n instead of the underlying word content of the argument. The & symbol denotes
concatenation; for example, a feature value of “p & iargn” for the iarg0 position of sale would be
“sale-0.” Features marked with an asterisk (*) are explained in Section 4.2. Features marked with
a dagger (†) require external text corpora that have been automatically processed by existing
NLP components (e.g., SRL systems). The final column gives a heuristic ranking score for the
features across all evaluation folds (see Section 6.2 for discussion).

Feature value description Importance score

1* For every f , pf & argf & p & iargn. 8.2
2* Sentence distance from c to p. 4.0
3* For every f , the head word of f & the verbal form of p & iargn. 3.6
4* Same as 1 except generalizing pf and p to their WordNet synsets. 3.3
5* Same as 3 except generalizing f to its WordNet synset. 1.0
6 Whether or not c and p are themselves arguments to the same

predicate.
1.0

7 p & the semantic head word of p’s right sibling. 0.7
8 Whether or not any argf and iargn have the same integer argument

position.
0.7

9* Frame element path between argf of pf and iargn of p in FrameNet
(Baker, Fillmore, and Lowe 1998).

0.6

10 Percentage of elements in c′ that are subjects of a copular for which p
is the object.

0.6

11 Whether or not the verb forms of pf and p are in the same VerbNet
class and argf and iargn have the same thematic role.

0.6

12 p & the last word of p’s right sibling. 0.6
13*† Maximum targeted PMI between argf of pf and iargn of p. 0.6
14 p & the number of p’s right siblings. 0.5
15 Percentage of elements in c′ that are objects of a copular for which p

is the subject.
0.5

16 Frequency of the verbal form of p within the document. 0.5
17 p & the stemmed content words in a one–word window around p. 0.5
18 Whether or not p’s left sibling is a quantifier (many, most, all, etc.).

Quantified predicates tend not to take implicit arguments.
0.4

19 Percentage of elements in c′ that are copular objects. 0.4
20 TF cosine similarity between words from arguments of all pf and

words from arguments of p.
0.4

21 Whether the path defined in 9 exists. 0.4
22 Percentage of elements in c′ that are copular subjects. 0.4
23* For every f , the VerbNet class/role of pf /argf & the class/role of

p/iargn.
0.4

24 Percentage of elements in c′ that are indefinite noun phrases. 0.4
25* p & the syntactic head word of p’s right sibling. 0.3
26 p & the stemmed content words in a two-word window around p. 0.3
27*† Minimum selectional preference between any f and iargn of p.

Uses the method described by Resnik (1996) computed over
an SRL-parsed version of the Penn TreeBank and Gigaword
(Graff 2003) corpora.

0.3

28 p & p’s synset in WordNet. 0.3
29† Same as 27 except using the maximum. 0.3

791

Computational Linguistics Volume 38, Number 4

Table B.1
(continued)

Feature value description Importance score

30 Average per–sentence frequency of the verbal form of p within the
document.

0.3

31 p itself. 0.3
32 p & whether p is the head of its parent. 0.3
33*† Minimum coreference probability between argf of pf and iargn of p. 0.3
34 p & whether p is before a passive verb. 0.3
35 Percentage of elements in c′ that are definite noun phrases. 0.3
36 Percentage of elements in c′ that are arguments to other predicates. 0.3
37 Maximum absolute sentence distance from any f to p. 0.3
38 p & p’s syntactic category. 0.2
39 TF cosine similarity between the role description of iargn and the

concatenated role descriptions of all argf .
0.2

40 Average TF cosine similarity between each argn of each pf and the
corresponding argn of p, where ns are equal.

0.2

41 Same as 40 except using the maximum. 0.2
42 Same as 40 except using the minimum. 0.2
43 p & the head of the following prepositional phrase’s object. 0.2
44 Whether any f is located between p and any of the arguments

annotated by NomBank for p. When true, this feature rules out
false positives because it implies that the NomBank annotators
considered and ignored f as a local argument to p.

0.2

45 Number of elements in c′. 0.2
46 p & the first word of p’s right sibling. 0.2
47 p & the grammar rule that expands p’s parent. 0.2
48 Number of elements in c′ that are arguments to other predicates. 0.2
49 Nominal form of p & iargn. 0.2
50 p & the syntactic parse tree path from p to the nearest passive verb. 0.2
51 Same as 37 except using the minimum. 0.2
52† Same as 33 except using the average. 0.2
53 Verbal form of p & iargn. 0.2
54 p & the first word of p’s left sibling. 0.2
55 Average per-sentence frequency of the nominal form of p within the

document.
0.2

56 p & the part of speech of p’s parent’s head word. 0.2
57† Same as 33 except using the maximum. 0.2
58 Same as 37 except using the average. 0.1
59* Minimum path length between argf of pf and iargn of p within

VerbNet (Kipper 2005).
0.1

60 Frequency of the nominal form of p within the document. 0.1
61 p & the number of p’s left siblings. 0.1
62 p & p’s parent’s head word. 0.1
63 p & the syntactic category of p’s right sibling. 0.1
64 p & p’s morphological suffix. 0.1
65 TF cosine similarity between words from all f and words from the

role description of iargn.
0.1

66 Percentage of elements in c′ that are quantified noun phrases. 0.1
67* Discourse relation whose two discourse units cover c (the primary

filler) and p.
0.1

68 For any f , the minimum semantic similarity between pf and p using
the method described by Wu and Palmer (1994) over WordNet
(Fellbaum 1998).

0.1

792

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Table B.1
(continued)

Feature value description Importance score

69 p & whether or not p is followed by a prepositional phrase. 0.1
70 p & the syntactic head word of p’s left sibling. 0.1
71 p & the stemmed content words in a three-word window around p. 0.1
72 Syntactic category of c & iargn & the verbal form of p. 0.1
73 Nominal form of p & the sorted integer argument indexes (the ns)

from all argn of p.
0.1

74 Percentage of elements in c′ that are sentential subjects. 0.1
75 Whether or not the integer position of any argf equals that of iargn. 0.1
76† Same as 13 except using the average. 0.1
77† Same as 27 except using the average. 0.1
78 p & p’s parent’s syntactic category. 0.1
79 p & the part of speech of the head word of p’s right sibling. 0.1
80 p & the semantic head word of p’s left sibling. 0.1
81† Maximum targeted coreference probability between argf of pf

and iargn of p. This is a hybrid feature that calculates the coreference
probability of Feature 33 using the corpus tuning method of
Feature 13.

0.1

793

C
om

putationalLinguistics
Volum

e
38,N

um
ber

4

Appendix C: Per-fold Implicit Argument Identification Results

Table C.1
Per-fold implicit argument identification results. Columns are defined as follows: (1) fold used for testing, (2) selected features in rank order,
(3) baseline F1, (4) LibLinear cost parameter, (5) LibLinear weight for the positive class, (6) implicit argument confidence threshold, (7) discriminative
F1, (8) oracle F1. A bias of 1 was used for all LibLinear models.

Baseline Discriminative (LibLinear) Oracle

Fold Features F1 (%) c w+ t F1 (%) F1 (%)

1 1, 2, 3, 11, 32, 8, 27, 22, 31, 10, 20, 53, 6, 16, 24, 40, 30, 38, 72, 69,
73, 19, 28, 42, 48, 64, 44, 36, 37, 12, 7

31.7 0.25 4 0.39260 47.1 86.7

2 1, 3, 2, 4, 17, 13, 28, 11, 6, 18, 25, 12, 56, 29, 16, 53, 41, 31, 46, 10, 7,
51, 15, 22

32 0.25 256 0.80629 51.5 86.9

3 4, 3, 2, 8, 7, 6, 59, 20, 9, 62, 37, 39, 41, 19, 10, 15, 11, 35, 61, 44, 42,
40, 32, 30, 16, 75, 33, 24

35.3 0.25 256 0.90879 55.8 88.1

4 1, 2, 5, 13, 8, 49, 6, 35, 34, 14, 15, 18, 36, 28, 20, 45, 3, 43, 24, 48, 10,
29, 12, 30, 33, 65, 31, 22, 61, 16, 27, 41, 60, 55, 64

27.8 0.25 4 0.38540 45.8 86.5

5 1, 2, 26, 3, 4, 23, 5, 63, 55, 6, 12, 44, 42, 65, 7, 71, 18, 15, 10, 14, 52,
34, 19, 24, 50, 58

25.8 0.125 1024 0.87629 45.9 88

6 1, 3, 2, 14, 23, 38, 25, 39, 16, 6, 21, 68, 70, 58, 9, 22, 18, 31, 60, 10,
64, 15, 66, 19, 30, 51, 56, 28

34.8 0.25 256 0.87759 55.4 90.8

7 1, 2, 4, 3, 47, 54, 43, 7, 33, 9, 67, 24, 36, 50, 40, 12, 21 22.9 0.25 256 0.81169 46.3 87.4
8 1, 3, 2, 4, 9, 7, 14, 12, 6, 46, 30, 18, 19, 36, 48, 42, 37, 45, 60, 56, 61,

51, 15, 10, 41, 40, 25, 31, 11, 39, 62, 69, 34, 16, 33, 8, 38, 20, 78, 44,
55, 80, 53, 50, 52, 49, 24, 28, 57

27.1 0.0625 512 0.92019 47.4 87.2

9 1, 5, 2, 4, 3, 21, 27, 10, 15, 9, 57, 35, 16, 25, 37, 33, 45, 24, 46, 29, 19,
34, 51, 50, 22, 48, 32, 11, 12, 58, 41, 8, 76, 18, 30, 40, 77, 6, 66, 44,
43, 79, 81, 20

23 0.0625 32 0.67719 54.1 85.5

10 4, 3, 2, 17, 1, 13, 29, 12, 11, 52, 10, 15, 6, 16, 9, 22, 7, 21, 57, 19, 74,
34, 45, 20, 66

28.4 0.0625 512 0.89769 53.2 88.5

(1) (2) (3) (4) (5) (6) (7) (8)

794

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Acknowledgments
We would like to thank the anonymous
reviewers for their many insightful
comments and suggestions. This work
was partially supported by NSF grants
IIS-0347548 and IIS-0840538.

References
Baker, Collin, Charles Fillmore, and

John Lowe. 1998. The Berkeley FrameNet
project. In Proceedings of the Thirty-Sixth
Annual Meeting of the Association for
Computational Linguistics and Seventeenth
International Conference on Computational
Linguistics, pages 86–90, San Francisco, CA.

Bhagat, Rahul, Patrick Pantel, and Eduard
Hovy. 2007. LEDIR: An unsupervised
algorithm for learning directionality
of inference rules. In Proceedings of the
2007 Joint Conference on Empirical
Methods in Natural Language Processing
and Computational Natural Language
Learning (EMNLP-CoNLL), pages 161–170,
Prague.

Blanco, Eduardo and Dan Moldovan. 2011.
A model for composing semantic relations.
In Proceedings of the 9th International
Conference on Computational Semantics
(IWCS 2011), pages 45–54, Oxford.

Burchardt, Aljoscha, Anette Frank, and
Manfred Pinkal. 2005. Building text
meaning representations from contextually
related frames—a case study. In Proceedings
of the Sixth International Workshop on
Computational Semantics, Tilburg.

Carpenter, Patricia A., Akira Miyake,
and Marcel Adam Just. 1995. Language
comprehension: Sentence and discourse
processing. Annual Review of Psychology,
46:91–120.

Carreras, Xavier and Lluı́s Màrquez. 2005.
Introduction to the CoNLL-2005 shared
task: Semantic role labeling. In Proceedings
of the Ninth Conference on Computational
Natural Language Learning, pages 152–164,
Ann Arbor, MI.

Chambers, Nathanael and Dan Jurafsky.
2008. Unsupervised learning of narrative
event chains. In Proceedings of the
Association for Computational Linguistics,
pages 789–797, Columbus, OH.

Charniak, Eugene and Mark Johnson.
2005. Coarse-to-fine n-best parsing
and MaxEnt discriminative reranking.
In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics,
pages 173–180, Ann Arbor, MI.

Chen, Desai, Nathan Schneider, Dipanjan
Das, and Noah A. Smith. 2010. Semafor:
Frame argument resolution with log-linear
models. In Proceedings of the 5th
International Workshop on Semantic
Evaluation, pages 264–267, Uppsala.

Chen, Zheng and Heng Ji. 2009. Graph-based
event coreference resolution. In Proceedings
of the 2009 Workshop on Graph-based
Methods for Natural Language Processing
(TextGraphs-4), pages 54–57, Suntec.

Chinchor, Nancy, David D. Lewis, and
Lynette Hirschmant. 1993. Evaluating
message understanding systems:
An analysis of the third message
understanding conference. Computational
Linguistics, 19(3):409–450.

Cohen, Jacob. 1960. A coefficient of
agreement for nominal scales.
Educational and Psychological
Measurement, 20(1):37–46.

Dang, Hoa Trang, Diane Kelly, and Jimmy J.
Lin. 2007. Overview of the TREC 2007
question answering track. In Proceedings
of the Fifteenth TREC. Available at
trec.nist.gov/pubs/trec15/t15
proceedings.html.

Di Eugenio, Barbara and Michael Glass.
2004. The kappa statistic: a second look.
Computational Linguistics, 30(1):95–101.

Efron, Bradley and Robert J. Tibshirani. 1993.
An Introduction to the Bootstrap. Chapman
& Hall, New York.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A Library for Large
Linear Classification. Journal of Machine
Learning Research, 9:1871–1874.

Fellbaum, Christiane. 1998. WordNet:
An Electronic Lexical Database (Language,
Speech, and Communication). The MIT Press,
Cambridge, MA.

Fillmore, C. J. and C. F. Baker. 2001.
Frame semantics for text understanding.
In Proceedings of WordNet and Other
Lexical Resources Workshop, NAACL,
Pittsburgh, PA.

Gerber, Matthew and Joyce Chai. 2010.
Beyond NomBank: A study of implicit
arguments for nominal predicates. In
Proceedings of the 48th Annual Meeting
of the Association for Computational
Linguistics, pages 1583–1592, Uppsala.

Gerber, Matthew, Joyce Chai, and Robert
Bart. 2011. A joint model of implicit
arguments for nominal predicates. In
Proceedings of the ACL 2011 Workshop on
Relational Models of Semantics, pages 63–71,
Portland, OR.

795

Computational Linguistics Volume 38, Number 4

Gerber, Matthew, Joyce Chai, and Adam
Meyers. 2009. The role of implicit
argumentation in nominal SRL. In
Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North
American Chapter of the Association for
Computational Linguistics, pages 146–154,
Boulder, CO.

Graesser, Arthur C. and Leslie F. Clark.
1985. Structures and Procedures of Implicit
Knowledge. Ablex Publishing Corporation,
New York.

Graff, David. 2003. English Gigaword.
Linguistic Data Consortium,
Philadelphia, PA.

Grosz, Barbara J., Aravind K. Joshi, and
Scott Weinstein. 1995. Centering:
A framework for modeling the local
coherence of discourse. Computational
Linguistics, 21(2):203–225.

Harris, Zellig. 1985. Distributional structure.
In J. J. Katz, editor, The Philosophy of
Linguistics. Oxford University Press,
New York, pages 26–47.

Heim, Irene and Angelika Kratzer. 1998.
Semantics in Generative Grammar.
Blackwell, Oxford.

Iida, Ryu, Mamoru Komachi, Kentaro Inui,
and Yuji Matsumoto. 2007. Annotating a
Japanese text corpus with predicate-
argument and coreference relations. In
Proceedings of the Linguistic Annotation
Workshop in ACL-2007, pages 132–139,
Prague.

Imamura, Kenji, Kuniko Saito, and
Tomoko Izumi. 2009. Discriminative
approach to predicate–argument structure
analysis with zero-anaphora resolution.
In Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pages 85–88,
Suntec.

Johansson, Richard and Pierre Nugues. 2008.
Dependency-based syntactic–semantic
analysis with PropBank and NomBank.
In CoNLL 2008: Proceedings of the Twelfth
Conference on Computational Natural
Language Learning, pages 183–187,
Manchester.

Kamp, Hans and Uwe Reyle. 1993. From
Discourse to Logic. Kluwer, Dordrecht.

Kipper, Karin. 2005. VerbNet: A
Broad-coverage, Comprehensive Verb Lexicon.
Ph.D. thesis, Department of Computer
and Information Science, University of
Pennsylvania, Philadelphia.

Krippendorff, Klaus. 1980. Content Analysis:
An Introduction to Its Methodology. Sage
Publications, Thousand Oaks, CA.

Lin, Dekang and Patrick Pantel. 2001.
Discovery of inference rules for
question-answering. Natural Language
Engineering, 7(4):343–360.

Liu, Chang and Hwee Ng. 2007. Learning
predictive structures for semantic role
labeling of nombank. In Proceedings of the
45th Annual Meeting of the Association of
Computational Linguistics, pages 208–215,
Prague.

Marcus, Mitchell, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: the
Penn TreeBank. Computational Linguistics,
19:313–330.

Meyers, Adam. 2007. Annotation guidelines
for NomBank—noun argument structure
for PropBank. Technical report, New York
University.

Nielsen, Leif Arda. 2004. Verb phrase
ellipsis detection using automatically
parsed text. In COLING ’04: Proceedings
of the 20th international conference on
Computational Linguistics, pages 1093–1099,
Geneva.

Nielsen, Leif Arda. 2005. A corpus-based
study of Verb Phrase Ellipsis Identification
and Resolution. Ph.D. thesis, King’s
College, London.

NIST, 2008. The ACE 2008 Evaluation Plan.
National Institute of Standards and
Technology, Gaithersburg, MD.

Palmer, Martha S., Deborah A. Dahl,
Rebecca J. Schiffman, Lynette Hirschman,
Marcia Linebarger, and John Dowding.
1986. Recovering implicit information. In
Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics,
pages 10–19, Morristown, NJ.

Pantel, Patrick, Rahul Bhagat, Bonaventura
Coppola, Timothy Chklovski, and Eduard
Hovy. 2007. ISP: Learning inferential
selectional preferences. In Human Language
Technologies 2007: The Conference of the
North American Chapter of the Association
for Computational Linguistics; Proceedings
of the Main Conference, pages 564–571,
Rochester, NY.

Pantel, Patrick and Deepak Ravichandran.
2004. Automatically labeling semantic
classes. In HLT-NAACL 2004: Main
Proceedings, pages 321–328, Boston, MA.

Pizzato, Luiz Augusto and Diego Mollá.
2008. Indexing on semantic roles for
question answering. In COLING 2008:
Proceedings of the 2nd Workshop on
Information Retrieval for Question
Answering, pages 74–81, Manchester.

796

Gerber and Chai SRL of Implicit Arguments for Nominal Predicates

Prasad, Rashmi, Alan Lee, Nikhil Dinesh,
Eleni Miltsakaki, Geraud Campion,
Aravind Joshi, and Bonnie Webber. 2008.
Penn discourse treebank version 2.0.
Linguistic Data Consortium, University
of Pennsylvania, Philadelphia.

Pudil, P., J. Novovicova, and J. Kittler.
1994. Floating search methods in feature
selection. Pattern Recognition Letters,
15:1119–1125.

Punyakanok, Vasin, Peter Koomen,
Dan Roth, and Wen-tau Yih. 2005.
Generalized inference with multiple
semantic role labeling systems. In
Proceedings of CoNLL-2005 Shared Task,
pages 181–184, Ann Arbor, MI.

Punyakanok, Vasin, Dan Roth, and Wen-Tau
Yih. 2008. The importance of syntactic
parsing and inference in semantic role
labeling. Computational Linguistics,
34(2):257–287.

Resnik, Philip. 1996. Selectional constraints:
An information-theoretic model and its
computational realization. Cognition,
61:127–159.

Ritter, Alan, Mausam, and Oren Etzioni.
2010. A latent dirichlet allocation method
for selectional preferences. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics, pages 424–434,
Uppsala.

Ruppenhofer, Josef, Caroline Sporleder,
Roser Morante, Collin Baker, and
Martha Palmer. 2009. Semeval-2010
task 10: Linking events and their
participants in discourse. In Proceedings
of the Workshop on Semantic Evaluations:
Recent Achievements and Future
Directions (SEW-2009), pages 106–111,
Boulder, CO.

Ruppenhofer, Josef, Caroline Sporleder,
Roser Morante, Collin Baker, and
Martha Palmer. 2010. Semeval-2010
task 10: Linking events and their
participants in discourse. In Proceedings
of the 5th International Workshop on
Semantic Evaluation, pages 45–50,
Uppsala.

Sagae, Kenji. 2009. Analysis of discourse
structure with syntactic dependencies
and data-driven shift-reduce parsing.
In Proceedings of the 11th International
Conference on Parsing Technologies
(IWPT’09), pages 81–84, Paris.

Sanford, A. J. 1981. Understanding Written
Language. John Wiley & Sons Ltd,
Hoboken, NJ.

Sasano, Ryohei, Daisuke Kawahara, and
Sadao Kurohashi. 2004. Automatic

construction of nominal case frames
and its application to indirect anaphora
resolution. In Proceedings of COLING 2004,
pages 1201–1207, Geneva.

Schank, Roger C. and Robert P. Abelson.
1977. Scripts, Plans, Goals and
Understanding: an Inquiry into Human
Knowledge Structures. Lawrence Erlbaum,
Hillsdale, NJ.

Surdeanu, Mihai, Richard Johansson, Adam
Meyers, Lluı́s Màrquez, and Joakim Nivre.
2008. The CoNLL 2008 shared task on
joint parsing of syntactic and semantic
dependencies. In CoNLL 2008: Proceedings
of the Twelfth Conference on Computational
Natural Language Learning, pages 159–177,
Manchester.

Szpektor, Idan, Hristo Tanev, Ido Dagan,
and Bonaventura Coppola. 2004. Scaling
Web-based acquisition of entailment
relations. In Proceedings of Empirical
Methods in Natural Language Processing,
pages 41–48, Barcelona.

Tonelli, Sara and Rodolfo Delmonte.
2010. Venses++: Adapting a deep
semantic processing system to the
identification of null instantiations.
In Proceedings of the 5th International
Workshop on Semantic Evaluation,
pages 296–299, Uppsala.

van Dijk, T. A. 1977. Semantic macro
structures and knowledge frames
in discourse comprehension. In
M. A. Just and P. A. Carpenter, editors,
Cognitive Processes in Comprehension.
Lawrence Erlbaum, Hillsdale, NJ,
pages 3–32.

van Dijk, Teun A. and Walter Kintsch. 1983.
Strategies of Discourse Comprehension.
Academic Press, Waltham, MA.

Versley, Yannick, Simone Paolo Ponzetto,
Massimo Poesio, Vladimir Eidelman,
Alan Jern, Jason Smith, Xiaofeng Yang,
and Alessandro Moschitti. 2008.
BART: A modular toolkit for coreference
resolution. In Proceedings of the 6th
International Conference on Language
Resources and Evaluation, pages 9–12,
Marrakech.

Whittemore, Greg, Melissa Macpherson,
and Greg Carlson. 1991. Event-building
through role-filling and anaphora
resolution. In Proceedings of the 29th
Annual Meeting on Association for
Computational Linguistics, pages 17–24,
Morristown, NJ.

Wilson, N. L. 1974. Facts, events, and their
identity conditions. Philosophical Studies,
25:303–321.

797

Computational Linguistics Volume 38, Number 4

Wu, Zhibiao and Martha Palmer. 1994.
Verb semantics and lexical selection.
In Proceedings of the 32nd Annual
Meeting of the Association for
Computational Linguistics,
pages 133–138, Las Cruces, NM.

Yang, Xiaofeng, Jian Su, and Chew Lim Tan.
2008. A twin-candidate model for
learning-based anaphora resolution.
Computational Linguistics, 34(3):327–356.

Zanzotto, Fabio Massimo, Marco
Pennacchiotti, and Maria Teresa Pazienza.
2006. Discovering asymmetric entailment
relations between verbs using selectional
preferences. In ACL-44: Proceedings
of the 21st International Conference on
Computational Linguistics and the 44th
Annual Meeting of the Association for
Computational Linguistics, pages 849–856,
Morristown, NJ.

798

